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Abstract

Electrodermal activity (EDA) is a direct read-out of sweat-induced changes in the skin’s

electrical conductance. Sympathetically-mediated pulsatile changes in skin sweat mea-

sured as EDA resemble an integrate-and-fire process, which yields an inverse Gaussian

model as the inter-pulse interval distribution. We have previously showed that the inter-

pulse intervals in EDA follow an inverse Gaussian distribution. However, the statistical struc-

ture of EDA pulse amplitudes has not yet been characterized based on the physiology.

Expanding upon the integrate-and-fire nature of sweat glands, we hypothesized that the

amplitude of an EDA pulse is proportional to the excess volume of sweat produced com-

pared to what is required to just reach the surface of the skin. We modeled this as the differ-

ence of two inverse Gaussian models for each pulse, one which represents the time

required to produce just enough sweat to rise to the surface of the skin and one which repre-

sents the time requires to produce the actual volume of sweat. We proposed and tested a

series of four simplifications of our hypothesis, ranging from a single difference of inverse

Gaussians to a single simple inverse Gaussian. We also tested four additional models for

comparison, including the lognormal and gamma distributions. All models were tested on

EDA data from two subject cohorts, 11 healthy volunteers during 1 hour of quiet wakeful-

ness and a different set of 11 healthy volunteers during approximately 3 hours of controlled

propofol sedation. All four models which represent simplifications of our hypothesis outper-

formed other models across all 22 subjects, as measured by Akaike’s Information Criterion

(AIC), as well as mean and maximum distance from the diagonal on a quantile-quantile plot.

Our broader model set of four simplifications offered a useful framework to enhance further

statistical descriptions of EDA pulse amplitudes. Some of the simplifications prioritize fit

near the mode of the distribution, while others prioritize fit near the tail. With this new insight,

we can summarize the physiologically-relevant amplitude information in EDA with at most
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four parameters. Our findings establish that physiologically based probability models pro-

vide parsimonious and accurate description of temporal and amplitude characteristics in

EDA.

Author summary

Electrodermal activity (EDA) is an indirect read-out of the body’s sympathetic nervous

system, or fight-or-flight response, measured as sweat-induced changes in the electrical

conductance properties of the skin. Interest is growing in using EDA to track physiologi-

cal conditions such as stress levels, sleep quality, and emotional states. Our previous

worked showed that the times in between EDA pulses obeyed a specific statistical distribu-

tion, the inverse Gaussian, that arises from the physiology of EDA production. In this

work, we build on that insight to analyze the amplitudes of EDA pulses. In an analysis of

EDA data recorded in 11 healthy volunteers during quiet wakefulness and 11 different

healthy volunteers during controlled propofol sedation, we establish that the amplitudes

of EDA pulses also have specific statistical structure, as the differences of inverse Gaus-

sians, that arises from the physiology of sweat production. We capture that structure

using a series of progressively simpler models that each prioritize different parts of the

pulse amplitude distribution. Our findings show that a physiologically-based statistical

model provides a parsimonious and accurate description of EDA. This enables increased

reliability and robustness in analyzing EDA data collected under any circumstance.

Introduction

Sweat gland activity is used to assess sympathetic nervous system activity in applications such

as lie detector tests and neuromarketing [1]. Sympathetic activation is also known as the “fight

or flight response”, which is induced by states such as stress, anxiety, and pain [1]. Electroder-

mal activity (EDA) measures the second-to-second electrical conductance of the skin to cap-

ture sweat gland activity. As stimulation of sweat glands increases due to stress or pain for

example, more sweat is produced, which increases the electrical conductance of the skin. EDA

is typically divided into two components [1]. The first is a baseline or tonic component which

drifts gradually over minutes and is thought to represent ambient conditions which contribute

to baseline level of filling of the glands. The second is the phasic component, which rides on

top of the tonic and consists of pulsatile sweat release events. These pulsatile sweat release

events have a timescale of a few seconds and are thought to correspond more closely to sympa-

thetic nervous system activity [1]. There is growing interest in the development of algorithms

to accurately characterize changes in emotional and physiologic states from EDA.

Recent EDA modeling efforts fall into several categories, as outlined in [2]. Increasingly

advanced and diverse tools from signal processing domains are being employed to design new

decomposition methods to separate EDA into tonic and phasic components [3–11]. However,

each of these methods yields different results on the same datasets [2] and none have physio-

logical validation mechanisms. Some approaches involve designing frequency domain mea-

sures to analyze EDA, based on analogous methods for frequency domain analysis of heart

rate variability [12–15]. In the subset of approaches in which pulse amplitude is examined spe-

cifically, the pulse amplitude is assumed to correlate with stimulus intensity in controlled

experimental settings [3–11,16–20]. Where state space approaches are used to model both
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pulse occurrence and amplitude, the amplitudes are assumed to follow a Gaussian distribution

[21,22].

