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Abstract

Forecasting the risk of pathogen spillover from reservoir populations of wild or domestic

animals is essential for the effective deployment of interventions such as wildlife vaccina-

tion or culling. Due to the sporadic nature of spillover events and limited availability of data,

developing and validating robust, spatially explicit, predictions is challenging. Recent

efforts have begun to make progress in this direction by capitalizing on machine learning

methodologies. An important weakness of existing approaches, however, is that they gen-

erally rely on combining human and reservoir infection data during the training process

and thus conflate risk attributable to the prevalence of the pathogen in the reservoir popu-

lation with the risk attributed to the realized rate of spillover into the human population.

Because effective planning of interventions requires that these components of risk be dis-

entangled, we developed a multi-layer machine learning framework that separates these

processes. Our approach begins by training models to predict the geographic range of the

primary reservoir and the subset of this range in which the pathogen occurs. The spillover

risk predicted by the product of these reservoir specific models is then fit to data on real-

ized patterns of historical spillover into the human population. The result is a geographi-

cally specific spillover risk forecast that can be easily decomposed and used to guide

effective intervention. Applying our method to Lassa virus, a zoonotic pathogen that regu-

larly spills over into the human population across West Africa, results in a model that

explains a modest but statistically significant portion of geographic variation in historical

patterns of spillover. When combined with a mechanistic mathematical model of infection

dynamics, our spillover risk model predicts that 897,700 humans are infected by Lassa
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virus each year across West Africa, with Nigeria accounting for more than half of these

human infections.

Author summary

The 2019 emergence of SARS-CoV-2 is a grim reminder of the threat animal-borne path-

ogens pose to human health. Even prior to SARS-CoV-2, the spillover of pathogens from

animal reservoirs was a persistent problem, with pathogens such as Ebola, Nipah, and

Lassa regularly but unpredictably causing outbreaks. Machine-learning models that antic-

ipate when and where pathogen transmission from animals to humans is likely to occur

would help guide surveillance efforts and preemptive countermeasures like information

campaigns or vaccination programs. We develop a novel machine learning framework

that uses datasets describing the distribution of a virus within its host and the range of its

animal host, along with data on spatial patterns of human immunity, to infer rates of ani-

mal-to-human transmission across a region. By training the model on data from the ani-

mal host alone, our framework allows rigorous validation of spillover predictions using

human data. We apply our framework to Lassa fever, a viral disease of West Africa that is

spread to humans by rodents, and use the predictions to update estimates of Lassa virus

infections in humans. Our results suggest that Nigeria is most at risk for the emergence of

Lassa virus, and should be prioritized for outbreak-surveillance.

Introduction

Emerging infectious diseases (EIDs) pose a persistent threat to public health. Approximately

60% of EIDs are caused by pathogens that normally circulate in wild or domestic animal reser-

voirs (i.e., zoonotic pathogens) [1]. Prior to full scale emergence, interaction between humans

and wildlife creates opportunities for the occasional transfer, or spillover, of the zoonotic path-

ogen into human populations [2]. These initial spillover infections, in turn, represent newly

established pathogen populations in human hosts that are subject to evolutionary pressures

and may potentially lead to increased transmission among humans [2, 3]. Consequently, a key

step in preempting the threat of EIDs is careful monitoring of when and where spillover into

the human population occurs. However, because the majority of EIDs from wildlife originate

in low and middle income regions with limited disease surveillance, accurately estimating the

rate and geographical range of pathogen spillover, and therefore the risk of new EIDs, is a

major challenge [1].

Machine learning techniques have shown promise at predicting the geographical range of

spillover risk for several zoonotic diseases including Lassa fever [4–6], Ebola [7, 8], and Leish-

maniases [9]. Generally, these models are trained to associate environmental features with the

presence or absence of case reports in humans or the associated reservoir. Once inferred from

the training process, the learned relationships between disease presence and the environment

can be extended across a region of interest. Using these techniques, previous studies of Lassa

fever (LF) have derived risk maps that assess the likelihood of human LF cases being present in

different regions of West Africa [4, 5]. However, because these forecasts combine case-reports

from both rodents and humans in the training process, they conflate attributes of the human

and reservoir populations that increase spillover risk. Consequently, these approaches shed
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little light on aspects of reservoir or human populations that determine the magnitude of spill-

over at a location and thus miss opportunities to identify effective interventions.

We develop a multi-layer machine learning framework that accounts for the differences

between how data involving a wildlife reservoir, and data from human serosurveys, can simul-

taneously inform spillover risk in people and rigorously assess whether predicted risk quanti-

fies the rate of new infections in humans. Our approach uses machine learning algorithms

that, when trained on data from the wildlife reservoir alone, estimate the likelihood that the

reservoir and the zoonotic pathogen are present in an area. These predictions are then com-

bined into a composite estimate of spillover risk to humans. Next, our framework uses esti-

mates of human pathogen seroprevalence, as well as estimates of human population density, to

translate the composite risk estimate into a prediction of the realized rate of zoonotic spillover

into humans. Omitting human seroprevalence data from the training process of the risk-layer

has several advantages. First, in the case of LF, due to modern transportation and the longevity

of Lassa virus antibodies in humans, a general concern is that the reported location of individ-

ual cases of human disease or Lassa virus antibody detection is not the site at which the infec-

tion occurred [10–12]. If the dispersal ability of the reservoir is small, training the risk layer on

reservoir infections alone helps the model avoid these biases when learning the spatial varia-

tion of spillover risk. Secondly, in our framework, human seroprevalence estimates provide

an ultimate test of the risk layer’s ability to correlate with spatial variation in the cumulative

human exposure to the pathogen. The seroprevalence data, in turn, stem from population-

based surveys at a site and are therefore much less likely to be influenced by the movement of

individuals.

