Discovery of novel dual adenosine A_1/A_{2A} receptor antagonists using deep learning, pharmacophore modeling and molecular docking

Mukuo Wang¹, Shujing Hou¹, Yu Wei¹*, Dongmei Li¹*, Jianping Lin¹,2,3*

¹ State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China, ² Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, ³ Platform of Pharmaceutical Intelligence, Tianjin International Joint Academy of Biomedicine, Tianjin, China

* jingningde.1988@163.com (YW); dongmell@nankai.edu.cn (DL); jianpinglin@nankai.edu.cn (JL)

Abstract

Adenosine receptors (ARs) have been demonstrated to be potential therapeutic targets against Parkinson’s disease (PD). In the present study, we describe a multistage virtual screening approach that identifies dual adenosine A_1 and A_{2A} receptor antagonists using deep learning, pharmacophore models, and molecular docking methods. Nineteen hits from the ChemDiv library containing 1,178,506 compounds were selected and further tested by in vitro assays (cAMP functional assay and radioligand binding assay); of these hits, two compounds (C8 and C9) with 1,2,4-triazole scaffolds possessing the most potent binding affinity and antagonistic activity for A_1/A_{2A} ARs at the nanomolar level (pK_i of 7.16–7.49 and pIC_{50} of 6.31–6.78) were identified. Further molecular dynamics (MD) simulations suggested similarly strong binding interactions of the complexes between the A_1/A_{2A} ARs and two compounds (C8 and C9). Notably, the 1,2,4-triazole derivatives (compounds C8 and C9) were identified as the most potent dual A_1/A_{2A} AR antagonists in our study and could serve as a basis for further development. The effective multistage screening approach developed in this study can be utilized to identify potent ligands for other drug targets.
dynamics (MD) simulations showed similarly strong binding interactions of the complexes between the adenosine A$_1$/A$_{2A}$ receptors and the compounds. The results showed that the multistage virtual screening approach can effectively identify potent dual adenosine A$_1$/A$_{2A}$ receptor antagonists. The multistage screening approach offers an alternative and effective strategy for the identification of potent ligands for other drug targets.

This is a PLOS Computational Biology Methods paper.

Introduction

Parkinson’s disease (PD) is a common and complex neurodegenerative disorder that is characterized by the early prominent death of dopaminergic neurons in the substantia nigra pars compacta and the abnormal aggregation of the α-synuclein protein, called Lewy bodies and Lewy neurites [1]. Decreased dopamine in the basal ganglia can cause classical motor symptoms [2], including bradykinesia, resting tremors, and postural instability [3], and nonmotor symptoms, including constipation, depression, sleep disturbance, apathy, hallucinations and dementia [4]. L-3,4-Dihydroxyphenylalanine (L-dopa), which is the direct precursor of dopamine, is commonly used as dopamine replacement therapy in the treatment of PD motor symptoms [5]. Although L-dopa can help relieve PD motor symptoms, its chronic use may cause side effects such as motor complications (motor fluctuations and dyskinesias) [6]. In addition, dopamine receptor agonists, catechol O-methyltransferase inhibitors, monoamine oxidase B (MAOB) inhibitors, amantadine and anticholinergic drugs are available on the market for the treatment of PD [7,8]. However, these drugs are mainly used to replace the concentration and/or effect of dopamine in the brain and only solve the motor symptoms but not the nonmotor symptoms [9]. Therefore, it is necessary to develop effective therapies that simultaneously solve the motor symptoms and nonmotor symptoms in medical treatments of PD.

In recent years, adenosine receptor (AR) antagonists have attracted much attention in the development of nondopaminergic therapies for the treatment of PD. Interestingly, high-resolution structures of A$_1$ and A$_{2A}$ adenosine receptors are available [10–20], providing an excellent opportunity for structure-based drug design (SBDD). Thus, virtual screening efforts have identified potent antagonists [21–23]. Among the four human adenosine receptors (A$_1$, A$_{2A}$, A$_{2B}$ and A$_3$) [24], the A$_{2A}$ receptor, which is a potential target for the treatment of PD, has been intensively studied. A$_{2A}$AR antagonists have been developed as a potential class of nondopaminergic antiparkinsonian agents that can relieve patients of symptoms of depression (nonmotor symptom of PD) [25]. The A$_{2A}$AR antagonist KW-6002 has been proven to have antidepressant activity in the forced swim test and tail suspension test in rodents [26,27]. In addition, epidemiological and experimental data indicate that adenosine A$_{2A}$ receptor antagonists have neuroprotective effects [28]. Compared with A$_{2A}$AR, A$_1$AR is more widely distributed in the central nervous system. A$_1$AR is highly expressed in brain regions, including the hippocampus and prefrontal cortex. These regions are important for emotion and cognitive function. Furthermore, since A$_1$AR antagonists can increase the release of acetylcholine and glutamate, and improve cognitive dysfunction [29], A$_1$AR antagonism may improve the cognitive deficits experienced in PD as illustrated in animals studies [30].

Among the adenosine receptor antagonists, caffeine, which is a xanthine derivative, has been found to be a nonselective A$_1$AR and A$_{2A}$AR antagonist. Epidemiological research has
shown that a correlation exists between the intake of coffee or caffeine and a reduced risk of PD [31]. Subsequently, several dual A1/A2A AR antagonists were further developed and proven to not only improve dyskinesia but also enhance cognition and play a neuroprotective role through the antagonistic effect of A2A AR [3,32,33]. Dual A1/A2A AR antagonists may display synergistic motor activation. A1 AR antagonism promotes presynaptic dopamine release, while A2A AR antagonism promotes postsynaptic dopamine release [34]. In conclusion, dual A1/A2A AR antagonists not only treat the motor symptoms of PD and have neuroprotective effects but may also improve nonmotor symptoms [35]. In 2007, Mihara et al. discovered the dual A1/A2A AR antagonist 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854) (Fig 1A), which showed high affinity for human A1 and A2A receptors with Kᵢ values of 9.03 nM and 1.76 nM, respectively [36]. In 2008, ASP5854 was further confirmed to have activity comparable to that of existing anti-Parkinson’s disease drugs, but no further research investigating its safety was conducted [37]. In 2010, Shook et al. designed and synthesized an arylindenopyrimidine (2-amino-4-phenyl-8-(pyrrolidin-1-ylmethyl)-5H-indeno[1,2-d]pyrimidin-5-one, Fig 1B) derivative as a dual A1/A2A AR antagonists that has excellent activity in various animal models of PD after oral administration, but further studies revealed that it was genotoxic [3]. In 2015, Robinson et al. characterized a small set of 2-aminopyridines as dual A1/A2A AR antagonists. These compounds are considered useful for motor diseases, such as PD. The most potent compound found from this campaign was 4-(5-methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (Fig 1C), which was able to bind A1 and A2A receptors with Kᵢ values of 9.54 nM and 6.34 nM, respectively [38,39]. Therefore, the identification of novel dual A1/A2A AR antagonists is of great significance for the development of novel agents for the treatment of PD [40].

