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Abstract

Single-cell Hi-C (scHi-C) sequencing technologies allow us to investigate three-dimensional

chromatin organization at the single-cell level. However, we still need computational tools to

deal with the sparsity of the contact maps from single cells and embed single cells in a

lower-dimensional Euclidean space. This embedding helps us understand relationships

between the cells in different dimensions, such as cell-cycle dynamics and cell differentia-

tion. We present an open-source computational toolbox, scHiCTools, for analyzing single-

cell Hi-C data comprehensively and efficiently. The toolbox provides two methods for

screening single cells, three common methods for smoothing scHi-C data, three efficient

methods for calculating the pairwise similarity of cells, three methods for embedding single

cells, three methods for clustering cells, and a build-in function to visualize the cells embed-

ding in a two-dimensional or three-dimensional plot. scHiCTools, written in Python3, is

compatible with different platforms, including Linux, macOS, and Windows.

Author summary

Single-cell Hi-C contact maps describe the numbers of interactions among genomic loci

across the entire genome, and provide researchers 3D chromatin organization in each

cell. There are growing demands for an easy and fast way to analyze and visualize single-

cell Hi-C data, and analyzing single-cell Hi-C data exposes several inherent data analysis

challenges. To move beyond existing computational tools and methods to analyze and

visualize single-cell Hi-C data, we present a software package, scHiCTools, which is imple-

mented in Python. The software package provides researchers a collection of methods to

investigate the cell-to-cell similarity based on their 3D chromatin organization, cluster

cells into groups accordingly, and visualize cells in two-dimensional or three-dimensional

scatter plots. In this paper, we provide an overview of scHiCTools’ structure and capabili-

ties. We then apply scHiCTools to several single-cell Hi-C datasets to benchmark the per-

formance of the methods provided in our toolbox, and present some plots generated

using the software package.
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This is a PLOS Computational Biology Software paper.

Introduction

Recent single-cell Hi-C sequencing (scHi-C) technologies profile three-dimensional (3D)

chromatin contact maps in individual cells, allowing us to characterize chromatin organization

dynamics and cell-to-cell heterogeneity [1–3]. However, the interpretation of scHi-C data

exposes several inherent data analysis challenges [4]. First, unlike RNA-seq data and ATAC-

seq data which are vectors ofm-dimensional measures, Hi-C data are essentially symmetric

matrices of m ×m-dimensional pairwise measures, where the number of genomic loci m is

usually more than tens of thousands, depending on the resolution of the contact maps. Second,

scHi-C analysis suffers from high-dimensionality, the sparsity of the contact maps, and

sequencing noise. Typically in a scHi-C experiment, up to a few thousands of single cells are

profiled, whereas the number of contacts in each cell ranges from a few thousands to hundreds

of thousands. Third, single cells in one experiment usually reside in a low-dimensional mani-

fold, such as a circular cell cycle structure or a bifurcation differentiation structure. Thus,

proper embedding of scHi-C data in a low-dimensional Euclidean space is vital in scHi-C data

analysis.

In a previous exploratory study [4], different similarity methods [5–9] have been applied to

scHi-C data from n single cells, and coupled with multidimensional scaling (MDS) to project

the n single cells into a low-dimensional Euclidean space. Among these methods, HiCRep [5]

yields reasonable similarity measures and satisfactory embedding of the single cells, but its

O(n2) computational complexity makes it impractical when the number of cells is large. In

addition, this proof-of-concept study [4] did not provide any software implementation to

embed scHi-C data, let along upstream analysis such as screening single cells and smoothing

contact maps, and downstream analysis such as clustering and visualization.

In this work, we implemented a versatile scHiCTools which includes many common

approaches in the entire workflow of analyzing single-cell Hi-C data. In particular, we imple-

mented three similarity measures, including a faster version of HiCRep, a new “InnerProduct”

approach, and another efficient Hi-C similarity measure named Selfish [10]. Among the three

methods implemented, InnerProduct provides the most efficient and satisfactory similarity

measure. Benchmarking experiments demonstrate that the new InnerProduct approach runs

thousands of times faster than the original HiCRep, and produces comparably accurate projec-

tion. To deal with the sparsity in scHi-C data, different smoothing approaches are imple-

mented, including linear convolution, random walk, and network enhancing [11]. Among the

three approaches, linear convolution appears to be most effective for smoothing contact maps

in our experiments. In addition to the computational components, our toolbox supports dif-

ferent input file formats, diagnostic summary plots, and flexible projection plots. Our open-

source toolbox, scHiCTools, as the first toolbox of such kind, can be useful for analyzing scHi-

C data.