We apply our framework to Lassa virus (formally Lassa mammarenavirus [LASV]), a bi-

segmented, single-stranded ambisense RNA virus in the Arenaviridae family and the causative

agent of LF in West Africa [11, 13]. Though LASV can transmit directly between humans and

often does so in hospital settings [14], rodent-to-human transmission accounts for the major-

ity of new LASV infections [11, 15]. Specifically, the multimammate ratMastomys natalensis is

believed to be responsible for most of the transmission into the human population, either

through consumption of food contaminated by rodent feces and urine or through hunting and

consumption of the rodent reservoir itself [16]. What remains largely unknown, however, is

the extent to which spatial patterns of spillover are driven by spatial variation in the abundance

ofM. natalensis and viral prevalence withinM. natalensis relative to spatial variation in other

contributing factors such as human behavior, housing materials, or other rodent reservoirs.

An additional unknown is the true magnitude of spillover into the human population outside

of the few areas in Sierra Leone and Nigeria where hospitals with Lassa diagnostic capacity

exist. As a consequence, most estimates for the magnitude of Lassa virus spillover rely on

longitudinal serosurveys conducted in the 1980s in Sierra Leone [17], yielding estimates of

between 100,000 and 300,000 LASV infections each year across West Africa. Here, we use our

framework to fill these important gaps in our current understanding of Lassa virus spillover

within West Africa.

Data and study region

We used online data repositories and literature sources to collect three types of data in West

Africa spanning the time-range 1970—2017: 1) capture-locations ofM. natalensis, as well as

occurrence locations of non-Mastomys murids; 2) locations and outcomes of LASV surveys

conducted inM. natalensis; and 3) locations and measured seroprevalence of human LASV

serosurveys. The focal region from which our data originate, shown in Fig 1, was chosen as the

intersection of West Africa and the International Union for Conservation of Nature (IUCN)
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range map forMastomys natalensis [18, 19]. ThoughM. natalensis is widely distributed across

all of Africa, the species consists of multiple clades that likely differ in their ability to serve as

hosts to LASV [20, 21]. By limiting the spatial extent of the study region to West Africa we

focus on the region occupied by the A-I clade ofM. natalensis that is believed to transmit

LASV [22]. OurM. natalensis capture data, as well as all of the LASV survey data, originate

from within this region, thus providing a discrete bound on the area of Africa in which the

learned relationships of the model apply. For these analyses, this study region was divided into

0.05˚x0.05˚ pixels (approximately 5 km by 5 km at the equator).

The first two datasets generate response variables for the model layers that predict LASV

risk. The human seroprevalence data are used to evaluate the combined LASV risk layer for its

ability to predict LASV spillover in humans and are also used to calibrate the stage of the

model that predicts human LASV spillover. Our full dataset and the script files used to fit the

models are available in a github repository [23].

Mastomys natalensis presence data and background

We collected data on historical captures ofM. natalensis from various sources. First, several

sources were used to identify all countries of West Africa that containM. natalensis [24–26].

Next, rodent and mammal databases, as well as literature sources, were cross-referenced to fill

in details regarding the year of capture, latitude/longitude coordinates, and the method of

identification for each location at whichM. natalensis was documented [17, 20, 27–42].

BecauseM. natalensis is morphologically similar to other rodents in the study region (e.g.,

Mastomys erythroleucus), we only include those presences that have been confirmed with

genetic methods or skull morphology. We found 167 locations with confirmedM. natalensis
captures. AllM. natalensis captures occurred in the time-range 1977—2017.

Fig 1. Map of the study region. The dashed blue line indicates the study region from which rodent and human data originate. Dots indicate locations

at which Lassa virus or arenavirus antibodies have been sampled in rodents or humans. Each rodent point shows the outcome of a serological or PCR

test. Each human population point shows the location of a serosurvey.

https://doi.org/10.1371/journal.pcbi.1008811.g001
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Fitting the model requires supplementing the presence-only data with background points,

also called pseudo-absences [43, 44]. Background points serve as an estimate of the distribu-

tion of sampling effort for the organism being modeled [45]. We used background points cho-

sen from locations where rodents in the family Muridae had been captured in West Africa

from the Global Biodiversity Information Facility (GBIF) website [46]. We filtered the original

dataset to reduce the likelihood of includingM. natalensis rodents that were misidentified as

M. erythroleucus and vice versa. Namely, we omit from the collection all Murid occurrences

that are within the genusMastomys. In addition, to ensure that the GBIF captures are concur-

rent with captures ofM. natalensis, we only retained captures that occurred in the time-frame

of theM. natalensis captures. Finally, we only included records that are within the study region

depicted in Fig 1 and that fall outside of any pixel that contains a documentedM. natalensis.
The resulting GBIF dataset spans the years 1977—2015.

These data were used to categorize the subset of the pixels that contained one or more cap-

tures into two exclusive categories: those in which at least oneM. natalensis had been captured

(termed presences), and those with only non-Mastomys rodent occurrences (termed pseudo-

absences). In total, our dataset classified 155 unique pixels as capture-positive forM. natalen-
sis, and 252 pixels as background (Table 1).

Surveys of Mastomys natalensis for Lassa virus

We compiled a dataset that contains occurrences of LASV in rodents or humans. The dataset

was established by an extensive review of LASV literature. Primary sources were found by

PubMed and GenBank searches of the terms “Lassa”, “Lassa fever”, “Lassa virus”, “Lassa arena-

virus”, and “Lassa mammarenavirus” [47]. Data from these primary sources was organized

into an Excel workbook.

From the full LASV dataset, we collected published studies that sampledM. natalensis
rodents for indicators of LASV. For each study, we found the sampling location for each tested

rodent (either latitude/longitude or a locality name for which coordinates could be obtained).

Table 1. Summary of rodent captures used in the reservoir layer.

