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Abstract

The methods of geometric morphometrics are commonly used to quantify morphology in a

broad range of biological sciences. The application of these methods to large datasets is

constrained by manual landmark placement limiting the number of landmarks and introduc-

ing observer bias. To move the field forward, we need to automate morphological phenotyp-

ing in ways that capture comprehensive representations of morphological variation with

minimal observer bias. Here, we present Morphological Variation Quantifier (morphVQ), a

shape analysis pipeline for quantifying, analyzing, and exploring shape variation in the func-

tional domain. morphVQ uses descriptor learning to estimate the functional correspondence

between whole triangular meshes in lieu of landmark configurations. With functional maps

between pairs of specimens in a dataset we can analyze and explore shape variation.

morphVQ uses Consistent ZoomOut refinement to improve these functional maps and pro-

duce a new representation of shape variation, area-based and conformal (angular) latent

shape space differences (LSSDs). We compare this new representation of shape variation

to shape variables obtained via manual digitization and auto3DGM, an existing approach to

automated morphological phenotyping. We find that LSSDs compare favorably to modern

3DGM and auto3DGM while being more computationally efficient. By characterizing whole

surfaces, our method incorporates more morphological detail in shape analysis. We can

classify known biological groupings, such as Genus affiliation with comparable accuracy.

The shape spaces produced by our method are similar to those produced by modern 3DGM

and to auto3DGM, and distinctiveness functions derived from LSSDs show us how shape

variation differs between groups. morphVQ can capture shape in an automated fashion
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while avoiding the limitations of manually digitized landmarks, and thus represents a novel

and computationally efficient addition to the geometric morphometrics toolkit.

Author summary

The quantification of biological shape variation has relied on expert placement of rela-

tively small subsets of landmarks and their analysis using tools of geometric morpho-

metrics (GM). This paper introduces morphVQ, a novel, automated, learning-based

approach to shape analysis that approximates the non-rigid correspondence between sur-

face models of bone. With accurate functional correspondence between bones, we can

characterize the shape variation within a dataset. Our results demonstrate that morphVQ

performs similarly to manual digitization and to an existing automated phenotyping

approach, auto3DGM. morphVQ has the advantages of greater computational efficiency

and while capturing shape variation directly from surface model representations of bone.

We can classify biological shapes to the Genus level with comparable accuracy to previous

approaches, and we can demonstrate which aspects of bone shape differ most between

groups. The ability to provide comparable accuracy in a Genus level classification with

features extracted from morphVQ further guarantees the validity of this approach.

This is a PLOS Computational Biology Methods paper.

1 Introduction

Biologists studying bone surface’ morphology often quantify shape using the landmarks and

semilandmarks of Geometric Morphometrics (GM) [1–6]. Such quantification permits us to

analyze the differences between bones with manually identified homologous or corresponding

landmarks. With landmarks, we can study biological features’ locations in geometric relation

to each other, which provides opportunities to examine the patterning of complex morpholog-

ical phenotypes [4, 7, 8]. Modern three-dimensional GM analysis pipelines begin with the

manual collection of tens to hundreds of landmarks from digital representations of bone such

as triangular meshes (polygon models). They end with a set of Procrustes-aligned coordinate

shape variables that retain the geometric information contained within the data [5] (Fig 1).

These shape variables, geometric measures of an object invariant to location, scale, and orien-

tation, are the object of these analyses. They make it possible to ask research questions about

the structuring of biological shape variation. Consequently, GM analyses of shape variation

have increased in importance and remain indispensable in theoretical and mathematical biol-

ogy [5, 8].

In implementing landmark-based GM, morphologists must make a host of decisions and

compromises that limit the range of phenotypic variability one can capture [9]. Researchers

must make informed sacrifices about which parts of morphology to study by choosing a fixed

number of landmarks of various types to capture the geometric features we judge to be most

important to our questions. Critically, we are required to decide what aspects of morphology

must be measured and how to use landmarks to quantify that variation [9–11]. Landmarks
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reduce the inherent complexity of morphology down to a limited set of phenotypic structures.

Hence, they cannot describe all aspects of a bone’s shape. Although expertly chosen and theo-

retically grounded given the use-case, landmark configurations assume that the researcher has

a priori knowledge of what morphological features are important, which is often not the case

[9, 12]. Gaining expert knowledge about phenotypic structures and then measuring them is

often arduous, costly, and time-consuming. Notably, the landmarking process is prone to

observer bias, and inter-and intra-observer error in identifying homologous landmark-based

features can distort results [8, 9]. As our questions begin to warrant (i) a comprehensive, unbi-

ased measurement of morphology, (ii) quantification of more complex skeletal elements or

structures without a priori assumptions about feature importance, and (iii) an ability to

Fig 1. Dataflow graphs of shape analysis pipelines used. Rounded rectangular objects represent data objects and arrows depict the procedures/

algorithms operating on or producing them. All three analyses begin with triangular mesh models of bone. In (A), triangular mesh models are manually

digitized. The configurations of corresponding/homologous points obtained are subjected to Generalized Procrustes analysis (GPA) to yield Procrustes

pseudolandmark coordinate shape variables. (B) represents automated quantification using Auto3DGM. Farthest point sampling (FSP) is used to

subsample triangular meshes. The Generalized Dataset Procrustes Framework (GDPF) of auto3DGM assigns correspondences and aligns subsampled

shapes to a common coordinate system (rigid alignment). (C) outlines the proposed descriptor learning approach that builds on auto3DGM with

learned non-rigid/deformable functional correspondences between aligned polygon models. These functional maps are used to estimate latent shape

space differences that characterize morphological variation expressed as area-based and conformal operators. Note that the GDPF step here subsamples

shape at a low resolution with only 128 and 256 pseudolandmarks for initial and final alignment steps, respectively. While not sufficient for capturing

shape variation, low-resolution auto3DGM produces the rotation and translation information needed to rigidly align our polygon models.

https://doi.org/10.1371/journal.pcbi.1009061.g001
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capture relevant shape variation for more extensive samples of complex biological shapes,

researchers are increasingly looking to automated morphological phenotyping techniques as a

solution [8, 13].

The demand for automated morphological phenotyping methods has lead to the publica-

tion of several viable solutions to the problem. Many of these new methods seek to detect land-

mark placement/position with little to no input from a trained morphologist [14, 15], while

others attempt ‘landmark-free’ perspectives to morphological phenotyping [16–18]. These

approaches may use some parameterization of a template or atlas specimen to inform the

model, or, in a learning-based framework, supervising the automated process with a dataset of

manually digitized training examples. Thus far, the only approach to morphological phenotyp-

ing that does not require a template or manual digitization, and attempts to quantify morphol-

ogy comprehensively/exhaustively is auto3DGM [10]. This landmark-based algorithm

represents each bone with a set of feature points uniformly and evenly sampled from each sur-

face. It frames the task of aligning these ‘pseudolandmarks’ as an optimization problem. Auto-

mation hinges on the Iterative Closest Point-like alignment of configurations of

pseudolandmarks that reasonably match corresponding points to each other [19]. auto3DGM

substitutes modern 3DGM’s sparse set of expert identified landmarks and semilandmarks for

dense sets of algorithmically determined pseudolandmarks. These pseudolandmarks are

aligned to yield Procrustes pseudolandmark coordinate shape variables much like those of

modern 3DGM. While powerful, auto3DGM requires hundreds to thousands of pseudoland-

mark points to capture shape variation with adequate detail. This can be computationally

costly and time consuming when sample sizes are large.