Design and implementation

Overview

Our scHiCTools implements commonly used approaches to analyze single-cell Hi-C data.

The key component of the toolbox is a number of dimension reduction approaches which
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takes a number of single cells’ contact maps as input, and embeds the cells in a low-dimen-

sional Euclidean space. The toolbox also provides a number of built-in auxiliary functions for

flexible and interactive visualization. The entire workflow of scHiCTools, illustrated in Fig 1,

includes five steps: (1) reading single-cell data in .txt, .hic, or .cool format, generating diagnos-

tic summary plots, and screening cells by their contact number and contact distance profile,

(2) smoothing scHi-C contact maps using linear convolution, random walk, or network

enhancing, (3) calculating pairwise similarity between cells using fastHiCRep, InnerProduct,

or Selfish, (4) embedding or clustering the cells in a low-dimensional space using dimension

reduction methods, and (5) visualizing the two-dimensional or three-dimensional embedding

in a scatter plot. Except for the two pairwise similarity calculation methods, fastHiCRep and

InnerProduct, other methods are implemented as originally stated.

Loading data and screening cells

Users can load scHi-C data in different file formats, including .hic files, .cool files, and sparse

contact matrices in text files. When users choose to load sparse matrices in text files, they are

able to customize each column in the text files, and specify additional information including

reference genome and the resolution of the contact maps. In addition, scHiCTools supports

parallel file loading on a multi-core processor. After loading the data files, scHiCTools allows

Fig 1. The workflow of scHiCTools. The workflow of scHiCTools includes five steps: (1) reading input single-cell

data in .txt, .hic, or .cool format, generating the summary plots of the cells, and screening cells based on their contact

number and contact distance profile, (2) smoothing the scHi-C contact maps using linear convolution, random walk,

or network enhancing, (3) calculating the pairwise similarity between cells using fastHiCRep, InnerProduct, or Selfish,

(4) embedding or clustering the cells in a low-dimensional Euclidean space using dimension reduction methods, and

(5) visualizing the two-dimensional or three-dimensional embedding in a scatter plot.

https://doi.org/10.1371/journal.pcbi.1008978.g001
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users to plot two summary plots to examine the quality of the loaded single-cell Hi-C data,

namely a histogram of contact numbers, and a scatter plot of cells with the proportion of

short-range contacts (<2 Mb) versus the proportion of the contacts at the mitotic band

(2* 12 Mb) (Fig 2). A low-quality contact map is characterized by a low number of contacts

and a relatively high proportion of short-range contacts. Users can further remove the low-

quality cells by thresholding the number of contacts and the proportion of short-range con-

tacts in the cells.

Smoothing contact maps

Smoothing single cell contact maps is necessary when they are sparse, especially in a compara-

tive analysis. Our toolbox scHiCTools implements three smoothing approaches.

Linear convolution is essentially a two-dimensional convolution filter with equal weights

in every position, which can be viewed as smoothing over neighboring bins in Hi-C contact

maps. For example, original HiCRep [5] uses a parameter h to describe a (2h + 1) × (2h + 1)

convolution filter, i.e., h = 1 indicating a 3 × 3 kernel with each element 1

9
.

Random walk [12] is another approach to smooth chromatin contact maps. Unlike linear

convolution which takes information from neighbors on the contact map, random walk cap-

tures the signals from a global setting as follows. LetW be the input m ×m contact matrix.

Random walk updatesW byW(t) =W(t−1) � B in the t-th iteration, whereW(0) =W, and

Bij ¼
WijPm

j¼1
Wij

. The matrix B is the input matrix divided by its row sum (i.e., every row of B sum

up to 1). We can write B as B = D−1 �W, where D ¼ diagf
Pm

j¼1
W1j;

Pm
j¼1
W2j; � � � ;

Pm
j¼1
Wmjg.

After t steps of update, W(t) =W � Bt is the output matrix after smoothing.

