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Abstract

Over-representation analysis (ORA) is one of the commonest pathway analysis approaches

used for the functional interpretation of metabolomics datasets. Despite the widespread use

of ORA in metabolomics, the community lacks guidelines detailing its best-practice use.

Many factors have a pronounced impact on the results, but to date their effects have

received little systematic attention. Using five publicly available datasets, we demonstrated

that changes in parameters such as the background set, differential metabolite selection

methods, and pathway database used can result in profoundly different ORA results. The

use of a non-assay-specific background set, for example, resulted in large numbers of false-

positive pathways. Pathway database choice, evaluated using three of the most popular

metabolic pathway databases (KEGG, Reactome, and BioCyc), led to vastly different

results in both the number and function of significantly enriched pathways. Factors that are

specific to metabolomics data, such as the reliability of compound identification and the

chemical bias of different analytical platforms also impacted ORA results. Simulated metab-

olite misidentification rates as low as 4% resulted in both gain of false-positive pathways

and loss of truly significant pathways across all datasets. Our results have several practical

implications for ORA users, as well as those using alternative pathway analysis methods.

We offer a set of recommendations for the use of ORA in metabolomics, alongside a set of

minimal reporting guidelines, as a first step towards the standardisation of pathway analysis

in metabolomics.
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Author summary

Metabolomics is a rapidly growing field of study involving the profiling of small molecules

within an organism. It allows researchers to understand the effects of biological status

(such as health or disease) on cellular biochemistry, and has wide-ranging applications,

from biomarker discovery and personalised medicine in healthcare to crop protection

and food security in agriculture. Pathway analysis helps to understand which biological

pathways, representing collections of molecules performing a particular function, may be

involved in response to a disease phenotype, or drug treatment, for example. Over-repre-

sentation analysis (ORA) is perhaps the most common pathway analysis method used in

the metabolomics community. However, ORA can give drastically different results

depending on the input data and parameters used. Here, we have established the effects of

these factors on ORA results using computational modifications applied to five real-world

datasets. Based on our results, we offer the research community a set of best-practice rec-

ommendations applicable not only to ORA but also to other pathway analysis methods to

help ensure the reliability and reproducibility of results.

Introduction

Pathway analysis (PA) plays a vital role in the interpretation of high-dimensional molecular

data. It is used to find associations between pathways, which represent collections of molecular

entities sharing a biological function, and a phenotype of interest [1]. Based on existing knowl-

edge of biological pathways, molecular entities such as genes, proteins, and metabolites can be

mapped onto curated pathway sets, which aim to represent how these entities collectively func-

tion and interact in a biological context [2]. Originally developed for the interpretation of tran-

scriptomic data, PA has now become a popular method for analysing metabolomics data [3,4].

There are several inherent differences between transcriptomic and untargeted metabolomics

data, however, which must be considered when performing PA with metabolites. First, meta-

bolomics datasets tend to cover a much lower proportion of the total metabolome than tran-

scriptomic datasets do of the genome. Hence, metabolomics datasets tend to contain far fewer

metabolites than transcripts found in transcriptomic datasets. Second, mapping compounds to

pathways is not as straightforward as the equivalent mapping with genes and proteins, and

there is often a significant level of uncertainty surrounding metabolite identification, both

with respect to structures and database identifiers in any metabolomics dataset.

There are several methods for PA, which can be classed into three broad categories: over-

representation analysis (ORA), functional class scoring (FCS), and topology-based methods

[5]. In this paper, we focus on ORA, one of the most mature and widely used methods of PA

both within the metabolomics [6,7] and transcriptomics [8] communities. ORA (referred to by

some authors as metabolite enrichment analysis) has found widespread use in the identifica-

tion of significantly impacted pathways in numerous metabolomics studies [9–13]. It works by

identifying pathways or metabolite sets that have a higher overlap with a set of molecules of

interest than expected by chance. The approach typically uses Fisher’s exact test to examine the

null hypothesis that there is no association between the compounds in the pathway and the

outcome of interest [14].

To perform ORA, three essential inputs are required: a collection of pathways (or custom

metabolite sets), a list of metabolites of interest, and a background or reference set of com-

pounds. Pathway sets can be obtained from several databases, for example, the Kyoto Encyclo-

paedia of Genes and Genomes (KEGG) [15], Reactome [16], and BioCyc [17] databases, or
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commercial counterparts such as the Ingenuity Pathway Analysis (IPA) database [18]. The list

of metabolites of interest is generated by the user, most commonly obtained from experimen-

tal data and by using a statistical test to find metabolites whose levels are associated with an

outcome (e.g., disease vs. control), and selecting a threshold (e.g., on the p-values) to filter the

list. The background set contains all molecules which can be detected in the experiment. For

example, in transcriptomic studies, this consists of all genes or transcripts which can be quanti-

fied. In targeted metabolomics, the background set would contain all compounds assayed; in

untargeted metabolomics, all annotatable metabolites (i.e., all the features in a dataset that can

be annotated to a compound name or ID). P-values for each pathway are calculated using a

right-tailed Fisher’s exact test based on the hypergeometric distribution. The probability of

observing at least k metabolites of interest in a pathway by chance is given by (1):

P X � kð Þ ¼ 1 �
Pk� 1

i¼0

M
i

� �
N� M
n� i

� �

N
n

� � ð1Þ

where N is the size of background set, n denotes the number of metabolites of interest, M is the

number of metabolites in the background set mapping to the ith pathway, and k gives the num-

ber of metabolites of interest which map to the ith pathway. A visual representation of ORA is

shown in Fig 1. Finally, multiple testing correction (to allow for the fact that, typically, the cal-

culation is made for multiple pathways, rather than just one pathway) can be applied to obtain

a final list of significantly enriched pathways (SEP).

