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Abstract

Post-translational modifications (PTMs) play a vital, yet often overlooked role in the living

cells through modulation of protein properties, such as localization and affinity towards their

interactors, thereby enabling quick adaptation to changing environmental conditions. We

have previously benchmarked a computational framework for the prediction of PTMs’

effects on the stability of protein-protein interactions, which has molecular dynamics simula-

tions followed by free energy calculations at its core. In the present work, we apply this

framework to publicly available data on Saccharomyces cerevisiae protein structures and

PTM sites, identified in both normal and stress conditions. We predict proteome-wide effects

of acetylations and phosphorylations on protein-protein interactions and find that acetyla-

tions more frequently have locally stabilizing roles in protein interactions, while the opposite

is true for phosphorylations. However, the overall impact of PTMs on protein-protein interac-

tions is more complex than a simple sum of local changes caused by the introduction of

PTMs and adds to our understanding of PTM cross-talk. We further use the obtained data to

calculate the conformational changes brought about by PTMs. Finally, conservation of the

analyzed PTM residues in orthologues shows that some predictions for yeast proteins will

be mirrored to other organisms, including human. This work, therefore, contributes to our

overall understanding of the modulation of the cellular protein interaction networks in yeast

and beyond.

Author summary

Proteins are a diverse set of biological molecules responsible for numerous functions

within cells, such as obtaining energy from food or transport of small molecules, and

many processes rely on interactions of specific proteins. Moreover, a single protein may

acquire different roles depending on cellular requirements and as a response to changes in

the environment. A commonly used way to quickly change protein’s function or activity

is by introducing small chemical modifications on specific locations within the protein.

These modifications can cause the protein to interact in a more or less stable way with

other proteins. We have previously developed a computational pipeline for predicting the

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008988 May 12, 2021 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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effect of modifications on interactions of proteins, and in this work we apply it to all yeast

proteins with known structures. We find differences in effects on the binding for different

types of modifications. Importantly, we demonstrate that the modifications far from the

interaction interface also significantly contribute to binding due to their impact on pro-

tein’s shape, which is often neglected by other methods. This work contributes to our

understanding of the modulation of protein interactions in yeast due to modifications,

while our widely applicable method will allow similar investigations in other organisms.

Introduction

Since the first mentions of post-translational modifications (PTMs) in PubMed, dating to the

1940s, it has become increasingly clear that the numerous types of PTMs and their crosstalk[1]

have indispensable roles in the functioning of organisms from all three domains of life. Addi-

tions of chemical moieties on designated amino acids are known to affect protein stability,

activity and localization, as well as fine-tune the modified protein’s binding to its interacting

partners.[2,3] It has indeed been demonstrated for some types of PTMs that the interface

located sites have higher conservation [4], suggesting that these PTMs might be more func-

tionally relevant, as they can exert a direct influence on protein-protein interactions. In addi-

tion to these direct effects, PTMs are also known to allosterically impact the conformation of

proteins, further altering their respective functions.[5].

Phosphorylation is arguably the most studied type of PTM. Discovered in the 1950s on

phosphorylase extracted from the rabbit skeletal muscle [6], phosphorylation has since been

associated with virtually all cellular processes [7], and up to 75% of the human proteome [8] is

known to be affected by this modification. Similar to phosphorylation, lysine acetylation is

another well-known PTM conserved in bacteria, archaea and eukaryotes, suggesting its ancient

origin.[9] While it is still largely associated with its first discovery on histones [10], lysine acet-

ylation was meanwhile found in many other proteins, e.g., tumor suppressor p53 [11], and is

nowadays being studied at larger scales. For instance, lysine acetylation was found to be at least

as abundant as phosphorylation in the bacteriumMycoplasma pneumoniae.[12] Thus far, acet-

ylation has been implicated in a wide range of cellular roles, such as autophagy, cell cycle, and

cytoskeleton organization, to mention just a few.[3].

The last two decades have witnessed a rapid increase in the number of identified PTMs for

a number of organisms, primarily due to advancements in mass spectrometry (MS).[13,14]

The current MS techniques allow not only the proteome-wide quantitative identification of

PTMs but also their detection upon perturbations of cellular conditions, which aim to clarify

the roles of these modifications in a dynamic and network signaling context. The abundant

PTM data is stored in publicly available databases, which are often organism-, PTM- or amino

acid-specific, for instance, the lysine-specific Protein Lysine Modification Database [15] or the

yeast phosphorylation database phosphoGRID [16]. A collection of data from 30 such data-

bases was unified within the dbPTM resource, with more than 900,000 experimentally con-

firmed and around 350,000 putative PTM sites of different types present in the latest release

version of 2019 [17]. In addition to a large number of experimental and predicted sites, PTMs

are also chemically very diverse: UniProt [18] report dated October 2020 listed 676 types of

PTMs, 100 of which have been associated with the taxonomic range of Archaea, 319 with Bac-

teria, and 489 with Eukaryota.

Despite these impressive numbers of both types and identified PTM sites, what remains a

bottleneck in this line of research is predicting the functional roles of these PTMs.[9,19] For
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instance, as much as 95% of human phosphosites still do not have assigned functions.[20] The

current situation in learning about the functional significance of PTMs has been compared to

the early days of genomic sequencing, when the accompanying bioinformatics tools were lack-

ing and had to be developed to convert the inflow of data into scientific knowledge.[9] To

date, several tools and resources have emerged that try to tackle the problem of predicting

PTM functions. PTMfunc [4] is one such resource, which offers the precomputed predictions

of phosphorylation, acetylation and ubiquitination relevance in eukaryotic proteins, based on

the PTM conservation within family domains. On the other hand, Mechismo web server [21]

predicts if a PTM occurring on a specific position in a query protein has stabilizing, destabiliz-

ing, or no effect on binding with the respective interactors. These predictions rely on the inter-

face interaction patterns, assuming the conformation remains identical before and after PTM

addition. In addition to these, tools originally developed for different purposes have also been

applied to predicting the roles of PTMs on binding. One such example is the FoldX empirical

force field [22], developed with free energy calculation based on 3D structure as its core func-

tionality, which has recently been used to estimate the effects of interface-located phosphoryla-

tions on binding [23]. Similar to Mechismo, predictions of FoldX are in practice limited to the

PTMs located at the interaction interfaces; otherwise they predict that there is no effect of

PTM introduction.

In our recent work [24], we aimed to surpass the drawbacks of the existing tools by develop-

ing a method that would take the dynamic nature of biomolecules into account and could

accommodate for numerous PTM types present simultaneously in the structure, while not

being limited by their interface location. This corresponds to a more realistic scenario, as it is

known that a significant proportion of proteome carries multiple modifications.[12,25] Our

proposed pipeline has molecular dynamics (MD) simulations at its core, followed by the free

energy calculation using the Molecular Mechanics energies with Generalized Born and Surface

Area continuum solvation method (MM/GBSA) at a set of protein conformational snapshots.

[24] We have previously benchmarked the MD-MM/GBSA pipeline against FoldX [22] and

Mechismo [26] using a set of 47 mammalian protein-protein complexes for which it was

experimentally shown that phosphorylation causes either stabilization or destabilization of

binding. The benchmarking showed that FoldX has the lowest accuracy; Mechismo can reach

up to 75% accuracy at the cost of coverage, while MD-MM/GBSA has much higher coverage.

After confirming that MD-MM/GBSA predictions are similar to those of other tools for stabi-

lizing and better for destabilizing effects, yet offer more flexibility with respect to PTM type,

number and location and account for dynamics, we further applied it to three multimeric pro-

tein complexes. Finally, we experimentally confirmed one of the obtained predictions by yeast-

2 hybrid.