Deep learning (DL), or deep neural networks, has been developed based on artificial neural networks (ANNs), which are inspired by the biological structure and function of the brain. To date, several DL frameworks, such as deep neural networks (DNNs), convolutional neural networks (CNNs), deep belief networks (DBNs), and recurrent neural networks (RNNs), have been developed. Currently, the deep learning procedure, which is the dominant component of machine learning (ML) in artificial intelligence, has emerged as a vital tool for expediting the in silico screening of potential hits [41]. Unterthiner et al. showed that the efficacy of DL in virtual drug screening was better than that of seven other screening methods using ChEMBL benchmark data [42]. Lenselink et al. demonstrated that the screening performance of DNNs outperformed that of other machine learning methods such as support vector machines, random forests, naïve Bayes and logistic regression models [43]. Bilsland et al. trained an ANN classification model to screen for senescence-inducing compounds from a library of ~2 M
lead-like compounds and identified a benzimidazolone compound with a low micromolar IC$\textsubscript{50}$ using in vitro assays as a potential hit for the development of selective cell cycle inhibitors [44]. Wallach et al. used CNN to design a structure-based model for the prediction of the bioactivity of small molecules for drug development and successfully predicted new active molecules for targets without known modulators [45]. Recently, Rifaioglu et al. developed DEEPScreen, which is a novel DTI prediction system based on deep convolutional neural networks that can predict new interactions between the drug cladribine and JAK proteins as confirmed by in vitro experiments using cancer cells [46]. Overall, deep learning plays an increasingly important role in modern drug discovery.

To date, the discovery of dual A$\textsubscript{1}$/A$\textsubscript{2A}$ AR antagonists has been achieved through structural modification of specific scaffolds to obtain new compounds, while a multistage virtual screening approach combining ligand-based and structural-based methods has rarely been used. Although the rapid development of the pharmacophore [47] and molecular docking [48] methods enabled the screening of very large databases containing billions of diverse molecules, these methods are individually unable to achieve perfect effects. For example, the inaccurate scoring functions implemented in docking methods often lead to a low hit rate and a high false positive rate. In this study, a multistage virtual screening system consisting of deep learning, pharmacophore models, and molecular docking methods was used to identify novel dual A$\textsubscript{1}$/A$\textsubscript{2A}$ AR antagonists from the ChemDiv database. The ChemDiv collection consists of more than 14,000 chemical families (chemotypes) and 1,250,000 diverse drug-like small molecules. Nineteen compounds were selected and tested to determine their A$\textsubscript{1}$AR and A$\textsubscript{2A}$AR functional activities; of these compounds, five compounds were found to have dual A$\textsubscript{1}$/A$\textsubscript{2A}$ AR antagonistic activity through cAMP functional assays and radioligand binding assays. Among the five compounds found to have dual A$\textsubscript{1}$/A$\textsubscript{2A}$ AR antagonistic activity, compounds C8 and C9, which contained a 1,2,4-triazole scaffold, showed the highest antagonistic activity, reaching nanomolar inhibition.

Results and discussion

Construction and validation of the DNN and CNN models

In this study, we used the self-developed Python script based on the algorithm from reference 50 to construct the DNN and CNN classification models of the dual A$\textsubscript{1}$/A$\textsubscript{2A}$ AR antagonists using a library containing 310 bioactive dual A$\textsubscript{1}$/A$\textsubscript{2A}$ antagonists (K$\textsubscript{i} < 40$ nM) and 405 non-bioactive antagonists (K$\textsubscript{i} > 1000$ nM). The models used the extended connectivity fingerprint 4 (ECFP4) [49] and neural fingerprint (NFP) [50]. Six evaluation indicators, including sensitivity (SE), specificity (SP), prediction accuracy of active molecules (Q+), prediction accuracy of inactive molecules (Q-), Matthews correlation coefficient (MCC) and area under the curve (AUC), were used to evaluate the classification ability of the models.

To assess the impact of the different batch sizes on the performance of the DNN and CNN classification models, we constructed the DNN and CNN models using batch sizes from 50 to 300 with an interval of 50. Table 1 lists the statistical evaluation results of the DNN classification models based on the ECFP4 of the test set under different batch sizes. All DNN classification models show very good SE, SP, Q+, Q-, MCC and AUC values. Among the six DNN classification models, Model_D5 based on ECFP4 has the best prediction ability, with an MCC of 0.891 and an AUC of 0.997. The optimized hyperparameters of Model_D5 which had the best performance, are as follows: batch size = 250, learning rate = 0.001, num_epochs (number of training epochs) = 500, dropout = 0.2, L2_regulation_type (L2 regularization parameters) = 0.0001, three hidden layers with layer widths of 3000, 2000 and 1000, and a final fully connected layer that uses the Softmax algorithm to produce classification results.
We further analyzed the performance of the CNN models in predicting dual A₁/A₂A AR antagonists. The statistical evaluation of six CNN models based on NFP is shown in Table 2. The table shows that the batch size has a great impact on the prediction ability of the CNN classification models. Model_C6, which has a batch size of 300, shows the lowest MCC and AUC values, while Model_C4, which has a batch size of 200, shows the highest MCC and AUC values. The optimized hyperparameters of Model_C4, which has the best performance are as follows: learning rate = 0.001, num_epochs (number of training epochs) = 500, batch size = 200, L2_regulation_type (L2 regularization parameters) = 0.0001, and fingerprint_network_architecture (convolutional layers) = 5. Based on the evaluation results of the DNN and CNN classification models, Model_D5 and Model_C4, which had the best performance, were selected, and we conducted the following virtual screening of dual A₁/A₂A AR antagonists.