This study develops and validates a methodological first step towards automating morpho-

logical phenotyping and conducting morphometric analysis in the Functional Map (FM)

Framework of Geometry Processing [20–22]. Ovsjanikov et al. 2012 present a procedure that

relies upon functions defined on shapes, rather than points identified on shapes, to approxi-

mate their non-rigid or deformable correspondence. Correspondences between full triangular

meshes or polygon models are expressed as linear operators between spaces of functions per-

mitting the holistic study of differences in shape [21, 22]. In modern 3DGM, an expert mor-

phologist identifies a sparse set of corresponding or homologous points on each polygon mesh

and registers them via Generalized Procrustes analysis (GPA). An automated FM-based

approach estimates correspondences between whole geometric objects algorithmically. Given

correspondences, we can characterize the shape variation and tackle a host of statistical shape

analysis tasks. FM-based shape analyses are now being used to capture and analyze variation in

synthetic and real shape collections [23–28]. This study extends these methods to the analysis

of collections of biological shapes.

Our primary contribution is a novel learning-based approach to producing highly accurate

FM correspondences between biological shapes directly from their polygon model geometry.

We then use functional map network (FMN) analyses to characterize shape variability [21]. In

addition to expressing correspondences between shapes, FMs can be manipulated to express

shape differences [29]. Shape difference operators are descriptions of shape deformations

encoded as changes in two inner products between functions. These linear operators capture

the disparity between shapes and decompose it into area-based shape differences (local

changes in the area of the object’s surface) and conformal (angular) shape differences (local

changes in the angles between vectors tangent to the surface) [22]. The vectors of measure-

ments whose inner products are the area-based and conformal shape differences, respectively,

can be viewed as shape variables, comparable to Procrustes aligned coordinates, since they cap-

ture useful geometry and are invariant to isometries [21]. For simplicity, we call this shape

analysis pipeline Morphological Variation Quantifier (morphVQ).
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In this paper, we assess how suitable morphVQ and the functional mapping framework are

to automated morphological phenotyping and to the study of complex shape variation. We

compare the conformal and area-based shape variables obtained from morphVQ to shape vari-

ables obtained with manual digitization and with auto3DGM [10]. We assess the morphomet-

ric performance of our characterizations of shape by considering: (i) how accurate our

approach is relative to auto3DGM as a benchmark, (ii) how the shape spaces formed by LSSDs

compare to those of modern 3DGM and auto3DGM, (iii) how well we can predict a priori bio-

logical groupings from them, (iv) how between-group morphological differences obtained

from them compare to those evidenced by modern 3DGM and auto3DGM, and (v) and how

well our approach generalizes to morphological datasets with meshes that vary in size, shape

complexity, and topological quality. With these criteria in mind, we find that our characteriza-

tion of shape variation is both accurate and robust as it is comparable in morphometric perfor-

mance to representations obtained via manual digitization and to auto3DGM.

2 Results

This study compares several morphometric analyses of the same 102 hominoid cuboids. The

cuboid bone—often referred to as the hominoid foot’s ‘keystone’ element—sits laterally in the

primate midfoot. Biological anthropologists are interested in cuboid form because there is a

robust evolutionary association between primate cuboid morphology, pedal joint function,

and inferred locomotor behavior [30–39]. As such, researchers are interested in how cuboid

shape and size covary with other morphological, functional, or behavioral phenotypes, as fossil

cuboids can provide insights into the locomotor behaviors of extinct taxa. Automatically and

exhaustively quantifying hominoid cuboid shape is a worthwhile real-world task for develop-

ing and evaluating our morphological phenotyping approach.

To establish a baseline for comparison, we capture two representations of hominoid cuboid

shape using the expert identified landmarks and semilandmarks of modern 3DGM (see Meth-

ods and materials for details) (Fig 1A). The first uses 21 type I-III landmarks placed on discrete

features on each polygon mesh. The second captures proximal and distal cuboid facet shape

using 130 sliding surface semilandmarks. These landmark configurations have been used in

previous studies to quantify cuboid shape variation [40]. We consider them ground-truth rep-

resentations for our series of comparisons because they are based on specific cuboid feature

importance models.

2.1 auto3DGM and rigid alignment

auto3DGM plays two roles in this study. In its first role, auto3DGM generates Procrustes pseu-

dolandmark coordinates based on dense subsamples of points from the surface of each shape

in our collection (Fig 1B). These algorithmically obtained shape variables directly characterize

shape variation, so they are retained for our comparisons. With auto3DGM, we find that a suf-

ficiently adequate analysis of hominoid cuboid shape requires at least 512 pseudolandmarks to

quantify surface shape well. With greater than 512 points and a moderately sized collection of

shapes, this procedure can become computationally prohibitive.

In its second role, auto3DGM is used to rigidly align our collection of polygon models to a

global coordinate system. Our algorithm performs best when polygon models are approxi-

mately rigidly aligned as this avoids extrinsic symmetries that can’t be disambiguated by our

learning step [41]. auto3DGM’s Generalized Dataset Procrustes Framework (GDPF) propa-

gates rotation and translation information obtained during the alignment of pseudolandmarks

to the polygon models themselves. We find that auto3DGM can produce useful rigid align-

ments between our hominoid polygon models in our collection with as few as 256
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pseudolandmarks. While the Procrustes pseudolandmark shape variables from a low-resolu-

tion analysis don’t characterize shape with enough surface detail, the aligned polygon models

produced by the procedure are used as input to the descriptor learning step (Fig 1C).

2.2 Descriptor learning

Our descriptor learning model (Fig 2), is a variant of SURFMNet (see Methods and materials

for additional details). SURFMNet is a Siamese neural network that learns to improve upon

precomputed spectral shape descriptors to produce more accurate functional correspondences

between shapes [42]. Our model differs from SURFMNet in two ways: (i) it accepts geometric

data derived from rigidly-aligned polygon models as input as opposed to precalculated spectral

shape descriptors, and (ii) it uses a Harmonic Surface Network (HSN) as a feature extractor in

place of a fully connected residual network. We choose HSN as our feature extractor due to its

ability to produce rotation-invariant features from polygon model geometry, an essential prop-

erty for our descriptors (see Methods and materials for additional details) [43].

Our network’s FM layer estimates the forward and backward correspondences, C12 and

C21, between a source shape S1 and a target shape S2.These functional maps are easily con-

verted to dense P2P correspondences, T12 and T21. Our approach to descriptor learning is

practical, with learned descriptors producing consistent functional maps for all pairs of homi-

noid cuboid shapes in our collection.

2.3 Improving correspondences with Consistent ZoomOut

The P2P maps (T12 and T21) obtained with the learned descriptors contain artifacts. These arti-

facts are visible in the correspondences between pairs of shapes presented in Fig 3A.1 and

3A.2. Published studies using FM in computer graphics usually minimize such artifacts with

some sort of post-processing refinement step [25, 44, 45]. We adopt the Consistent ZoomOut

refinement technique, which iteratively and interchangeably optimizes the P2P and functional

maps at multiple scales given the initial functional maps C12 and C21. Compared to their

Fig 2. Deep Functional Maps network architecture demonstrating functional and soft P2P map estimation in

both directions. We start with an initial pair of source and target shapes S1 and S2, respectively. Θ is a Siamese

harmonic surface network, andF andC are the truncated Laplacian eigenbases for S1 and S2. Learned spatial

descriptors are then projected to their corresponding bases to form F and G. C12 and C21 are 70x70 functional maps

(FMs) estimated in the forward and backward directions between source and target. On the far right are the recovered

P2P maps T12 and T21, respectively. In P2P maps, visual representation of correspondence is demonstrated between

(homologous) features that have the same color.

https://doi.org/10.1371/journal.pcbi.1009061.g002
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counterparts in Fig 3A.2, the Consistent ZoomOut refined P2P maps in Fig 3B.2 achieve a

smoother representation with fewer artifacts. Furthermore, we observe that these smoother

representations are associated with increased bijective coverage as there is a 4% to 12%

improvement when Consistent ZoomOut refinement is applied. Here bijective coverage refers

to the ratio of the number of points in a source shape with a corresponding unique point on

the target shape to the total number of points on that source shape. The Consistent ZoomOut

refinement procedure hinges on a Limit Shape functional map network (FMN) analysis. Limit

Shape characterizes shape variation to yield our area-based and conformal latent shape space

differences (LSSDs) (see Methods and materials section for more information) [26, 29, 45].