In the present work, we aimed to apply our MD-MM/GBSA workflow for predicting the

effects of PTMs on binding stability to gain insight into the effects of acetylation and phos-

phorylation in the known protein-protein interactions of yeast Saccharomyces cerevisiae (Fig

1). To this end, we made use of the publicly available data on 3D structures of complexes, as

well as the PTM data. This led to performing 440 MD simulations, with the possibility of mir-

roring some of the prediction results to other organisms due to PTM conservation in the

orthologous proteins. Even though acetylations more frequently have locally stabilizing effects

on binding, and phosphorylations destabilizing, in this work we demonstrate that the overall

effect of co-occurring PTMs on the protein-protein binding is more complex than a sum of

local changes, likely as a consequence of conformational changes. In addition, these local bind-

ing contributions do not appear to be correlated with the conservation of the PTM site, further

emphasizing the complexity of predicting the effects of PTMs.
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Results

Post-translational modifications of yeast proteins

The yeast protein complexes analyzed in this study were of different sizes, with the largest one

having 6,386 residues, as well as of different multimeric states, ranging from dimers to a

28-mer (S1 Fig). Before modeling PTMs onto 3D structures of these protein complexes,

Fig 1. Workflow overview. The publicly available yeast protein structures were combined with PTM sites data in order to assess the effects of PTMs on protein binding.

In addition, conservation analysis aided in identifying the subset of predictions that are transferable to protein-protein interactions in other organisms.

https://doi.org/10.1371/journal.pcbi.1008988.g001

PLOS COMPUTATIONAL BIOLOGY Modulation of protein interactions by post-translational modifications

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008988 May 12, 2021 4 / 25

https://doi.org/10.1371/journal.pcbi.1008988.g001
https://doi.org/10.1371/journal.pcbi.1008988


acetylation and phosphorylation sites of Saccharomyces cerevisiae retrieved from the public

databases were separated based on the conditions (normal or stress) in which yeast was grown

when each respective PTM has been identified. A total of 174 protein complexes in this study

had PTMs found in normal conditions, which included the addition of 2,832 lysine acetyla-

tions and 289 phosphorylations on the respective complexes (S1 Table). On the contrary, only

87 complexes containing PTMs in stress conditions were identified, having no associated acet-

ylations and a total of 605 phosphorylations (408 on serine, 177 threonine, and 20 on tyrosine

residues). It is worth noting that these numbers contain some redundancy, as for example

each subunit in a homomultimer typically contains the same set of PTMs. However, there are

also exceptions, as in some cases the gaps in protein chains are not observed at the same loca-

tions in all subunits of a crystallized complex. Due to the same reason, one protein that occurs

in multiple PDB structures, and therefore in different complexes, might also have slightly dif-

ferent PTMs added in each of those structures. Therefore, in the remainder of this section,

“unique chain” is used to denote a single protein chain, with a unique UniProt ID, which is

located within a specific PDB structure (i.e., a single chain from one row in the S1 Table).

A unique protein chain in our normal conditions dataset typically had several acetylations

(15.8% of chains had one, 17.0% two, and 14.5% three acetylated lysines), though the number

went above 20 in a few cases of hypermodified proteins (S2B Fig). Phosphorylations within the

proteins in normal conditions were of a lower frequency–depending on the amino acid,

between 80 and 98% of unique chains had no phosphorylation sites at all, and when they did,

it was typically a single one (S2C–S2E Fig). Overall, 16.2% of unique chains had a total of one

PTM, 15.8% had two, while the remaining had three or more modifications (S2A Fig). These

numbers were, however, somewhat different for the proteins in stress conditions: while a

majority of 70–90% of unique chains contained no phosphorylated threonines and tyrosines,

only 14.7% had no serine phosphosites. Indeed, proteins in this dataset were commonly modi-

fied with up to three phosphoserines (50.5% had one, 15.6% had two, 8.3% had three modified

residues). For those unique chains that did contain a threonine or a tyrosine phosphosite, it

was most commonly only a single one (26.5% of chains had one phosphothreonine and 9.2%

one phosphotyrosine). The lower occurrence of tyrosine phosphosites is not surprising, as this

amino acid itself is represented in rather low numbers throughout yeast proteins.[27]

Acetylation and phosphorylation have different local contributions to

binding

Applying MD-MM/GBSA pipeline on post-translationally modified complexes allowed us to

gain insight into the effects that the addition of PTMs has on the stability of protein-protein

binding (S2 Table). The same analysis was also performed on the non-modified complexes,

which served as a control. Notably, a total of four systems (1VLU, 2EKE, 4DL0, and 4WXA)

were excluded from all subsequent binding energy analyses because the changes that took

place during their simulations (e.g., dissociation of a dimeric complex) caused the violation of

periodic boundary conditions, i.e., proteins could “feel” their respective periodic images; these

systems can easily be identified as those showing extreme RMSD values (S3 Fig; discussed

below).

Similarly to our previous results on a smaller dataset [24], the comparison of the binding

energy decomposition between non-modified and modified complexes revealed that lysine

acetylation more frequently contributes to binding in a locally stabilizing fashion, while the

opposite is true for phosphorylations (Figs 2 and S4). These effects might be the consequence

of the local changes introduced by the respective modifications: while phosphorylation brings

about a negative charge that must be compensated by neighboring positively charged residues,
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acetylation diminishes the charge from the lysine side chain. Notably, these local contributions of

PTMs do not necessarily dictate the overall impact on binding affinity, which we observed here,

as well as in our previous work. For instance, while the local effect of phosphorylation might be

destabilizing, the overall effect on the binding of protein subunits can be stabilizing because there

are other effects, such as conformational changes, also taking place (discussed below).

Focusing on the PTMs located at the binding interfaces, this difference between acetylation

and phosphorylation is statistically significant (p-value < 0.05) with a large effect size (Cohen’s

d-value > 0.8) when comparing lysine acetylation ΔΔGbind,contribution values with those for ser-

ine, threonine or tyrosine phosphorylation (Fig 2). Moreover, serine phosphorylation appears

to have a significantly larger destabilizing effect on the binding when compared to phosphory-

lation of threonine in both normal and stress conditions, though the effect sizes are small.

When ΔΔGbind,contribution values are compared for the same type of PTM between normal and

stress conditions, as expected, no statistically significant differences are found (Fig 2).

Co-occurring PTMs together affect protein interactions

While the previous section describes the local contributions of PTMs to the binding, the overall

effect that multiple PTMs co-occurring within a single protein complex exert onto binding

(ΔΔGbind) is more complicated than a simple sum of these local contributions (Fig 3). This

makes straightforward predictions based on multiple local effects impossible and is due to

PTMs causing conformational changes (i.e., they work through allostery). Furthermore, we

have observed a significant difference (p = 5.9e-05) in distributions of ΔΔGbind values for normal

and stress conditions, where values are more stabilizing for normal conditions (Fig 4). Cohen’s

d value of 0.32, corresponding to the difference of 0.32 standard deviations, indicates that the

observed effect size is not large. The observed difference may in part be due to the variation in

the number of specific PTM types in normal vs. stress conditions, i.e., all acetylations in our

Fig 2. Comparison of local binding contributions between conditions and PTM types for the interface-located PTMs. ΔΔGbind,contribution values in two conditions for

each type of PTM (acetylation in blue, phosphorylation in orange), where NC stands for “normal conditions” and SC for “stress conditions”. Acetylation more frequently

contributes to binding in a stabilizing way, as reflected in the majority of the violin plot being below zero, while the opposite is true for phosphorylation. No significant

differences were found between ΔΔGbind,contribution for PTMs of the same type between normal and stress conditions (p-values indicated on the plots). Comparison of

ΔΔGbind,contribution values between different types of PTMs within a given condition shows several statistically significant differences, connected by the lines (full line for

NC and dashed for SC) and marked with stars above the plots. The corresponding p-values are: p(Lys-Ser, NC) = 1.3e-76, p(Lys-Thr, NC) = 7.7e-39, p(Lys-Tyr, NC) =
2.3e-03, p(Ser-Thr, NC) = 2.0e-02, and p(Ser-Thr, SC) = 2.9e-02. Cohen’s d-values indicate that the effect sizes vary from small (d(Ser-Thr, SC) = 0.29, d(Ser-Thr, NC) =
0.45) to large (d(Lys-Ser, NC) = 1.43, d(Lys-Thr, NC) = 1.82, d(Lys-Tyr, NC) = 2.23).

https://doi.org/10.1371/journal.pcbi.1008988.g002
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dataset were identified in normal conditions, while overall a larger number of phosphorylations

was assigned to stress conditions. However, on a level of individual complexes with PTMs iden-

tified in both conditions, ΔΔGbind,normal < ΔΔGbind,stress does not always hold true (S5 Fig), fur-

ther indicating complex pathways in which co-occurring PTMs exert their effect on binding.