Despite the widespread use of ORA in metabolomics [4] the community lacks a set of

guidelines detailing its best use practices. Varying ORA inputs can result in large changes to

outputs, which raises the question of how such parameters should be chosen in order to obtain

the most reliable results. Moreover, as ORA was initially developed for use with transcriptomic

data and later adapted for use on metabolomic data, there are certain considerations particu-

larly important to metabolomics that may affect ORA results, such as the level of compound

identification. Our aim here, therefore, is to investigate the robustness of ORA in typical meta-

bolomics analysis, by examining the impact of varying the input data and parameters. The fac-

tors examined are: the background set, selection of differential metabolites, pathway database

choice, organism-specific pathway sets, metabolite misidentification, and chemical bias of the

assay. Using five experimental datasets, we vary the inputs, each time comparing to the original

or standard settings, thus demonstrating the effect of these choices on the output lists of signif-

icant pathways. Based on our approach, we offer a set of recommendations for ORA applied to

metabolomics data, as well as a set of minimal reporting recommendations which we hope can

help contribute to future best-practice guidelines. It is hoped that this research will promote a

deeper understanding of the use ORA in metabolomics, allowing researchers to better inter-

pret their data in a pathway context.

Results

Nonspecific background sets result in erroneously high levels of enriched

pathways

First, we examined several factors which are common to all ORA applications, beginning with

the background set. Five publicly available metabolomics datasets have been used throughout

this work (Table 1, see Methods). These datasets, obtained using untargeted mass-spectrome-

try (MS), were selected to encompass a diverse range of organisms, sample sources, and experi-

mental conditions.
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The term background set (of size N, see Eq 1) is used to describe all the compounds identifi-

able using a particular assay. For example, for a targeted approach, this corresponds to the

compounds assayed; for an untargeted approach, this corresponds to all annotatable com-

pounds. Despite being a key parameter of ORA, specifying the background set is an often-

Fig 1. Over Representation Analysis (ORA). Venn diagram representing ORA parameters corresponding to Eq 1.

N represents compounds forming the background set, which covers part of the full metabolome. M represents

compounds in the pathway of interest. n represents compounds of interest (i.e., differentially abundant metabolites),

and k represents the overlap between the list of compounds of interest and compounds in the pathway.

https://doi.org/10.1371/journal.pcbi.1009105.g001

Table 1. Summary of experimental datasets used in this work. An asterisk (�) besides the MS platform indicates no chromatography/electrophoresis was used in the

assay.

Author Title Organism Analytical

platform

Sample

type

Total number of

metabolites mapping to

KEGG compounds

Study accession code/data

availability

Labbé

et al.

High-fat diet fuels prostate cancer progression

by rewiring the metabolome and amplifying

the MYC program

Mus musculus UPLC-MS/MS Tissue 269 MTBLS135

Yachida

et al.

Metagenomic and metabolomic analyses

reveal distinct stage-specific phenotypes of the

gut microbiota in colorectal cancer

Homo sapiens CE-TOF MS Stool 286 Supplementary table S13 of

https://doi.org/10.1038/

s41591-019-0458-7

Stevens

et al.

Serum metabolomic profiles associated with

postmenopausal hormone use

Homo sapiens UPLC-MS/MS Serum 362 MTBLS136

Quirós

et al.

Multi-omics analysis identifies ATF4 as a key

regulator of the mitochondrial stress response

in mammals

Homo sapiens
(HeLa cells)

Flow injection

TOF MS�
HeLa cell 1110 Supplementary table S8 of

https://doi.org/10.1083/jcb.

201702058

Fuhrer

et al.

Genomewide landscape of gene-metabolome

associations in Escherichia coli

Escherichia coli Flow injection

TOF MS�
E. coli 2468 S-BSST5

https://doi.org/10.1371/journal.pcbi.1009105.t001
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overlooked step. The use of a generic, non-assay-specific background set implies that non-

observed compounds are considered in the Fisher’s exact test formula, which, by definition,

will always be absent from the list of metabolites of interest (of size n, Eq 1). We investigated

the effect of using a nonspecific background set, consisting of all unique compounds present

in the KEGG organism-specific pathway set, compared to an assay-specific background set,

consisting only of compounds identified and present in the abundance matrix of each dataset.

The nonspecific KEGG human background set contained considerably more compounds

(3373) than any of the example datasets.

A clear discrepancy was observed in many of the pathway p-values when using the nonspe-

cific vs. specific background set (Fig 2A). A greater proportion of pathways had lower p-values

when using the nonspecific background set than the specific counterpart. Interestingly, some

pathways were significant at p� 0.1 when using one background set but were not significant

using the other, as evident in the upper right and lower left quadrants of Fig 2A. We also inves-

tigated the number of significantly enriched pathways (SEP) before and after multiple testing

correction (using Benjamini-Hochberg False Discovery Rate (BH FDR)) when using the two

different background sets (Fig 2B). When using the specific background set, there were far

fewer SEPs at p� 0.1 (solid bars) and q� 0.1 (hatched bars) than there were using the nonspe-

cific background set. Surprisingly, when using the specific background set (lighter coloured

bars), two datasets contained no pathways which remained significant after multiple-testing

correction (no hashed bars). Since our further analyses require several pathways to be enriched

in the original datasets, we decided to use a significance threshold corresponding to an uncor-

rected p-value of� 0.1. While we do not recommend this threshold in practice as it is relatively

liberal, this approach allowed us to demonstrate the characteristic behaviour of ORA across a

wide range of datasets.