Country Year # Pseudoabsences # Presences

Benin 2001-2017 12 7

Burkina Faso 1977-2008 3 15

Ghana 1999-2011 13 9

Guinea 1996-2012 71 12

Guinea-Bissau 2013 1 0

Ivory Coast 1978-2010 21 8

Liberia 1980-2013 18 0

Mali 1979-2012 58 47

Niger 1977-2007 16 14

Nigeria 1977-2015 7 13

Senegal 1990-2005 0 13

Sierra Leone 1977-2014 31 17

Togo 1982 1 0

Aggregate 1977-2017 252 155

# Pseudoabsences shows the number of unique 0.05 × 0.05˚ pixels in the GBIF dataset for which only non-Mastomys rodents were captured. # Presences indicates the

number of pixels in which one or moreM. natalensis was captured.

https://doi.org/10.1371/journal.pcbi.1008811.t001
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In total, we compiled thirteen rodent studies [17, 30, 34, 36, 39, 41, 42, 48–53] that testedM.
natalensis for LASV and contained latitude/longitude coordinates. The resulting test locations

originate from six countries and span the years 1972–2014.

Because the prevalence of LASV in rodents varies seasonally [54], and because of the spar-

sity of time-series data that might otherwise allow the average LASV prevalence in rodents to

be estimated, we used the collected data to broadly classify pixels into the categories “Lassa

positive” or “Lassa negative”. Specifically, a pixel was defined as Lassa positive if, at some

point, aM. natalensis rodent was captured within the pixel, and the rodent tested positive for

LASV using a RT-PCR assay or viral isolation. Because arenavirus antibodies cross-react, a

positive LASV antibody test in an individual rodent only indicates past infection with an are-

navirus, and not necessarily LASV. In an effort to reduce the frequency of false positives in the

training data, pixels that only contain LASV seropositive tests of rodents, and no positive

LASV viral detection, were not used as training data. These criteria led to the omission of eight

pixels from the training data. Fitting the model with these eight pixels included as presences is

an option in the code on the github repository, but does not substantially affect the overall fit

of the model [23].

Although serosurveys of rodents cannot specifically show that LASV is present, they can

indicate the absence of LASV (along with all other arenaviruses). Pixels were classified as Lassa

negative if five or moreM. natalenis rodents in total were tested for infection with LASV by

RT-PCR, or tested for any previous arenavirus exposure using a serological assay, and all

rodents tested were negative. We chose a threshold of five to help reduce the chance of includ-

ing false negatives (i.e. sites that have LASV but in which only non-exposed rodents were cap-

tured). This procedure allowed us to classify 62 unique pixels in total: 27 were classified as

Lassa negative, and 35 were classified as Lassa positive (Table 2 and Fig 1).

Human seroprevalence data

From our full LASV dataset described in the previous section, we collected literature sources

that describe the prevalence of arenavirus antibodies in human populations of West Africa. As

with the rodent LASV infection data, arenavirus antibodies are not specific to LASV. However,

because human serosurveys were often conducted in LASV endemic areas or near docu-

mented locations of LASV-infected rodents, these serosurveys likely measured the fraction of

humans with previous LASV infection, rather than exposure to another arenavirus. We

required that each literature source include information on the diagnostic method that was

used to test individuals (e.g., ELISA, IFA) and broad details of the survey design. We only

Table 2. Summary of LASV positive and LASV negative pixels used in the pathogen layer.

Country Year # Pixels # Neg. Pixels # Pos. Pixels

Ghana 2010-2011 7 7 0

Guinea 2003-2014 19 6 13

Ivory Coast 2003-2013 4 3 1

Mali 2004-2012 11 7 4

Nigeria 1972-2012 6 3 3

Sierra Leone 1972-2009 15 1 14

Aggregate 1972-2014 62 27 35

Each row aggregates literature and GenBank data sources over a country. # Pos. Pixels indicates the number of

unique pixels that had one or more LASV-infected rodents. # Neg. Pixels is the number of pixels in which five or

more rodents were tested and found negative for LASV infection or antibody.

https://doi.org/10.1371/journal.pcbi.1008811.t002
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included survey studies that were designed to estimate the seroprevalence in the local commu-

nity population. This criterion excluded surveys of hospitals, for example, as well as surveys of

missionaries.

Each datum contains latitude and longitude of the serosurvey, the number of individuals

tested, and the number of individuals determined to have arenavirus antibodies. In total, we col-

lected 94 serosurveys from seven studies (Fig 1) [17, 55–60]. These serosurveys were conducted

between 1970 and 2015 and are located in five countries in West Africa (Table 3 and Fig 1).

Predictors

We include predictors that are broadly hypothesized to influence the distributions ofM. nata-
lensis and LASV.M. natalensis is widely distributed across sub-Saharan Africa in savanna and

shrubland environments. Within such environments,M. natalensis is commonly associated

with small rural communities and is considered a serious agricultural pest [19, 54]. To allow

the model the possibility to learn these relationships, we include predictors that describe

MODIS land cover features as predictors, and also include human population density within

each pixel. We also include elevation in meters. Because climate seasonality and crop matura-

tion affect the breeding season ofM. natalensis, we include various measures of the seasonality

of the vegetative index (NDVI), precipitation, and temperature [61]. See S1 Appendix for a

complete list of environmental variables. LASV is often associated withM. natalensis, so we

use the same set of predictors for the pathogen layer.

Methods

We developed a model that predicts the rate of LASV infection in humans within individual

0.05˚x0.05˚ pixels across West Africa. An overview of the model framework is depicted in

Fig 2. Outputs from the model are generated in two stages. The first stage uses environmental

features to estimate different layers of LASV spillover risk. The layers of risk, in turn, are

described by: 1)DM, a classification score indicating the likelihood that a pixel contains the pri-

mary rodent reservoir,M. natalensis, and 2) DL, a score indicating the likelihood that LASV

circulates within theM. natalensis population, conditioned on the rodent being present.

Depending on the layer, the response variable for this stage is generated from documented

occurrences ofM. natalensis (DM layer), or evidence of past LASV infection inM. natalensis
(DL layer). These layers are used to define a composite layer of spillover risk DX, the product of

DM and DL, that describes the likelihood that a pixel simultaneously containsM. natalensis

Table 3. Summary of human arenavirus serosurveys used in the model.