Pharmacophore model generation and validation

A training set containing 14 active ingredients (S1 Table) was used to generate the dual A₁/A₂A AR antagonist pharmacophore models. Eleven hypotheses were generated, which matched 9–13 of the 14 activities. To evaluate pharmacophore hypotheses, a validation set of 42 dual antagonists of the A₁AR and A₂AAR subtypes and 913 decoy compounds was used to explore the ability of the pharmacophore hypothesis to distinguish the dual A₁/A₂A AR antagonists from the decoys. The statistical results of predicting the dual antagonists in the validation set are summarized in Table 3. The EF1% (enrichment factor in the top 1% of compounds screened) and BEDROC (α=160.9) (Boltzmann-enhanced discrimination of receiver operating characteristic) were used as “early recognition” metrics [51]. As shown in Fig 2, the AADR_4 and AAADR_1 hypotheses shared the same four pharmacophore sites including two hydrogen bond acceptors (A), one hydrogen donor (D) and one aromatic ring (R); however, the AAADR_1 hypothesis contains one additional hydrogen bond acceptor at the far end. When a minimum of four sites of the AAADR_1 model were used for screening (including the AADR_4 model), the most dual A₁/A₂A AR antagonists (39 of 42) were retrieved from the validation set, corresponding to an ROC of 0.89. Finally, the five-pharmacophore-site (AAADR_1) hypotheses, which matched 12 of the 14 active ingredients in the training set, were selected for further virtual screening.
Virtual screening

Our previous study showed that a multistage approach sequentially integrating machine learning classification models and pharmacophore and molecular docking methods is efficient in identifying bioactive compounds from chemical databases [52]. In this study, the performance of the hierarchical multistage virtual screening approach was evaluated through a validation set containing 433 bioactive dual A_1/A_2A AR antagonists (40 nM < K_i < 600 nM) and 11,605 decoys (S2 Table). Then, DNN and CNN classification models, a pharmacophore model (AADR_1) and molecular docking were applied for the discovery of dual A_1/A_2A AR antagonists by performing multistage virtual screening against the ChemDiv library (1,178,506 compounds) (Fig 3). In the first stage, the DNN and CNN classification models were separately utilized to filter 1,178,506 compounds. Initially, 209,585 and 171,233 compounds passed the filter that applied the DNN and CNN classification models, respectively. In total, 58,886 compounds simultaneously predicted by the DNN and CNN classification models were retained. In the second stage, a pharmacophore model was applied to remove the compounds that were not adequate for a minimum of four sites, and 5,629 of the 58,886 compounds that matched the requirements of the AADR_1 model were retained. In the third stage, the 5,629 compounds were subjected to molecular docking screening based on the X-ray structures of A_1AR (PDB ID 5N2S) and A_2AAR (PDB ID 5IU4) using Glide HTVS, SP and XP functions. After the XP molecular docking, 43 compounds that simultaneously bind A_1 and A_2A ARs remained. Based on the assessment of chemical-protein interactions by visual inspection, 19 of the 43 compounds that matched the four pharmacophore sites (S1 Fig) were finally selected for an in vitro evaluation of their bioactivity towards A_1 and A_2A ARs. Fig 3 shows a schematic workflow of our multistage virtual screening methods.

Biological evaluation

Functional experiments. Initially, the biological activity of selected compounds C1 –C19 towards A_1 and A_2A ARs was evaluated by a cAMP functional assay. The potency of the antagonists at the A_1 and A_2A ARs is depicted in Table 4, which shows that eight compounds (C4, C7, C8, C9, C10, C15, C17 and C19) of the 19 compounds (Fig 4) display potent antagonistic

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>PhaseHypoScore</th>
<th>EF1%</th>
<th>BEDROC (α-160.9)</th>
<th>ROC</th>
<th>AUAC</th>
<th>Total Actives</th>
<th>Ranked Actives</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADR_4</td>
<td>0.69</td>
<td>22.74</td>
<td>1</td>
<td>0.83</td>
<td>0.90</td>
<td>42</td>
<td>35</td>
<td>4 of 4</td>
</tr>
<tr>
<td>AAADR_1</td>
<td>0.65</td>
<td>13.64</td>
<td>0.73</td>
<td>0.89</td>
<td>0.90</td>
<td>42</td>
<td>39</td>
<td>4 of 5</td>
</tr>
<tr>
<td>AADR_5</td>
<td>0.65</td>
<td>22.74</td>
<td>1</td>
<td>0.83</td>
<td>0.90</td>
<td>42</td>
<td>35</td>
<td>4 of 4</td>
</tr>
<tr>
<td>AADR_1</td>
<td>0.64</td>
<td>22.74</td>
<td>1</td>
<td>0.88</td>
<td>0.92</td>
<td>42</td>
<td>37</td>
<td>4 of 4</td>
</tr>
<tr>
<td>AAAR_1</td>
<td>0.63</td>
<td>13.64</td>
<td>0.68</td>
<td>0.77</td>
<td>0.83</td>
<td>42</td>
<td>34</td>
<td>4 of 4</td>
</tr>
<tr>
<td>AADR_2</td>
<td>0.61</td>
<td>22.74</td>
<td>1</td>
<td>0.81</td>
<td>0.89</td>
<td>42</td>
<td>34</td>
<td>4 of 4</td>
</tr>
<tr>
<td>ADHR_1</td>
<td>0.56</td>
<td>13.64</td>
<td>0.64</td>
<td>0.73</td>
<td>0.80</td>
<td>42</td>
<td>33</td>
<td>4 of 4</td>
</tr>
<tr>
<td>AARR_1</td>
<td>0.5</td>
<td>22.74</td>
<td>0.98</td>
<td>0.57</td>
<td>0.77</td>
<td>42</td>
<td>24</td>
<td>4 of 4</td>
</tr>
<tr>
<td>ADDR_2</td>
<td>0.5</td>
<td>22.74</td>
<td>0.99</td>
<td>0.69</td>
<td>0.83</td>
<td>42</td>
<td>29</td>
<td>4 of 4</td>
</tr>
<tr>
<td>AADR_3</td>
<td>0.48</td>
<td>22.74</td>
<td>1</td>
<td>0.90</td>
<td>0.93</td>
<td>42</td>
<td>38</td>
<td>4 of 4</td>
</tr>
</tbody>
</table>

a EF1%: enrichment factor at 1% of the validation set.
b BEDROC (α-160.9): Boltzmann-enhanced discrimination of receiver operating characteristics.
c ROC: receiver operating characteristic curve value.
d AUAC: area under the accumulation curve.

https://doi.org/10.1371/journal.pcbi.1008821.t003
activity against A1AR with pIC\textsubscript{50} values ranging from 4.28 to 6.78. Regarding the eight compounds, the pIC\textsubscript{50} values at A\textsubscript{2A}AR were subsequently determined. Among all eight compounds, five compounds possessed antagonistic activity towards A\textsubscript{2A}AR with pIC\textsubscript{50} values of 4.20–6.44. The concentration-response curves of the eight compounds in the cAMP assay are depicted in S2 and S3 Figs. Notably, compounds C8 and C9 have the most potent antagonistic activity towards A\textsubscript{1}/A\textsubscript{2A} ARs with pIC\textsubscript{50} values in the range of 6.31–6.78, while C15 has the weakest antagonistic activity towards A\textsubscript{1}/A\textsubscript{2A} ARs with pIC\textsubscript{50} values ranging between 5.10–5.35.