Network enhancing [11] is a special type of random walk which enhances network signals

by increasing gaps between leading eigenvalues of a doubly stochastic matrix (DSM, the sum

Fig 2. Summary plots for examining the quality of input scHi-C data. (a) A histogram of contact numbers in the individual cells. (b) A scatter

plot showing the percentage of short-range contacts (<2 Mb) versus the percentage of contacts at the mitotic band (2 * 12 Mb) in individual cells.

https://doi.org/10.1371/journal.pcbi.1008978.g002
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of each row and the sum of each column are both 1). To get a DSM, Knight-Ruiz (KR) normal-

ization [13] is applied to the original contact matrix W, i.e., finding a vector a, such that W0 =
aWa> is a DSM. Network enhancing makes the partition of contact maps more prominent,

and enhances boundaries of topologically associated domains (TADs) in chromatin contact

maps [11].

Calculating pairwise similarity

Hi-C contact maps arem ×m-dimensional measures, wherem is the number of genomic loci.

By calculating pairwise similarity among the cells, we avoid dealing with the high-dimensional

measure in the following embedding and clustering steps. Our toolbox scHiCTools includes

the following three approaches for calculating pairwise similarity among the single cells.

InnerProduct calculates the pairwise similarity matrix among cells in two steps. The first

step is “scaling”, which directly sets the first s z-normalized strata of one cell’s contact map as a

feature vector for the cell. Because we only need to apply this step to the individual cells

sequentially, this scaling step has an O(n) time complexity. Denote vi = [vi,1, vi,2, � � �, vi,m−i]> to

be the i-th stratum of the chromosome, i from 1 to s. vi,k =Wk,k+i is the k-th element of vi,
whereW is the contact matrix of a chromosome. Subsequently, z-normalization is applied to

each vi to get a zero-mean and unit-variance vector v0i. By concatenating all strata, the feature

vector for each contact map is V ¼ ½v0
1
; v0

2
; :::; v0s�

>
. The second step is “multiplication”, which

calculates an inner product of the n feature vectors from the n cells to obtain the n × n similar-

ity matrix. The second step has an O(n2) time complexity, but this step can be implemented

efficiently with matrix multiplication in NumPy. Namely, we directly calculate the inner prod-

uct of the two feature vectors Vx and Vy of map x and map y as their similarity,

rxy ¼
Xs

i¼1

hðvxi � vxi Þ; ðv
y
i � v

y
i Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðvxi Þvarðv
y
i Þ

p ¼ h

vx
1
� vx

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðvx

1
Þ

p

vx
2
� vx

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðvx

2
Þ

p

. . .

vxs � vxsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðvxs Þ

p

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

vy1 � v
y
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðvy1Þ
p

vy2 � v
y
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðvy2Þ
p

. . .

vys � v
y
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðvys Þ

p

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

i: ð1Þ

Run time of InnerProduct is also linear with respect to the length of V, which depends on

the product of m and s, wherem is the size of the contact map, and s is the number of strata

from the diagonal considered in the calculation. Taking the average of rxy over all chromo-

somes keeps the matrix positive definite, and gives us an overall kernel matrix of all the cells in

the input. In practice, although taking the median may make the matrix no longer positive def-

inite, it makes the similarity more stable and robust to noisy measurements.

fastHiCRep is a faster implementation of the original HiCRep approach [5]. Original

HiCRep [5] calculates s stratum-adjusted correlation coefficients (SCCs) of the s strata near

the diagonal of two contact maps, namely

SCC ¼
Ps

i¼1
riðm � iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðvxi Þvarðv

y
i Þ

p

Ps
i¼1
ðm � iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðvxi Þvarðv

y
i Þ

p ; ð2Þ

where vi is the i-th stratum of the chromosome, m − i is the length of vi, and ri is the Pearson’s

correlation coefficient of vxi and vyi .
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We have varðviÞ ¼
Pm� i

t¼1
ðvi;t � vi Þ

2

m� i , then

ri ¼
Pm� i

t¼1
ðvxi;t � vxi Þðv

y
i;t � v

y
i Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm� i
t¼1
ðvxi;t � vxi Þ

2Pm� i
t¼1
ðvyi;t � v

y
i Þ

2
q ¼

hðvxi � vxi Þ; ðv
y
i � v

y
i Þi

ðm � iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðvxi Þvarðv

y
i Þ

p : ð3Þ

Note that the denominator term of ri can be cancelled out with ðm � iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðvxi Þvarðv

y
i Þ

p
in

the numerator of SCC in Eq (2). We can write SCC between contact maps x and y as

SCCxy ¼
Ps

i¼1
hðvxi � vxi Þ; ðv

y
i � v

y
i Þi

Ps
i¼1
ðm � iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðvxi Þvarðv

y
i Þ

p ¼
hvecx; vecyi
hvarx; varyi

ð4Þ

where vecx ¼ vx1 � vx1 ; � � � ; v
x
s � vxs½ �

>
; vecy ¼ vy1 � v

y
1 ; � � � ; vys � v

y
s

� �>
and varx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm � 1Þvarðvx

1
Þ

p
; � � � ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm � sÞvarðvxs Þ

p� �>
;

vary ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm � 1Þvarðvy1Þ

p
; � � � ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm � sÞvarðvysÞ

p� �>
.