Country Year # Sites Method # Tested % Seropositive Reference

Ghana 2010-2011 10 ELISA 657 5 [57]

Guinea 2000 30 IFA 977 11 [55]

Guinea 1990-1993 28 ELISA 3276 23 [56]

Liberia 1980-1982 7 IFA 1848 5 [59]

Mali 2015 3 ELISA 600 33 [58]

Sierra Leone 1977-1983 14 IFA 5098 23 [17]

Sierra Leone 1970-1972 2 CF 255 6 [60]

Aggregate 1970-2015 94 12,711 19

Each row is an individual literature source. For each study, # Sites shows the number of locations at which arenavirus surveys were performed, # Tested indicates the

total number of individuals tested across sites, and % Seropositive shows the percentage of individuals that tested positive across all sites.

https://doi.org/10.1371/journal.pcbi.1008811.t003
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and LASV. The second stage of our framework uses a generalized linear model to regress the

estimates of human arenavirus seroprevalence onto the DX layer. Lastly, we used an epidemio-

logical model to estimate human incidence from the predictions of seroprevalence.

LASV risk layers

Each risk layer of the first stage is generated by a separate boosted classification tree (BCT).

The BCT, in turn, uses environmental features within a pixel to infer a classification score,

Fig 2. Overview of the model. Ellipses represent datasets, circles represent models, and rectangles represent model predictions.

https://doi.org/10.1371/journal.pcbi.1008811.g002

PLOS COMPUTATIONAL BIOLOGY Using reservoir ecology and human serosurveys to estimate Lassa virus spillover

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008811 March 3, 2021 8 / 24

https://doi.org/10.1371/journal.pcbi.1008811.g002
https://doi.org/10.1371/journal.pcbi.1008811


between zero and one, that indicates how likely it is that the pixel is positive forM. natalensis
(DM layer) or LASV inM. natalensis (DL layer). BCTs use a stage-wise learning algorithm that,

at each stage, trains a new tree model to the residuals of the current model iteration. Each

newly fitted tree is added to the ensemble model, thereby reducing the residual deviance

between the model predictions and a training set [62]. Boosted trees are commonly used in

species and disease distribution models because they are simultaneously resistant to over-fit-

ting in scenarios where many feature variables are implemented and are also able to model

complex interactions among features [63].

Prior to inclusion in the model-fitting procedure, each feature variable was vetted for its

ability to distinguish between presences and absences in each of the layers. Specifically, for

each risk layer’s binary response variable, we performed a Mann-Whitney U-test on each can-

didate feature. In doing so, we test the null hypothesis that the distribution of a feature is the

same between pixels that are classified as a presence or (pseudo) absence. We only include pre-

dictors for which the null hypothesis is rejected at the α = 0.05 level.

For a given training set, we fit the BCT model using the gbm.step function of the “dismo”

package in the statistical language R [64]. This specific function uses 10-fold cross-validation

to determine the number of successive trees that best model the relationship between response

and features without over-fitting the data [64]. The learning rate parameter, which determines

the weight given to each successive tree, was set to small values (DM: 10−2, DL: 10−3) that

encourage a final model that is composed of many small incremental improvements. A smaller

learning rate was used in the DL layer because the corresponding dataset was smaller. The

parameter that describes the maximum number of allowable trees was set to a large value (107)

to ensure that the cross-validation fitting process was able to add trees until no further

improvement occurred [62].

For the DM layer, we trained 25 boosted classification trees to learn how environmental pre-

dictors influence the suitability of a habitat forM. natalensis. Each model was fit by selecting

155 presence pixels and pairing these with 155 background pixels in which only non-Mast-

omys murids were found. Both presences and background pixels were chosen with replace-

ment. By choosing equal numbers of presences and background pixels for each training set, we

encourage each model to learn patterns in features that allow presences to be discriminated

from background pixels, rather than having the model learn the (likely biased) distribution of

presences and background pixels that are available in the overall dataset [44].

For each model fit for the DM layer, presence and pseudo-absence pixels that were not used

to train the model (i.e., out-of-bag data) were used to test the model using the area-under-the-

receiver-curve (AUC). The AUC measures a classifier’s ability to assign a high classification

score to presences, and a low score to background pixels. A score of one indicates a perfect

classifier, and a score of 0.5 indicates a classifier that is no better than chance. A pairwise-dis-

tance sampling scheme was used to pair an equal number of test-background pixels to the out-

of-bag presences that together comprise the test set. Specifically, for each test presence point,

the pairwise distance sampling method chooses a test background point so that the minimum

spatial distance between the training presences and test presence is similar to the minimum

distance between the test background point and training presences [65]. Compared to random

selection of test background points, pairwise distance sampling oftentimes results in a lower

AUC score that more accurately measures the model’s ability to generalize to new regions [65].

The DL layer is generated by the averaged predictions of 25 boosted classification tree mod-

els, each of which is trained to discriminate between pixels that are Lassa positive or Lassa neg-

ative. We trained each model on a dataset comprised of 27 absence locations and 27 presence

locations, sampled from the full dataset with replacement. The estimation of error in the DL
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layer is similar to that described in the DM layer. Specifically, we calculate the AUC of the fitted

model on an equal number of out-of-bag presences and absences.

Next, we combined the DM and DL layers into a composite feature, denoted by DX, that is

indicative of whether a pixel simultaneously has environmental features that are suitable forM.
natalensis, as well as LASV inM. natalensis. The combined feature is defined as DX = DM × DL
and summarizes the realized risk of LASV spillover to humans within the local environment.