Our previous analyses have showed that the inter-pulse interval distribution in EDA data

follows an inverse Gaussian distribution, which agrees with a model of the rise of sweat

through the gland to the skin surface as an integrate-and-fire process, specifically a Gaussian

random walk with drift diffusion [23,24]. We showed that deviations from the inverse Gauss-

ian due to recording across many sweat glands tend toward right-skewed heavier tailed distri-

butions, such as the lognormal [23]. Using these insights, we further defined a low-order

paradigm for verifying the physiologic structure in EDA that includes a framework for good-

ness-of-fit analysis [25,26].

However, temporal information is not the only information in phasic EDA. Each pulse

occurs not only at a discrete point in time, but also with a specific amplitude [1]. Existing algo-

rithms for phasic EDA analysis assume that the amplitude of each pulse has a one-to-one asso-

ciation with the intensity of the stimulus driving it [3–11,16–20]; however, previous

physiologic experiments have shown that the background level of nerve activity and baseline

level of filling of the sweat glands can alter pulse amplitude even in the face of an unchanging

stimulus intensity [27–29]. In this work, we propose a model for pulse amplitudes that uses the

same insight about integrate-and-fire physiology of sweat glands as for temporal information.

We hypothesize that the amount of sweat produced in a pulse relates directly to stimulus

amplitude. However, we postulate that the observed amplitude of the pulse relates to how

much more sweat is produced than what is required to reach the surface of the skin, which

also accounts for the role played by the background filling level of the sweat glands. Therefore,

we model the amplitude of a pulse as the difference of actual amount of sweat produced and

the baseline filling level.

We implement four different simplifications of our model in two different subject cohorts.

The four simplifications tested were a simple inverse Gaussian, a three-parameter inverse

Gaussian with the third parameter serving as a location shift, a single difference of an inverse

Gaussian and a Gaussian, and a single difference of two inverse Gaussians. We show, using a

goodness-of-fit analysis, that each simplification balances the important characteristics of the

model differently. The simple inverse Gaussian model fits the mode of the pulse amplitude dis-

tribution well, while the difference models better capture the tail. The three-parameter model

seems to balance both.

Important advances we report are a set of low-order physiology-based point process models

for pulse amplitudes in phasic EDA that work synergistically with our existing models for tem-

poral information. Using both together, we can extract all relevant information from phasic

EDA in statistically rigorous way. The balance of this paper is organized as follows. In Materi-

als & Methods, we derive our hypothesis about pulse amplitudes from the integrate-and-fire

physiology, outline four statistical models to capture it that involve the inverse Gaussian as

well as four alternatives for comparison. In Results, we use these models in the analysis of

EDA pulse amplitudes recorded from 22 subjects across two different subject cohorts, one

while awake and at rest and the other under controlled propofol sedation. The Discussion

describes the implications of our findings for future basic science and translational studies.

Materials & methods

Anatomy and physiology

We review the anatomy and physiology of sweat production in the skin in detail in the S2

Appendix. The pulsatile changes in conductance measured in the skin are referred to as

‘pulses’ in this paper. Existing algorithms for EDA analysis typically assume that pulse
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amplitude can be explained solely by the intensity of the stimulus, and therefore they rely on

the pulse amplitude to directly infer stimulus amplitude [3–11,16–20]. However, physiologic

experiments done by Wallin et al. in the 1990s demonstrated that modulating the background

alone could result in pulses of varying amplitudes, even if stimulus intensity was held constant

[27–29]. Therefore, interpreting pulse amplitude in light of stimulus intensity alone, especially

in a context in which background cannot be held constant, can be misleading. Any physiologi-

cally viable model for pulse amplitude must also account for the background.

Building upon the integrate-and-fire model we postulated for temporal information in

sweat gland bursts, we hypothesized that the amplitude of a pulse is proportional to the excess

volume of sweat produced compared to what would be required to reach the surface of the

skin, where the total volume of sweat produced relates to the intensity of the stimulus, and the

amount of sweat required to reach the surface of the skin is determined by the background fill-

ing level. The background filling level is affected by tonic EDA, spontaneous activity, reabsorp-

tion rate in the duct of the sweat gland, each individual’s autonomic ‘excitability’, and the

conductance properties of their skin [27–32]. It also varies from sweat gland to sweat gland.

Statistical model

By assuming a relatively linear relationship between the volume of sweat in the sweat glands

and measured electrical conductance across the skin, and a relatively constant rate of sweat

production once stimulated, we can relate measured electrical conductance across the skin to

the times taken to secrete the required volume of sweat. Both assumptions are simplifications

to the true microfluidic properties, made across the aggregate of hundreds of sweat glands

[30]. With the help of these assumptions, we hypothesize that the amplitude of each pulse can

be modeled as the difference of two processes: one integrate-and-fire process to reach the sur-

face of the skin (the minimum amount of sweat production required), and a second integrate-

and-fire process to reach up to a portion of the maximal capacity of the gland (the actual sweat

production resulting from the intensity of the stimulus). However, each pulse may have a dif-

ferent stimulus intensity and background filling level, so the two processes are not identical

across pulses. Since they are both integrate-and-fire processes, we hypothesize that each pulse

amplitude can be modeled as the difference of two inverse Gaussian distributions as shown in

Fig 1A [33–35].