2.4 Robustness to topological differences and mesh quality

Specimens within collections of real bone polygon models are often disparately sourced and

can vary considerably in shape, size, resolution, and topological quality. These polygon model

properties have been known to influence correspondence quality in other functional map-

based methods [46]. Like most other methods, we alleviate correspondence estimation issues

Fig 3. Improving correspondence with Consistent ZoomOut. We compare maps generated by HSN ResUNet

descriptor learning model to their Consistent ZoomOut-refined counterparts for four randomly chosen pairs of

hominoid cuboids. Rows 3A.1 and 3A.2 show source and target shape pairs produced by our model, respectively.

Rows 3B.1 and 3B.2 show the same source and target shape pairs after Consistent ZoomOut refinement. Between

shape pairs, surface regions of the same color (green/purple/pink/yellow) are considered homologous. Black areas on

source shapes indicate a lack of bijective coverage with its associated location on the corresponding target.

https://doi.org/10.1371/journal.pcbi.1009061.g003
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that may be due to size differences by standardizing each mesh to unit surface area. To demon-

strate our method’s robustness to topological complexity and variability we apply morphVQ

to two additional datasets. The first is a collection of hominoid medial cuneiforms that vary

considerably in surface quality and resolution. As shown in Fig 4A.1 (source cuneiforms)

and Fig 4A.2 (target cuneiforms), we achieve strong correspondence quality even with such

irregular surfaces. While the refined correspondences of Fig 4B.1 and 4B.2 show only a mar-

ginal improvement in coverage, surface artifacts are consistently removed by the Consistent

ZoomOut refinement process. The second dataset contains high resolution surface meshes of

mouse humeri obtained from micro-CT scans. The relatively featureless humeral shafts pres-

ent a correspondence challenge for functional map-based methods. Fig 5A.1 (source humeri)

and Fig 5A.2 (target humeri) show high correspondence coverage, even along the relatively

featureless shaft of the bone.

2.5 Shape space comparisons

In Fig 6, we visually compare shape spaces derived from three modes of hominoid cuboid

shape quantification with individuals colored by genus. All six plots show distinctive groupings

among hominoids. Hylobates and Homo separate well from all other groups in all shape spaces

while Pan, Gorilla, and Pongo overlap to varying degrees. We use Pearson’s r to assess the cor-

relation between the manually digitized 21-landmark representation (Fig 6A)—a proxy for a

ground-truth measurement—and our other representations from sliding semilandmarks,

auto3DGM, and LSSDs (Fig 6B–6F). As expected, the highest correlation exists between the 21

Fig 4. Estimating and improving hominoid medial cuneiform correspondences. We compare maps generated by

HSN ResUNet descriptor learning model to their Consistent ZoomOut-refined counterparts for four randomly chosen

pairs of hominoid cuboids.

https://doi.org/10.1371/journal.pcbi.1009061.g004
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manually-placed landmarks Fig 6A and the other manually digitized sliding semilandmarks

Fig 6B, r(100) = 0.639, p< 0.001. Of the representations derived from automated methods, the

conformal LSSDs are most correlated with the 21-landmark representation, r(100) = 0.621,

p< 0.001. The auto3DGM 512-pseudolandmark representation Fig 6D and the area-based

LSSDs Fig 6E are only slightly less correlated at r(100) = 0.616, and, r(100) = 0.618, p< 0.001,

respectively. We also assessed the proportion of variance each hominoid group accounts for in

each representation using the trace of each group’s variance-covariance matrix as a measure of

spread. We found no difference in the variance partitioning between representations, i.e.,

groups account for the same proportion of total variance in each set of shape variables.

2.6 Classifying known biological groupings

The resulting PC projections are then classified by genus using four standard machine learning

algorithms: K-means, Logistic Regression, Naive Bayes, and Linear Discriminant Analysis

(LDA) (see Methods and materials section for more information). The resulting accuracies

(average and standard deviation across eleven folds (Table 1). All representations perform well

at genus classification. As expected, the first representation based on manually digitized

Fig 5. Estimating and improving mouse humeri correspondences. We compare maps generated by HSN ResUNet descriptor learning

model to their Consistent ZoomOut-refined counterparts for two randomly chosen pairs of mouse humeri.

https://doi.org/10.1371/journal.pcbi.1009061.g005
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landmarks performs best with each classification algorithm and our traditional 130-semiland-

marks representation of cuboid shape yields the high accuracies across classifiers as well.

The automated representations—Auto3DGM at 256- and 512- pseudolandmark resolu-

tions, Area-based LSSDs, and Conformal LSSDs, and both sets of LSSDs combined—all per-

form well at genus classification. Our Conformal LSSDs boast the highest classification

Fig 6. Shape space differences between manually digitized and automated morphological quantification

approaches. The principal component (PC) scores PC1 and PC2 plotted in A and B are from the Procrustes aligned

coordinates of the manually digitized landmarks. C and D are based on Procrustes-aligned pseudolandmarks obtained

from auto3DGM analyses with 256 and 512 points, respectively. E and F are PCs obtained from our LSSD

characterization. E is a morphospace derived from area-based differences in hominoid cuboid shape, while F is based

on conformal shape differences.

https://doi.org/10.1371/journal.pcbi.1009061.g006
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accuracy (98.2%) on the logistic regression classification task. Notably, there is no significant

change in classification performance when the LSSD shape variables are combined.

2.7 Highlighting where variability happens

We used the conformal and area-based LSSDs obtained to explore hominoid cuboid shape var-

iability. Given our collection of shapes, the FMs obtained by our approach, an arbitrary FMN,

and the LSSD shape variables, we can obtain shape variability across pairs of hominoid sub-

groups expressed as weighted distinctive functions projected directly on the bone surface (see

Methods and materials for details) [26]. These distinctive functions highlight the locations

where intrinsic distortions deviate most from the average distortion between hominoid

groups.

First, for visual reference, we generated polygon models of group-mean shape configura-

tions for each GM-based approach (Fig 7). Using our approach, we can then show distinctive

functions between groups highlighting where variability happens (Figs 8 and 9). We compared

the relative locations of the most distinctive between-group differences detected from modern

3DGM and auto3DGM to those areas identified by our function-based analysis (summarized

in Table 2). Overall, we found that the surface regions highlighted by our FM-based shape

analysis are the same cuboid surface regions that are most different between hominoid groups

in modern 3DGM and auto3DGM analyses. For instance, the primary shape difference

detected between Pan and Homo in both analyses occurs at the proximal facet’s plantar-beak

and along the distal portion of the medial aspect.

2.8 Validation via estimated points to ground-truth landmarks

As described in section 4.9, we obtain the means and standard deviations of the estimations of

the five expert-placed landmark ground-truths generated by MorphVQ and Auto3DGM and

summarize them in Table 3, as well as providing the descriptions of the markers for those val-

ues (Fig 10). Additionally, we include a box-plot (see Fig 11) to visually compare the difference

between the medians (and the first and the third quantiles) of the estimations.