The overall effect of PTMs onto binding might be the consequence of changes in the bound

state, the unbound state, or both, where the bound state refers to the entire protein complex

and unbound to the two components during the MM/GBSA calculations, which can be

thought of as a receptor and a ligand. Estimation of their contributions to the overall ΔΔGbind

(S2 Table) indicates that the contributions vary from one system to the next. On average, the

unbound state has a somewhat higher contribution (S6 Fig; p = 9.5e-23), although the effect is

only of a medium size (Cohen’s d = 0.55). A caveat that should be noted here is that the

unbound states were inferred from the MD simulations of the complexes, rather than originat-

ing from independent simulations of the individual protein components.

Protein conformational changes due to PTMs

We used root mean square deviation (RMSD) to estimate the conformational changes in the

analyzed protein complexes throughout the MD production phase, as compared to their

Fig 3. Correlation between the subunit ΔΔGbind values and the sum of ΔΔGbind,contribution of PTMs located in the respective protein chains. Points above

the grey line (y = x, with the surrounding grey area describing the error in subunit ΔΔGbind values) belong to systems in which the overall effect of PTMs on

subunits’ binding is more destabilizing than could be expected based solely on local contributions of the PTMs, and the other way around for points below

the grey line, both thanks to long-range effects. For systems described by points lying within the grey area, the local effect of PTMs does explain the overall

effect on binding.

https://doi.org/10.1371/journal.pcbi.1008988.g003
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respective initial structures (i.e., before optimization). Because these initial conformations are

the same for both non-modified and modified complex and correspond to the structure

reported in PDB, these RMSD calculations describe how much the conformations for non-

modified and modified complexes acquired during MD simulations deviated from the initial

one (S3 Fig). The average value of RMSD for the majority of protein complexes went up to 5

Å, both when calculated for backbone or entire proteins, with some of the more extreme cases

going above 10 Å (S3 Table). As already mentioned, the outlying systems with extreme RMSD

values are 1VLU, 2EKE, 4DL0, and 4WXA, in which the violation of periodic boundary condi-

tions was observed. The underlying changes that occurred during the MD simulations and

have caused such results are dissociation in one (modified 1VLU; non-modified 4WXA) or all

simulated systems (both non-modified and modified 2EKE), or a significant conformational

change as compared to the initial, crystal structure (4DL0). RMSD values for these systems are

reported in the Supplemental material, however they are excluded from RMSD analyses

detailed below.

When comparing the RMSD of the modified proteins and their non-modified counterparts,

a large number of systems showed a difference of less than 1 Å (the difference of areas under

the RMSD graphs divided by time; value similar to the difference of the average RMSDs; S7A

Fig). In some cases, this difference was up to several angstroms, and depending on the system

Fig 4. Overall effect of PTMs on the protein-protein binding. Chain ΔΔGbind values are significantly more

stabilizing for PTMs found in normal when compared to those identified in stress conditions, though the effect size is

small (Cohen’s d = 0.32).

https://doi.org/10.1371/journal.pcbi.1008988.g004
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it was either the non-modified or modified version of the complex that had a larger RMSD. In

general, more systems showed larger conformational changes for modified than for non-modi-

fied complex (149 out of 255 when comparing backbones, and 162 out of 255 when comparing

entire proteins), and we find no significant difference between normal and stress conditions

(pbackbone = 0.87). The slight difference between results for the backbone and entire protein

suggest that there are systems in which the overall shape (backbone) of the modified complex

stays more similar to the starting conformation than the non-modified one; however, if side

chains are also taken into account, they add enough of a difference to make the modified com-

plex more conformationally distant from the initial structure than the non-modified one.

Thus, we find that the protein complexes during MD typically do acquire conformations

rather distant from the initial one, with modified complexes more frequently showing larger

changes than their non-modified counterparts, as might be expected given that all the initial

conformations originate from presumably non-modified versions of protein complexes.

While the above-described differences in RMSD between modified and non-modified com-

plexes are typically small, suggesting that both versions of the complex became approximately

equally distant from the starting conformation, this does not imply that they acquired a mutu-

ally highly similar conformation. To directly assess the difference of conformations between

non-modified and modified complex, RMSD between the two was calculated. In order to find

the representative structures for this comparison, clustering of conformational snapshots from

the MD production phase was performed and the representative structure of the largest cluster

was then taken for the RMSD calculation. The obtained values were typically between 1 and 2

Å, and went up to 10 Å for some systems (S7B Fig). Overall, the higher RMSD values between

the cluster representatives suggest that the modified and non-modified complex typically do

differ conformation-wise more than could be expected based on their distances from the initial

conformation.

PTM sites do not show increased conservation over their non-modified

counterparts

Thus far, the reports on whether PTM sites are more conserved than the non-modified amino

acids have been contradicting.[9] A unified view on this problem has been suggested for phos-

phorylation: phosphosites show a slightly increased conservation, but only when compared to

non-modified amino acids of the same type that are located in the same type of secondary

structure region (ordered or disordered) of the same protein.[9] Similarly, lysine PTM sites

were also found to be only slightly more conserved when compared to non-modified lysines.

We have therefore taken a closer look into the location of PTM sites from our dataset within

different secondary structure elements. While acetylation sites of our dataset follow a similar

secondary structure pattern as the non-modified lysines and are mirroring the overall distribu-

tion of secondary structure elements across the investigated protein structures, phosphoryla-

tion sites showed a clear preference for the unstructured elements (S8 Fig). However, even

with taking the secondary structure into account, we found no statistically significant differ-

ences in conservation between modified and non-modified amino acids (S9A Fig and S2

Table). In addition, we do not find a significant difference between the conservation of phos-

phorylation and acetylation sites (S9B Fig).

Finally, one might expect that the more conserved residues will also have a larger effect on

the protein-protein binding. However, we find no correlation between ΔΔGbind,contribution val-

ues and conservation of PTM sites (S10 Fig), either when taking all or only the subset of inter-

face-located PTMs into account, where the interface-located PTMs can be identified as those

with zero ΔΔGbind,contribution. It could be argued that this is due to complex mechanisms by
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which PTMs exert their effect on protein binding, i.e., individual local effects have impact, but

do not determine, how the overall protein-protein binding will be affected, and this is espe-

cially true for proteins with co-occurring PTMs. Thus, we do not find that conserved residues

have a larger effect on protein-protein binding than non-conserved sites.

Mirroring results to organisms beyond yeast

It could be argued that predictions of PTMs’ effect on protein binding in yeast can be mirrored

to other organisms, given that they have the corresponding orthologous proteins and PTMs

within them conserved. To assess how widely the PTMs of our dataset are conserved, for each

PTM we constructed a comprehensive list of organisms in which the respective PTM site can

be found (S2 Table). These lists were then used to search for the lowest common ancestor of

organisms with conserved PTMs for each PTM site. The majority of PTMs indeed appears to

be conserved rather widely (Fig 5). Furthermore, a table describing the proportion of con-

served PTM sites per protein or PDB structure was assembled (S3 Table). This data provides a

detailed overview of which predictions from yeast might be mirrored to which other

organisms.

A case study–importin alpha

To highlight how the data obtained within this work can be used and interpreted, we took a

closer look at one of the systems–importin or karyopherin alpha (Kapα, PDB ID: 1BK5),

which has associated PTMs in normal conditions. The role of this protein within the yeast cell

is connected to the nuclear import: Kapα binds the positively charged nuclear localization sig-

nals (NLS) in the cytosolic proteins, directing them for transport into the nucleus, and this rec-

ognition is enhanced when Kapα is in a heterodimer with Kapβ. In the suggested mechanism

(S11 Fig), Kapβ binding activates Kapα by releasing the auto-inhibition, which is caused by

binding of an internal Kapα NLS motif to Kapα itself.[28] Co-crystallization of Kapα with an

external NLS motif (PDB ID: 1BK6) uncovered two binding sites within this protein, consis-

tent with it being able to bind both single and bipartite NLSs.[29] Moreover, it was found that

Kapα forms a homodimer through interactions of the C-terminal region (PDB ID: 1BK5),

forming a substantial interface which buries 13% of each subunit’s surface. Although this find-

ing is seemingly incompatible with bipartite NLS binding, as the homodimer interface is

located between two binding sites within a Kapα subunit, it was suggested that dimer forma-

tion represents yet another layer of the auto-inhibition that has to be surpassed by Kapβ
binding.