Since fitting this model for each pulse individually is an under-constrained problem, we

proposed four viable simplifications across a single subject’s dataset (Fig 1B):

(1) a single difference of inverse Gaussians (IG-IG),

(2) a single difference between an inverse Gaussian and a Gaussian (IG-G),

(3) a single 3-parameter inverse Gaussian with the third parameter being a location shift

(3IG), and

(4) a single simple inverse Gaussian model (SIG).

The first simplification is the most obvious place to start, but preliminary results indicated

that the second inverse Gaussian actually approached a very narrow Gaussian distribution

[35], leading to the second and third simplifications. The fourth simplification is the simplest

of all four. Our previous work indicated that the inverse Gaussian was the best integrate-and-

fire model for EDA data across subjects [23], and therefore we only included the inverse

Gaussian rather than the larger family of all integrate-and-fire models. We also compared

other families of right-skewed models, such as the lognormal, exponential, and gamma. We

performed a goodness-of-fit analysis for all models with quantile-quantile (QQ) plots and
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rescaled QQ plots. QQ plots show the quantiles of one distribution against another, in this

case comparing the theoretical and empirical distributions [36,37]. We also calculated Akaike’s

Information Criterion (AIC) and the mean and maximum distance from the 45-degree line on

the QQ plots [36,37]. Models 1 and 2 implicitly assumed independence of the two distributions

involved; the validity of this assumption was left to verification by the goodness-of-fit analysis.

Experimental data

We tested all of the models on two subject cohorts, collected at different times using different

equipment and under different conditions. The first cohort of data is EDA data we previously

collected from 12 healthy volunteers between the ages of 22 and 34 (6 males) while awake and

at rest [23]. The study was approved by the Massachusetts Institute of Technology (MIT) Com-

mittee on the Use of Humans as Experimental Subjects. All subjects provided written informed

consent. Approximately one hour of EDA data was collected at 256 Hz from electrodes con-

nected to the second and fourth digits of each subject’s non-dominant hand using the Thought

Technology Neurofeedback System [38]. Data from the electrodes were fed into an encoder

connected to a laptop in the neighboring room via fiber optic cable. We monitored the data as

it was collected for the entire hour. Subjects were seated upright and instructed to remain

awake. They were allowed to read, meditate, or watch something on a laptop or tablet, but not

to write with the instrumented hand. One subject’s data were not included in the analysis

because we learned after completing the experiment that the subject occasionally experienced

a Raynaud’s type phenomenon, which would affect the quality of the EDA data. Data from the

remaining 11 subjects were analyzed.

Fig 1. Schematic of our physiological hypothesis and statistical model simplifications. (A) We hypothesize that the amplitude of a pulse is related to the excess

volume of sweat produced relative to what is required to reach the surface of the skin, which translates to the difference of first passage times between two

integrate-and-fire processes, yielding the difference of two inverse Gaussian distributions. (B) We arrived at a series of simplifications of our model based on the

statistical properties observed. IG = inverse Gaussian.

https://doi.org/10.1371/journal.pcbi.1009099.g001
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The second data cohort consists of EDA recorded from eleven healthy volunteers during a

study of propofol-induced unconsciousness [39]. The protocol was approved by the Massachu-

setts General Hospital (MGH) Human Research Committee. All subjects provided written

informed consent. For all subjects, approximately 3 hours of data were recorded while using

target-controlled infusion protocol. The data collection, including experimental setup, is

described in detail in [39]. EDA data were recorded using the BedMaster system by placing

2–3 electrodes on left hand of each subject [40]. The infusion rate was increased and then

decreased in a total of ten stages of roughly equal lengths to achieve target propofol concentra-

tions of: 0 mg/kg/hr, 1, 2, 3, 4, 5, 3.75, 2.5, 1.25, 0. All data were analyzed using Matlab R2019a.

[41].

Data preprocessing and pulse selection

Preprocessing consisted of two major steps, 1) detecting and removing artifacts and 2) isolat-

ing the phasic component. Both have been described in previously in [26]. Because of the level

of high frequency noise seen in the recording equipment used for the propofol data, those data

were additionally low-pass filtered with a cutoff of 3 Hz after artifact removal.

Pulse selection was done using the methodology described in [25] in which the fits of four

right-skewed models were used to select the best prominence threshold at which to extract

pulses. Prominence is a locally adjusted amplitude measure computed using the findpeaks
algorithm in Matlab. This algorithm adjusts the amplitude of each peak in the signal as the

height above the highest of neighboring “valleys” on either side. The valleys are chosen based

on the lowest point in the signal between the peak and the next intersection with the signal of

equal height on either side. Since the same pulse selection framework was followed on the

same two cohorts of data, the pulses selected for each subject were also the same as in [25]. The

final thresholds used for each subject and temporal properties of the pulses selected can be

found in [25]. For this paper, we used the prominence of the extracted pulses as the measure of

pulse amplitude.

Statistical model fitting and comparison

We fitted eight models to each subject’s dataset of extracted pulse amplitudes (prominences).