In summary, we find that MorphVQ provides consistent smaller mean estimations on 4 out

of 5 markers as compared to the ground-truth, and also provides smaller standard deviations

(see Table 3). The box-plot (Fig 11), on the other hand, indicates the estimations from

MorphVQ generates smaller medians and quantiles than the Auto3DGM’s estimations.

Table 1. Accuracies and standard deviations for hominoid group classification task.

Quantification Mode Shape Representation K-Means� Logistic Regression Naïve Bayes LDA1

Accuracy Accuracy Std. Accuracy Std. Accuracy Std.

Manual digitization Homologous Landmarks (21 points) 0.99 0.981 0.044 0.939 0.076 0.974 0.052

Semilandmark Patches (130 points) 0.932 0.993 0.026 0.976 0.049 0.992 0.028

Automated measurement Auto3DGM Pseudo-Landmarks (256 points) 0.627 0.975 0.05 0.952 0.069 0.924 0.093

Auto3DGM Pseudo-Landmarks (512 points) 0.906 0.972 0.054 0.922 0.084 0.86 0.118

Area-Based LSSDs (70x70 functional map) 0.632 0.974 0.051 0.896 0.096 0.821 0.128

Conformal LSSDs (70x70 functional map) 0.931 0.982 0.044 0.915 0.088 0.83 0.128

Area-Based & Conformal Combined2 0.93 0.979 0.047 0.897 0.094 0.827 0.128

PCs corresponding to 95% of shape variation are used for each classification experiment (see Methods and materials for details).

1Linear Discriminant Analysis, 2Area-based and Conformal LSSD features are combined and scaled.

https://doi.org/10.1371/journal.pcbi.1009061.t001
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2.9 Basic speed comparison

While our method contains multiple steps, we are able to adequately quantify the cuboid data-

set in less time compared to automated capture using Auto3DGM. Given our dataset of 105

cuboid meshes, it took 31.66 days to successfully use Auto3DGM to quantify shape variation

using 512 pseudolandmarks. The Auto3DGM rigid alignment step at the beginning of our

pipeline uses 256 pseudolandmarks and takes just 53.45 minutes to complete. The descriptor

Fig 7. Polygon models of hominoid cuboid group-mean shape representations. A and B are polygon models based

on landmark and semi-landmark patches where the vertices are manually digitized points. C shows pseudolandmark

points (the vertices) with Delaunay triangulation. D features a randomly selected cuboid polygon model from each

group for reference in the same orientation.

https://doi.org/10.1371/journal.pcbi.1009061.g007
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learning step that follows rigid alignment takes approximately 1 day to complete, and the Con-

sistent Zoomout/Limit Shape procedure at the end of the pipeline takes approximate 16 hours

to yield our Area-based and Conformal LSSDs.

3 Discussion

This work demonstrates that it is feasible to automate morphological quantification in the FM

framework of geometry processing. We used our descriptor learning model to produce high-

quality spectral shape descriptors and FM correspondences between our hominoid cuboid

polygon models. With these correspondences, we characterized shape variation within the

shape collection using Limit Shape-based statistical shape analysis [26]. We found that the con-

formal and area-based LSSD shape variables perform as well as, or better than those obtained

from 3DGM and auto3DGM. Therefore, we demonstrate an efficient, automated solution to

capturing shape variation. LSSD shape variables capture the common landscape populated by

the collection of polygon models, and there is a well-defined notion of distance between poly-

gon models in this shape space [21, 22].

An FM-based shape analysis pipeline allows us to automate and standardize morphological

phenotyping without manually digitizing each bone. Expert observation, interpretation, and

digitizing are no longer rate-limiting steps in morphometric analyses [10]. With functional

correspondences estimated between whole triangular meshes, we can analyze shape variation

Fig 8. Weighted distinctive functions highlighting where regions are most variable in area-based distortion between hominoid groups. Dark red

indicates the most variability, white the least. Rows: I Proximo-medial view; II Lateral; III Medio-distal; IV Dorso-distal.

https://doi.org/10.1371/journal.pcbi.1009061.g008
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comprehensively and exhaustively since we are not limited by the practical and representa-

tional limitations of a reduced set of digitized landmarks. We are now permitted to ask ques-

tions and test hypotheses about the structuring of morphological variation based on robust

evidence with fewer assumptions about which shape features are essential to sample.

The similarities between our LSSD characterization and those representations based on

manually-digitized landmarks and auto3DGM tell us that our method captures meaningful

morphometric information. Based on visual clustering patterns, the shape spaces associated

with our area-based and conformal LSSDs in Fig 4E and 4F, respectively, bear striking resem-

blances to the ones formed by manually digitized landmarks in Fig 4A and 4B. The between-

specimen euclidean distances of our LSSD representations are highly correlated with land-

mark-based distances (r = 0.621), indicating that shape variation is structured similarly

between these methods. This Pearson’s r is high considering the fact that area-based and con-

formal LSSDs hold different information from landmarks and pseudolandmarks. Landmarks

and pseudolandmarks contain less morphological detail than area-based and conformal

LSSDs. The Area-based and conformal LSSDs decompose different aspects of shape, therefore

neither is expected to be highly correlated with landmarks. Also, the area-based and Confor-

mal shape differences predict specimen genus affiliation with accuracies of comparable magni-

tude to landmark-based representations, telling us that our LSSDs encode between-group

Fig 9. Weighted distinctive functions highlighting where regions are most variable in conformal distortion on randomly selected pairs of

hominoid cuboids. Dark red indicates the most variability in surface angulation, white the least. Rows: I Proximo-medial view; II Lateral; III Medio-

distal; IV Dorso-distal.

https://doi.org/10.1371/journal.pcbi.1009061.g009
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differences just as well as manually-digitized measures. These similarities in variance structure

and morphometric performance strongly suggest that our LSSD shape variables characterize

the same biologically meaningful geometry captured by our specialized configuration of man-

ually placed landmarks.

Morphologists find GM tools and methods appealing because they allow us to study shape

differences and variability in ways that preserve geometry throughout an analysis [4, 5, 8].

With modern 3DGM, we can visualize the morphological variation we capture as landmark

displacements in a low-dimensional embedding of shape space. By preserving intrinsic geome-

try, our FM-based approach affords the same biological utility. Albeit differently, conformal

and area-based LSSDs encode detailed information about the disparity or distortion between

shapes under their estimated correspondence. With the distinctive functions derived from

LSSDs, we can explore shape differences by visualizing where variability localizes between

groups. Instead of deforming an anatomical model of bone or some mean-configuration of

landmarks to illustrate shape differences in a morphospace, distinctive functions highlight the

modes and regions of shape variation directly on polygon model surfaces. This approach dif-

fers from other shape analysis methods because it recognizes morphological regions by pat-

terns of variability rather than mean difference. Thus, this approach has a more direct

application to evolutionary studies that seek to quantify morphological variability to test evolu-

tionary hypotheses.

In comparing different species or groups of specimens, it is common to investigate which

aspects of shape allow discrimination. With distinctive functions, we can identify the surface

Table 2. Prominent between-group shape differences detected in representations from each analysis.

Difference Type Representation Pan-Gorilla Pan-Hylobates Pan-Homo Pan-Pongo
Group Mean

Shape Difference

Type I-III homologous

landmarks

1. Reduction in plantar

beak size

2. Broadening of MT4

and MT5 facets

1. Proximodistal

elongation of the lateral

side

1.Proximo-distal elongation

2. Size and orientation of facets

3.

Plantar beak position

1. Negligible differences

detected.

Proximal and distal

semilandmark patches

1. Negligible differences

detected.

1. Proximodistal

elongation of the lateral

side

2. Size and orientation of

facets

1.Proximo-distal elongation 2.