A\textsubscript{1}/A\textsubscript{2A} AR affinity experiments. All eight compounds with potent antagonistic activity against A\textsubscript{1}/A\textsubscript{2A} ARs were further evaluated to determine their binding affinity against A\textsubscript{1} and A\textsubscript{2A} ARs by radioligand binding assays using the labeled A\textsubscript{1} AR antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (Fig 5A) and A\textsubscript{2A} AR antagonist 4-[[7-amino-2-(furyl)1,2,4-triazolo[2,3-a]1,3,5-triazin-5-yl]-amino]ethyl]phenol (ZM241385) (Fig 5B). The concentration-response curves of the eight compounds in the radioligand binding assay are depicted in S4 and S5 Figs. Table 4 shows that compounds C8 and C9 also possess the highest binding affinity for A\textsubscript{1}/A\textsubscript{2A} ARs with K\textsubscript{i} values at the nanomolar level (pK\textsubscript{i} values in the range 7.16–7.49), which is consistent with the highest antagonistic potency with pIC\textsubscript{50} values in the range 6.31–6.78. Overall, these experiments confirm that compounds C8 and C9 are the most potent dual A\textsubscript{1}/A\textsubscript{2A} AR antagonists among our selected compounds.
Fig 3. Schematic overview of the discovery of dual A1/A2A AR antagonists by performing multistage virtual screening against the ChemDiv library.

https://doi.org/10.1371/journal.pcbi.1008821.g003

Table 4. Potencies and binding activities at human A1 and A2A ARs of compounds C1–C19. A1/A2A AR Affinity Experiments.

<table>
<thead>
<tr>
<th>Compound number</th>
<th>Compound ID</th>
<th>cAMP assays (pIC50)</th>
<th>Binding affinities (pKi)</th>
<th>Pharmacophore matching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>A2A</td>
<td>A1</td>
</tr>
<tr>
<td>C1</td>
<td>6016–3052</td>
<td>< 4</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>C2</td>
<td>C686-0670</td>
<td>< 4</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>C3</td>
<td>C884-2451</td>
<td>< 4</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>C4</td>
<td>D116-0057</td>
<td>5.51</td>
<td>< 4</td>
<td>5.68</td>
</tr>
<tr>
<td>C5</td>
<td>D331-0235</td>
<td>NAN</td>
<td>--</td>
<td>5.51</td>
</tr>
<tr>
<td>C6</td>
<td>D331-0346</td>
<td>NAN</td>
<td>--</td>
<td>5.51</td>
</tr>
<tr>
<td>C7</td>
<td>D481-1843</td>
<td>5.72</td>
<td>< 4</td>
<td>5.98</td>
</tr>
<tr>
<td>C8</td>
<td>D481-2135</td>
<td>6.78</td>
<td>6.44</td>
<td>7.19</td>
</tr>
<tr>
<td>C9</td>
<td>D481-2142</td>
<td>6.72</td>
<td>6.31</td>
<td>7.49</td>
</tr>
<tr>
<td>C10</td>
<td>D503-0436</td>
<td>6.46</td>
<td>5.00</td>
<td>6.77</td>
</tr>
<tr>
<td>C11</td>
<td>F026-0231</td>
<td>< 4</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>C12</td>
<td>F092-0415</td>
<td>NAN</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>C13</td>
<td>F186-0821</td>
<td>< 4</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>C14</td>
<td>F186-0830</td>
<td>< 4</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>C15</td>
<td>G433-0400</td>
<td>5.35</td>
<td>5.10</td>
<td>5.54</td>
</tr>
<tr>
<td>C16</td>
<td>G856-9311</td>
<td>< 4</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>C17</td>
<td>L935-0138</td>
<td>6.20</td>
<td>4.20</td>
<td>6.28</td>
</tr>
<tr>
<td>C18</td>
<td>P072-0704</td>
<td>< 4</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>C19</td>
<td>P433-0232</td>
<td>4.28</td>
<td>< 4</td>
<td>4.97</td>
</tr>
<tr>
<td>DPCPX</td>
<td>--</td>
<td>--</td>
<td>8.60</td>
<td>-</td>
</tr>
<tr>
<td>ZM241385</td>
<td>--</td>
<td>--</td>
<td>8.70</td>
<td>-</td>
</tr>
</tbody>
</table>

https://doi.org/10.1371/journal.pcbi.1008821.t004
Novelty of the new hits

To evaluate the novelty of the identified dual A₁/A₂A AR antagonists, the pairwise similarity between compounds C8 and C9 and known A₁/A₂A AR antagonists, including all dual antagonists found in ChEMBL25 [53], was calculated using Morgan, ECFP4 and MACCS fingerprints in KNIME [54]. The molecular similarity between the two molecules was compared
using the Tanimoto coefficient (Tc), which ranges from 0 to 1. Low chemical similarity has a correlation with a Tc value close to 0, whereas high chemical similarity has a correlation with a Tc value close to 1. Regarding compounds C8 and C9, the maximum Tc values of the Morgan and ECFP4 fingerprints compared to known A1/A2A AR antagonists are similar and less than 0.4 (S3 Table). The maximum Tc values of MACCS and ECFP4 conform to the relationship studied by Maggiora et al.[55] (S6 Fig and S3 Table), indicating that compounds C8 and C9 are novel dual A1/A2A AR antagonists. Compounds C8 and C9 contain a 1,2,4-triazole core, which is a privileged scaffold for developing potent antifungal agents [56], LSD1 inhibitors [57], anticonvulsant agents [58], etc. 1,2,4-Triazole derivatives possess diverse pharmacological activities, such as antiviral, antitumor, anti-inflammatory, antibacterial, antifungal, anti-hypertensive, hypoglycemic and analgesic activities [59]. The 1,2,4-triazole scaffold was first found to have the potential to be developed as a dual A1/A2A AR antagonist. The associated pharmacological activity of compounds C8 and C9 acting as dual A1/A2A AR antagonists needs to be further studied.

Molecular modeling exploration

To explore the dual antagonistic activities of compound C8, C9 exhibited nanomolar inhibition against both A1AR and A2AAR, and molecular docking using Glide and MD simulation studies were carried out. In our docking studies, C8 and C9 had similar binding energies against A1AR and A2AAR (Table 5). In total, 4 complexes of C8 and C9 bound to A1AR and A2AAR were generated, and each complex was embedded in a hydrated phospholipid bilayer including POPE lipid molecules and subjected to 100-ns MD simulation using the AMBER ff14sb force field. After 100 ns of the MD simulation we obtained a stable bilayer (S7 Fig), and the RMSprot (which is the protein backbone RMSD with respect to the minimized structure) values ranged from 2.51 to 2.96 Å with standard deviations of approximately 0.25 Å (S8 Fig). The stability of the ligand inside the binding area was assessed by measuring its RMSD (RMSDlig). Among the four docking poses used as starting structures, we obtained RMSDlig less than 2 Å (Table 5 and S9 Fig), suggesting stable binding in agreement with the experimental binding and functional data.