A key difference between the specific and nonspecific background sets used in the simula-

tions in Fig 2 is the number of compounds they each contain. For the human datasets

(Yachida, Stevens, and Quirós) for example, the nonspecific background set contained a total

of 3373 unique compounds, whereas the specified background sets for these datasets ranged in

size from 286 to 1110 compounds. It is therefore reasonable to ask whether the changes seen in

Fig 2A and 2B could be due to the size of the background sets. Accordingly, we investigated

how the size of the background set affects ORA results. In Fig 2C, we simulated a reduction in

the number of compounds identified in the experiment and identify differentially abundant

(DA) metabolites based on the compounds in the reduced background set. This could also

reflect the differences in the number of metabolites identifiable using different platforms, for

example, MS and NMR assays. In Fig 2D, we aimed to demonstrate how changing the number

of compounds in the background set but keeping the number of DA metabolites static affects

the number of SEP (hence changing the ratio of DA compounds to background set com-

pounds). Both removal of compounds at random and non-DA compounds from the back-

ground set resulted in a decrease in the proportion of SEP (p� 0.1) as compared to using

100% of the compounds in the background set. Reduction of the background set at random

(Fig 2C) resulted in a steady decrease in the number of significant pathways, as DA or non-DA

compounds may be removed and the new list of DA metabolites is calculated based on the

reduced background set. Reduction of the background set without removal of the original DA

metabolites resulted in a much more variable decline in the number of significant pathways

(Fig 2D). Datasets that had larger background sets to begin with, such as Fuhrer et al.,

appeared to be the least affected by the background set reduction. This is likely attributed to

the fact that even when the reduced background set contained just 10% of the original com-

pounds, it still contained over 240 metabolites. The trends observed in Fig 2D also imply that a
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Fig 2. Effect of background set. A) Scatter plot of -log10 p-values of pathways when using an assay-specific background set consisting of all measurable

compounds in each dataset (x-axis) compared to using a non-specific background set containing all compounds mapping to at least one KEGG pathway (y-

axis). Dashed black lines represent a p-value threshold equivalent to p = 0.1. Regression lines are shown with shading representing the 95% confidence

interval. B) Number of pathways significant at p� 0.1 (solid bars) and the number of pathways significant at q< 0.1 (hashed bars, BH FDR correction).

Datasets are ordered by number of compounds mapping to KEGG pathways. C and D) The effect of reducing the size of the background set. C)

Compounds were removed from the background set at random and DA metabolites were identified based on the modified background set. D) Only non-

DA compounds were removed from the background set at random. In all panels a, c & d, dashed lines represent datasets where no chromatography/

electrophoresis was used. Error bars represent standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1009105.g002
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higher ratio of background set compounds to DA compounds provides more power for detect-

ing SEPs.

Increasing the number of differential metabolites can result in higher or

lower numbers of significant pathways

The list of compounds of interest is a key parameter of ORA, as any compound falling below

the significance threshold will not be able to contribute to the enrichment of a pathway. Meth-

ods used to select DA metabolites typically rely on p-values or q-values derived from a statisti-

cal test, for example when comparing metabolite abundances between study groups, or

regression-based approaches for continuous outcomes. A threshold such as q� 0.05 is often

used to select DA metabolites, however, as with all hypothesis testing this is an arbitrary choice.

Furthermore, in untargeted metabolomics, hundreds or thousands of metabolites are often

profiled and therefore multiple testing correction is essential. We investigated the effect of

using varying significance levels and different multiple correction testing approaches to select

metabolites of interest on ORA results. To this end, DA compound lists of increasing length

were constructed by adding compounds, from lowest t-test p-value to highest, one at a time.

T-tests were used to obtain the aforementioned p-values which reflect the significance of the

difference in abundance of each metabolite between the two study groups. ORA was per-

formed following the addition of each compound to the DA list. The number of SEPs detected

using a DA list corresponding to Bonferroni adjusted p-values and BH FDR q-values at thresh-

olds of 0.005, 0.05, and 0.1 was also determined. Note that here, we are discussing the signifi-

cance level relating to selection of DA metabolites (the first step of ORA), not pathways

(second step of ORA). Fig 3 shows an example of this procedure on the Labbé et al. dataset.

Plots for all datasets are shown in Fig A in S1 Supporting Information. With the addition of

each metabolite to the DA list, the number of SEPs tended to increase to a global maximum,

followed by a decrease to zero where the DA list consisted of the entire background set. Several

fluctuations can be observed as local minima and maxima in Fig 3, demonstrating that the

addition of just a single compound can have a pronounced effect on the number of SEP. As

expected, the list of DA metabolites determined by Bonferroni correction at varying alpha

thresholds resulted in fewer significant pathways than using BH FDR correction. Generally,

higher alpha thresholds resulted in more DA metabolites and hence more significant path-

ways. In the case of selecting metabolites based on BH FDR q-values however, more significant

pathways were obtained using α� 0.05 than α� 0.005 or� 0.1. In summary, the addition of

DA metabolites in order of significance will always result in an increase, followed by a decrease

in the number of significant pathways. Thus, it is critical for practitioners to understand where

their chosen significance threshold lies in this overarching trend.

ORA results are influenced by pathway database choice, organism-

specificity, and database updates

An important consideration when conducting any type of pathway analysis is the nature of the

pathway sets used. Pathway sets can differ between databases in many ways, including the

number of pathways present, the size of pathways, how pathways are curated (either manually

or computationally, or a combination of both), pathway boundaries, and the organisms sup-

ported. We compared several properties of three pathway databases: KEGG, Reactome, and

BioCyc. As this work focuses on metabolomics, only pathways which contain at least three

metabolites were considered for the purposes of this paper, and genes and proteins were

excluded from the pathway definition. Using human pathways as an example, as of December

2020, Reactome contained the highest number of pathways (1631), followed by HumanCyc
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(390) (part of the BioCyc collection) and KEGG, containing 261 pathways. A comparison of

pathway sizes across the three databases can be seen in Fig 4A, in which HumanCyc pathways

are the largest across the three databases, followed by KEGG and Reactome, based on median

pathway size.