A total of 6 lysine acetylations and 1 serine phosphorylation site were identified within

Kapα in normal conditions. Conservation of these PTMs varies from low/medium (Lys479

(0.03), Lys496 (0.05), Lys398 (0.45)) to high (Ser351 (0.72), Lys485 (0.83), Lys500 (0.86),

Lys354 (0.91)), with all of them being widely conserved. While none of these PTMs overlaps

with NLS binding sites, mapping on 3D structure clearly shows their overrepresentation

around the homodimer interface (Fig 6A). In this work, we predict that the addition of these

PTMs works towards significant stabilization of Kapα:Kapα binding, as suggested by the nega-

tive values of ΔΔGbind (S2 Table) On the local level, acetylations were predicted to contribute

to binding in a stabilizing manner, while phosphorylation had a small destabilizing contribu-

tion, with only a subset of PTMs being located on the interface (|ΔΔGbind,contribution|> 0.5

kcal/mol). In addition, the search for the amino acids that have significantly different ΔΔGbind

contributions between non-modified and modified complexes revealed eight residues, both

modified and non-modified, with contributions larger than 5 kcal/mol (S2 Table and Fig 6B).

All of them were stabilizing, suggesting that PTMs addition to Kapα works towards
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homodimer stabilization both directly (through PTMs) and indirectly (through other interface

residues).

A detailed look into MD trajectories of the non-modified and modified Kapα dimer

pointed towards different ways in which the residues with large contributions achieve their sta-

bilizing effect upon PTM addition. It must be noted, though, that these are one-time observa-

tions originating from only a single MD simulation performed for each system, as well as that

the longer simulation time would be preferable for such analyses. With these caveats in mind,

our analysis showed that the conformational changes caused by the introduction of PTMs can

relocate a residue from a non-interface to an interface position, where it then forms favorable

interactions with the opposite chain. One such example is Glu460 in chain A, which was

observed to form a salt bridge with Lys375 of the same chain in Kapα2. However, in the modi-

fied complex, this Glu460 moves towards the dimer interface, where it begins forming a salt

bridge with Arg120 of chain B (Fig 6C). Similarly, Glu493 in chain B only forms interactions

Fig 5. Conservation of PTM sites. PTM sites in the dataset used in this work appear to be widely conserved, with Eukaryota

being the most common lowest common ancestor. The plot shows data for all unique PTM sites analyzed in this work, both

acetylation and phosphorylation and independent of the conditions (normal or stress), where uniquemeans that the

redundancy due to PTMs appearing in multiple chains, complexes, or in both conditions was removed.

https://doi.org/10.1371/journal.pcbi.1008988.g005
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Fig 6. A case study–importin alpha. A. The initial structure of the Kapα homodimer (PDB ID: 1BK5), with chain A shown in magenta and chain B in cyan. Green

space-filling representation is used to denote the backbone atoms of lysine acetylation sites, while red is used for serine phosphorylation sites detected in normal

conditions. B. Per-residue decomposition of the Kapα free energy of binding (ΔΔGbind,contribution). Amino acids of homodimer are shown on the x-axis, where the two

chains are separated by a dashed cyan line. For each residue, the difference of binding contribution between modified and non-modified complex is shown as a vertical

line ending with a dot, where negative values denote residues with a more stabilizing contribution in the modified than in the non-modified complex, and vice versa

PLOS COMPUTATIONAL BIOLOGY Modulation of protein interactions by post-translational modifications

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008988 May 12, 2021 12 / 25

https://doi.org/10.1371/journal.pcbi.1008988


(salt bridges, hydrogen bonds) with chain A in the modified complex. Different from this sim-

ple scenario, the addition of PTMs can also cause more complex changes in amino acid inter-

action patterns, ultimately leading to highly stabilizing binding contributions for some

residues. For example, the loop 160–163 in chain B moves further away from the helix in chain

A when Kapα2 is modified. This rearrangement includes changes in the interaction pattern,

such as the hydrogen bond between Ser163 and Asp203 of chain B, which is lost in the modi-

fied complex. Because the aforementioned loop contains no residues that could form highly

favorable/stabilizing interactions with Glu506 in the opposing helix of chain A, this negatively

charged residue has a significantly less destabilizing contribution to binding in the modified

homodimer (Fig 6D). In another example, the stabilizing Glu493 in chain A weakly interacts

with Arg321 of the opposite chain, as this arginine is also involved in an interaction with

Glu360 of the same chain. Upon PTMs addition, Glu493 positions in the proximity of Lys359

of chain B, forming a stable salt bridge and consequently stabilizing the binding more than in

the non-modified complex. Taken together, this kind of analysis might help in shedding more

light onto the roles of PTMs in Kapα2 binding, and moreover the possible role of PTMs in the

broader context of homodimer formation as a mechanism of auto-inhibition.

Discussion

PTMs play vital roles in virtually all cellular processes, yet studying their impact on proteins

using molecular modeling and MD simulations, known to be valuable tools for understanding

the dynamic nature of biomolecules, became possible only recently due to technical advance-

ments, such as the development of parameters for describing the modified amino acids.[30]

Starting from only a few common modifications, such as phosphorylation and methylation,

the parameters have now been developed for over a hundred types of modified amino acids

and are available in several MD suites.[31] In addition, specialized web-servers, such as

Vienna-PTM [32] and FF_PTM [33], were developed for the addition of PTMs onto 3D pro-

tein structures and their parametrization. The application of MD simulations on studying

PTMs often focuses on understanding how changes in protein structure are linked to the func-

tional roles of PTMs. For instance, MD simulations of the N-terminal domain of the PLB pro-

tein showed that phosphorylation of Ser16 decreases the helical content of this protein part,

subsequently modulating its interaction with the sarcoplasmic reticulum Ca-ATPase, relieving

its inhibition.[34] In another example, simulations of phosphorylated kinase-inducible

domain revealed not only the stages of its folding upon KIX binding, but also the key amino

acids involved in this process.[35] Some studies also go beyond the quantitative observation of

protein conformational changes upon PTM addition and analyze modified protein’s physico-

chemical properties. For example, MD has been used to investigate polar properties of solvent

accessible surfaces of phosphorylated proteins, where it was found that phosphorylation

decreases hydrophobicity around the phosphosite, while the overall effect on the entire surface

of a protein cannot be easily predicted due to dynamic structural rearrangements.[36] Others

have taken advantage of physicochemical parameters calculated based on MD simulations to

predict the dynamic behavior of protein complexes depending on the pattern of the interface-

located phosphosites.[37].

for the positive. Residues with contributions larger than 5 kcal/mol are labeled. C. Glu460 in chain A is interface located only in the modified complex, and therefore

has a large stabilizing ΔΔGbind,contribution, mainly due to interactions with Arg120 from chain B. D. Glu506 has a significantly less destabilizing contribution to binding

in the modified complex, where chain B is more distant. The inserted frames depict Glu506 and residues of chain B which are within 5 Å from it in a space-filling

representation.

https://doi.org/10.1371/journal.pcbi.1008988.g006
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Building upon the mentioned technical developments, this work uses MD simulations of

post-translationally modified proteins as part of the recently developed MD-MM/GBSA work-

flow [24], aiming to contribute to our understanding of the effects that PTMs exert on protein

binding, including complex cases of multimeric and multiply modified complexes. Due to the

dynamic approach, these simulations manage to grasp both short- and long-range effects that

the introduced PTMs have on the protein complex. The simulations show that the changes on

the local level are dominantly stabilizing for lysine acetylation and destabilizing for serine/thre-

onine/tyrosine phosphorylation, with the observed pattern likely being the consequence of the

local amino acid charge change. However, it remains less clear why serine phosphorylation

apparently has a more destabilizing effect compared to the same PTM on a threonine residue.

While predictions of these local effects are seemingly straightforward, it is well established that

PTMs can have a significant allosteric impact on protein structures. For instance, phosphoryla-

tions in the loops surrounding the peptide-binding site of Hsp70 chaperone were shown to be

a part of the allosteric network that dictates the affinity towards this chaperone’s substrates.