Connection to human seroprevalence and incidence

To connect the new risk parameter DX to human arenavirus seroprevalence, and to evaluate

the ability of the DX layer to explain historical LASV spillover in humans, we regressed sero-

prevalence from human arenavirus serosurveys on the DX layer and an intercept. In doing so,

we test whether human seroprevalence is significantly associated with the probability DX that a

pixel contains LASV-infectedM. natalensis. We used quasi-binomial regression to account for

overdispersion in seroprevalence measurements that could otherwise contaminate hypothesis

tests on model coefficients [66]. More details on the motivation behind the quasi-binomial

regression can be found in the S1 Appendix. In the regression, each seroprevalence estimate is

weighted by the number of individuals tested in the serosurvey.

Next, we used an epidemiological model, based on the classic susceptible-infected-recov-

ered framework, to derive an equation that relates a given LASV spillover rate into humans

and the resulting seroprevalence in a human population. Throughout, we assume that the sero-

prevalence measures that were obtained from historical serosurveys describe LASV infection

at steady state (i.e., are unchanging in time). This derivation, in turn, is used to translate the

regression model’s predictions of LASV seroprevalence into spillover infections per year in

humans. For the model, we employ several assumptions: 1) humans within each 0.05x0.05˚

pixel constitute a closed population with constant per-capita death rate d. To facilitate steady-

state analysis, we assume that new individuals are born in the pixel at a density-independent

birth rate b. Within each pixel, humans are compartmentalized into three non-overlapping

classes: susceptible (S), infected with LASV (I), and recovered from LASV infection (R). The

size of the human population is assumed to be large enough so that stochastic events (LASV

extinction) do not occur. 2) All LASV infections in humans are caused by contact with infec-

tious rodents. Though human-to-human transmission of LASV is common in nosocomial

outbreaks, rodent-to-human transmission is believed to be the primary pathway by which the

virus is spread outside of hospital environments [15]. 3) Susceptible humans become infected

with LASV at a constant rate FS, where F denotes the rate of infectious contact between a

human and infectedM. natalensis (i.e., the force of infection). Any seasonal fluctuation in the

contact rate between humans and rodents, as well as fluctuation in the prevalence of LASV

infection in rodents, is assumed to average out over the decades-long timescales we consider.

LASV-infected humans transition out of the infected class at per-capita rate γ; a fraction μ die

from illness associated with Lassa Fever. 4) The remaining fraction 1 − μ of individuals recover

from infection and gain immunity from LASV.

The duration of LASV immunity in humans is not fully understood. Studies suggest that

LASV immunity is the result of a combination of antibodies and a cell-mediated immune

response [17, 67]. Anecdotal cases have shown that LASV IgG antibodies can remain in the

blood of individuals for decades [10]. However, other studies have indicated that the level of

LASV antibodies, as well as the extent to which an individual is protected against subsequent

LASV infection, can wane with time [17, 67]. Preliminary analyses indicated that the possibil-

ity of waning immunity substantially influenced our model’s estimates of LASV infections

per year. Because of this uncertainty, we model the general scenario in which recovered
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individuals lose immunity to LASV at per-capita rate λ and transition back into the susceptible

class. This more general model structure includes the scenario of lifelong immunity in the case

that λ = 0.

Within each pixel across West Africa, the assumptions above lead to a system of equations

that describes the number of humans in each of the classes:

dS
dt
¼ b � dS � FSþ lR;

dI
dt
¼ FS � dI � gI;

dR
dt
¼ gð1 � mÞI � dR � lR:

ð1Þ

We assume that, within each pixel, the dynamical system given by System (1) is at steady

state. Consequently, the net rate of mortality is equal to the constant birth rate b, and each of

the classes S, I, and R are not changing with time. The corresponding steady-state values are

found by setting the left-hand-side of Eq (1) to zero, and solving the resulting algebraic equa-

tions for each state variable. This yields the steady-state values

S� ¼
bðgþ dÞðd þ lÞ

dlðgþ d þ FÞ þ dðgþ dÞðd þ FÞ þ gFlm
;

I� ¼
bFðd þ lÞ

dlðgþ d þ FÞ þ dðgþ dÞðd þ FÞ þ gFlm
;

R� ¼
bgFð1 � mÞ

dlðgþ d þ FÞ þ dðgþ dÞðd þ FÞ þ gFlm
:

ð2Þ

At steady state, the total population size in a pixel is P� = S� + I� + R�. We can write P� in

terms of the model parameters by plugging in the steady-state values given by Eq (2):

P� ¼ b
glþ d2 þ dðg þ F þ lÞ þ Fðgþ l � gmÞ
dlðgþ d þ FÞ þ dðgþ dÞðd þ FÞ þ gFlm

: ð3Þ

By dividing R� by the total population size at steady state, P�, we derive an equation for the

steady-state seroprevalence, denoted O�:

O
�
¼

gFð1 � mÞ
glþ d2 þ dðgþ F þ lÞ þ Fðgþ l � gmÞ

: ð4Þ

Now we solve for the total LASV spillover rate FS, given that the steady-state LASV sero-

prevalence is O�. Solving Eq (4) for F in terms of O� yields:

F ¼ �
O
�
ðgþ dÞðd þ lÞ

O
�d þ gð� O�mþ O� þ m � 1Þ þ O

�
l
: ð5Þ

The rate of new infections is given by

Z≔ FS� ¼
P�O�ðd þ gÞðd þ lÞ

gð1 � mÞ
: ð6Þ

These analyses were derived using Mathematica. The notebook file is available in the github

repository [23].
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By substituting our prediction of human LASV seroprevalence forO�, we can estimate the

total human infection rate using Eq (6). Calculating these estimates requires values for d, γ, μ,

λ, and P�. We chose parameters that are broadly in line with the epidemiology of LASV and

the demography of humans in West Africa.

We use values of death rate d derived from country-specific lifespan estimates obtained

from WorldBank [68]. For a pixel within a given country, d is set to be the reciprocal mean life-

span of that country’s 2018 life expectancy at birth. Studies indicate that the duration of LASV

infection is typically about one month, so that γ = 12 yr−1 across all pixels [11]. LASV infection

causes mortality in a fraction μ = 0.02 of non-nosocomial infections [17].