The first four were the four simplifications of our hypothesis, and the other four were other

models for comparison. The eight models fitted were:

(1) a single difference of inverse Gaussians (IG-IG),

(2) a single difference between an inverse Gaussian and a Gaussian (IG-G),

(3) a single 3-parameter inverse Gaussian with the third parameter being a fitted location shift

(3IG with fitted shift),

(4) a single simple inverse Gaussian model (SIG),

(5) a single lognormal model (L),

(6) a single gamma model (G),

(7) a single exponential model (E), and

(8) a single 3-parameter inverse Gaussian with the location shift parameter set to the promi-

nence threshold used to extract pulses (3IG with known shift).

The closed form densities for Models 3–8 are in Table 1. We fitted models 4–7 by maximum

likelihood [42]. We fitted models 1–3 and 8 by method-of-moments [43], due to a lack of
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closed form solutions for maximum likelihood estimates of the parameters. The derivation of

method of moments estimates for Models 1 and 2 is detailed in S3 Appendix. Models 1 and 2

do not have closed form densities, which we have noted in Table 1. Method of moments esti-

mates for Model 3 (also used for Model 8) were given in [35]. Model 8 was included to verify

that the process of pulse extraction using a prominence threshold did not skew the pulse

amplitude results. We assessed goodness-of-fit by Akaike’s Information Criterion (AIC) and

QQ plots. The AIC is defined as

AIC ¼ � 2logf ðŷMLÞ þ 2p;

where f ðŷMLÞ is the likelihood evaluated at the maximum likelihood estimate of the parameters

and p is the number of parameters. A lower AIC indicates a better fit. For the models fitted by

method of moments, we estimated the log likelihood numerically. AIC prioritizes efficiency of

the model.

We also plotted QQ plots and rescaled QQ plots. For rescaled QQ plots, both model and

empirical quantile values were rescaled by

qrescaled ¼ 1 � expð� qÞ:

Rescaled QQ plots were used for more uniform visualization of the data across all quantiles.

From the QQ plots (not rescaled), we calculated the mean and maximum perpendicular dis-

tances between the plotted fit and the 45-degree line, which represents a perfect fit. A lower

mean distance indicates a better average fit across all quantiles, while a lower maximum dis-

tance indicates a better worst case fit (a better worst-fitting point).

Results

Extraction of pulses

In the awake and at rest cohort, the number of pulses extracted per subject across one hour

ranged from 97 to 324 using prominence thresholds ranging from 0.0025 to 0.027. In the pro-

pofol sedation cohort, the number of pulses extracted per subject across 3–4 hours ranged

from 383 to 1250 using prominence thresholds ranging from 0.02 to 0.055.

Findings from statistical model comparison

The detailed results for the simplification models (Models 1–4) are in Tables 2–3, and the

detailed results for the other models (Models 5–8), which performed poorly overall, are

Table 1. Model descriptions for Models 1–8.

Model Density

1 Difference of inverse Gaussians No closed form density. Parameters of model are: m1; l1; m2; l2. See S3

Appendix.

2 Difference of inverse Gaussian and

Gaussian

No closed form density. Parameters of model are: m1; l;m2;s. See S3

Appendix.

3,

8

3-parameter inverse Gaussian f x; y;m; lð Þ ¼ l

2pðx� yÞ3

� �1=2

exp � l½ðx� yÞ� m�2

2m2ðx� yÞ

� �

4 Inverse Gaussian f x; m; lð Þ ¼ l

2px3

� �1=2exp � l x� mð Þ2

2m2x

� �

5 Lognormal f x; m; sð Þ ¼ 1

2ps2

� �1=2exp � ðln x� mÞ2

2s2

� �
1

x

6 Gamma f x; a;bð Þ ¼ ba

ΓðaÞ x
a� 1e� bx

7 Exponential f x; lð Þ ¼ le� lx

https://doi.org/10.1371/journal.pcbi.1009099.t001
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Table A in S1 Appendix and Table B in S1 Appendix. Based on AIC, in the awake and at rest

cohort (Tables 2 and A), SIG is the best model for 9 out of the 11 subjects (S3-S11), lognormal

for one subject (S2), and the 3IG with known location shift (Model 8) for one subject (S1). The

SIG was always the best of the four simplifications (Models 1–4). In the propofol sedation

cohort (Tables 3 and B), SIG was the best model for 8 of 11 subjects (P1-P7, P11), 3IG with fit-

ted shift for one (P8) and lognormal for two (P9, P10).

Based on mean distance, in the awake and at rest cohort, SIG was the best model for 8 of

the 11 subjects (S1, S3-S8, S11), lognormal for one subject (S2), and 3IG with fitted shift for

two subjects (S9, S10). In the propofol sedation cohort, 3IG with fitted shift was the best model

for 7 of the 11 subjects (P2-P5, P7, P8, P10) and SIG for the other 4 (P1, P6, P9, P11).

Based on max distance, in the awake and at rest cohort, one or more of the two difference

models and the 3IG with fitted shift model were the best across 10 of the 11 subjects (more

Table 2. Model fit results for awake and at rest cohort for Models 1–4.