We next investigated the similarity of metabolite composition for KEGG and Reactome

pathways. Identifiers for metabolites in each pathway were first converted to KEGG IDs and

the ComPath [19] resource was used to find equivalent pathway mappings, linking KEGG and

Reactome pathways with the same metabolic functions. We calculated the overlap coefficient

(OC) for each of the 23 pairs of equivalent pathways. The OC (or Szymkiewicz–Simpson

Fig 3. Number of DA metabolites. The effect of the number of DA metabolites in the list of metabolites of interest on the number of

significant pathways (p� 0.1) in the Labbé et al. dataset. Results corresponding to Bonferroni thresholds are denoted by red markers while

those corresponding to BH FDR thresholds are denoted by black markers. Marker shape (circle, cross, or triangle) represents the adjusted p-

value threshold for DA metabolite selection (0.005, 0.05, and 0.1 respectively).

https://doi.org/10.1371/journal.pcbi.1009105.g003
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Fig 4. Comparison of pathway databases and database updates. A) Pathway size distribution of KEGG, Reactome, and

HumanCyc databases. Violin plots show the distribution of pathway size (number of compounds, log10 transformed). Bold

vertical lines show median, dashed vertical lines show lower and upper quartiles. B) Comparison of Reactome human

pathway set (R-HSA) releases spanning the years 2017 (R61, June 2017) to 2020 (R75, December 2020). Data for release 67

was not available. Dot colour corresponds to release version, with lighter colours representing newer releases.

https://doi.org/10.1371/journal.pcbi.1009105.g004
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coefficient) compares two sets normalising by the size of the smallest set (see Methods). The

OC may be more appropriate for comparison of metabolite sets than other similarity metrics

such as the Jaccard index since it accounts for systematic differences in pathway sizes, which is

the case here. The OC values were low (median = 0.33, interquartile range = 0.05–0.41), sug-

gesting a low level of similarity in metabolite composition despite apparent equivalence of

function. The same calculation was performed considering only genes in equivalent KEGG

and Reactome pathways. 55 pathways were comparable, and while the OC values were larger

than those derived from comparison of metabolite-only pathways (median = 0.64, interquar-

tile range = 0.42–0.81), these also suggest moderate differences the gene composition of path-

ways from different databases.

To explore whether similar biological functions could be inferred from an ORA using dif-

ferent databases, we compared the SEPs obtained using the Yachida et al. dataset based on

KEGG, Reactome, and HumanCyc pathways (Table A in S1 Supporting Information). By

manual inspection of pathway names, there appeared to be low concordance between the

results of the three databases in terms of biological function. Similar observations were also

made in the other datasets. To quantify this effect, we pooled all metabolites from the signifi-

cant pathways (p� 0.1) detected using KEGG and Reactome and calculated the OC between

the two sets of compounds for each dataset. OC values ranged from 0.23 (Stevens dataset) to

0.62 (Labbé dataset) (Fig B in S1 Supporting Information), indicating low to medium consen-

sus between ORA results derived using different pathway databases.

In addition to selecting a pathway database, many pathway databases offer both reference

and organism-specific pathway sets. Reference pathway sets are not associated with any organ-

ism and can be useful when the organism under study does not have an associated pathway

set. We compared basic properties of the KEGG human and KEGG reference pathways sets.

The KEGG reference pathway set contained both more (377 vs. 261 pathways) and larger path-

ways (mean pathway size 45 vs. 30 compounds). The two pathway sets had a median OC of

0.92 (IQR = 0.83–0.97) for pathways with a common ID (e.g., Glycolysis: HSA00010/

MAP00010), indicating a high level of similarity between the pairs but that analogous pathways

are not identical. We performed ORA for each example dataset using both the organism-spe-

cific and reference pathway sets and compared the SEPs obtained (Table 2). While there was a

large overlap, many more pathways were significantly enriched in the reference pathway

set alone as opposed to in the organism-specific pathway set alone. This is likely due to the fact

that the reference set contains more pathways, although not all of these may be of biological

relevance to the organism in question.

A final consideration when selecting a pathway database is the version of the database one

will use. Not all ORA tools will use the latest version of a certain pathway database available.

The vast majority of pathway databases will undergo at least yearly updates, with some such as

Reactome providing four major releases per year. To investigate how much impact pathway

Table 2. Organism-specific vs. reference pathways. Number of SEP (P� 0.1) detected in both the KEGG organism-specific and KEGG reference pathway sets, and

those significant in only one of the sets.

Dataset Common pathways Organism-specific only Reference only

Labbé 19 0 6

Yachida 11 1 19

Stevens 5 0 1

Quirós 46 3 28

Fuhrer (yfgm) 27 0 26

Fuhrer (dcus) 27 0 23

https://doi.org/10.1371/journal.pcbi.1009105.t002
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database updates can have on ORA results, we obtained four years’ worth of Reactome path-

way sets spanning the period from June 2017 to December 2020. We compared three aspects

of the Reactome human pathway sets (R-HSA) between each release: the number of pathways,

the number of unique compounds in the database, and the mean pathway size (Fig 4B). As

expected, the number of new pathways increased gradually from release to release, alongside

the number of unique compounds. From 2017 to 2020, over 200 new pathways were added as

well as almost 500 new compounds. Interestingly, the mean pathway size gradually increased

from release 61 to release 68, after which it steadily decreased, but altogether remained

between 17 and 19 compounds on average throughout the course of 14 releases.

Metabolite misidentification results in both gain and loss of truly

significant pathways

Next, we investigated some factors which are specific to metabolomics data, such as metabolite

misidentification and assay chemical bias. A major bottleneck in untargeted metabolomics is

the identification of compounds. In untargeted metabolomics, it is commonplace to putatively

identify (“annotate”) metabolites based on their physicochemical properties (e.g., m/z ratio,

polarity) and similarity to compounds in spectral databases, and then confirm the identities of

compounds of interest using chemical reference standards. Consequently, a large proportion

of compounds in untargeted metabolomics assays are expected to have a degree of uncertainty

in their identification, ranging from Metabolomics Standards Initiative (MSI) confidence lev-

els 2–4 [20]. These levels refer to the minimum reporting criteria for metabolite identification

proposed by the MSI, in which a level 1 identified compound is one that has been identified

using an authentic chemical standard, as opposed to levels 2–4, which range from a compound

putatively identified based on physicochemical and/or spectral similarities to compounds in a

spectral library (level 2), to an unknown compound (level 4).