The rate of seroreversion is difficult to estimate empirically. McCormick et al. (1987) esti-

mated that λ = 0.064 yr−1 using a longitudinal study of IgG immune markers in individuals.

However, it is unclear whether their results indicated true seroreversion, or whether the reduc-

tion of LASV immune markers below detectable levels made it appear as though seroreversion

occurred. To better understand the potential consequences of seroreversion in our infection-

rate estimates, we focus on two scenarios. In the first, any individual that has recovered from

LASV infection remains seropositive for the remainder of their life (λ = 0 yr−1). In the second

scenario, seroreversion occurs at the rate estimated by McCormick et al. (1987) (λ = 0.064

yr−1). In this case, an individual recovered from LASV is assumed to produce antibodies and

maintain LASV immunity for an average duration of 15.6 years. We use the unprocessed

WorldPop 2020 population data (described in S1 Appendix) as an estimate of the steady-state

population size, P�, within each pixel of the original 0.0083˚ resolution.

Results

LASV risk layers

The DM layer is constructed by averaging the predictions of 25 boosted classification tree mod-

els. Across all 25 bootstrap fits, the average out-of-bag AUC was 0.68, with a standard devia-

tion of 0.05. This AUC indicates that the model has a modest ability to correctly discriminate

pixels in whichM. natalensis has been captured from background pixels, and is similar to out-

of-bag AUC scores obtained in another study with a similar assessment criterion [5]. The algo-

rithm assigned a high likelihood of occurrence to regions with a strong seasonal pattern of veg-

etation as well as specific levels of rainfall (S1 Appendix). Across 25 fitted models that made up

the DL layer, the average AUC was 0.85, with a standard deviation of 0.08. This indicates a

model that is good at discriminating between Lassa presences and absences. The algorithm pri-

marily used precipitation contingency to determine whether or not a pixel is suitable for

endemic LASV inM. natalensis (S1 Appendix).

Fig 3A–3C show maps of each of the fitted risk layers, as well as the combined layer of real-

ized risk, DX. As indicated by the IUCN range map forM. natalensis [19], most countries of

West Africa are predicted to harbor this primary rodent reservoir of LASV (Fig 3A). However,

the rodent is predicted to be less prevalent along coastal areas of West Africa and southern

Nigeria. Similar to other Lassa risk maps [4, 5], our DL layer predictions indicate that the risk

of LASV in rodents is primarily concentrated in the eastern and western extremes of West

Africa (Fig 3B). The combined risk, shown in Fig 3C, indicates that environmental features

suitable for rodent-to-human LASV transmission are primarily located in Sierra Leone,

Guinea, and Nigeria.

Connection to human seroprevalence and spillover

A quasi-binomial regression indicated a significant, positive association between the combined

LASV risk predictor DX, and the human arenavirus seroprevalence measured in serosurveys

PLOS COMPUTATIONAL BIOLOGY Using reservoir ecology and human serosurveys to estimate Lassa virus spillover

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008811 March 3, 2021 12 / 24

https://doi.org/10.1371/journal.pcbi.1008811


(coefficient: 1.50, p = 0.000123, Fig 4). The model also indicated the presence of substantial

overdispersion in the human seroprevalence dataset (φ = 15.1). More information on the

GLM output can be found in the S1 Appendix. By applying the general linear model to the

combined LASV risk layer, we extrapolate the human LASV seroprevalence across West Africa

(Fig 5). Our results indicate that human LASV seroprevalence is greatest in the eastern and

western regions of West Africa, with especially high seroprevalence in Central Guinea, Sierra

Leone, and Nigeria.

Furthermore, by assuming that our predictions are representative of LASV infection at

steady state, we can derive the number of LASV infections per year in humans. If the DX layer

accurately describes the spatial heterogeneity of LASV seroprevalence in humans, and if LASV

antibody production upon recovery is lifelong, our framework estimates that 897,700 new

human infections occur each year. Between 664,300–843,800 (i.e., 74–94%) of these infections

are expected to be sub-clinical or asymptomatic, leaving 53,900–233,400 infections that might

require hospitalization [17]. Given that 2% of all infections result in fatality, our estimates

imply that 18,000 individuals die of Lassa Fever in West Africa each year. Though our

model does not account for differences of LASV risk by sex or age, research suggests that

Fig 3. Calculating the combined risk layer. (A) Map shows the likelihood that each 0.05˚ pixel in West Africa contains the primary reservoir of Lassa

virus,M. natalensis. Pink dots indicate locations of captures that were used to train the model. Black line indicates the IUCNM. natalensis range map.

(B) Predicted distribution of Lassa virus inM. natalensis. Dots indicate locations in whichM. natalensis were surveyed for the virus. (C) Combined risk,

defined as the product of the above two layers.

https://doi.org/10.1371/journal.pcbi.1008811.g003
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hospitalizations may be skewed towards females, and fatalities will be biased towards individu-

als under 29 years of age but not skewed by gender [69].

Table 4 shows the number of LASV infections per year by country, ordered by number of

infections. Our predictions indicate that more than half of new human LASV infections

(531,700) in West Africa will occur in Nigeria (Fig 6). This distribution of LASV infection is

largely due to the greater population size within Nigeria, as the per person spillover rates do

not differ dramatically between countries (Table 4). After Nigeria, Ghana (60,200 infections

per year) and the Ivory Coast (57,700 infections per year), respectively, are predicted to have

the highest incidence of human LASV infections. Sierra Leone, Nigeria, and Guinea are pre-

dicted to have the highest per-capita rates of LASV infection (Table 4).

The above estimates are based on the premise that, upon recovery from LASV infection, an

individual produces antibodies for the remainder of their life. If, instead, LASV antibody pro-

duction ceases after an average of 15.6 years as suggested by some longitudinal serosurveys

[17], then a given level of seroprevalence implies almost five times as many infections com-

pared to the scenario with lifelong antibody production. Specifically, allowing for seroreversion

Fig 4. Human arenavirus seroprevalence vs the combined risk layer. Each circle represents a different serosurvey.