SIG (Model 4) 3IG with fitted shift (Model 3) IG-G (Model 2) IG-IG (Model 1)

AIC Mean Max AIC Mean Max AIC Mean Max AIC Mean Max

S1 -1074 0.00153 0.0084 -1016 0.001733 0.00615 -1013.7 0.00174 0.00617 -1013.9 0.001735 0.00615

S2 -1857 0.00278 0.1649 -1060 0.00291 0.0488 -1716 0.00434 0.0714 -1721 0.00429 0.0741

S3 -626 0.00238 0.0247 -569 0.00313 0.0184 -565 0.00323 0.0183 -567 0.00312 0.0184

S4 -770 0.00492 0.0338 -674 0.00649 0.0333 -667 0.00668 0.0347 -671 0.00650 0.0334

S5 -834 0.00343 0.1042 -792 0.00373 0.0397 -785 0.00400 0.0348 -790 0.00374 0.0394

S6 -584 0.00435 0.0355 -470 0.006630 0.02626 -466 0.00677 0.02612 -468 0.006633 0.02624

S7 -430 0.00690 0.0755 -335 0.009924 0.03334 -325 0.01099 0.03308 -333 0.009996 0.03329

S8 -1154 0.00698 0.1168 -949 0.00847 0.0768 -904 0.01024 0.0795 -944 0.00862 0.0769

S9 -1451 0.00402 0.0933 -1429 0.00179 0.0305 -1417 0.00189 0.0325 -1420 0.00181 0.0304

S10 -1002 0.00090 0.0068 -977 0.000725 0.00311 -856 0.00188 0.00741 -967 0.000782 0.00320

S11 -480 0.00523 0.1243 -393 0.006623 0.03604 -388 0.00695 0.03633 -391 0.006615 0.03604

Bold and yellow background indicates best model according to AIC, bold and orange background indicates best model according to mean distance, bold and green

background indicates best model according to maximum distance.

https://doi.org/10.1371/journal.pcbi.1009099.t002

Table 3. Model fit results propofol sedation cohort for Models 1–4.

SIG (Model 4) 3IG with fitted shift (Model 3) IG-G (Model 2) IG-IG (Model 1)

AIC Mean Max AIC Mean Max AIC Mean Max AIC Mean Max

P1 106 0.0705 4.7400 1016 0.0992 0.9232 1381 0.1684 0.5423 1160 0.1214 0.6576

P2 -1120 0.0211 1.2298 -108 0.0121 0.3069 -845 0.0235 0.3629 -964 0.0196 0.3763

P3 182 0.0720 6.2278 315 0.0606 2.7780 1811 0.2511 2.4873 1692 0.2206 2.5119

P4 -1862 0.0437 5.0090 -586 0.0224 1.3089 -795 0.0442 1.2678 -1328 0.0317 1.3254

P5 640 0.1167 7.1364 751 0.1160 2.4788 1840 0.4093 3.1502 1782 0.3778 3.0545

P6 -2048 0.0302 0.3985 -873 0.0416 0.4326 -471 0.0628 0.2542 -757 0.0470 0.3649

P7 -1078 0.0656 9.9391 934 0.0497 2.5420 262 0.0745 2.8508 -139 0.0620 2.8666

P8 -529 0.0824 7.4787 -531 0.0480 2.0147 684 0.1828 2.1827 530 0.1471 2.2160

P9 -966 0.0357 9.0523 216 0.0679 3.4129 55 0.1054 3.8847 229 0.1059 3.6826

P10 -2669 0.0095 0.6262 -1654 0.0065 0.2198 -2151 0.0147 0.2275 -1735 0.0129 0.3098

P11 -1404 0.0358 5.0715 126 0.0500 1.8043 -385 0.0610 1.8757 -479 0.0574 1.8366

Bold and yellow background indicates best model according to AIC, bold and orange background indicates best model according to mean distance, bold and green

background indicates best model according to maximum distance.

https://doi.org/10.1371/journal.pcbi.1009099.t003
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than one model performed equally well in most cases). The 3IG with fitted shift model was one

of the best models for 9 of the 11 subjects (S1-S4, S6-S9, S11), the IG-G model for 5 of the 11

subjects (S3, S5-S7, S11), and the IG-IG model for 8 out of 11 subjects (S1, S3, S4, S6-S9, S11).

The exponential was the best model for the remaining subject (S10). In the propofol sedation

cohort, the 3IG with fitted shift was the best for 7 out of 11 subjects (P2, P5, P7-P11) and the

IG-G for the remaining 4 (P1, P3, P4, P6).

Overall, all simplifications (Models 1–4) were reasonable models for the data and outper-

formed other distributions (Models 5–8). Each of the simplifications of our hypothesis (Mod-

els 1–4) prioritized different aspects of the fit (Figs 2–5 and Figs A-AN in S1 Appendix). The

maximum distance from the 45-degree line seemed to occur at high quantiles, which was the

right tail for most models. The fit in this region was prioritized by the difference models, Mod-

els 1 and 2 (IG-IG and IG-G). Models 1 and 2 fitted the right tail of the distribution by sacrific-

ing some of the fit near the mode of the distribution, reflected in mean distance and AIC,

especially as compared to SIG (Model 4). The 3IG with fitted shift (Model 3) seemed to balance

the fit of both mode and tail of distribution reasonably. These results suggest that SIG was the

best model in terms of efficiency, but if overall quality of fit was prioritized, the 3IG model

with fitted shift may have been a better choice. The difference models (IG-IG and IG-G) were

only a good choice if fit of the tail was most important.