[38] Moreover, similar evidence exists for lysine acetylation sites, e.g., cell-cycle dependent

acetylation of the catalytic Lys33 of Cdk1 was demonstrated to have both short- and long-

range effects, ultimately interfering with the cyclin-B binding through changing the corre-

sponding binding interface.[39] The predictions of the effects of PTMs in this work go along-

side these notions, as there are multiple cases of protein complexes in which the PTMs are

positioned outside of the interaction interfaces, and yet they exert a non-zero effect on the free

energy of binding between subunits of the complex (data points lying on the x-axis of Fig 3),

clearly suggesting the existence, as well as the importance of the long-range effects of PTMs.

With the obtained dataset at hand, we have also tackled the question of overall conforma-

tional changes occurring in protein complexes due to PTMs introduction, both on the entire

protein and backbone levels. The average change for both modified and non-modified com-

plexes compared to the initial structure was at least 1.3 Å on the level of entire protein, and in

over 75% of cases above 2 Å, in line with expectations after a 20 ns MD simulation. When

comparing the conformations of the cluster representatives of non-modified and modified

complex, the average RMSD was 2.2 Å, with 35% of systems (90 out of 255) going above 2 Å. A

recent work by Xin and Radivojac has also dealt with the same problem of determining the

amount of conformational change caused by PTMs. However, their RMSD calculations were

based on static protein structures of non-modified proteins and their modified counterparts as

reported in PDB, while focusing mainly on glycosylation and phosphorylation.[40] They

reported large conformational changes (RMSD > 2 Å) in only 7% of glycosylated and 13% of

phosphorylated proteins, which is somewhat lower compared to our findings, perhaps due to

differences in types of studied modifications and/or underlying methodologies. Therefore,

although in some cases the effect is subtle, the PTMs commonly do have an impact on the con-

formation of the affected protein, further confirming that the allostery is an important mecha-

nism through which PTMs exert their functions.

A significant part of the proteome can contain co-occurring PTMs and this holds true for a

number of organisms (Table 1).[18] An extreme example is the human serine/arginine repeti-

tive matrix protein 2 (Srrm2), whose 2,752 amino acids long sequence has 281 PTM sites listed

in the UniProt database. PTMs located within the same protein can influence each other,

which is often referred to as the PTM crosstalk.[1,41] Depending on the amino acid type, dif-

ferent PTMs can compete for the same site and thereby modulate the function of a protein,

e.g., lysine residues at the C-terminal domain of p53 can be either acetylated or ubiquitinated,

with the type of modification dictating whether the respective protein will be targeted to pro-

teasomal degradation or not.[42] Moreover, one or several co-occurring PTMs can affect the

modification status of another PTM site within the protein, such as in the case of the Mef2
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transcription factors family, in which phosphorylation promotes the sumoylation of lysine in

the same motif.[3] In addition, the specific combination of PTMs modifying a protein at a

given moment can determine its function or interactors. For example, the combination of

acetylated Lys381 and dimethylated Lys382 directs a large conformational change in p53, driv-

ing its binding to the Tudor domain of 53BP1 protein.[43] In addition, nearby phosphoryla-

tions of serine and threonine were found to further modulate p53:53BP1 interaction. The

existence of the crosstalk, together with the knowledge that many proteins indeed contain mul-

tiple PTM sites, makes predictions of PTMs’ effects on binding of a questionable biological rel-

evance when they are done for a single PTM at a time. However, because many PTMs,

including acetylation and phosphorylation, are reversible, introducing multiple modifications

into a protein complex for the purpose of making a prediction introduces yet another diffi-

culty, which is knowing exactly which combination of PTMs is present on a protein. While

there are techniques that allow a more detailed view on cellular PTMs, such as top-down pro-

teomics which identifies individual proteoforms [44] or methods that identify PTMs upon per-

turbations [45], typical identification of PTMs by MS is done from the cell lysates using

bottom-up approach in which the fine level of detail is lost. Consequently, the bulk of the data

stored in the public databases originates from the bottom-up studies. In addition, it should be

kept in mind that the pool of the known PTMs is still increasing [17], rendering our current

knowledge incomplete. As a compromise, in this work the PTMs from the publicly available

databases were classified into those detected in normal or stress environment, based on the

conditions in which the yeast was grown preceding the PTMs’ detection. While this approach

represents a certain simplification of the complex PTMs landscape, it could still be argued that

it produces more meaningful predictions compared to those for individual PTMs.

Depending on the type, some PTMs appear to have a preference for being located in either

ordered or disordered secondary structure elements.[46] While lysine acetylation has no

apparent preference for secondary structure placement, serine/threonine/tyrosine phosphory-

lations were found to exhibit a preference for disordered regions. These secondary structure

preferences were confirmed in this work for both of these respective PTMs (S8 Fig). Location

within disordered regions has been suggested to have certain advantages: it might allow for

faster reactions, as well as easier recognition of PTM sites by modification enzymes.[5,47] For

phosphorylation, location in terms of the secondary structure has also been proposed as a fac-

tor to be taken into account when looking into phosphosites conservation.[9] In general, many

types of PTMs, including acetylation and phosphorylation, appear to have only slightly higher

conservation when compared to the equivalent non-modified residues. Two explanations have

been proposed for this lack of strong PTM conservation [9]: i. a number of sites are not

Table 1. Overview of the PTMs count in the Swiss-Prot entries for human and model organisms. [18].

N(entries) with given number of

PTMs

Swiss-Prot

entries

Entries with

PTMs

Max N(PTMs) in an entry 1 2 3 4 5 >5 Modified entries with >1

PTM (%)

Escherichia coli K12 4,518 341 12 (P0A9B2, P0A6Y8,

P0A825)

273 32 13 9 6 8 19.9

Drosophila melanogaster 3,603 897 88 (Q8INM3) 304 170 103 81 55 184 66.1

Saccharomyces cerevisiae
S288c

6,721 2,344 40 (P32944) 983 474 288 168 127 304 58.1

Arabidopsis thaliana 15,952 2,688 42 (Q9FZA2) 1,635 437 150 153 90 223 39.2

Mus musculus 17,038 8,712 264 (Q8BTI8) 2,438 1,460 962 667 601 2,584 72.0

Homo sapiens 20,365 9,372 281 (Q9UQ35) 2,630 1,560 1,008 739 616 2,819 71.9

https://doi.org/10.1371/journal.pcbi.1008988.t001
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functionally important and there is no evolutionary constraint to keep them, or ii. PTMs

diverge while the function is preserved through other sites within the protein. Conservation of

PTM sites has previously been suggested as a proxy for their functional importance [4], even

though this measure cannot predict functional roles for those sites and it overlooks PTMs that

are important only in their respective organisms [9]. In the context of protein-protein interac-

tions, this work demonstrates that conservation of a PTM site is not a good predictor for the

size of its local effect on ΔΔGbind. PTMs with low conservation and low ΔΔGbind,contribution

might: i. be located outside of the interaction interface and affect binding through long-range

conformational changes; ii. work together with co-occurring PTMs (crosstalk), therefore

exerting a common effect on binding, while the individual contribution stays small; or iii. have

a role in another process which is unrelated to protein-protein interaction at hand. Even

though the conservation of a single PTM appears not to be a good predictor for its local effect

on the protein binding, it could be assumed that the predictions of the PTMs’ effect on the

binding of yeast proteins are transferable to other organisms, given that an organism has a set

of conserved PTMs in an orthologous protein. This assumption makes results in the present

work of a potentially even higher significance.

While the scientific community produces an ever-increasing amount of knowledge on both

PTMs positions and protein structures for a number of organisms, predictions of PTM roles in

protein interactions frequently overlook both their co-occurrence, as well as the dynamic

nature of biomolecules. This work, therefore, represents a step towards creating a more realis-

tic and complete picture of PTM roles in protein-protein interactions. Even though the focus

of this work was placed on acetylation and phosphorylation in yeast proteins, the obtained

results are potentially transferable to other organisms, and the presented methodology is appli-

cable to making predictions in different protein complexes and for a wide array of modifica-

tion types.