From above, SCC can be calculated efficiently because for each cell, cell x for example, vecx

and varx only need to be calculated once. The vectors required in both the numerator and the

denominator are generated sequentially for individual cells with an O(n) time complexity.

Note that both the numerator and the denominator are inner products. Calculating the inner

products has an O(n2) time complexity, but this step can be implemented efficiently with

matrix multiplication in NumPy. However, there is one subtle difference between original

HiCRep and our implemented fastHiCRep. In original HiCRep, if one chromatin contact in

both cells x and y is zero, then this contact position will not be used in the calculation of SCC.

Because HiCRep need to remove zeros and this operation is specific to the two cells to be com-

pared, we need to calculate ri, varðvxi Þ, and varðvyi Þ in Eq (2)
n

2

 !

times. Empirically, the SCC

calculated by fastHiCRep and HiCRep did not differ too much. We randomly select a cell from

Nagano dataset (cell 205 of Early-S stage) and compare the SCC scores using fastHiCRep ver-

sus HiCRep of other 1710 cells from Nagano dataset. The correlation coefficient of the SCC

scores calculated by fastHiCRep and SCC scores calculated by HiCRep is 0.991.

The third similarity measure Selfish [10] was recently proposed for bulk Hi-C comparative

analysis. It first uses a sliding window to obtain a number of rectangular regions along the

diagonal of the contact map, and then counts overall contact numbers in each region. Then it

generates a one-hot “fingerprint matrix” for each contact map. Finally, Gaussian kernels over

the fingerprint matrices are calculated as similarities among the cells.

Embedding and clustering

Although single cell measures are high-dimensional, the single cells usually reside in a low-

dimensional manifold such as a circular cell cycle structure and a bifurcation differentiation

structure. By embedding the cells in a lower-dimensional Euclidean space, we can easily

explore the heterogeneity and structures among the single cells. scHiCTools includes three dif-

ferent dimension reduction methods that use pairwise similarity matrices among the cells to

embed them in a low-dimensional Euclidean space. The three dimension reduction methods

are as follows.

MDS (Multidimensional scaling) takes in a pairwise distance matrix evaluated in the origi-

nal space, and embeds the data points in a lower-dimensional space which preserves the pair-

wise distance matrix. In our package, we use the classical MDS which finds the p dimensional
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embedding X ¼ ½x1; x2; � � � ; xn�
>
2 Rn�p that minimizes the loss function: loss = kXX> − GkF,

where G ¼ � 1

2
ðIn � 1

n 11
>ÞDðIn � 1

n 11
>Þ, Dij is the distance between i-th and j-th cells, and 1

denotes a column vector of all ones.

t-SNE [14] embeds high-dimensional data in a low-dimensional space with an emphasis on

preserving local neighborhood. t-SNE assumes that data points x1, � � �, xn in the high-dimen-

sional space follow a Gaussian distribution, and the embedded points y1, � � �, yn follow a Stu-

dent’s t-distribution. In the higher-dimensional space, the conditional probability of xi picking

xj as its neighbor is pjji ¼
expð� kxi � xjk

2=2s2
i ÞP

k6¼i
expð� kxi � xkk

2=2s2
i Þ

. In our implementation, instead of computing the

norm between two points, we directly use distances between two cells to calculate the similar-

ity. The similarity between xi and xj is defined as the probability of picking xi and xj as neigh-

bors, which is pij ¼
pjjiþpijj

2n . In the embedding space, since y1, � � �, yn* t1, the probability of

picking yi and yj as neighbors is qij ¼
ð1þkyi � yjk

2Þ� 1

P
k6¼i
ð1þkyi � ykk

2Þ� 1. The Kullback–Leibler divergence of the

distribution of data points from the distribution of embedded points is KL ¼
P

i6¼jpijlog
pij
qij

.

The embedding of the cells are optimized by minimizing the KL-divergence above.

PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding) [15] is a

dimension reduction approach which preserves both local and global similarity. PHATE first

calculates a local affinity matrix based on k-nearest neighbor distance Kk, which captures the

local structure of the data points. PHATE normalizes Kk using a Gaussian kernel to obtain a

new matrix P, and then diffuses P by t steps to get a new matrix Pt which preserves the global

structure of data points. Based on matrix Pt, a potential representation of data can be calculated

as Ut = −log(Pt). Finally, PHATE applies non-metric MDS to Ut and generates low-dimen-

sional embedding of the cells.

Clustering methods are desirable in the situation that the single cells come from discrete

clusters rather than a continuous manifold. The following optional clustering methods are

implemented in our toolbox.

k-means assigns an observation to the cluster with the nearest cluster centroid, which is the

mean of all observations belonging to the cluster. We use k-means++ [16] to initialize the cen-

troids of clusters. Iterations of k-means algorithm renew the clusters by finding the points clos-

est to the centroid in the last iteration, and update the centroid of each cluster by taking the

mean of points in each cluster. Since k-means needs coordinates of cells in a Euclidean space

to find the centroid of each cluster, we use MDS to embed the cells into a l-dimensional space

first, and then perform k-means accordingly.

Spectral clustering [17] takes in a distance matrix of data points and divides n observations

into k clusters. Spectral clustering directly takes in the distance matrix and constructs a similar-

ity graph with Gaussian similarity function. Based on the similarity graph, spectral clustering

calculates the Laplacian of the similarity graph, and projects the points into a k-dimensional

space based on the first k eigenvectors of the graph Laplacian matrix. Finally, it uses k-means

to divide the data points into k group.

scHiCluster [18] is a clustering method designed explicitly for single-cell Hi-C data. It uses

convolution and random walk for smoothing and imputation, then converts the contact matri-

ces to binary matrices. scHiCluster conducts principal component analysis for embedding,

and then k-means for clustering.

Visualization of embedding

scHiCTools supports two-dimensional and three-dimensional plotting of the cell embedding.

Fig 3 shows the scatter plots of the two-dimensional embedding of the cells in a cell cycle study
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[2]. In the situation that the cells reside on a three-dimensional manifold, a three-dimensional

scatter plot of the cells can be visualized (S2 File). As a convenient option, an interactive scatter

plot can be visualized, in which the cell label is displayed when the user’s mouse hovers (see S3

File). In order to use this feature, ploty is required on user’s device.

Results

In this section, we apply the toolbox on a number of scHi-C datasets [2, 19], and benchmark

the performance of different methods implemented. In addition to plotting the two-dimen-

sional embedding of cells and examining whether the embedding is sensible, we benchmark

the projection performance on a scHi-C dataset [2] with the average area under the curve of a

circular ROC calculation (ACROC) proposed in a recent work [4]. ACROC measure ranges

between 0 to 1. An embedding representing a better circular pattern produces a larger

ACROC value. We record the run time of these methods to compare their efficiency. We

Fig 3. Two-dimensional scatter plots of the embedding from the three methods that calculate the similarity

between contact matrices, including InnerProduct, fastHiCRep and Selfish. (Dataset: Nagano et al., 2017). (a) Two-

dimensional projection from InnerProduct and MDS shows a clear circular pattern along the four stages of cell cycle.

(b) Two-dimensional projection using fastHiCRep and MDS does not show clear separation between the four stages of

cell cycle. (c) Two-dimensional projection using Selfish and MDS does not show clear separation between the four

stages of cell cycle. (d) Evaluating the three embedding methods in a cell-cycle phasing task by ACROC. The ACROC

values from InnerProduct, fastHiCRep and Selfish are 0.904, 0.858 and 0.642, respectively.

https://doi.org/10.1371/journal.pcbi.1008978.g003
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evaluate the clustering performance with two criteria: normalized mutual information (NMI)

[20] and adjusted rand index (ARI) [21] on another scHi-C dataset [19]. We have the following

observations.

InnerProduct is effective for calculating the pairwise similarity among

single-cell Hi-C contact maps

When InnerProduct is coupled with MDS, it produces an accurate projection of single cells

along four stages of cell cycle (Fig 3a), achieving an average area under a circular ROC calcula-

tion curve (ACROC) of 0.904, which is comparable to original HiCRep reported in the recent

work [4]. Two-dimensional scatter plots from fastHiCRep and Selfish show a circular pattern

along the four stages of cell cycle, but the separation between the stages is not as clear as that

from InnerProduct (Fig 3b and 3c). The ACROC measure from fastHiCRep is 0.858 and the

ACROC measure from Selfish is 0.642, which are both lower than that from InnerProduct

(Fig 3d).