Size and orientation of facets 3,

Plantar beak position

1.Plantar/lateral section of

proximal facet 2. Relative

rotation of proximal and distal

facets

auto3DGM

pseudolandmarks

1. Deepening of

peroneus longus groove

on the lateral side

1. Proximodistal

elongation of the lateral

side

2. Mediolateral narrowing

3. Angular changes

between proximal and

distal facets

1.Proximo-distal elongation

2. Medial edge of 4th MT facet.

3. Plantar beak of proximal

facet

Negligible differences detected.

Variability

localization�
Conformal LSSDs 1. Lateral part of the

proximal facet

1. Lateral aspect of bone

(including peroneus longus
groove)

1. Medial and dorsal edge of

4th MT facet

2. The plantar beak of the

proximal facet

1.Plantar/lateral section of

proximal facet

2. Lateral aspect of bone

(including peroneus longus
groove)

Area-based LSSDs 1. Dorso-lateral margins

of the proximal facet

1. Lateral aspect of bone

(including peroneus longus
groove)

1. Plantar beak of proximal

facet

2. The medial edge of the 4th

MT facet

1. Peroneus longus groove

They are enumerated (1, 2, etc.) in order of prominence. The first three shape rows describe landmark-based differences in group mean shape. The last two rows

describe the locations of significant shape variability between groups as indicated by weighted highlighted functions (see Methods and materials for additional details)

https://doi.org/10.1371/journal.pcbi.1009061.t002
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regions where shape is most variable between groups. In particular, we can show the locations

where area-based and conformal distortions deviate most from the average between-group dis-

tortion (Fig 4E and 4F (i.e., ‘where variability happens’ on the surface [23]). We found that our

distinctive functions highlight the same hominoid cuboid regions where our modern 3DGM

and auto3DGM analyses detect significant between-group differences in shape, providing fur-

ther evidence that the algorithm is detecting biologically meaningful shape information

(Table 2). With distinctive functions highlighting relevant variability, these methods permit

automated detection of the regions or features that are morphologically distinctive for inter-

group comparisons.

More persuasive evidence of the validity of our approach can be found in Fig 11 and

Table 3 where we compare landmark estimation performance between the proposed

MorphVQ and Auto3DGM. Here, we use the amount of error Auto3DGM introduces when

pseudolandmarks are used to predict landmark positions as a baseline for high quality auto-

mated biological correspondence. MorphVQ obtains closer or even smaller mean/median

errors of the landmark estimation relative to Auto3DGM. This demonstrates that our

approach is capable of yielding landmark position estimates that are as good as those obtained

from Auto3DGM where biological correspondence and homology are concerned. Further-

more, the smaller quantile ranges (Fig 11) and the smaller standard deviations (Table 3) of the

estimation errors generated by MorphVQ indicate this model can generate more stable and

concentrated inferences when compared to Auto3DGM.

We also find that learning spectral descriptor using an HSN feature extractor leads to highly

bijective FM correspondences with good coverage between all pairs of polygon models. This is

in comparison to solving directly for correspondence using precomputed Wave Kernel Signa-

ture (WKS) descriptor or to learning a better descriptor using FMNet or SURFMNet. Our

results show that our method generalizes well across different datasets, even in situations

where topological complexity, noise, and other surface related issues may cause the previously

mentioned approaches to fail. This is because correspondence quality depends heavily on the

geometric properties of the pointwise shape descriptor used to solve the problem. The WKS is

a popular choice because it is multiscale, isometry invariant, easy to compute, and contains all

intrinsic information at each point [47, 48]. Despite its benefit, there are drawbacks to using

WKS from real-world polygon model representations of bone (see S3 Fig). Though for differ-

ent reasons, the well-documented sensitivity and specificity issues of WKS and HKS, respec-

tively, can lead to poor correspondence quality, especially with a dataset of disparately

obtained bone polygon models that differ drastically in shape and triangulation [49]. For

Table 3. Mean Euclidean distance between estimated points and ground-truth landmarks.

Landmark Description MorphVQ Error Auto3DGM Error

Mean Std Mean Std

1. Most proximal point of plantar “beak” 0.0731 0.0161 0.0715 0.0244

2. Center of proximal facet 0.0607 0.0157 0.0674 0.0173

3. The most medial point of indentation between distal and proximal facets 0.0512 0.0184 0.0749 0.0220

4. Deepest point of indentation on the facet for 5th metatarsal 0.0381 0.0110 0.0692 0.0163

5. Deepest point of indentation on the facet for 4th metatarsal 0.0607 0.0108 0.0717 0.0192

Landmarks 1–5 are placed on 69 sample cuboids and the means and standard deviations of the distances between those landmarks and their automated counterparts in

MorphVQ and Auto3DGM are presented. The smaller of the two distances, emphasized in bold, identifies the automated approach with less error per landmark.)

https://doi.org/10.1371/journal.pcbi.1009061.t003
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instance, WKS descriptors yield high-quality bijective correspondences between similarly

shaped Pan cuboids but produce poor correspondences between Pan and Hylobates cuboids as

they are quite different in form. In contrast, our model encodes informative spectral descrip-

tors that yield high-quality correspondences in both scenarios.

In summary, studies that characterize morphological phenotypes have relied on the analy-

ses of manually digitized landmarks. Such analyses impose a priori constraints on which

aspects of surface morphology can be captured, and an increasing body of evidence points to

the fact that we need more than a few key traits to adequately characterize morphological vari-

ation [10, 12, 50–52]. We demonstrate that FM-based methods can automate comprehensive

morphological quantification and provide a nuanced analysis of intrinsic shape variability.

With efficient descriptor and correspondence learning, and FMN-based analysis tools like

Limit Shape, we can make significant advances toward expanding the GM toolkit to include

landmark-free analyses of biological shapes.

Fig 10. Hylobates Cuboid showing validation landmarks. Red dots indicate where landmarks are manually placed on 69 sample cuboid meshes.

https://doi.org/10.1371/journal.pcbi.1009061.g010
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4 Materials and methods

4.1 Data acquisition and preprocessing

Our study sample consists of 102 triangular meshes obtained from laser surface scans of homi-

noid cuboid bones. These cuboids were from wild-collected individuals housed in the Ameri-

can Museum of Natural History, the National Museum of Natural History, the Harvard

Museum of Comparative Biology, and the Field Museum. Hylobates, Pongo, Gorilla, Pan, and

Homo are all well represented. Each triangular mesh is denoised, remeshed, and cleaned using

the Geomagic Studio Wrap Software [53]. The resulting meshes vary in vertex-count/resolu-

tion from 2,000—390,000. Each mesh is then upsampled or decimated to an even 12,000 verti-

ces using the recursive subdivisions process and quadric decimation algorithm implemented

in VTK python, respectively [54–56].

The first of the two smaller datasets used to evaluate generalizability is comprised of 26

hominoid medial cuneiforms meshes isolated from laser surface scans obtained from the same

museum collections listed above. The second dataset is made up of 33 mouse humeri meshes

sourced from micro-CT data (34.5 μm resolution using a Skyscan 1172). These datasets were

processed identically to the 102 hominoid cuboid meshes introduced above. See the Dryad

data repository at [57] for all data associated with this study.

4.2 Expert measured and auto3DGM cuboid form quantification

We used Stratovan Checkpoint Software [58] to quantify shape variation in two modes. The

first configuration is of 21 well established type I-III landmarks placed on prominent points

and facet margins, the second configuration consists of two semi-landmark patches placed on

the proximal and distal articular facets only. The semilandmark patches in the second mode

were anchored using 8 homologous landmarks for a total of 130. These sets of landmark

Fig 11. Boxplot of Validation Results. Red dots indicate where landmarks are manually placed on 69 sample cuboid meshes.

https://doi.org/10.1371/journal.pcbi.1009061.g011
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configurations were subjected to a generalized Procrustes analysis with semi-landmark sliding

in the Geomorph R package [3, 6, 59, 60]. The Procrustes-aligned coordinates from both were

retained for further analysis.