In addition, we calculated the binding free energy of C8 and C9 with A1AR and A2AAR by using the MM-GBSA method based on the last 5 ns trajectory of the MD simulations (Table 5). The calculated binding free energy of the C8-A1AR complex (ΔGeff = -41.67 kcal/mol) is similar to that of the C8-A2AAR complex (ΔGeff = -42.22 kcal/mol). In addition, the calculated binding energy of the C9-A1AR complex (ΔGeff = -43.55 kcal/mol) is similar to that of the C9-A2AAR complex (ΔGeff = -40.70 kcal/mol). Therefore, the binding free energies show that compounds C8 and C9 have similar affinities to A1AR and A2AAR, which is consistent with the results of the functional assay and radioligand binding assays.

Binding modes exploration. The 100-ns MD simulations showed that compounds C8 and C9 were stabilized with similar orientations in the binding pockets of both A1AR and A2AAR (Fig 6). In the C8-A1AR complex and the C9-A1AR complex (Fig 6A and 6B), the 5-amino group and the nitrogen of the 1,2,4-triazol were hydrogen bonded to the side chain carbonyl and amino group of N2546.55, respectively. The 1,2,4-triazol formed π-π stacking
interactions with the phenyl group of F171ECL2. These interactions are consistent with the observations in the mutagenesis experiments that N2546.55 and F171ECL2 play important roles in antagonist binding. These interactions were maintained from the origin to the end of the 100-ns simulation (S10 Fig). Additionally, the 3-methoxyphenyl (or 3-chlorophenyl) exhibited nonpolar interactions with the side chain of I2747.39, and the 2-chlorophenyl extended deeper into the other side of the pocket formed by the hydrophobic side chains of V873.32, L883.33 and W2476.48. In the C8-A\textsubscript{2A}AR complex and the C9-A\textsubscript{2A}AR complex (Fig 6C and 6D), the 5-amino group and the oxygen of the methanone formed hydrogen bonds with the side chain carbonyl and amino group of N2536.55. Additionally, the 5-amino group formed a hydrogen bond with the carboxyl side chain of E169ECL2. The 1,2,4-triazol interacted with the phenyl group of F168ECL2 through π-π stacking. These interactions were maintained throughout the 100-ns simulation (S11 Fig). The 2-chlorophenyl formed hydrophobic interactions with Y2717.36, and the 3-methoxyphenyl (or 3-chlorophenyl) extended deeper into the orthosteric binding area and formed hydrophobic interactions with residues V843.32, L853.33, L2496.51 and I2747.39. Although the orientation of C8 (or C9) was different in the binding pocket of A\textsubscript{1}AR and A\textsubscript{2A}AR, the number of hydrogen bonds, π-π stacking and hydrophobic interactions were...
the same as those in the C8 (or C9)-A1AR complex and the C8 (or C9)-A2AAR complex, which may lead to the similar binding affinity of C8 (or C9) to A1AR and A2AAR.

To compare the binding differences between A1AR and A2AAR of nondual A1/A2A AR antagonists, we also performed MD simulations against compound C10, which has stronger binding affinity and antagonistic activity to A1AR than A2AAR. In the C10-A1AR complex, the N-propyl group and the nitrogen of the pyrazolo[1,5-a]pyrimidin formed two hydrogen bonds with the side chain carbonyl and amino group of N254. Pyrazolo[1,5-a]pyrimidin interacted with the phenyl side chain of F171ECL2 through π-π stacking. In the C10-A2AAR complex, C10 possessed a different orientation and formed only one hydrogen bond with the amino group of N253 via the nitrogen of pyrazolo[1,5-a]pyrimidin. Pyrazolo[1,5-a]pyrimidin formed π-π stacking interactions with the phenyl side chain of F168ECL2 (Figs 7 and S12).

Compared to the dual antagonists (which had similar a number of hydrogen bonds, π-π stacking and hydrophobic interactions in the two receptors), C10 had one less hydrogen bond in the C10-A2AAR complex than the C10-A1AR complex, which may be the reason for its weaker binding affinity and antagonistic activity for A2AAR.

Conclusions

In the quest for novel dual A1/A2A AR antagonists as putative agents for the treatment of Parkinson’s disease, we applied a multistage virtual screening approach combining deep learning, pharmacophore and molecular docking methods to screen the ChemDiv library (1,178,506 compounds) and tested 19 hits by in vitro assays. Initially, the cAMP functional assay identified five compounds that possessed antagonist activity towards A1/A2AAR with pIC50 values of 4.20–6.78. The radioligand binding assays confirmed that six of the eight compounds with antagonistic activity for A1AR and A2AAR (pIC50 of 4.20–6.78) also had consistent binding affinity against A1/A2A ARs (pKd of 4.71–7.49). In particular, compounds C8 and C9 showed the highest binding affinity and functional activity for A1/A2A ARs with Kᵢ values at the nanomolar level (pKᵢ of 7.16–7.49 and pIC50 of 6.31–6.78). Compounds C8 and C9 are novel 1,2,4-triazole derivatives acting as dual A1/A2A AR antagonists. The MD simulations of the
complexes between the A1/A2A ARs and C8 and C9 further suggest strong binding interactions. Therefore, compounds C8 and C9 are hits with potential after optimization for the development of anti-Parkinson’s disease agents.

Materials and methods

Data set preparation

Dual antagonists with binding constants (Kᵢ) for A1 AR and A2A AR subtypes were investigated in the ChEMBL25 database [53]. A dataset consisting of 310 bioactive dual antagonists from approximately 100 series (Kᵢ < 40 nM) and 405 nonbioactive compounds in the same series (Kᵢ > 1000 nM) were used to train the DNN and CNN classification models. The dataset was divided into a training set, test set and validation set at a ratio of 7:2:1.

Canvas similarity and clustering from Schrödinger were used to calculate the Tanimoto coefficients (Tc) of similarity between every pair of structures among 310 dual antagonists (Kᵢ < 40 nM). Based on the calculated Tc values, similar structures were grouped together into the same cluster, yielding 14 clusters. Then, 14 representative structures of the diverse clusters were subsequently used to build dual antagonist pharmacophore models of the A₁AR and A₂AR subtypes. To evaluate the performance of the pharmacophore models, an extra validation set comprising 42 dual antagonists (Kᵢ < 40 nM) of A₁AR and A₂AR subtypes and 913 decoy compounds was applied. With respect to known dual antagonists, the decoys were selected from the ZINC database using DecoyFinder [60] based on the following criteria: (1) Tanimoto coefficient < 0.75, (2) number of hydrogen bond acceptors ± 2, (3) number of hydrogen bond donors ± 1, (4) MW ± 25, (5) logP ± 1, and (6) Tanimoto coefficient less than 0.9 with respect to the other decoys.