To compare the effects of metabolite misidentification on the number and identity of signif-

icant pathways detected using ORA, we introduce two new statistics: the pathway loss rate and

the pathway gain rate (see Methods). The former describes how, as the data are degraded,

some pathways are "lost" (no longer identified as significant) and others are "gained" (newly

identified as significant). These are analogous to false-negative and false-positive rates, but

account for the fact that we do not know the truly enriched pathways. For the purposes of this

simulation, we make the assumption that all pathways significant at 0% misidentification are

the “true” SEPs, and we compare these to the SEPs obtained at varying levels of simulated mis-

identification. The pathway loss rate refers to the proportion of SEPs present at 0% misidentifi-

cation that are no longer present at f % misidentification, and the pathway gain rate refers to

the number of SEPs not originally present at 0% misidentification which become significant at

f % misidentification.

We simulated the effects of metabolite misidentification on ORA using KEGG pathways by

replacing the true metabolites with false ones in two different ways: a) by similar molecular

weight (20ppm window), and b) by identical chemical formula (see Methods). For both

approaches, we calculated the pathway loss and gain rate for each dataset at 4% simulated mis-

identification which, although there are few published estimates of misidentification rates in

metabolomics studies [21], endeavours to simulate a representative scenario (Fig 5). All the

example datasets had nonzero pathway loss and gain rates at 4% simulated misidentification

either by molecular weight or formula. Such findings suggest that even at a misidentification

rate as low as 4%, it is likely that some pathways are significant simply as an effect of misidenti-

fication, and other pathways are not detected as significantly enriched due to the noise in the

data caused by the misidentification. The similarity between the two modes of
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misidentification may reflect the fact that most of the uncertainty in metabolite identification

lies in associating a structure with a formula, rather than linking a formula to a mass. Pathway

loss and gain rates from 1–5% misidentification are shown in Fig C in S1 Supporting Informa-

tion. Pathway loss and gain rate results were similar for both misidentification by molecular

weight and formula, likely owing to the fact that compounds with identical chemical formula

share the same molecular weight.

The chemical specificity of the assay influences the pathways discoverable

using ORA

The analytical platform and specific assay used for a metabolomics study can be expected to

introduce bias into the pathways which might be detected by ORA. Assays typically differ in

their ability to detect compounds with different physico-chemical properties (e.g., polarity).

While it is increasingly common for metabolomics experiments to incorporate multiple assays,

most studies will still be biased in the compounds they can detect. We would expect to be able

to access different pathways depending on the compounds assayed, resulting in disparate ORA

results.

Using the Stevens et al. dataset as an example, which contains compounds identified using

four different assay types, we mapped these compounds onto the KEGG pathway network

using iPath 3.0 [22] (Fig 6A). It is evident that each of the four assay types covers a different

area and proportion of the metabolic network. Even when the compounds from all four assays

are taken together, large areas of the network remain unreachable, such as Glycan Biosynthesis

and Metabolism, Lipid Metabolism, and Biosynthesis of Other Secondary Metabolites. It is

therefore important to acknowledge this source of bias and recognise that certain areas of

metabolism cannot be accessed. We further quantified this by computing the intersection

between the pathways that were accessible using each assay type (Fig 6B). Indeed, the maxi-

mum number of pathways accessible using just one the assays (RP/UPLC-MS/MS with posi-

tive electrospray ionisation) was 63 (24.6%) out of a possible 256 KEGG human pathways

containing at least two compounds. While there is a degree of overlap between pathways acces-

sible using the different assays, a large proportion remains only accessible using a specific

assay type.

Discussion

As metabolomics continues to grow as a field of study with a multitude of applications within

various disciplines, deriving meaningful conclusions from such data becomes increasingly

important. ORA is one of the most popular approaches used to draw functional interpretations

from metabolomics data. However, to date, there have been no published investigations of the

consequences of varying input parameters on ORA results derived using metabolomics data.

Understanding the sensitivity of ORA to tuning parameters, especially how it is influenced by

metabolomics-specific factors, will play a crucial role in its successful application. In the pres-

ent study, we sought to investigate the effects of varying inputs on ORA results, which we dem-

onstrated using in-silico simulations based on five untargeted metabolomics datasets.

One of the most salient findings was the difference in the number of SEPs detected when

using an assay-specific versus a nonspecific background set. The use of a nonspecific back-

ground set, such as all compounds present in the KEGG reference or human pathway set, for

example, resulted in a drastic increase in the number of SEPs. In many ORA tools, use of a

nonspecific background is typically the default option, and one that may lead users to believe

that this is the ‘correct’ procedure. It is crucial however to understand that the consequence of

not specifying a background set, which should contain all compounds that are realistically
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observable, is that an assumption is being made that the compounds in the default background

set are all equally likely to be detected in the experiment [24]. Such an assumption is highly

unlikely to be true given that most technologies can only detect a small fraction of the metabo-

lome and may lead to false-positive pathways. Additionally, the size of the background set is an

Fig 5. Metabolite misidentification. The effect of compound misidentification by molecular weight (20ppm window) (bars in dark colours) and chemical formula

(bars in light colours) on the mean pathway loss rate (lower bars) and mean pathway gain rate (upper bars) averaged over 100 random resamplings at 4%

misidentification. Error bars represent standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1009105.g005
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Fig 6. The effect of assay chemical specificity on pathways accessible in the KEGG metabolic network. Both figures a and b are based on the four assay types present

in the Stevens et al. dataset. The colours in each subfigure correspond to the four assay types shown in the legend. A) KEGG reference metabolic network with

compounds from each assay type highlighted on their respective pathways. KEGG network annotated using iPath 3 [22]. B) Venn diagram showing the number of

KEGG pathways accessible using the compounds in each of the four assay types. Numbers outside the Venn diagram indicate the total number of pathways accessible

with each assay type. Venn created using InteractiVenn [23].

https://doi.org/10.1371/journal.pcbi.1009105.g006
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important consideration, with larger sets generally yielding higher numbers of SEPs. MS-

based approaches can usually detect a larger number of compounds than NMR-based meth-

ods, for example, at least for typical 1D NMR methods that are commonly used for profiling

[25]. Users need to consider whether their metabolomics dataset is large enough to provide

sufficient statistical power such that ORA results can be considered useful. Defining the ideal

assay-specific background set for a particular dataset remains an area for further study. The

approach used in this work was to use all identified compounds, which although conservative,

is the safest approach minimising the number of false-positive pathways. The ideal assay-spe-

cific background set may be broader and is subject to considerations such as the compounds

present in the spectral library used for identification, those above the detection limit and well

quantified for the instrument used, and those expected to be present in the organism and sam-

ple source investigated.