For comparison, we used the auto3DGM R package to capture hominoid cuboid shape vari-

ation at two resolutions, with 256- and 512-pseudolandmarks, respectively [10, 19]. The lower

resolution analysis was initialized with 150 subsampled points and the higher resolution was

initialized with 256 points. The Procrustes-aligned pseudolandmarks obtained from these

shape analyses are then subjected to a separate principal component analysis (PCA). The PC

scores and eigenvalues from both are retained for further analysis. We also retain the aligned

polygon models produced by the lower resolution analysis for our descriptor learning

procedure.

4.3 Functional maps and descriptor learning

Using MATLAB, we rescaled each auto3DGM aligned polygon model to unit area. We discre-

tized each model using the cotangent weighting scheme to yield stiffness and mass matrices

that are then used to compute the Laplace-Beltrami Operator (LBO) via eigendecomposition

[61]. We retained the LBO and the raw polygon model geometry (vertices and triangles) for

descriptor learning in the FM-based framework in our proposed model.

We use the FM framework because there are several advantages to solving the correspon-

dence problem in the functional domain, especially with the LBO as a basis. The LBO, a gener-

alization of the Fourier analysis on Riemannian manifolds, is the eigenbasis of choice as it is

invariant to isometric transformations, and it is well suited for continuous maps between geo-

metric objects [20, 23]. With the LBO as a basis we can use FM-based tools to efficiently trans-

fer functions from a source to a target shape to avoid manipulating pointwise

correspondences. The FM-based correspondence problem is linear and easy to optimize com-

pared to the non-convex correspondence problem faced when points are considered. Using a

truncated LBO with as few as 70 eigenfunctions reduces the dimensionality of the problem sig-

nificantly without much loss to correspondence quality [22].

Given bones as source and target shapes, denoted by S1 and S2, the framework proposes the

following general steps to calculate the functional maps:

1. First, we obtain k1 and k2 number of basis functions (LBO eigenfunctions) on the source

and target shapes, respectively. We then project sets of precomputed shape descriptors (e.g.,

pointwise features that encode the local and global geometric properties of each surface)

onto their respective bases to yield coefficients denoted A and B.

2. The functional map framework focuses on the following equation to solve for C, the map

that preserves the point-to-point map correspondence between the shapes:

Copt ¼ arg min
C

EdescðCÞ þ aEregðCÞ ð1Þ

Here are the eigenvalue matrices of the two sets of basis functions:

EdescðCÞ ¼ k CA � B k2 ð2Þ

EregðCÞ ¼ k CL1 � L2C k2 ð3Þ

3. Once the functional map is obtained, standard implementations then recover the point-to-

point map by nearest neighbor search. Standard implementations improve the quality of
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the point-to-point map using post-processing refinement tools such as Bijective Continu-

ous Iterative Closest Point (BCICP) or Kernel Matching [25, 44]. These post-processing

steps are bypassed in our implementation, in favor of refinement using the Limit-Shape

based Consistent Zoomout method (see Implementation for details).

While estimating FMs in this way is efficient and practical for whole polygon models, it can

be quite sensitive to the type of shape descriptor used. Shape descriptors encode the relevant

local and global geometric properties of each point of a shape to a vector in some single- of

multi-dimensional feature space [62]. There are multiple types of point-based descriptors of

shape that provide initial points for mapping shapes to each other in the FM framework. These

task-specific descriptors have specific geometric properties depending on their use case [49].

For example, spectral shape descriptors, which are derived from the spectral decomposition of

the Laplace Beltrami Operator associated with shapes, are invariant to isometric transforma-

tions and are potent descriptors of intrinsic geometry. Such spectral descriptors are the current

state-of-the-art [47, 63, 64]. Several studies show that it is possible to learn spectral descriptors

directly and that learned spectral descriptors perform better in practice [42, 49, 62, 65].

The best performing descriptor learning models, such as FMNet and SURFMNet, are based

on Siamese neural networks that transform pairs of shape descriptors into new ones to

improve functional correspondence [42, 66]. Despite being learning-based, they still adhere to

the three step FM-pipeline previously described. With precomputed SHOT (Signature of His-

tograms of OrienTations) or WKS (Wave Kernel Signature) descriptors as input, these models

use a deep residual neural network (ResNet) with shared weights to produce new features that

are then projected into their respective eigenbases to create descriptors. FMNet and SURFM-

Net then use these new descriptors to estimate improved functional correspondences between

shapes.

4.4 Learning intrinsic features from surfaces

Instead of using precomputed SHOT or WKS descriptors as the functions in a functional

maps framework, several recent methods focus on learning spectral descriptors via the func-

tional characterization of the vertices/point clouds of polygon models [41, 46]. These

approaches use specialized neural network architectures (e.g., PointNet++) or novel convolu-

tional kernels (GCCN, MDGCN. KP-Conv, Metric-based Spherical Convolutions, etc. [67–

70]) capable of exploiting the geometric features of point-clouds or triangular meshes. These

descriptor learning models replace the Siamese ResNet architecture of FMNet with spatial fea-

ture extractors that have been implemented in a Siamese way [46]. Given the unstructured

point clouds, they create new features that are invariant to translation, rotation, and point

order. Just as in FMNet, these features are then projected into the eigenbasis to form the spec-

tral descriptors needed to estimate functional correspondence. Point-cloud-based feature

extraction approaches such as these yield higher quality correspondences compared to their

precomputed descriptor-based counterparts.

Despite the advantages, extracting features of sufficient quality for functional characteriza-

tion is difficult. Existing methods either (i) suffer from poor expressivity or (ii) are too sensitive

to differences in polygon model connectivity, or (iii) they don’t produce rotation-invariant fea-

tures in a manner that is conducive to learning spectral descriptors. In this study, we craft our

own shape descriptors directly from polygon mesh geometry using the deep U-ResNet (HSN)

architecture used for shape classification and segmentation introduced in [43]. HSN is one of

many charting-based approaches that generalizes the notion of convolutions to irregularly

sampled manifolds and graphs. With charting-based methods we can apply a convolution filter

on the irregular, non-euclidean grid of a whole surface in the same way we apply traditional
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filters to whole images. In addition to the other charting-based models, HSN possesses several

other advantages: 1. It does not rely on orientation definition on the coordinates; 2. It does not

define operation on euclidean spaces, which makes it a natural fit for cases with manifolds.

Namely, HSN proposes a spectral-harmonic-based operator for convolution on surfaces that

take the input meshes as inputs. For a give point on a mesh, the convolution considers its geo-

desic neighboring points and convolve with them by the spectral harmonic operator after con-

verting those points via a parallel transport function, a necessary step to map all points into the

same space for convolution. Notice that although the input meshes for HSN are only the reali-

zations of the surfaces, all operators are designed to directly gather information on surfaces.

And given the natural of the spectral harmonic operator, the output from this operator pos-

sesses rotation-invariant (M = 0 in the HSN setup) and rotation-equivariant (M = 1 in the

HSN setup) properties. The above module is the convolution building block for the HSN, a

U-ResNet-based architecture. It takes the mesh as inputs in our case, and outputs multidimen-

sional shape descriptors.

Overall, an HSN-based feature extractor produces highly expressive intrinsic features that

are strongly locally-aligned. In practice, compared to PointNet++, an HSN feature extractor

encodes rotation-invariant features in a way that is more forgiving of arbitrary differences in

pose (SO3 rotations) between a source and a target polygon model. This is usually the case for

real-world pairs of bone meshes which may be poorly aligned, if at all. In practice, we find that

descriptors from HSN-based features consistently yield highly bijective FMs with detailed and

accurate pointwise correspondences.