All compounds in the training set, test set, validation set and ChemDiv library were prepared using Schrodinger’s Ligprep (version 10.2, Schrödinger, LLC) with the default settings to convert 2D structures to 3D structures, add hydrogen atoms, and generate tautomers, stereoisomers and protonation states at pH 7.0 ± 2.0 using Epik (version 4.3, Schrödinger, LLC).

DNN and CNN

A deep neural network (DNN) (Fig 8A) is a neural network with a certain complexity. DNNs comprise multiple levels of nonlinear operations and have many hidden layers. Neurons transfer information or signals to other neurons according to the received input, forming a complex network, and learning through some feedback mechanism [61]. A convolutional neural network (CNN) (Fig 8B) is a feed-forward neural network consisting of one or more convolutional layers and a fully connected layer at the top (corresponding to a classic neural network).

![Fig 8. Architectures of neural networks.](https://doi.org/10.1371/journal.pcbi.1008821.g008)
CNNs also include associated weights and a pooling layer [62]. This structure enables the convolutional neural network to utilize the two-dimensional structure of the input data. Compared with other deep learning structures, convolutional neural networks can provide better results in image and speech recognition. Compared with other deep, feed-forward neural networks, convolutional neural networks need to consider fewer parameters, rendering these networks attractive deep learning structures.

Various statistical parameters were used to validate the performance of the DNN and CNN models. To evaluate the classification ability, parameters such as sensitivity (SE), specificity (SP), prediction accuracy of active molecules (Q+), prediction accuracy of inactive molecules (Q−), Matthews correlation coefficient (MCC) and the area under the receiver operating characteristic curve (AUC), were calculated using the following equations [63]:

\[
SE = \frac{TP}{TP + FN}
\]

\[
SP = \frac{TN}{TN + FP}
\]

\[
Q^+ = \frac{TP}{TP + FP}
\]

\[
Q^- = \frac{TN}{TN + FN}
\]

\[
MCC = \frac{TP \times TN - FN \times FP}{\sqrt{(TP + FN)(TP + FP)(TN + FN)(TN + FP)}}
\]

where TP, FP, TN and FN denote true positives, false positives, true negatives and false negatives, respectively.

In this study, we aimed to improve the performance of dual A1/A2A AR antagonist identification by deep learning. L2 regularization and “dropout” layers were used to prevent overfitting, and the rectified linear unit (ReLU) [64] was adopted as the activation function. The adaptive moment estimation (Adam) method [65] was used as an optimization algorithm for stochastic gradient descent in the process of training the deep learning models. In general, the performance of deep learning models is sensitive to the appropriate hyperparameters. To select the optimal hyperparameters for the deep learning models, a grid search approach [66] was used to optimize the hyperparameters based on the size of the training, including the learning rate, L2 regularization and number of hidden layers, and the size of the eigenvector in the hidden layers of the CNN model. In this stage, 209,585 and 171,233 compounds from the ChemDiv library (1,178,506 compounds) passed the filter that applied the DNN and CNN classification models, respectively. In total, 58,886 compounds that were simultaneously predicted by the DNN and CNN models were retained. The code and data sets used to train and test both the DNN and CNN models can be downloaded at https://github.com/Houshujing/Adenosine.

Pharmacophore modeling

For the dual A1/A2A AR antagonist pharmacophore generation, 14 diverse structures (Ki < 40 nM) selected from 310 dual antagonists were aligned in 3D space to generate common feature pharmacophores using the Phase module (version 5.4, Schrödinger, LLC). Each antagonist
structure was minimized using the OPLS-2005 force field [67] implemented in Macromodel (version 11.9, Schrödinger, LLC), and described by a list of pharmacophore sites to characterize the chemical features contributing to the compound-protein interactions between the antagonists and A₁AR and A₂AAR subtypes. The perceived pharmacophore hypotheses were identified once the pharmacophore features were common to 50% of the antagonists. The generated pharmacophore hypotheses were examined using an extra validation set consisting of 42 dual antagonists and 913 decoy compounds. In this stage, 5,629 of the 58,886 compounds that matched the pharmacophore model were retained.

Molecular docking

A Virtual Screening Workflow (version 7.8, Schrödinger, LLC) was used to perform the molecular docking calculations using the X-ray structures of A₁AR cocrystallized with the antagonist PSB-36 (PDB ID 5N2S) and A₂AAR cocrystallized with the antagonist ZM-241385 (PDB ID 5IU4). For each complex, the energy grid was generated at the centroid of the cocrystallized ligand. In addition, QikProp (version 5.5, Schrödinger, LLC) and Lipinski’s rule were applied to eliminate molecules with undesirable drug likeness properties. The 5,629 compounds that passed QikProp and Lipinski’s filters were docked and ranked sequentially using the Glide HTVS, SP and XP score functions based on the Glide score. The top 50% good scoring compounds through HTVS docking were filtered using SP. The top 25% good scoring compounds through SP docking were filtered using XP. Then, 43 of the top 25% good scoring compounds through XP against A₁AR and A₂AAR were further screened using visual inspection.

Functional assay

In this work, 19 tested compounds were purchased from J&K Scientific Ltd. (Shanghai, China). Functional assays were performed by Pharmaron (Beijing) as previously described [52] by evaluating AR-mediated cAMP production using CHO-A₁ cells and HEK293-A₂A cells stably expressing A₁AR or A₂AAR, respectively. The CHO-A₁ cells and HEK293-A₂A cells were cultured in growth medium (Ham’s F12K (A₁AR)/DMEM (A₂AAR) + 10% FBS + 1*Ps + 400 μg/ml G418) at 37°C and 5% CO₂, collected by centrifugation and resuspended in Hank’s balanced salt solution (HBSS), 0.1% bovine serum albumin (BSA), 20 mM N-(2-hydroxyethyl)-piperazine-N0-ethanesulfonic acid (HEPES) and 100 nM 3-isobutyl-1-methylxanthine (IBMX). The test compounds were serially diluted in DMSO at 3-fold dilutions, resulting in 10 concentrations starting from 5.08 × 10⁻³ to 100 μM. To evaluate the antagonist activity, the test compounds were added to the cell plate, and their ability to counteract the agonist (5’-N-ethylcarboxamidoadenosine, NECA)-mediated decrease in cAMP accumulation was assessed. cAMP production was determined using an ALPHAScreen cAMP kit according to the manufacturer’s instructions.