Methods

Post-translation modifications data

Proteome-wide lysine acetylation data for yeast Saccharomyces cerevisiae was downloaded

from Protein Lysine Modification Database PLMD [15], containing 13,498 experimentally

identified sites. A total of 16,551 serine, 3,835 threonine, and 371 tyrosine experimentally veri-

fied phosphorylation sites in yeast were retrieved from the dbPTM database [17]. The gathered

PTM data originated from 25 different publications. Based on the conditions in which the

yeast cells were grown, PTMs found in these studies were classified as being found in either

normal or stress (e.g., DNA damage [48]) conditions.

Selection of protein structures

At the time of retrieval, Protein Data Bank (PDB) [49] contained 3,425 Saccharomyces cerevi-
siae structures, 3,353 of which were successfully retrieved using Bio.PDB Biopython module

[50]. For the remaining structures, the pdb file formats were not available in the database, typi-

cally due to their large sizes (e.g., containing ~80 chains, such as ribosome). Because perform-

ing molecular dynamics simulations with such structures would be very computationally

expensive, this small subset of structures was left out from the further analyses. The success-

fully retrieved structures were then filtered based on a number of criteria. Firstly, they had to

contain yeast, non-fusion protein chains that do not have engineered mutations reported in

the pdb file. Secondly, with respect to the structure completeness, we distinguished the per-

centage of total protein length that was crystallized and the percentage of residues that were

resolved in the structures (i.e., not in gaps), and required each of those to be at least 70% on
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average. Furthermore, we kept only the structures with a resolution of 3.0 Å or better for the

analysis (the criterium not applicable to NMR structures). Finally, membrane-embedded pro-

teins were filtered out for the sake of simplicity, as well as all monomeric and structures with-

out mapped PTMs, as the main point of interest of this work was the effect of PTMs on

protein-protein interactions. When two or more structures in this reduced dataset represented

the same protein complexes, the better structure based on resolution and completeness criteria

was kept. The final dataset consisted of 179 structures: PTMs found only in normal conditions

were mapped to 92 structures, PTMs identified only in stress conditions to 5, while the

remaining 82 structures had two subsets of mapped PTMs discovered in these different condi-

tions, respectively.

Molecular dynamics simulations

For each protein structure, a molecular dynamics (MD) simulation was performed for fully

modified complexes containing PTMs identified in normal and stress conditions, or only one

of those depending on the available data. In addition, a simulation for a non-modified complex

was ran as a control for each system. Overall, a total of 440 MD simulations were performed:

179 of non-modified complexes, 174 of complexes with PTMs found in normal, and 87 in

stress conditions.

Preparation of protein structures and the MD runs were done as previously described.[24]

The relevant biological assemblies from PDB were first cleaned from the solvent molecules

(e.g., water, glycerol, ions), while the structural ions were kept in the proteins. All disulfide

bonds detected by pdb4amber program of Amber16 molecular dynamics package [51] were

kept in the structures. The addition of hydrogen atoms was done using reduce [52] from the

same package. Non-resolved parts of the structures were detected based on residue numera-

tion in pdb files and the amino acids flanking the gaps were capped with N-methyl (NME) as

the C-terminal and acetyl group (ACE) as the N-terminal cap, using PyMOL [53]. PTMs were

added to protein structures in an automated fashion, using a Python script (available in the

Zenodo repository as PTMs_map) and the PyTMs [54] PyMOL plugin. Amber program teL-
eap was used for system parametrization, using ff14sb force field to describe proteins, tip3p for

water, phosaa10 [55] for phosphorylated residues, parameters from Khoury et al. [33] for acet-

ylated residues, Joung/Cheatham parameters for monovalent, and Li/Merz parameters for 2 to

4 charged ions (12–6 normal usage set) optimized for TIP3P water, where ions were treated in

a non-bonded fashion. Each system was neutralized by the addition of Na+ or Cl- ions and sur-

rounded by a box of explicit TIP3P water spanning 10 Å from the complex in each direction,

therefore allowing for a minimum of 20 Å distance between the protein complex and its peri-

odic image.

Optimization of structures was done in 25,000 steps divided into 5 cycles, each consisting of

1,000 steepest descent and 4,000 conjugated gradient steps, using sander. A constraint (force

constant of 100 kcal/mol/Å2) was applied to the entire protein in the first, protein heavy atoms

in the second, and protein backbone in the third cycle. A lower (50 kcal/mol/Å2) force con-

stant was applied to backbone atoms in the fourth cycle, while no constraint was used in the

final one. Following the optimization, each system was equilibrated during 500 ps with

pmemd. Equilibration was done using 1 fs time step, SHAKE to apply constraint onto hydro-

gen-containing bonds, and a cutoff distance of 15 Å for non-bonded interactions. In the first

stage of equilibration (0–300 ps), the canonical NVT ensemble was simulated using the con-

straint of 25 kcal/mol/Å2 on protein atoms, and with temperature increasing from 0 to 300 K

within the first 250 ps, followed by 50 ps of constant temperature. The isothermal-isobaric

NpT ensemble was simulated in the remaining 200 ps of equilibration (T = 300 K, p = 1.0 bar)
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with no constraints applied to the system. Finally, the production phase of 19.5 ns was done

using Gromacs 5 software [56–63], with ParmEd 2.7 [64] used to convert the corresponding

files from Amber to Gromacs format. For this final part of the MD simulation, the temperature

was kept at 300 K using modified Berendsen thermostat and the pressure at 1.0 bar with Parri-

nello-Rahman barostat. The coordinates were written each 1 ps, while the time step was 2 fs.

The LINCS algorithm was used to constrain hydrogen-containing bonds only. The cutoff dis-

tance of 12 Å was applied for non-bonded interactions, with the neighbor list being updated

every 20 steps, while the particle mesh Ewald was used for the long-ranged electrostatic inter-

actions. Simulations were done using the periodic boundary conditions and ran on the Flem-

ish Supercomputer Centre (VSC) infrastructure.

Visual Molecular Dynamics (VMD) [65] was used for visualization of the trajectories. Gro-

macs functionalities were applied to correct trajectory for periodic boundary conditions,

extract conformational snapshots for binding energy calculations, as well as RMSD calcula-

tions (detailed below). PyMOL was used to produce the figures containing protein structures,

while the plots were made with Matplotlib [66].

Binding energy calculation

Effect of PTMs addition on the binding of subunits within a complex was assessed by calculat-

ing the free energy of binding with MM/GBSA method (Molecular Mechanics energies with

Generalized Born and Surface Area continuum solvation) using Amber MMPBSA.py.MPI

[67], as was previously described and benchmarked [24]. Briefly, the following set of equations

is used for a hypothetical AB dimer:

G ¼ Ebonded þ Eelectrostatic þ EvdW þ Gpolar þ Gnon� polar � TS ðEq 1Þ

DGbind ¼ hGAB � GA � GBiAB ðEq 2Þ

DDGbind ¼ DGbind;ABmodified � DGbind;ABnon� modified ðEq 3Þ

The energy terms in Eq 1 are calculated with molecular mechanics, the polar solvation with

generalized Born method, the non-polar solvation from a liner relation to the solvent accessi-

ble surface area, while the entropy term is oftentimes omitted [24,68], including in this work.

We used 100 conformational snapshots from equally spaced time points from the final 10 ns of

each MD trajectory to calculate ΔGbind in Eq 2, where the needed topology files free of solvent

were prepared using Amber’s ante-MMPBSA.py. A single ΔGbind value was obtained for

dimers, while binding of each subunit (ligand) to the remainder of complex (receptor) was cal-

culated for multimers, resulting in n ΔGbind values for an n-meric complex. In order to assess

the effect that introduction of PTMs to the complex has on their binding, the difference

between modified and non-modified complex is calculated as ΔΔGbind according to the Eq 3.

The main indicator when predicting the effect of PTMs is the sign of ΔΔGbind, with negative

indicating stabilizing and positive destabilizing effects, and not the size of the ΔΔGbind value.

In addition, withMMPBSA.py.MPI it is possible to decompose the overall ΔΔGbind on per-resi-

due contributions in order to evaluate the impact that the individual interface-located amino

acids have on binding in non-modified vs. modified complex. Throughout this work, a residue

with a |ΔΔGbind| contribution larger than 0.5 kcal/mol was considered as an interface-located

one.