PHATE and t-SNE produce satisfactory projections

Since MDS recovers global pairwise distance in its projection, it is unclear whether methods

that preserve local pairwise distance (i.e., PHATE and t-SNE) can produce a better projection.

Fig 4a and 4b show that PHATE and t-SNE are suitable embedding methods that project the

smoothed contact maps into a lower-dimensional space while preserving a cell-cycle pattern.

The ACROC measure of PHATE is 0.920, which is better than t-SNE (0.901) and MDS

(0.904). Therefore, PHATE and t-SNE can be used alternatively, especially when faraway

neighbors’ similarity cannot be properly evaluated.

Fig 4. Two-dimensional embedding using different dimension reduction methods. (Dataset: Nagano et al., 2017). (a) Two-dimensional

projection from InnerProduct/PHATE shows a circular pattern similiar to MDS projection (ACROC: 0.920). (b) Two-dimensional projection from

InnerProduct/t-SNE shows a circular pattern (ACROC: 0.901).

https://doi.org/10.1371/journal.pcbi.1008978.g004
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All three methods to calculate pairwise similarity are computationally

efficient

The run time of InnerProduct, fastHiCRep, Selfish, and original HiCRep was measured on an

Intel Xeon W-2175 CPU with a frequency of 2.50GHz (Table 1). Each experiment was repli-

cated ten times, and the average run time was reported (Run time from different replicate

experiments showed little variance. See S5 File for raw data). For embedding 1,000 cells ran-

domly selected from data [2], three methods in our package, including InnerProduct, fastHi-

CRep, and Selfish, finished within minutes. In contrast, original HiCRep, also implemented in

Python, took around five hours. For InnerProduct, we further measured the time spent in the

first scaling step and in the second multiplication step. It was observed that the run time from

the “scaling” step was linear in terms of cell number n, whereas the run time from the “multi-

plication” step was quadratic in terms of cell number n.

Linear convolution smoothing and random walk improve projection at

high dropout rates

To examine the three smoothing approaches implemented in our toolbox, we sparsified the

scHi-C dataset [2] with two methods. The first sparsification method is to remove 40% *

99.9% of the contacts randomly from all genomic positions (i.e., contact number ranging from

*200,000 to*500 in each cell). The second sparsification method is to simulate dropout

events in sequencing data which discard contacts from 5%* 60% of the genomic loci. With

the sparsified datasets, we examined the quality of single cell embedding when different

smoothing approaches were used. It was observed that none of the three smoothing methods,

including linear convolution, random walk, and network enhancing, improved the embedding

performance when the single cell contact maps were down-sampled by the first sparsification

method (Fig 5a). The ACROC decreased from around 0.9 to around 0.6 as down-sampling

rate changed from 1 to 0.05. Under the second sparsification method (dropout), linear convo-

lution and random walk produced better single cell embedding, compared with the situation

when no smoothing was used (Fig 5b). At a high dropout rate (0.7), linear convolution kept

the average ACROC above 0.9, whereas other methods’ average ACROC’s dropped to below

0.9. Therefore, we recommend users use linear convolution to smooth scHi-C contact maps if

they suspect dropout events exist moderately in their scHi-C data.

Table 1. Average run time (in seconds) of different methods as the number of cells vary. (Run time is averaged from 10 replicate experiments, performed on an Intel

Xeon W-2175 CPU with a frequency of 2.50GHz).

# cells HiCRep fastHiCRep InnerProduct Selfish

Scaling Multiplication Total

100 267.91 0.05 0.05 0.03 0.08 0.11

200 1105.85 0.11 0.10 0.07 0.16 0.21

300 2470.76 0.19 0.14 0.10 0.24 0.36

400 4451.97 0.29 0.19 0.15 0.34 0.55

500 7025.12 0.41 0.25 0.23 0.48 0.80

600 10384.73 0.54 0.30 0.31 0.61 1.08

700 14366.02 0.70 0.37 0.44 0.80 1.41

800 18944.04 0.87 0.40 0.58 0.94 1.79

900 23878.24 1.10 0.49 0.82 1.30 2.21

1000 28335.26 1.32 0.55 0.98 1.53 2.70

https://doi.org/10.1371/journal.pcbi.1008978.t001
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scHiCluster produces better clustering results than InnerProduct coupled

with spectral clustering or with k-means, but less efficient

Table 2 shows the performance of different clustering methods implemented in scHiCTools

on the dataset of Collombet et al., 2020 [19]. We use all 750 mouse embryo cells at five differ-

entiation stages in the study of Collombet et al., including the 1-cell, 2-cell, 4-cell, 8-cell, and