The size of the circle indicates the number of humans that were tested. Solid black line shows the quasi-binomial

prediction of seroprevalence, and the red dashed lines show the 95% confidence intervals. Confidence intervals were

obtained by fitting the model 1000 times on random samples taken from the dataset with replacement.

https://doi.org/10.1371/journal.pcbi.1008811.g004
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and subsequent LASV reinfection in the model implies 4,383,600 infections occur each year.

Inclusion of reinfection does not change the ranking of countries in Table 4.

Discussion

Machine learning approaches that forecast the spatial risk of emerging infectious diseases such

as Lassa virus are often not designed to explain how aspects of the environment translate into

Fig 5. Predicted human seroprevalence of Lassa virus in West Africa. Dots show locations of human serosurveys, and dot color indicates

the residual of the predicted seroprevalence. White dots indicate locations for which measured seroprevalence fell within 0.1 of the prediction.

Measured seroprevalence at red dots was 0.1 or more greater than that predicted, and seroprevalence at blue dots was 0.1 or more below the

prediction.

https://doi.org/10.1371/journal.pcbi.1008811.g005

Table 4. Predicted annual number of Lassa virus infections and infection rate.

Country 1000’s of infections Rate

Nigeria 531.7 2.6

Ghana 60.2 2.0

Ivory Coast 57.7 2.3

Niger 46.9 2.0

Burkina Faso 44.4 2.1

Mali 44.3 2.2

Guinea 35.0 2.5

Benin 27.0 2.2

Sierra Leone 20.7 2.9

Togo 17.9 2.2

Liberia 9.9 2.0

Mauritania 1.0 1.9

Senegal 0.8 2.0

Infection rate is in units of number of infections per year per 1000 people. Estimates in the table are derived

assuming seroreversion and reinfection do not occur.

https://doi.org/10.1371/journal.pcbi.1008811.t004
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realized pathogen spillover into human populations [4, 5]. Models that specifically predict

attributes of the reservoir from the environment, and use these predictions to quantify spill-

over into humans, offer a more mechanistic understanding of the current and future spatial

variation in human disease [70]. Our forecasting framework advances these approaches by

generating predictions of spillover risk based only on data from the primary rodent reservoir

of LASV, and rigorously assessing our risk predictions on realized human spillover as mea-

sured by human arenavirus serosurveys. As indicated by a generalized linear regression, our

reservoir-based model of spillover risk explains a modest and statistically significant amount

of the spatial variation in human arenavirus seroprevalence.

Using this framework, we are able to generate predictions of the number of new LASV

infections within different regions of West Africa. Our results indicate that Nigeria contributes

the greatest number of new human infections each year, and that the magnitude of new infec-

tions in Nigeria is driven primarily by its greater human population density, rather than an

increased per-capita risk. An assumption that drives this result is the density-dependent form

of spillover in the model (i.e., FS), in which rodent-human interactions increase with human

population density. This form is appropriate if rodent interactions are well-mixed in the

human population. For example, if increases in human density were reflected in an increased

number of humans per dwelling, then the LASV risk posed by single rodent in a household

would increase with human population size. If these assumptions are correct, Nigeria is likely

to represent the greatest risk of LASV emergence because the large number of annual spillover

events allows for extensive sampling of viral strain diversity and repeated opportunities for

viral adaptation to the human population [71].

Our approach allows us to highlight the regions that contribute most to pathogen spillover,

and suggest locations for further surveillance. Our model indicates that the highest per-capita

risk to humans occurs in Sierra Leone, Guinea, and Nigeria. Given the data that are currently

Fig 6. Predicted spatial density of Lassa virus infections in humans. Map shows the predicted infections per km2. Yellow colors,

representing a high number of infections, tend to occur in areas with high human population density and a high predicted

seroprevalence.

https://doi.org/10.1371/journal.pcbi.1008811.g006
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available, our model suggests that these countries should be prioritized for surveillance of

LASV emergence in rodents and at-risk human populations. Human serosurveys of the gen-

eral population are notably lacking in Nigeria, but have the potential to clarify the true magni-

tude of LASV spillover in West Africa. Although it is known that certain broad regions of

West Africa have a long history of LASV spillover (e.g., Sierra Leone, Guinea, Nigeria), rela-

tively little is known about the prevalence of LASV in rodents or humans in other regions (e.g.,

Togo, Benin, Mali, Burkina Faso). Our model suggests that Lassa virus infections occur regu-

larly in these under-sampled areas. Human serosurveys and rodent LASV testing from these

regions could help modeling approaches clarify the spatial distribution of Lassa fever across

West Africa.

In addition to identifying the regions most at risk for viral emergence, our model frame-

work provides updated estimates for the rate of LASV spillover across West Africa. Previous

estimates of 100,000–300,000 infections per year were based on longitudinal studies from

communities in Sierra Leone conducted in the 1980s [17]. Using seroprevalence data from

studies across West Africa, our model predicts between 897,700–4,383,600 LASV infections

in humans occur each year. As demonstrated by past research focused on estimating LASV

infection in humans, where the true value lies within this range depends on whether or not

seroreversion and subsequent LASV reinfection are regular features of human LASV epide-

miology, and therefore reinforces the need to better understand the scope for LASV reinfec-

tion [72]. It is important to realize that our predictions include both symptomatic and

asymptomatic infections. Thus, because many human LASV infections result in mild flu-

like symptoms or are asymptomatic, it is unsurprising that our predicted values exceed the

reported number of confirmed LF cases in Nigeria [73, 74]. Several factors may contribute to

the discrepancy between previous estimates of LASV spillover, and our revised estimates.

McCormick et al. (1987) used seroconversion data from a 15 month period to infer a rate of

LASV infection across West Africa. However, the population of West Africa has increased by

a factor of 2.4 since that time, making these estimates outdated [75]. Furthermore, our esti-

mates are based on human seroprevalence data that comes from five countries in West Africa

and spans a 45 year time period. Because our dataset was obtained from a broader spatial

and temporal range, our estimates are less likely to be biased by sporadic extremes in LASV

spillover.