The list of compounds of interest (often corresponding to metabolites differentially present

between conditions in experiments) is an essential input for ORA and we have demonstrated

that the way these compounds are selected greatly impacts PA results. It is important to select

a threshold that strikes a balance between selecting too few compounds, therefore resulting in

low power for the detection of significant pathways, or selecting compounds too liberally and

losing power by introducing noise into the analysis. Visualisation of the curve of number of

significant pathways vs. the number of compounds of interest (Fig 3) can be a useful way to

determine the stability of the analysis to significance thresholds. Multiple testing correction

should always be applied to all metabolite-level statistics before filtering them to produce the

list of compounds of interest. We examined two of the most popular multiple testing correc-

tion methods: Bonferroni and BH FDR correction. By definition, Bonferroni correction

tended to be more conservative, resulting in fewer compounds of interest, although this does

not necessarily always correspond to fewer SEPs.

Unlike other fields (e.g., transcriptomics), the level of uncertainty surrounding compound

identities remains a critical issue in metabolomics studies. While it is not possible to find a

benchmark level of metabolite misidentification typically found in metabolomics studies, most

studies will contain at least some misidentified compounds [26]. The level of misidentification

will vary depending on the analytical platform used and remains a key bottleneck, more so in

MS-based studies, where the number of metabolites detected often exceeds that of NMR-based

studies [27]. In this study, we simulated metabolite misidentification by randomly swapping a

small percentage of compounds in each of the datasets with compounds of either a similar

molecular weight (± 20ppm) or an identical chemical formula. Even at a low level of misidenti-

fication of 4%, we found appreciable pathway loss and gain rates for all datasets. Hence, we

suggest that ORA is sensitive to even low levels of metabolite misidentification, resulting in the

emergence of false-positive and false-negative SEPs in the results.

Another essential input of ORA is the pathway database or list of metabolite sets used. The

inherent differences between pathway databases will undoubtedly impact the PA results,

regardless of the method used [28]. In the case of ORA, which is based on the hypergeometric

formula, pathway size will influence results by rendering smaller pathways more significant

and larger pathways less significant [29]. The number of pathways tested using ORA will also

directly impact the adjusted significance level if multiple testing correction methods are

applied, and the more pathways tested the more statistical power is lost. A related caveat is that

the most widely used multiple testing approaches (e.g. Bonferroni, BH FDR) do not account

for correlations between pathways and therefore such methods may be too conservative and

undermine pathway significance [2].

A further important consideration for pathway database evaluation is the type of compound

identifiers used in the pathway. KEGG and BioCyc use database-specific identifiers, whereas
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Reactome uses ChEBI identifiers. It is necessary to convert the identifiers present in a metabo-

lomics dataset to their database-specific equivalent, which often results in loss of information

as not all identifiers will necessarily map directly to a database compound or be mapped to a

pathway [30]. For example, in the Stevens et al. dataset, over 900 compounds were assigned to

Metabolon identifiers, but less than half of these compounds could be mapped to KEGG iden-

tifiers. Another characteristic of metabolomics (and in particular lipidomics) is the discrep-

ancy between the chemical precision of identification between the pathway databases and the

dataset. For instance, in databases classes of lipids are often gathered into a single element

(e.g., “a triglyceride”) while lipidomics allows more in-depth annotation (e.g., “TG 16/18/18”).

Computational solutions based on chemical ontologies exist to establish a link between dataset

elements and pathway database ones [31], but this will also have an impact on PA results since

several data elements will map to a single node in the pathway database.

The incompleteness of pathway databases, together with the evolution of pathway definitions

between releases, are key factors highlighting the necessity of using an up-to-date resource; not

doing so can have a detrimental effect on PA results [32]. Furthermore, the magnitude of

changes across database releases demonstrated in this work suggests that ORA results are some-

what short-lived and perhaps valid only at a given time, hence they should be periodically revised

using an updated database. Frainay et al. examined the coverage of analytes in the human meta-

bolic network and found poor coverage of pathways involving eicosanoids, vitamins, heme, and

bile acid metabolism [33]. Finally, although an extensive comparison of pathway databases is

beyond the scope of this paper, several excellent studies have examined this in detail to which we

refer the interested reader [28,34,35]. A general recommendation is to use multiple pathway

databases and derive a consensus signature across these, if possible, reinforced by current knowl-

edge of the underlying biochemistry of the system investigated. The use of integrative databases

encompassing several pathway databases, such as the ConsensusPathDB [36], or interactive tools

to simultaneously visualise pathways from different databases such as PathMe [37] may be bene-

ficial and reflect ongoing efforts to harmonise pathway resources.

In this work we have focused on ORA, but many other PA methods exist [1,38,39]. While

functional class scoring and topology-based methods can overcome certain limitations associ-

ated with ORA, such as the need to select compounds of interest, or not taking metabolite-

level statistics into account, many of our findings are also relevant to these methods. Pathway

database selection, metabolite misidentification rate, and assay chemical bias will impact the

majority of metabolomics PA methods. Alongside the present work, further studies examining

the input parameters of other PA methods for metabolomics data will be invaluable in estab-

lishing a set of best-practice guidelines for their application.