Radioligand binding assays

The radioligand binding assays were also performed by Pharmaron (Beijing). In the A₁AR and A₂AAR assays, the test compounds were assessed in radioligand binding assays at human A₁AR ([³H]DPCPX) and A₂AAR ([³H]ZM241385). Displacement experiments of [³H]DPCPX (2.5 nM) against A₁AR (4 μg/well) and ten different concentrations of test compounds were performed in 50 μL of assay buffer (50 mM Tris-HCl, 10 mM MgCl₂, 1 mM EDTA, 1 μg/ml adenosine deaminase, pH 7.4) for 50 min at 25°C. The competition binding experiments of [³H]ZM241385 (0.5 nM) against A₂AAR (4 μg/well) and ten different concentrations of the test compounds were performed in 500 μL of assay buffer (50 mM Tris-HCl, 10 mM MgCl₂, 1 mM EDTA, 1 μg/ml adenosine deaminase, pH 7.4) for 90 min at 27°C.
Regarding the compounds that inhibited radioligand binding at A₁AR and A₂A AR by more than 50% at 100 μM, the IC₅₀ values were determined from the sigmoidal concentration-response curves, which were generated using Xlfit (Version 5.3.1; IDBS, Guildford, UK). Depending on the IC₅₀ values, the Kᵢ values of the test compounds were calculated using the Cheng-Prusoff equation as follows:

\[K_i = \frac{IC_{50}}{1 + \left[C^\dagger \right] / K_d} \]

[68]. In this equation, \([C^\dagger] \) and \(K_d \) are the concentration of the radioligand and the equilibrium dissociation constant of the radioligand, respectively. The \([C^\dagger] / K_d \) of the radioligands \([\text{H}]\text{DPCPX} \) and \([\text{H}]\text{ZM241385} \) were 2.5 nM/2.1 nM and 0.5 nM/2.06 nM, respectively. S13 Fig shows the K₅₀ determination curves of \([\text{H}]\text{DPCPX} \) and \([\text{H}]\text{ZM241385} \).

Molecular dynamics simulations

A₁AR and A₂A AR apo-proteins were extracted from the crystal structure of PSB36 or ZM241385 with thermally stable mutants A₁AR or A₂A AR (PDB ID: 5N2S and 5IU4) in the PDB database, respectively, and both apo-proteins and ligands were saved separately. The complex of PSB36 with thermostable mutant A₁AR and the complex of ZM241385 with thermostable mutant A₂A AR contain 9 and 10 mutation sites, respectively (5N2S: A54L, T88A, R107A, K122A, N154A, L202A, L235A, V239A, and S277A; 5IU4: M1P, A54L, T88A, R107A, K122A, N154A, L202A, L235A, V239A, and S277A). The mutant receptor residues were mutated back to the wild-type residues, the cocrystal T4 lysozyme was removed, and unnecessary small molecules were removed. The missing residues were added using the Prime module of Schrodinger. Hydrogen atoms were added through Schrödinger’s Protein Prepare module, and the protonation states of the protein residues were set at appropriate protonation states by the LEAP plugin in AMBER 18 as calculated using the H++ program [75]. The standard protonation states of the protein residues were set at appropriate protonation states by the LEAP plugin in AMBER 18 as calculated using the H++ program [75].

To build the systems, Lipid14 force field [77] was used for the lipid bilayer through visualized operations in VMD [71], solvated using the TIP3P water module [72] and neutralized using 0.15 M NaCl. Finally, each system contains approximately 71,500 atoms, with approximately 140 lipids and approximately 16,500 waters, and the simulation cell had dimensions of 95 Å × 80 Å × 110 Å.

The MD simulations were carried out in triplicate using the PMEMD algorithm of AMBER 18 software [73]. The AMBER ff14SB force field [74] was used for the A₁AR and A₂A AR systems. The standard protonation states of the protein residues were set at appropriate protonation states by the LEAP plugin in AMBER 18 as calculated using the H++ program [75]. The GAFF force field [76] and AMBER’s Antechamber were used to generate the topology and coordinate files of the compounds C8, C9, and C10. Lipid14 force field [77] was used for the POPE bilayer. First, each system was minimized by 10,000 steps. Second, a Langevin thermostat [78] was used to heat each system from 0 K to 310 K within 500 ps. Then, a 5-ns MD simulation in the NVT ensemble was performed while retaining the heavy atoms of the protein, ligand, and lipid head groups with a constraint of 50 kcal mol⁻¹ Å⁻². Third, an MD simulation
in the NPT ensemble was performed for 30 ns with a constraint for the protein and ligand. The restriction was gradually reduced from 50 (20 ns) to 10 (5 ns) and 2 kcal mol$^{-1}$ Å$^{-2}$ (5 ns). Finally, each system was simulated for 100 ns without constraints under constant pressure (NPT ensemble) using a Berendsen barostat [79]. The cutoff value for the nonbonded interactions was set to 12 Å. The SHAKE algorithm [80] was used to constrain the covalent bonds involving hydrogen atoms, and the PME algorithm [81] was applied to address remote electrostatic interactions. In the process of the dynamics simulation, the time steps were set to 2 fs, and the frames were saved for analysis every 5,000 steps. The CPPTRAJ tool in AMBER 18 and VMD software [71] were used to analyze the trajectories.

The binding free energy (ΔG_{eff}) [82,83] between the ligand and the protein was calculated using the MM-GBSA method [84–86] of the Python script MMPBSA.py [87]. For the calculation, the dielectric constant of the solvent was set to 80, and the dielectric constant of the solute (ε_{in}) was set to 1 for the lipophilic binding area. The polar part of the free energy of desolvation (ΔG_{GB}) was calculated using a modified GB model developed by Onufriev et al. [88]. The nonpolar part of the desolvation free energy (ΔG_{SA}) was calculated based on the solvent accessible surface (SASA) prediction calculated by the LCPO algorithm [89].