Finally, the parameter values (Tables 4–5) indicate that the progressive simplifications are

logical, from the difference of two inverse Gaussians to the difference between an inverse

Gaussian and a Gaussian, and then to a 3-parameter inverse Gaussian with a location shift.

Across all subjects, in the IG-IG model (Model 1), the parameters of the second inverse Gauss-

ian indicate that the ratio of
l2

m2
is very high, which approaches a Gaussian distribution [35].

Similarly, in the IG-G model (Model 2), across all subjects, the standard deviation of the

Gaussian is very small, approaching a simple point shift in the mean.

Fig 2. QQ plots for Subject S8 from the awake and at rest cohort.

https://doi.org/10.1371/journal.pcbi.1009099.g002
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Fig 3. Rescaled QQ plots for Subject S8 from the awake and at rest cohort.

https://doi.org/10.1371/journal.pcbi.1009099.g003

Fig 4. QQ plots for Subject P10 from the propofol sedation cohort.

https://doi.org/10.1371/journal.pcbi.1009099.g004
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Discussion

EDA consists of two simultaneous components or processes at different timescales, the tonic

and phasic. Within phasic EDA, there are two sources of relevant physiological characteristics,

the timing (temporal information) and size of pulses (amplitudes). In our previous work, we

developed a point process model for the temporal information [23,24]. In this paper, we pres-

ent a model for pulse amplitudes.

We used EDA data from two subject cohorts, a set of healthy volunteers while awake and at

rest and another set of healthy volunteers under controlled propofol sedation, to verify our

hypothesis that the pulse amplitudes in EDA were characterized by highly regular statistical

Fig 5. Rescaled QQ plots for Subject P10 from the propofol sedation cohort.

https://doi.org/10.1371/journal.pcbi.1009099.g005

Table 4. Fitted parameter values for Models 1–4 for awake and at rest cohort.

SIG (Model 4) 3IG with fitted shift (Model 3) IG-G (Model 2) IG-IG (Model 1)

μ Λ μ λ θ μ1 λ1 μ2 σ2 μ1 λ1 μ2 λ2

S1 0.0127 0.0206 0.0179 0.0430 -0.0052 0.0179 0.0431 0.0052 <1e-12 0.0175 0.0409 0.0048 9.0e9

S2 0.0173 0.0196 0.0105 0.0014 0.0067 0.0173 0.0061 <1e-10 <1e-12 0.0172 0.0062 0.0000 1.3424

S3 0.0268 0.0213 0.0355 0.0388 -0.0086 0.0360 0.0407 0.0092 <1e-12 0.0355 0.0389 0.0086 3.9e11

S4 0.0458 0.0380 0.0666 0.0998 -0.0208 0.0684 0.1084 0.0227 <1e-12 0.0667 0.1002 0.0209 9.4e11

S5 0.1223 0.1947 0.1607 0.4753 -0.0383 0.1657 0.5209 0.0433 <1e-12 0.1608 0.4768 0.0385 1.7e12

S6 0.0238 0.0127 0.0411 0.0496 -0.0173 0.0420 0.0532 0.0183 <1e-12 0.0411 0.0497 0.0173 7.8e11

S7 0.0775 0.0415 0.1242 0.1909 -0.0467 0.1328 0.2325 0.0552 <1e-12 0.1247 0.1932 0.0472 2.1e12

S8 0.0558 0.0305 0.0730 0.0467 -0.0172 0.0802 0.0616 0.0244 <1e-12 0.0736 0.0478 0.0178 8.0e11

S9 0.0400 0.0421 0.0399 0.0275 0.0001 0.0406 0.0290 0.0006 <1e-12 0.0400 0.0278 0.0000 5.0e-5

S10 0.0055 0.0118 0.0057 0.0074 -0.0003 0.0747 30.0760 0.0692 <1e-12 0.0061 0.0090 0.0006 1.3e8

S11 0.0500 0.0230 0.0870 0.1692 -0.0370 0.0900 0.1873 0.0400 <1e-12 0.0871 0.1700 0.0371 1.7e12

https://doi.org/10.1371/journal.pcbi.1009099.t004
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structure. This statistical structure was consistent with the integrate-and-fire physiology that

describes sweat gland function and accounted for the effect of the background, in addition to

stimulus intensity, on amplitude. We fitted eight models to the pulse amplitudes in EDA, four

of which were simplifications to varying degrees of our hypothesis that each pulse can be mod-

eled as the difference of inverse Gaussians. We quantified the goodness-of-fit with three meth-

ods: AIC, and mean and maximum distances from the 45-degree line on the QQ plot.

Together, we showed that the model fits were consistent with not only integrate-and-fire sweat

gland physiology, but also the combined effects of varying stimulus intensity and EDA back-

ground on the dynamics of generated pulses.