Finally, free energy values (G) for the complex, ligand, and receptor (i.e., the three terms in

Eq 2) were obtained in each of the MM/GBSA calculations. Those values were then used as a

starting point for estimation of the contribution of changes in bound (complex) and unbound
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(ligand and receptor) states to the overall binding effect observed upon PTMs addition to the

complex (i.e., ΔΔGbind). To that end, ΔG was calculated for each of those three molecular com-

ponents from the respective free energy values for modified and non-modified system, e.g.,

ΔGcomplex = ΔGcomplex,modified−Gcomplex,non-modified. To estimate how much (percentage) the

changes in each of the components contributed to the ΔΔGbind, each of the ΔG values was

divided by the sum of absolute values of the three ΔG values.

Conformational changes

In order to get insight into the size of the conformational changes in modified and non-modi-

fied complexes throughout MD simulations, we compared conformations from the trajectory

corrected for periodic boundary conditions to the initial protein structure (the respective pro-

tein structure which was the output of teLeap). This provided a good reference point to com-

pare modified complex with its corresponding non-modified version, as initial structures

differed only in the presence of PTMs, but not in the conformation. Root mean square devia-

tion (RMSD) calculation was performed using Gromacs package, with either “backbone” or

“protein” (or “protein_PTMs”) selected for the respective analysis, in order to estimate both

overall and changes protein backbone. Conformational changes for the duration of the MD

production phase were then compared between modified and non-modified complex by sub-

tracting the areas under the RMSD graphs (modified minus non-modified) and dividing by

the duration of the MD production phase. Systems with extreme RMSD values (1VLU, 2EKE,

4DL0, 4WXA) were checked for violation of the periodic boundary conditions, i.e., a situation

in which a system comes close enough to its periodic image so that two can interact. Such cal-

culations were performed using gmx mindist from Gromacs package with employing the -pi
flag, respectively.

In order to directly compare conformations of the non-modified and modified protein, 100

equally spaced conformational snapshots from the last 10 ns of the MD production phase were

used to perform clustering of the entire proteins, using Gromacs (gromosmethod and cutoff

0.25). RMSD was then calculated between the representative structures of the largest clusters

for non-modified and modified complex, using align in PyMOL.

Conservation analysis

The conservation of sites of interest was calculated from the EggNOG [69] alignment of the

orthologous proteins, where the opisthokonts group was chosen, as it is the smallest group that

includes both Saccharomyces cerevisiae and Homo sapiens. A lysine acetylation site is consid-

ered to be conserved if an orthologous protein contains lysine at the same location in the align-

ment as the yeast protein, or one position up/downstream. This is in agreement with the

previous research which showed that despite acetylation sites not being strictly conserved, the

+/-1 variation in the position likely allows them to keep the functionality.[12] A serine phos-

phorylation site was considered conserved if either a serine or a threonine residue appeared at

the exact position in the alignment, and the same was true for threonine phosphorylation sites.

Finally, a strict positional and amino acid conservation was required when it came to tyrosine

phosphorylation sites. Unpaired t-test was applied to assess whether there is a significant dif-

ference between conservation of modified and non-modified residues.

Where secondary structure was taken into account, the assignment of individual residues

was performed by DSSP [70] using Bio.PDB.DSSP from Biopython. For the sake of simplicity

within this work, the secondary structure elements were defined as a helix (H; includes H, G

and I), a sheet (E; includes E and B), or non-structured (C; includes S, T, C and -).
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In order to assess which of the results obtained for yeast complexes might be transferable to

other organisms, i.e., which organisms have proteins orthologous to yeast proteins with PTM

sites conserved, a comprehensive list of organisms in which any given PTM site was conserved

was assembled using taxonomy tool of the UniPept resource [71]. Finally, taxa2lca from the

same resource was used to find the lowest common ancestor in which each of the PTM sites is

conserved.

Supporting information

S1 Table. List of lysine acetylation and serine/threonine/tyrosine phosphorylation sites

found in either normal or stress conditions in the respective chains of the selected Saccha-
romyces cerevisiae PDB structures.

(XLSX)

S2 Table. Binding energy calculation results on subunit and local level. Local contribution

to protein binding, secondary structure element assignment, and details of the conservation

calculation are given for each PTM added to a protein complex in either normal or stress con-

ditions. Moreover, the overall effect on binding (ΔΔGbind values) is reported, as well as esti-

mated contributions of changes in bound and unbound states. Finally, a selected set of local

contributions for the case study system Kapα are shown.

(XLSX)

S3 Table. Percentage of PTMs studied in yeast in this work that are also conserved in

another organisms (0 = no PTM conserved between an organism and yeast; 1 = 100% of

PTMs conserved), at the level of either PDB structure or protein. In addition, information

on conformational changes in modified complexes as compared to their non-modified coun-

terparts, originating from either backbone or RMSD analysis of the entire protein, is reported.

(XLSX)

S1 README. Description of scripts and files deposited in Zenodo.

(PDF)

S1 Fig. Overview of sizes of yeast protein complexes analyzed in this study in terms of A.

multimeric state and B. number of residues.

(TIF)

S2 Fig. Distribution of the number of A. all PTM sites, B. lysine acetylation, C. serine phos-

phorylation, D. threonine phosphorylation, and E. tyrosine phosphorylation sites among

unique protein chains in the analyzed dataset. The darker shade of color in each subplot

denotes normal and lighter stress conditions.

(TIF)

S3 Fig. Backbone RMSDs for all complexes throughout simulations with initial conforma-

tions serving as references. Grey denotes non-modified complexes, red complexes with

PTMs in normal conditions, and cyan with PTMs in stress conditions. While most complexes

are rather stable, the notable exceptions belong to the following systems: 1VLU, 2EKE, 4DL0,

and 4WXA.

(TIF)

S4 Fig. Local contributions of A. all PTMs and B. interface located sites (i.e., contributions

above 0.5 kcal/mol or below -0.5 kcal/mol) to the overall binding (ΔΔGbind).

(TIF)
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S5 Fig. Comparison of ΔΔGbind in normal and stress conditions for systems with PTMs

identified in both. Lines connect the subunit ΔΔGbind values, where the color of the line

denotes their relationship. For the sake of clarity, the data is split based on |ΔΔGbind,NC−
ΔΔGbind,SC|: A. <10 kcal/mol, B. 10–20 kcal/mol, C. 20–50 kcal/mol, and D. >50 kcal/mol.

(TIF)

S6 Fig. Estimation of the contribution that changes in the bound (complex) and unbound

(receptor and ligand) states have on the overall binding energy difference observed upon

addition of PTMs.

(TIF)

S7 Fig. The difference of conformational changes in modified and non-modified protein com-

plexes A. with initial structures used as reference points and B. when comparing representative

structures of the largest conformational clusters in the final parts of trajectories. Data points

for systems 1VLU, 2EKE, 4DL0, and 4WXA are excluded from the plots.

(TIF)

S8 Fig. Amino acids placement within secondary structure elements in protein structures.

Distribution of A. PTM sites and B. non-modified amino acids of the given type is shown, as

well as C. their difference. “All proteins” bars describe the distribution of all amino acids in the

secondary structure elements for the entire protein dataset, and serve as a reference.

(TIF)

S9 Fig. Comparison of the conservation levels. A. Even with the secondary structure taken

into account, the PTM sites do not appear to be more conserved than the equivalent non-mod-

ified amino acids. B. No significant difference is found in the conservation of acetylation and

phosphorylation sites.

(TIF)

S10 Fig. Correlation of PTM sites conservation and local ΔΔGbind,contribution. No correlation

is observed in either A. normal or B. stress conditions for any of the PTM types (different col-

ors), however, it is possible that PTMs with small contributions still do affect binding through

long-range conformational changes, which is not captured by ΔΔGbind,contribution.

(TIF)

S11 Fig. The role and regulation of importin alpha. (a) The auto-inhibition of importin alpha

(α) was suggested to occur both by binding of the internal nuclear localization signal (NLS), as

well as homodimerization. (b) Binding of importin beta (β) to importin alpha releases the

auto-inhibition by disrupting the homodimerization and displacing the internal NLS. (c) For-

mation of the α:β heterodimer enhances recognition of NLSs in the cytosolic cargo proteins

and their subsequent translocation to the nucleus. Based on Goldfarb et al. (2004) [28] Trends

Cell Biol. and Conti et al. (1998) [29] Cell.