4.5 Implementation

4.5.1 Deep HSN UResNet feature extractor. Our U-ResNet architecture is deeper with

eight stacks of ResNet blocks and three levels of pooling and unpooling layers (see S1 Fig)

ResNet blocks are unchanged, each containing two HSN convolutional layers and a residual

connection. Like Wiersma et al., we configure the network with rotation order streams: M = 0

and M = 1, where the former enforces rotation invariance and the latter, equivariance. In the

scope of machine learning, the terms rotation invariance and equivariance usually refer to two

properties that describe the relative rotational correlations with the original inputs, where the

former indicate a constant encoding feature regardless of the rotations on the inputs and the

latter indicate the encoding features will have corresponding rotations as their corresponding

inputs. By using the HSN structure that considers both rotation invariance and equivariance,

we identify ±5% degree of rotational variations to the input data. For our model configuration,

we use 16-, 24-, 32-, and 48- units at each scale of the deep U-ResNet. Pooling and unpooling

are done in the same way via parallel transport, but with pooling ratios 1, 0.5, 0.25, and 0.1

starting with a radius of 0.1 that grows by a factor of 2 at each scale. The 48-unit output pro-

duced by our last ResNet block then passes through the unpooling and reverse convolution

layers of the U-net. This results in a 16-dimensional vector at each node of the original triangu-

lar mesh, which is then transformed to a 300-dimensional vector by a densely connected layer

with ReLu activation. This HSN feature extractor was implemented using code from Wiersma

et al., 2020 which was retrieved from https://github.com/rubenwiersma/hsn.

4.5.2 Functional map layer and unsupervised loss. The Siamese HSN feature extractor

produces 300-dimensional spatial embeddings at each vertex in our source and target shapes.

We projected these embedding into their respective LBO eigenbases to form spectral descrip-

tors, which are then passed to a fully differentiable functional map layer that computes the

functional maps C12 and C21 (in both directions) between the source and target shapes. After

obtaining C12 and C21, we use the axiomatic SURFMNet loss defined in Roufosse et al. 2019 w.

PLOS COMPUTATIONAL BIOLOGY Morphological phenotyping using learned shape descriptors and functional maps

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009061 January 19, 2023 21 / 30

https://github.com/rubenwiersma/hsn
https://doi.org/10.1371/journal.pcbi.1009061


r.t. the model weights to optimize for the best C12 and C21. This is done directly in the func-

tional domain.

This unsupervised loss consists of 4 regularization terms (or penalties) that assess the struc-

tural properties of the functional maps obtained from the FM-layer [42]. The first penalty, E1,

enforces bijectivity by requiring that C12 and C21 be inverses of each other, which ensures that

the composition of the two maps is an identity map. The second penalty, E2, constrains

orthogonality. This condition preserves the local area of the two input shapes in the P2P map

when converting back from the two functional maps. The third, E3, is a well-known regulari-

zer in the functional map pipeline because it enforces commutativity with the Laplacian [20,

71]. The fourth, E4, guarantees that the learned correspondences in the form of functional

maps directly arise from the P2P map. Specifically, it means both functional maps are com-

mutable w.r.t. the reduced bases of the descriptors of the corresponding source and target

shapes. The FM layer and the unsupervised losses were implemented using a PyTorch Geo-

metric [72] library retrieved from https://github.com/pvnieo/SURFMNet-pytorch.

4.5.3 Training scheme. Following Wiersma et al., 2020, we precomputed the logarithmic

maps, weights, and multi-scale radius graphs needed for HSN feature extraction from each

auto3DGM aligned polygon model. We also retain the point-cloud/vertices of each aligned

model as input to our network. Each model was trained using the ADAM optimizer with a

learning rate of 1 × 10−3 in a data-parallelized manner [73]. Models are trained on random

pairs of shapes drawn from the set of all pairwise comparisons without replacement. An epoch

is complete when each pair of shapes in the collection has been seen once. This is repeated

until convergence in a self-supervised manner with no validation set. At convergence, each

pair of shapes is processed to produce a full set of shape descriptors, and a pair of functional

maps from source to target shape and the reverse. These are all retained for further analysis.

These models were trained with a batch size of one on a NVIDIA Tesla K80 GPU core.

4.6 Refinement via consistent ZoomOut and limit shape

Once the functional maps (e.g. C12 and C21) are obtained via the proposed deep learning

model, Consistent ZoomOut is used to refine the corresponding point-to-point mappings

with the information of the functional mappings between the shapes in a collection. In particu-

lar, the Consistent Zoomout is an optimization technique set upon the functional maps with

the following objective,

min
G

EðGÞ:

Where

E (G) =
X

(i;j)2G

X

k

1

k
k Ckij Ckji ¡ Ikk2F

=
X

(i;j)2G

X

k

1

k
k (©kj )y¦ji©ki Y ki (Y

k
j )

y ¡ Ikk2F :

We use the same color to refer to the expansion of the functional maps (e.g. Cij) from differ-

ent perspectives, where the orange one encodes the point-to-point map correlation and the

cyan one encodes shape consistency with the limit shape S0 (refer to Fig 12 for details). Here G
indicates the set of all functional maps for the given set of shape collections; i and j refer to the

corresponding two shape indices in this collection; k refers to the dimension of the eigenbases

(e.g. Fk
j and Fk

i ) in the functional space; I is the identity matrix of dimension k; Yi is the
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mapping between the shape Si to the limit shape S0 with Cij� Yj(Yi)
† for 8ði; jÞ 2 G;Pji is the

point-to-point map between shape Si and Sj and Pji(p, q) = 1 if and only if T(p) = q, 8p 2 Si, q
2 Sj. And T(�) is the projection function from points in Si to points in Sj.

Although Consistent Zoomout is formulated as a multi-scale optimization problem, in real-

ity, the low quality (e.g. with smaller k) functional maps are the ones we have initially, which

makes it infeasible to optimize the above equation directly. To solve this problem, the authors

of the paper propose an optimization equivalence, which is an iterative functional map refine-

ment procedure with the 3 major steps: 1. Form the Limit Shape matrices (e.g. Yi) by consider-

ing all the functional maps (e.g. Ck
ij) at quality level k. 2. the Limit Shape matrices are then used

for the generation of new point-to-point maps (e.g. Pij) within this shape collection. 3. The

improved functional mappings (e.g. Cðkþ1Þ

ij ) are then generated from these new point-to-point

maps. By repeating these 3 steps above, we are able to improve the quality of the functional

maps and hence obtain refined point-to-point maps. Refer to (Fig 12) for diagram illustration

of this process.

Notably, one key component of the Consistent ZoomOut is Limit Shape. As previously

mentioned, it is used as an intermediate step to produce consistent point-to-point mappings

in each of the iterations. The Limit Shape method’s CCLB matrices [45] provide canonically

Fig 12. Limit Shape and consistent ZoomOut Illustration. Given a shape collection, Limit Shape S0 is the “mean”

shape considering all the shape variation within this shape collection via Yi. Cij (or Cji) is the functional map between

shape Si and Sj. The bottom pipeline indicate the way Consistent ZoomOut is performed to refine the functional maps

through a joint work of 1. Limit Shape Recomputing; 2. P2P map conversion given the new Limit Shape; 3. Convert

back to functional maps from P2P map.

https://doi.org/10.1371/journal.pcbi.1009061.g012
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consistent bases across different shape inputs, normalizing for shape-dependent inconsisten-

cies in the LBO. These techniques ensure the Consistent ZoomOut a superior algorithm over

its predecessor, ZoomOut [28], which is biased w.r.t. the choice of source and target, and is

designed only for pairwise analysis, ignoring the relationships between shapes in a collection.