The different simplifications of our hypothesis each emphasized fitting different parts of the

distribution. For example, the two difference models, Models 1 and 2 (IG-IG and IG-G), both

prioritized fitting the right tail of the distribution (the largest pulses) by sacrificing some of the

fit near the mode of the distribution. In contrast, the SIG model (Model 4) prioritized fitting

the mode of the distribution. The 3IG with fitted shift model balanced both. In the visualiza-

tion, this can be seen as the varying slope of the QQ-plot relative to the 45-degree line. Going

from the most simplified (SIG) to the least simplified (IG-IG) model (from Model 4 to Model

1), each is affected progressively more in terms of slope by the largest pulses. This occurs

because the additional parameters, whether the location shift or those of the subtracted distri-

bution, allowed the model to better tailor the fit of the tail.

There were some interesting differences in the performances of the models between the two

subject cohorts. In the awake and at rest cohort, the SIG model (Model 4) performed best in

terms of AIC and mean distance from the diagonal, while the other simplification models

(Models 1–3) all performed well by maximum distance from the diagonal (the 3IG with fitted

shift perhaps doing the best). In contrast, in the propofol sedation cohort, the SIG (Model 4)

was the best only according to AIC, while the 3IG with fitted shift was the best in terms of both

mean and maximum distance from the diagonal. This may reflect a difference in dynamics

between both cohorts. Perhaps the more simplified model performed better in the awake and

at rest cohort because there were fewer changing dynamics when subjects were largely at rest

compared to a changing concentration of drug with known autonomic effects. Or alterna-

tively, perhaps a longer duration of data in the propofol sedation cohort contained more

dynamics that required additional complexity in the model.

When examining them together as a framework, the simplification models performed con-

sistently and robustly across both subject cohorts, even though the data were collected under

Table 5. Fitted parameter values for Models 1–4 for propofol sedation cohort.

SIG (Model 4) 3IG with fitted shift (Model 3) IG-G (Model 2) IG-IG (Model 1)

μ λ μ λ θ μ1 λ1 μ2 σ2 μ1 λ1 μ2 λ2

P1 0.5408 0.1373 0.9492 1.1447 -0.4084 1.5151 3.8754 0.9743 <1e-12 1.1246 1.8507 0.5838 2.6e13

P2 0.1109 0.0752 0.0907 0.0145 0.0201 0.1195 0.0300 0.0086 <1e-12 0.1103 0.0247 0.0000 1.1e-9

P3 0.6549 0.1418 0.6616 0.0920 -0.0067 1.0610 0.3000 0.4060 <1e-12 0.9966 0.2592 0.3416 1.5e13

P4 0.2179 0.0861 0.1708 0.0140 0.0471 0.2403 0.0330 0.0224 <1e-12 0.2139 0.0251 0.0000 7.6e-14

P5 0.9633 0.2244 0.9797 0.1560 -0.0165 1.6801 0.6014 0.7169 <1e-12 1.6004 0.5368 0.6371 2.9e13

P6 0.1639 0.0615 0.2491 0.1426 -0.0852 0.3366 0.3238 0.1727 <1e-12 0.2694 0.1793 0.1055 4.8e12

P7 0.3749 0.1139 0.2966 0.0216 0.0783 0.4130 0.0494 0.0381 <1e-12 0.3921 0.0438 0.0172 7.8e11

P8 0.3355 0.1294 0.3124 0.0283 0.0231 0.5568 0.1206 0.2212 <1e-12 0.4894 0.0891 0.1539 6.9e12

P9 0.2097 0.2219 0.0910 0.0019 0.1187 0.2066 0.0149 <1e-10 <1e-12 0.1802 0.0108 0.0000 8.5e-11

P10 0.0592 0.1026 0.0302 0.0036 0.0290 0.0590 0.0203 <1e-10 <1e-12 0.0592 0.0262 0.0000 1.4e-14

P11 0.2065 0.1057 0.1182 0.0070 0.0883 0.1462 0.0119 <1e-10 <1e-12 0.1547 0.0137 0.0000 4.8e-12

https://doi.org/10.1371/journal.pcbi.1009099.t005
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different conditions, using different equipment, and by different researchers. The simplifica-

tion models were able to capture the structure of pulse amplitude information more success-

fully than other models across both cohorts, while still being flexible in the degree of

complexity of the model as required by the condition under study. The consistent performance

of this framework across disparate study conditions and parameters supports the driving phys-

iological model about sweat gland function underlying the framework. If only one subject

cohort had been included, there would remain a question of whether the model fits were the

result of some specific property of the study condition, equipment, or study design. The inclu-

sion of two different subject cohorts lends support to the physiological validity of the

framework.

The result of this study creates a direct link between the physiology of sweat glands and the

statistical structure of the pulse amplitude data collected at the skin surface. The most detailed

of existing models of EDA are founded in signal processing methods alone, are computation-

ally complex, and make assumptions about pulse amplitudes out of necessity [3–20]. However,

looking to the physiology provided a principled framework by which to propose low-order

models for pulse amplitudes (maximum of 4 parameters) that account for the effects of both

stimulus and background. This result has implications for understanding and tracking the

sympathetic component of the autonomic nervous system in a more meaningful way, includ-

ing both temporal and amplitude information from EDA.