This study is limited by the lack of availability of a ground-truth dataset where the identities

of enriched pathways are known. Possible sources of ground-truth data include simulations

based on genome-scale metabolic models, in which enzymes in specific pathways are knocked

out or the flux through reactions altered. Alternatively, one could insert artificial pathway signals

into simulated or real data by altering the relative abundance levels of metabolites involved in the

target pathways. Experimental datasets such as gene knockouts or knock-downs offer more real-

istic forms of ground truth datasets, which more accurately reflect the complexity of a biological

system. Both simulated and experimental ground-truth datasets have limitations, however, such

as the former being too simplistic, or the inability to pinpoint the exact pathway(s) affected by a

perturbation in the latter. Nevertheless, such datasets might enable quantification of a wider vari-

ety of performance metrics than available here. Another limitation is that in the majority of

examples, a p-value threshold of P� 0.1 was used without multiple testing correction to select

SEPs. As metabolomics experiments usually identify far fewer compounds than transcriptomic

experiments identify genes, ORA based on metabolites appears to have much lower power to
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identify significant pathways and as such in the example datasets few, if any, pathways remained

significant after multiple testing correction was applied.

The purpose of the present research was to evaluate the suitability of ORA for metabolomics

PA and assess the effects of varying input data and parameters. We have investigated the three

main input parameters: the background set, the list of compounds of interest, and the pathway

database, as well as metabolomics-specific considerations such as metabolite misidentification

and assay chemical bias. By means of in-silico simulations based on experimental datasets, all

of the aforementioned variables have been shown to introduce varying levels of bias and

uncertainty into ORA results, which has significant implications for those using ORA to ana-

lyse metabolomics data. In particular, use of an assay-specific background set is often ignored,

yet has a critical effect on the output. Overall, this study has been the first detailed investigation

into the application of ORA to metabolomics data, with wide-ranging findings that have impli-

cations not only to ORA but also a variety of other PA methods in metabolomics.

We therefore offer the community a set of recommendations for application, as well as sug-

gested minimal reporting criteria, which may contribute to the future development of best-

practice guidelines for the application of ORA to metabolomics data.

Suggested recommendations for the application of ORA to metabolomics

data

1. Specify a realistic background set based on the analytical platform used in the experiment.

A conservative yet practical approach is to use all the metabolites that have been identified

in the assay.

2. Use an organism-specific pathway set if the organism is supported by the pathway database.

3. Perform ORA using multiple pathway databases and derive a consensus pathway signature

using the results if possible.

4. Use multiple-testing correction to select both DA metabolites and, where feasible, signifi-

cant pathways.

Suggested recommended minimal reporting criteria. Users should report

1. The statistical test/approach used for pathway analysis (e.g., Fisher’s exact test)

2. The tool (and version) used to perform ORA.

3. The pathway database used, the corresponding compound identifier type (e.g., KEGG,

ChEBI, BioCyc, etc.), its release number, and which organism-specific pathway set was

used (if any).

4. Which compounds form the background set.

5. The multiple testing correction methods applied for i) selection of DA metabolites and ii)

selection of SEP, alongside the adjusted p-value thresholds used.

Methods

Obtaining the list of metabolites of interest

Summary of experimental datasets used. Five publicly available untargeted metabolo-

mics datasets were used in this work (Table 1). The aim of this work was to select a small
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sample of typical metabolomics studies to illustrate the effects of changing ORA parameters.

The inclusion criteria for a dataset were: i) it should be publicly available, ii) it should contain

over 100 annotated metabolites, and iii) there should be at least two study groups. For consis-

tency, all datasets used in this work are based on mass-spectrometry (MS). The first dataset is

available at MTBLS135 from the MetaboLights repository and consists of 12 Hi-Myc genotype

and 12 wild-type Mus musculus tissue samples [40]. The second dataset from Yachida et al.

2019 [41] consists of 149 healthy control and 148 colorectal cancer human stool samples

(stages I-IV). The third dataset is available at MTBLS136 and consists of 667 control samples

and 332 estrogen users [42]. The fourth dataset is from Quirós et al. 2017 [43] from which we

compared 8 HeLa cell replicates treated with actinonin to 8 HeLa cell replicates treated with

doxycycline. The final dataset is available from EBI BioStudies (S-BSST5) and consists of

>3,800 single-gene E. coli knockouts each with 3 biological replicates [44]. Data from the posi-

tive and negative ionisation modes was combined to provide the final matrix of putative com-

pound identifications and relative abundances for each. We selected two knockout strains to

investigate from this dataset which were amongst those with the highest effect size (based on

the number of significant pathways detected using ORA): ΔyfgM and ΔdcuS. It is important to

note that two datasets, Quirós et al. 2017 and Fuhrer et al. 2017, did not use any separation

step in their analytical platform, and therefore there may be a higher degree of uncertainty in

the metabolite identifications.

Post-processing of metabolomics datasets. All metabolomics datasets and correspond-

ing metadata used in this study are publicly available from the MetaboLights repository [45],

the BioStudies database [46], or in the supplementary information of the original publication

(Table 1). Details of metabolomics data pre-processing, as well as sample preparation, data

acquisition, and compound identification can be found in the original publication for each

dataset. For the purposes of this study, the pre-processed raw metabolite abundance matrices

consisting of n samples by m metabolites were downloaded as.csv or.xlsx files and post-pro-

cessed identically. Missing abundance values were imputed using the minimum value of each

metabolite divided by 2. All abundance values in the matrix were then log2 transformed and

features (metabolites) were auto-scaled by subtracting the mean and dividing by the standard

deviation.