64-cell stages. We separate the cells into five clusters and evaluate the clusters using two evalua-

tion measures, including normalized mutual information (NMI) [20], and adjusted rand index

(ARI) [21]. A better clustering produces larger values of NMI and ARI. For random clustering,

the values of NMI and ARI are close to 0. When the cluster agrees with the true label, NMI and

ARI reach the upper bound 1. scHiCluster shows better NMI and ARI values than InnerPro-

duct with k-means and InnerProduct with spectral clustering. InnerProduct with k-means and

InnerProduct with spectral clustering are more efficient than scHiCluster. The run time of

scHiCluster, InnerProduct with k-means, Selfish, and InnerProduct with spectral clustering

was measured on an Intel Xeon W-2175 CPU with a frequency of 2.50GHz. Each experiment

was replicated ten times, and the average run time was reported (Run time from different rep-

licate experiments showed little variance. See S5 File for more details).

Fig 5. Average ACROC measures from InnerProduct without any smoothing, InnerProduct with random walk smoothing, InnerProduct with

linear convolution, and InnerProduct with network enhancing. (a) When the dataset was sparsified with the first sparsification method, ACROC

measures from the four approaches decreased when down-sampling rate increased. (b) When the dataset was sparsified with the second sparsification

method, ACROC measures from the four approaches decreased when down-sampling rate increased, but at a high dropout rate (0.7), linear

convolution’s ACROC remained high, whereas other methods’ ACROC dropped to below 0.9.

https://doi.org/10.1371/journal.pcbi.1008978.g005

Table 2. The normalized mutual information (NMI), adjusted rand index (ARI), and run time of three clustering

approaches. (Data: 750 embryo cells at five differentiation stages, including 1-cell, 2-cell, 4-cell, 8-cell and 64-cell

stages, Collombet et al., 2020).

NMI ARI Average run time (in seconds)

scHiCluster 0.266 0.259 114.421

InnerProduct+MDS+k-means 0.222 0.208 1.771

InnerProduct+spectral clustering 0.241 0.197 1.531

https://doi.org/10.1371/journal.pcbi.1008978.t002
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Availability and future directions

Our scHiCTools is implemented in Python. The source code is available and maintained at

Github: https://github.com/liu-bioinfo-lab/scHiCTools. This package is also available on PyPI

python package manager. The current code runs under Python 3.7 or newer versions. Other

dependency includes numpy, scipy, matplotlib, pandas, simplejson, six, and h5py. For the

interactive scatter plot function, you need to have plotly installed. In the future, we will keep

updating the toolbox with new scHi-C analysis algorithms, including new embedding methods

such as UMAP and new clustering methods such as hierarchical clustering.

Supporting information

S1 File. Plots from different similarity measures and embedding methods applied to

Nagano single-cell dataset. This zip file includes the plots of other combination of similarity

measures (InnerProduct, fastHiCRep and Selfish) and embedding methods (MDS, t-SNE and

PHATE).

(ZIP)

S2 File. Three-dimensional scatter plots. This zip file includes the 3D scatter plots of different

embedding methods (MDS, t-SNE and PHATE) applied to Nagano single-cell dataset.

(ZIP)

S3 File. Interactive plots. This file includes examples of interactive 2D and 3D scatter plots of

cells from Nagano et al.

(ZIP)

S4 File. scHiCTools source code, documentation and test dataset. This zip file is a clone of

scHiCTools public Git repository. To install from this file rather than from PyPI, please follow

installation instructions in the readme file.

(ZIP)

S5 File. Run time details. This PDF file includes the run time of similarity calculation meth-

ods and clustering methods.

(PDF)

S6 File. Details of applying our toolbox to Flyamer et al. [1], Collombet et al. [19] and

Ramani et al. [3] datasets. This PDF file includes the number of cells and the contacts num-

bers of Flyamer et al., Collombet et al. and Ramani et al. datasets, and their scatter plots.

(PDF)
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