In future work, we will use this result to robustly and accurately capture the valuable physi-

ological characteristics from both the timing and amplitude of pulses in any EDA dataset. We

will study the dynamics of both the timing and amplitudes of pulses over time, applying history

dependent inverse Gaussian models like those developed for heart rate variability [44–47] and

methods for marked point processes [36,37]. We will also study EDA in other contexts, such as

during sleep, with pain, and under general anesthesia. Eventually, these methods will have

both clinical and non-clinical applications, such as in emotional state and stress detection [18–

20]. Our findings provide a principled, physiologically based approach for extending EDA

analyses to these more complex and important applications.

Supporting information

S1 Appendix. Additional figures for all subjects. Table A in S1 Appendix. Model fit results

for awake and at rest cohort for Models 5–8. Bold and yellow background indicates best model

according to AIC, bold and orange background indicates best model according to mean dis-

tance, bold and green background indicates best model according to maximum distance.

Table B in S1 Appendix. Model fit results propofol sedation cohort for Models 5–8. Bold and

yellow background indicates best model according to AIC, bold and orange background indi-

cates best model according to mean distance, bold and green background indicates best model

according to maximum distance. Fig A in S1 Appendix. QQ plots for Subject S1 from the

awake and at rest cohort. Fig B in S1 Appendix. Rescaled QQ plots for Subject S1 from the

awake and at rest cohort. Fig C in S1 Appendix. QQ plots for Subject S2 from the awake and at

rest cohort. Fig D in S1 Appendix. Rescaled QQ plots for Subject S2 from the awake and at rest

cohort. Fig E in S1 Appendix. QQ plots for Subject S3 from the awake and at rest cohort. Fig F

in S1 Appendix. Rescaled QQ plots for Subject S3 from the awake and at rest cohort. Fig G in

S1 Appendix. QQ plots for Subject S4 from the awake and at rest cohort. Fig H in S1 Appendix.

Rescaled QQ plots for Subject S4 from the awake and at rest cohort. Fig I in S1 Appendix. QQ

plots for Subject S5 from the awake and at rest cohort. Fig J in S1 Appendix. Rescaled QQ

plots for Subject S5 from the awake and at rest cohort. Fig K in S1 Appendix. QQ plots for Sub-

ject S6 from the awake and at rest cohort. Fig L in S1 Appendix. Rescaled QQ plots for Subject
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S6 from the awake and at rest cohort. Fig M in S1 Appendix. QQ plots for Subject S7 from the

awake and at rest cohort. Fig N in S1 Appendix. Rescaled QQ plots for Subject S7 from the

awake and at rest cohort. Fig O in S1 Appendix. QQ plots for Subject S9 from the awake and at

rest cohort. Fig P in S1 Appendix. Rescaled QQ plots for Subject S9 from the awake and at rest

cohort. Fig Q in S1 Appendix. QQ plots for Subject S10 from the awake and at rest cohort. Fig

R in S1 Appendix. Rescaled QQ plots for Subject S10 from the awake and at rest cohort. Fig S

in S1 Appendix. QQ plots for Subject S11 from the awake and at rest cohort. Fig T in S1

Appendix. Rescaled QQ plots for Subject S11 from the awake and at rest cohort. Fig U in S1

Appendix. QQ plots for Subject P1 from the propofol sedation cohort. Fig V in S1 Appendix.

Rescaled QQ plots for Subject P1 from the propofol sedation cohort. Fig W in S1 Appendix.

QQ plots for Subject P2 from the propofol sedation cohort. Fig X in S1 Appendix. Rescaled

QQ plots for Subject P2 from the propofol sedation cohort. Fig Y in S1 Appendix. QQ plots

for Subject P3 from the propofol sedation cohort. Fig Z in S1 Appendix. Rescaled QQ plots for

Subject P3 from the propofol sedation cohort. Fig AA in S1 Appendix. QQ plots for Subject P4

from the propofol sedation cohort. Fig AB in S1 Appendix. Rescaled QQ plots for Subject P4

from the propofol sedation cohort. Fig AC in S1 Appendix. QQ plots for Subject P5 from the

propofol sedation cohort. Fig AD in S1 Appendix. Rescaled QQ plots for Subject P5 from the

propofol sedation cohort. Fig AE in S1 Appendix. QQ plots for Subject P6 from the propofol

sedation cohort. Fig AF in S1 Appendix. Rescaled QQ plots for Subject P6 from the propofol

sedation cohort. Fig AG in S1 Appendix. QQ plots for Subject P7 from the propofol sedation

cohort. Fig AH in S1 Appendix. Rescaled QQ plots for Subject P7 from the propofol sedation

cohort. Fig AI in S1 Appendix. QQ plots for Subject P8 from the propofol sedation cohort. Fig

AJ in S1 Appendix. Rescaled QQ plots for Subject P8 from the propofol sedation cohort. Fig

AK in S1 Appendix. QQ plots for Subject P9 from the propofol sedation cohort. Fig AL in S1

Appendix. Rescaled QQ plots for Subject P9 from the propofol sedation cohort. Fig AM in S1

Appendix. QQ plots for Subject P11 from the propofol sedation cohort. Fig AN in S1 Appen-

dix. Rescaled QQ plots for Subject P11 from the propofol sedation cohort.
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