The Consistent ZoomOut and Limit Shape implementation can be found in https://github.

com/ruqihuang/SGP2020_ConsistentZoomOut.

4.7 Pearson’s r correlation test

To assess the similarity between our Procrustes aligned coordinate-based shape variables and

(i) Area-based LSSDs and (ii) Conformal LSSDs we obtained euclidean distance matrices of

each representation and conducted Pearson’s r correlation tests in R.

4.8 A priori biological group classification tasks

After obtaining the shape differences through Consistent ZoomOut and Limit Shape, we per-

form the following classification/clustering tasks to evaluate whether our proposed method is

able to extract morphological features that capture and characterize the shape differences pres-

ent in a collection of hominoid cuboids. In particular, we fit models with six different types of

input data. The first two representations of hominoid cuboid shape are based on procrustes

aligned landmark configurations of 21 type I-III and 130 sliding semilandmarks, respectively.

The third and fourth representations are auto3DGM procrustes pseudolandmarks quantified

with -256, and -512 points respectively. The fifth and sixth representations are conformal and

area-based LSSDs from our morphVQ analysis. We then calculate the principal components

given the six different inputs and choose the number of PCs to cover 95% of the total variance.

The PCs are the final inputs for the Genus classification tasks. Specifically, we consider the fol-

lowing four tasks, three of which are supervised classifications and one is based on unsuper-

vised clustering. Namely, we choose Logistic regression, Linear Discriminant Analysis, Naive

Bayes as our supervised classifiers. We use K-means to be our unsupervised clustering algo-

rithm. Comparing the performance of PCs with six different inputs on these four algorithms

provides insight into which types of the extracted feature are better in identifying morphologi-

cal differences. Here we provide a brief summary of the four classification (supervised/unsu-

pervised) algorithms:

4.8.1 Logistic regression. Logistic regression is a generalized form of linear regression,

which regresses the log odds of the probability of choosing one class over the other class. To

characterize such correlations, a linear regression model is simply transformed by a sigmoid

function. The transformed function models p(y|x), where x refers to the input features (in our

case PCs) and y is the class label. Refer to equation for details. Where aT and b refer to the

parameters (“slope” and bias) in the logistic regression.

log
pðy ¼ 1jxÞ
pðy ¼ 0jxÞ

¼ aTxþ b ð4Þ

4.8.2 Linear Discriminant Analysis (LDA). LDA is a linear classifier aimed to find a pro-

jection direction such that the input features, once projected with respect to the given direc-

tion, have the maximum variance between classes and minimum variance within each of the

classes.

4.8.3 Naive Bayes. This is one of the simplest classifiers under the assumption that each of

the feature dimensions is independent. Taking advantage of Bayes’ Rule: p(y|x)*p(x|y)p(y),
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we further decompose this equation into the multiplication of the independent likelihoods

with the probability for the class y : pðxjyÞ ¼
Qn

i¼1
ðxijyÞ,where n denotes the dimension of the

inputs. By applying the “maximum a posteriori (MAP)” classification rule, we are able to find

the classification given the input features by: y ¼ arg maxk pðy ¼ kÞ
Qn

i¼1
ðx1jy ¼ kÞ, where k

denotes the class index.

4.8.4 K-means. Different from previous approaches, K-means is an unsupervised

approach that separates input data into different clusters based on the distances between each

point in the input data and the means of each of the clusters. Here K is a pre-specified hyper-

parameter that controls the number of clusters in the algorithm. Once it is confirmed (in our

case it is the number of species), the algorithm will iteratively update the classifications of

points in the input data and the cluster means to minimize the following objective:

arg minS

Pk
i¼1

P
x2Si
k x � mi k

2, where S = S1, S2, . . ., Sk and each Si (i = 1, 2, . . ., k) denotes

the set of inputs to class i. i refers to the mean of the inputs in Si. And k is a predefined hyper-

parameter for the number of classes.

To properly evaluate the performance of the above tasks, we apply 11-fold cross validation

on the input shape differences. All results are summarized in Table 1 and in S4 Fig with stan-

dard deviations indicated according to the cross validation results.

4.9 Validation via landmark position estimation accuracy

To validate our approach, we assess the accuracy with which expert-placed ground-truth

landmark positions can be determined from auto3DGM and morphVQ representations. We

compare discrepancies in the euclidean distances between ground-truth landmark positions

and those estimated automatically by both morphVQ and auto3DGM; smaller euclidean dis-

tances between true landmarks and estimated landmarks indicate increased accuracy. We

placed five landmarks on each mesh in a sample of 69 aligned cuboids. These five landmarks,

shown in Fig 10, are the most prominent points on the cuboid identified in [36]. These 69

meshes are common to the 512-pseudolandmark auto3DGM analysis and to our own

morphVQ analysis. For each of the two analyses, we then obtain euclidean distance estimates

in an iterative fashion for comparison.

For each of the 69 meshes in the auto3DGM analysis, we choose the pseudolandmarks clos-

est in proximity to the five ground-truth landmarks placed on that surface. We then obtain the

pseudolandmark positions that correspond to them on all other meshes and measure the

euclidean distances between those corresponding pseudolandmarks and the respective

ground-truth points. This leaves us with multiple sets of euclidean distances measures (one set

for each mesh) that are then retained for comparison.

MorphVQ is designed to estimate functional correspondences. However, landmark posi-

tions can be obtained from the resulting P2P maps. For each of the 69 meshes in our

morphVQ analysis, we obtain the vertex positions closest in proximity to the five ground-truth

landmarks of each surface. Since P2P correspondence between each surface and the other 68 is

known, we query the mappings from each surface to all others to obtain estimated landmark

positions. We then measure the euclidean distance between those points and the ground-truth

points of each mesh. Again, this leaves us with multiple sets of distance measures.

With these sets of distance measurements from MorphVQ and Auto3DGM, we calculate

their mean and standard deviations. These two factors are then used to evidence the estimation

accuracy of landmark positions between the two approaches.
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Supporting information

S1 Fig. Harmonic surface network feature extractor used for descriptor learning. Adapted

from Wiersma et. al., 2020. On the left is the U-ResNet structure with three pooling levels, on

the right, is a detailed description of the ResNet block.

(TIF)

S2 Fig. Spectral descriptors learned by our model lead to accurate functional maps. The

first five dimensions of the spectral descriptor learned with our HSN feature extractor. Corre-

sponding/homologous regions on Hylobates source (above) and Pan target (below) shapes are

similar in color. These learned descriptors yield high-quality FM correspondences.

(TIF)

S3 Fig. Correspondence quality is improved by learning descriptors compared to direct

optimization with orientation operator. Point-to-point maps between source Pan shape and

Hylobates target shape (left to right) obtained via direct optimization using WKS (above) and

our learned spectral descriptor (below) [25]. Source and target shapes are remeshed to 12,000

vertices in both experiments. WKS were computed using 200 Laplace-Beltrami eigenfunc-

tions.

(TIF)

S4 Fig. LSSDs lead to similar genus classification accuracies with logistic regression. Con-

fusion matrices of multinomial logistic regression prediction for each representation of homi-

noid cuboid shape. In (A) and (B) use principal components of Procrustes-aligned

semilandmark patches and pseudolandmarks generated by auto3DGM as independent vari-

ables, respectively. Independent variables in (C) and (D) are principal components of confor-

mal and area-based LSSDs, respectively. PCs account for 95% shape variance for each

representation, and stratified K-Fold cross-validation provides accuracies with standard devia-

tions in parentheses.

(TIF)
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