Supporting information

S1 Fig. Matching graph of 19 compounds and a pharmacophore model (AAADR_1). (TIF)

S2 Fig. (A)—(I): Concentration-response curves of compounds against A$_1$AR in the cAMP assay. The data are presented as the mean ± SD of the inhibition percentage of cAMP production in duplicate assays. (TIF)

S3 Fig. (A)—(I): Concentration-response curves of compounds against A$_{2A}$AR in the cAMP assay. The data are presented as the mean ± SD of the inhibition percentage of cAMP production in duplicate assays. (TIF)

S4 Fig. (A)—(I): Concentration-response curves of compounds against A$_1$AR in the radioligand binding assay. The data are presented as the mean ± SD of the inhibition percentage of radioligand binding at A$_1$AR in duplicate assays. (TIF)

S5 Fig. (A)—(I): Concentration-response curves of compounds against A$_{2A}$AR in the radioligand binding assay. The data are presented as the mean ± SD of the inhibition percentage of radioligand binding at A$_{2A}$AR in duplicate assays. (TIF)

S6 Fig. Corresponding Tc values of MACCS and ECFP4 [55]. Distributions of the Tc values of MACCS and ECFP4 were determined by conducting 10 million comparisons between randomly selected ZINC compounds. Correspondence between the Tc values of MACCS and ECFP4 was established by relating these Tc values to others that were met or exceeded by the same percentage of comparisons (indicated as labeled points on the curve). (TIF)

S7 Fig. Stable bilayer after 100 ns of MD simulations. (A) C8-A$_1$AR complex embedded in the bilayer. (B) C9-A$_1$AR complex embedded in the bilayer. (C) C8-A$_{2A}$AR complex embedded in the bilayer. (D) C9-A$_{2A}$AR complex embedded in the bilayer. The proteins are shown...
as blue (A\textsubscript{1}AR) and green (A\textsubscript{2A}AR) cartoons. The lipid molecules are represented as blue (A\textsubscript{1}AR) and green (A\textsubscript{2A}AR) lines. Sodium ions and chloride ions are represented as purple and green spheres. Water molecules are represented by red dots.

S8 Fig. RMSDs of the protein in the C8-A\textsubscript{1}AR complex (A), C9-A\textsubscript{1}AR complex (B), C8-A\textsubscript{2A}AR complex (C) and C9-A\textsubscript{2A}AR complex (D) during the 100-ns MD simulations.

S9 Fig. RMSDs of the ligand in the C8-A\textsubscript{1}AR complex (A), C9-A\textsubscript{1}AR complex (B), C8-A\textsubscript{2A}AR complex (C) and C9-A\textsubscript{2A}AR (D) during the 100-ns MD simulations.

S10 Fig. N-N distance between 1,2,4-triazol and the side chain amino group of N\textsubscript{254} in the C8-A\textsubscript{1}AR complex (A) and C9-A\textsubscript{1}AR complex (D). N-O distance between the 5-amino group and the side chain carbonyl of N\textsubscript{254} in the C8-A\textsubscript{1}AR complex (B) and C9-A\textsubscript{1}AR complex (E). Distance between the centroids of 1,2,4-triazol and the side chain phenyl of F\textsubscript{171}ECL2 in the C8-A\textsubscript{1}AR complex (C) and C9-A\textsubscript{1}AR complex (F).

S11 Fig. O-N distance between methanone and the side chain amino group of N\textsubscript{253} in the C8-A\textsubscript{2A}AR complex (A) and C9-A\textsubscript{2A}AR complex (E). N-O distance between the 5-amino group and the side chain carbonyl of N\textsubscript{253} in the C8-A\textsubscript{2A}AR complex (B) and C9-A\textsubscript{2A}AR complex (F). N-O distance between the 5-amino group and side chain of E\textsubscript{169}ECL2 in the C8-A\textsubscript{2A}AR complex (C) and C9-A\textsubscript{2A}AR complex (G). Distance between the centroids of 1,2,4-triazol and the side chain phenyl of F\textsubscript{168}ECL2 in the C8-A\textsubscript{2A}AR complex (D) and C9-A\textsubscript{2A}AR complex (H).

S12 Fig. N-N distance between pyrazolo[1,5-a]pyrimidin and the side chain amino group of N\textsubscript{254} (or N\textsubscript{253}) in the C10-A\textsubscript{1}AR complex (A) and C10-A\textsubscript{2A}AR complex (E). N-O distance between the N-propyl group and the side chain carbonyl of N\textsubscript{254} in the C10-A\textsubscript{1}AR complex (B). Distance between the centroids of pyrazole and the side chain phenyl of F\textsubscript{171}ECL2 (or F\textsubscript{168}ECL2) in the C10-A\textsubscript{1}AR complex (C) and C10-A\textsubscript{2A}AR complex (F). Distance between the centroids of pyrimidine and the side chain phenyl of F\textsubscript{171}ECL2 (or F\textsubscript{168}ECL2) in the C10-A\textsubscript{1}AR complex (D) and C10-A\textsubscript{2A}AR complex (G).

S13 Fig. (A) K\textsubscript{d} determination curves of [3H]DPCPX against A\textsubscript{1}AR in the filtration binding assay. Nonspecific signal: Different ligand concentrations of 10 \mu M DPCPX; (B) K\textsubscript{d} determination curves of [3H]ZM241385 against A\textsubscript{2A}AR in the saturation binding assay. Nonspecific signal: Different ligand concentrations with 10 \mu M ZM241385. CPM = counts per minute, TB = total binding, NSB = nonspecific binding.

S14 Fig. (A) Superposition of PSB36 in the orthosteric binding area of A\textsubscript{1}AR at the experimental structure (shown as sticks in white color) and the resulting docking pose (in green). (B) Superposition of ZM241385 in the orthosteric binding area of A\textsubscript{2A}AR at the experimental structure (shown as sticks in white color) and the resulting docking pose (in green). The protein is shown as a gray cartoon. The hydrogen bonds are represented by dashed lines. The side chains of F\textsubscript{171}, W\textsubscript{247}, H\textsubscript{251}, L\textsubscript{253}, N\textsubscript{254}, T\textsubscript{257}, H\textsubscript{278} (F\textsubscript{168}, N\textsubscript{253}, L\textsubscript{267}, I\textsubscript{274} in A\textsubscript{2A}AR) are represented as lines.
S1 Table. Training set for the dual A₁/A₂A AR antagonist pharmacophore models.
(PDF)

S2 Table. Performance of various VS methods by screening the validation set with 433 dual A₁/A₂A AR antagonists and 11,605 decoys.
(PDF)

S3 Table. Tc values of compounds C8 and C9 for Morgan, ECFP4 and MACCS.
(PDF)

S4 Table. RMSD between the redocked and crystallized conformations of PSB36 and ZM241385 by Glide XP.
(PDF)

Acknowledgments
This work was partially supported by computational resources by the Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences.

Author Contributions
Conceptualization: Mukuo Wang, Jianping Lin.
Investigation: Mukuo Wang, Shujing Hou, Yu Wei, Dongmei Li.
Methodology: Mukuo Wang, Yu Wei, Jianping Lin.
Visualization: Shujing Hou.
Writing – original draft: Mukuo Wang, Yu Wei.
Writing – review & editing: Dongmei Li, Jianping Lin.

References