Metabolite identifier harmonisation. In order to map compounds to the three pathway

databases investigated in this study (KEGG, Reactome, and BioCyc), metabolite identifiers in

each dataset were converted to the corresponding identifier type. For the conversion of com-

pound names to KEGG identifiers, the MetaboAnalyst 4.0 [47] ID conversion tool was used

(https://www.metaboanalyst.ca/MetaboAnalyst/upload/ConvertView.xhtml). For Reactome,

KEGG compounds were mapped to ChEBI identifiers using the Python bioservices package (v

1.7.1) [48]. For BioCyc, the web-based metabolite translation service (https://metacyc.org/

metabolite-translation-service.shtml) was used to convert from KEGG to BioCyc identifiers.

Selection of differentially abundant metabolites. The list of metabolites of interest was

determined using a series of two-tailed student’s t-tests to determine whether each metabolite

in the dataset was significantly associated with the outcome of interest. P-values were adjusted

using the Benjamini-Hochberg False discovery rate (BH FDR) procedure [49] to account for

multiple testing. Significantly differentially abundant (DA) metabolites were then selected

based on a q-value threshold of q� 0.05. To investigate the effect of the list of input metabo-

lites on the number of significant pathways, we used both BH FDR and Bonferroni methods

for p-value adjustment and tested several cut-off thresholds (adjusted p� 0.005, 0.05, or 0.1)

for the selection of DA metabolites using each method.
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Performing pathway enrichment

Pathway database details. For the purposes of this paper, the pathway sets used contained

only compounds (including small molecules, metabolites, and drugs). KEGG pathways and

their corresponding compounds were downloaded using the KEGG REST API (https://www.

kegg.jp/kegg/rest/keggapi.html) in October 2020, corresponding to KEGG release 96. Reac-

tome pathways release 75 were downloaded from https://reactome.org/download-data. BioCyc

pathways v24.5 were exported from https://biocyc.org/ using the SmartTables function.

ORA implementation. ORA was implemented using a custom Python script that utilised

the scipy stats fisher_exact function (right-tailed) to calculate pathway p-values. Only pathways

containing at least 3 compounds were used as input for ORA. p-values were calculated if the

parameter k (number of differentially abundant metabolites in the ith pathway) was� 1.

Metabolite misidentification

Implementation details. All simulations were performed using Python (v 3.8). Simula-

tions with an element of randomisation were repeated 100 times, and results are reported as

the mean of 100 random samplings of the simulation, alongside the standard error of the

mean.

Simulating metabolite misidentification. Chemical formula and molecular weight infor-

mation for each metabolite was obtained using the KEGG REST API. For each level of metabo-

lite misidentification, we randomly selected f % (f = 0, 1, . . .X%) of compounds that had at

least one other compound with a molecular weight within ±20ppm (approximately isobaric

compound) present in the KEGG pathway set. For each randomly selected compound, one of

its isobaric compounds was randomly selected and the identifier of this compound then

replaced the original identifier in the dataset, thereby simulating misidentification by mass.

Similarly, for misidentification by chemical formula, compounds that had at least one other

compound with an identical chemical formula present in the KEGG pathway set were ran-

domly selected, and compound identifiers replaced. Replacement compounds must be present

in at least one KEGG pathway but must not already form part of the original background list,

to avoid introducing duplicate compounds.

Quantifying changes in results. To illustrate how lists of significant pathways change at

varying levels of metabolite misidentification, we define two performance statistics: the path-

way loss rate and the pathway gain rate. The pathway loss rate represents the proportion of the

original pathways (0% misidentification) significant at p� 0.1 that are no longer significant at

f % misidentification. The pathway gain rate represents the proportion of pathways that were

not significant at 0% misidentification but become significant at f % misidentification.

Let A and B be sets of pathways from ORA such that:

A ¼ fPathways signif icant at 0 % metabolite misidentification ðp � 0:1Þg

Bf ¼ fPathways significant at f % metabolite misidentif ication ðp � 0:1Þg

The pathway loss rate and pathway gain rate at f % metabolite misidentification are then

defined as:

Pathway loss rate A;Bf

� �
¼ 1 �

jA \ Bf j

jAj
ð2Þ

Pathway gain rate A;Bf

� �
¼
jBf � Aj
jAj

ð3Þ
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where |A| indicates the cardinality (number of elements) in the set A, and |B-A| indicates the

set formed by those members of B which are not members of A.

Overlap coefficient

To quantify the similarity between pathways, represented by lists of metabolites, we use the

overlap coefficient. The overlap (Szymkiewicz–Simpson) coefficient is defined as the size of

the intersection of two sets A and B, divided by the size of the smallest set.

OC A;Bð Þ ¼
jA \ Bj

minðjAj; jBjÞ
:

Supporting information

S1 Supporting Information. Supplementary figures and tables. Fig A: The effect of the

number of input metabolites on the number of significant pathways (p� 0.1) across all

datasets. All metabolites in the dataset were ranked by their raw p-value which was calculated

using t-tests to determine the level of differential abundance between two study groups. Begin-

ning with the compound with the lowest p-value, the list of DA metabolites was created by

adding one compound at a time (x-axis). ORA was performed using this list and the number

of significant pathways at p� 0.1 is shown on the y-axis. Bonferroni adjusted p-value thresh-

olds are indicated using red markers and BH-FDR adjusted q-values are indicated using black

markers. Table A: Significant pathways (P� 0.1) obtained with KEGG, HumanCyc, and

Reactome using the Yachida et al. dataset. Pathways with similar biological function signifi-

cant at P� 0.1 using at least two pathway databases are highlighted in bold. Fig B: Overlap

coefficient values between all metabolites in significant pathways (p� 0.1) detected using

KEGG and Reactome. Fig C: Metabolite misidentification. Heatmaps showing pathway loss

rate and pathway gain rate at varying percentages of metabolite misidentification by (a) identi-

cal chemical formula and (b) molecular mass within a +/- 20ppm window. Colour bar corre-

sponds to pathway loss/gain rate, with darker colours representing lower rates.

Misidentification by chemical formula shown up to 5%, whereas misidentification by mass

shown up to 6%, as these are the highest values calculatable (based on limited replacement

compounds) across all datasets.
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