(TIF)
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Writing – original draft: Nikolina Šoštarić.
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24. ŠoštarićN, O’Reilly FJ, Giansanti P, Heck AJR, Gavin A-C, Van Noort V. Effects of Acetylation and

Phosphorylation on Subunit Interactions in Three Large Eukaryotic Complexes. Mol Cell Proteomics.

2018; 17(12). https://doi.org/10.1074/mcp.RA118.000892 PMID: 30181345

25. Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, Boja ES, et al. How many human proteo-

forms are there? Nat Chem Biol. 2018; 14(3):206–14. https://doi.org/10.1038/nchembio.2576 PMID:

29443976

26. Betts MJ, Wichmann O, Utz M, Andre T, Petsalaki E, Minguez P, et al. Systematic identification of phos-

phorylation-mediated protein interaction switches. Iakoucheva LM, editor. PLOS Comput Biol. 2017

Mar 27; 13(3):e1005462. https://doi.org/10.1371/journal.pcbi.1005462 PMID: 28346509

27. Lange HC, Heijnen JJ. Statistical reconciliation of the elemental and molecular biomass composition of

Saccharomyces cerevisiae. Biotechnol Bioeng. 2001; 75(3):334–44. https://doi.org/10.1002/bit.10054

PMID: 11590606

28. Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA. Importin α: a multipurpose nuclear-

transport receptor. Trends Cell Biol. 2004; 14(9):505–14. https://doi.org/10.1016/j.tcb.2004.07.016

PMID: 15350979

29. Conti E, Uy M, Leighton L, Blobel G, Kuriyan J. Crystallographic Analysis of the Recognition of a

Nuclear Localization Signal by the Nuclear Import Factor Karyopherin Alpha. Cell. 1998; 94:193–204.

https://doi.org/10.1016/s0092-8674(00)81419-1 PMID: 9695948

30. Petrov D, Margreitter C, Grandits M, Oostenbrink C, Zagrovic B. A systematic framework for molecular

dynamics simulations of protein post-translational modifications. PLoS Comput Biol. 2013/07/18. 2013;

9(7):e1003154–e1003154. https://doi.org/10.1371/journal.pcbi.1003154 PMID: 23874192

31. Audagnotto M, Dal Peraro M. Protein post-translational modifications: In silico prediction tools and

molecular modeling. Comput Struct Biotechnol J. 2017; 15:307–19. https://doi.org/10.1016/j.csbj.2017.

03.004 PMID: 28458782

32. Margreitter C, Petrov D, Zagrovic B. Vienna-PTM web server: a toolkit for MD simulations of protein

post-translational modifications. Nucleic Acids Res. 2013 Jul; 41(Web Server issue):W422–6. https://

doi.org/10.1093/nar/gkt416 PMID: 23703210

33. Khoury GA, Thompson JP, Smadbeck J, Kieslich CA, Floudas CA. Forcefield_PTM: Ab Initio Charge

and AMBER Forcefield Parameters for Frequently Occurring Post-Translational Modifications. J Chem

Theory Comput. 2013 Dec 10; 9(12):5653–74. https://doi.org/10.1021/ct400556v PMID: 24489522

PLOS COMPUTATIONAL BIOLOGY Modulation of protein interactions by post-translational modifications

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008988 May 12, 2021 23 / 25

https://doi.org/10.1038/nrm2900
http://www.ncbi.nlm.nih.gov/pubmed/20461098
https://doi.org/10.1016/j.jgg.2017.03.007
http://www.ncbi.nlm.nih.gov/pubmed/28529077
https://doi.org/10.1093/database/bap026
http://www.ncbi.nlm.nih.gov/pubmed/20428315
https://doi.org/10.1093/nar/gky1074
http://www.ncbi.nlm.nih.gov/pubmed/30418626
https://doi.org/10.1093/nar/gky1049
http://www.ncbi.nlm.nih.gov/pubmed/30395287
https://doi.org/10.1038/s41467-018-07709-6
https://doi.org/10.1038/s41467-018-07709-6
http://www.ncbi.nlm.nih.gov/pubmed/30602777
https://doi.org/10.1126/scisignal.aau8645
http://www.ncbi.nlm.nih.gov/pubmed/30670635
https://doi.org/10.1093/nar/gku1094
http://www.ncbi.nlm.nih.gov/pubmed/25392414
https://doi.org/10.1093/nar/gki387
https://doi.org/10.1093/nar/gki387
http://www.ncbi.nlm.nih.gov/pubmed/15980494
https://doi.org/10.1016/j.str.2011.09.021
http://www.ncbi.nlm.nih.gov/pubmed/22153503
https://doi.org/10.1074/mcp.RA118.000892
http://www.ncbi.nlm.nih.gov/pubmed/30181345
https://doi.org/10.1038/nchembio.2576
http://www.ncbi.nlm.nih.gov/pubmed/29443976
https://doi.org/10.1371/journal.pcbi.1005462
http://www.ncbi.nlm.nih.gov/pubmed/28346509
https://doi.org/10.1002/bit.10054
http://www.ncbi.nlm.nih.gov/pubmed/11590606
https://doi.org/10.1016/j.tcb.2004.07.016
http://www.ncbi.nlm.nih.gov/pubmed/15350979
https://doi.org/10.1016/s0092-8674%2800%2981419-1
http://www.ncbi.nlm.nih.gov/pubmed/9695948
https://doi.org/10.1371/journal.pcbi.1003154
http://www.ncbi.nlm.nih.gov/pubmed/23874192
https://doi.org/10.1016/j.csbj.2017.03.004
https://doi.org/10.1016/j.csbj.2017.03.004
http://www.ncbi.nlm.nih.gov/pubmed/28458782
https://doi.org/10.1093/nar/gkt416
https://doi.org/10.1093/nar/gkt416
http://www.ncbi.nlm.nih.gov/pubmed/23703210
https://doi.org/10.1021/ct400556v
http://www.ncbi.nlm.nih.gov/pubmed/24489522
https://doi.org/10.1371/journal.pcbi.1008988


34. Paterlini MG, Thomas DD. The alpha-helical propensity of the cytoplasmic domain of phospholamban:

a molecular dynamics simulation of the effect of phosphorylation and mutation. Biophys J. 2005/03/11.

2005 May; 88(5):3243–51. https://doi.org/10.1529/biophysj.104.054460 PMID: 15764655

35. Chen H-F. Molecular dynamics simulation of phosphorylated KID post-translational modification. PLoS

One. 2009 Aug 5; 4(8):e6516–e6516. https://doi.org/10.1371/journal.pone.0006516 PMID: 19654879

36. Polyansky AA, Zagrovic B. Protein Electrostatic Properties Predefining the Level of Surface Hydropho-

bicity Change upon Phosphorylation. J Phys Chem Lett. 2012/03/22. 2012 Apr 19; 3(8):973–6. https://

doi.org/10.1021/jz300103p PMID: 23914287

37. Chiappori F, Mattiazzi L, Milanesi L, Merelli I. A novel molecular dynamics approach to evaluate the

effect of phosphorylation on multimeric protein interface: the αB-Crystallin case study. BMC Bioinfor-

matics. 2016; 17(Suppl 4):57. https://doi.org/10.1186/s12859-016-0909-9 PMID: 26961246

38. Velasco L, Dublang L, Moro F, Muga A. The Complex Phosphorylation Patterns That Regulate the

Activity of Hsp70 and Its Cochaperones. Int J Mol Sci. 2019; 20(17). https://doi.org/10.3390/

ijms20174122 PMID: 31450862

39. Deota S, Rathnachalam S, Namrata K, Boob M, Fulzele A, S. R, et al. Allosteric Regulation of Cyclin-B

Binding by the Charge State of Catalytic Lysine in CDK1 Is Essential for Cell-Cycle Progression. J Mol

Biol. 2019; 431(11):2127–42. https://doi.org/10.1016/j.jmb.2019.04.005 PMID: 30974121

40. Xin F, Radivojac P. Post-translational modifications induce significant yet not extreme changes to pro-

tein structure. Bioinformatics. 2012 Nov; 28(22):2905–13. https://doi.org/10.1093/bioinformatics/bts541

PMID: 22947645
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