Accurate risk predictions could help guide risk-reduction and behavior-change communi-

cation campaigns, the distribution of future human LASV vaccines, and countermeasures

directed at the rodent reservoir. In addition to vaccines that prevent infection in humans, new

vaccine designs are currently being investigated for various wildlife pathogens as well, includ-

ing pathogens in rodents [76, 77]. Wildlife vaccination campaigns that use vaccine baits have

proven to be effective in the control of rabies in red fox (Vulpes vulpes) over large land areas,

but require substantial planning and surveillance of the reservoir population [78]. Rodent pop-

ulation management could be another method of attenuating the risk of LASV in an area. Pin-

pointing areas that are most in need of spillover intervention will help overcome the logistical

challenges that are associated with vaccine distribution to humans or wildlife on large scales.

In addition to guiding intervention to specific regions, mechanistic forecasts similar to ours

could help plan the logistics of such operations.

Our framework sheds light on the connection between LASV spillover in humans and the

environmental conditions favorable to pathogen and reservoir. The reservoir layer of our

model identified strong seasonal trends in vegetation (NDVI) as the primary explanatory vari-

able that determines where the rodentM. natalensis occurs. This builds on other work that

identified properties of vegetation as important predictors of the range ofM. natalensis [5]. In

conjunction with a strong seasonality of vegetation, our model identified a range of mean and
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maximum rainfall values that limit the distribution of the LASV reservoir. This is in line with

previous ecological studies showing that seasonal patterns of precipitation and vegetation are

important drivers of seasonal breeding inM. natalensis [79]. Our model indicates thatM.
natalensis do not occur in areas associated with too much rainfall or areas without a clear wet/

dry seasonality, resulting in a lower risk of LASV spillover in coastal areas of West Africa and

southern Nigeria. The pathogen layer of our model also indicates that strong seasonal precipi-

tation patterns are the leading environmental feature that is associated with LASV inM. nata-
lensis and the main driver of the LASV’s occurrence in only western and eastern West Africa.

Though the mechanism by which rainfall affects viral prevalence is unclear, it has been hypoth-

esized, for example, that wetter conditions might facilitate the virus’ ability to survive outside

the host [4].

Our model of spillover risk predicts a significant, but small amount of the spatial variation

in arenavirus seroprevalence studies in humans. The modest relationship between human

LASV spillover and predicted risk might be due to the binary classifiers’ coarse description of

the magnitude of LASV risk. As more longitudinal data become available, these binary models

can be upgraded with more nuanced models that predict the time-varying density ofM. nata-
lensis and the prevalence of LASV among the rodent population. Alternatively, the low correla-

tion could indicate that other predictors like human factors have a large influence on LASV

spillover. Geographic differences in housing, cultural practices, and diet likely influence the

extent of LASV spillover but are not included in our model. For instance, the use of rodent-

proof housing materials (e.g., concrete vs mud) and abstaining from rodent hunting and con-

sumption are known to affect the extent to which LASV is able to transmit between rodents

and humans [16, 80]. The residuals of seroprevalence predictions from our model could help

guide understanding of which human factors mitigate or facilitate LASV spillover. If human

factors like housing type can be readily identified from serosurvey locations within West

Africa, they could be incorporated in the human stage of the model that connects spillover risk

to human seroprevalence.

Geographic variation in LASV and its primary reservoir may also be responsible for the

modest fit of our model. For instance, across West Africa LASV consists of several clades [22].

If certain clades are better at infecting humans, then our model will tend to underestimate the

rate of human infections in regions where such highly-infectious clades occur. Similarly, the

M. natalensis reservoir is also divided into multiple clades [20]. DifferentM. natalensis clades

may differ in their contact rates with humans or in their suitability as reservoir, further reduc-

ing our model’s ability to predict spillover into humans. Some evidence for this latter possibil-

ity comes from arenavirsues that preferentially infect certain clades ofM. natalensis [21].

Because our study region only includes West Africa, it is likely that theM. natalensis occur-

rences that our model is trained on are only from the A-I clade [20]. However, our forecast

should be interpreted with caution in eastern Nigeria, where the transition zone into the A-II

clade occurs. Future work integrating these factors may help improve our understanding of

the spatial variation in human seroprevalence that is due to the spatial patterning of LASV and

reservoir clades.

Another factor that could influence our model fit is the possibility that rodent species other

thanM. natalensis serve as reservoirs or interact with the primary reservoir in ways that

decrease or increase risk. ThoughM. natalensis is believed to be the primary reservoir that

contributes to human infection, several species of rodents are known to be capable of harbor-

ing the virus [48]. Understanding the relationship between the habitat suitability of different

rodent reservoirs and human LF burden may help determine whetherM. natalensis is the host

at which intervention strategies should always be directed. Furthermore, other species of
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rodent may displaceM. natalensis and therefore lower the overall spillover risk of LASV into

humans. The layered framework we have developed can be easily adapted to include additional

reservoir species and systematically investigate these possibilities.

Our model is constructed to learn and explain spatial variation in the average historical

spillover of LASV, and does not include temporal trends of spillover risk. Due to the sparsity

of available longitudinal data, our model assumes that the human population in West Africa,

human LASV seroprevalence, and the rate of LASV spillover, are all constant in time. Over

decades-long timescales, the rate of LASV spillover is likely increasing due to increasing rates

of human-rodent interaction that come with urban growth, deforestation, or climate change

[11, 70]. Estimating the combined temporal and spatial variation of infection will require long-

term longitudinal studies in both rodents and humans across West Africa. With this data, for

example, more advanced models could mechanistically associate an increasing rate of spillover

with changes to land cover.

Another important temporal simplification of our current modeling work is the absence of

seasonality in LASV spillover. In Sierra Leone, Guinea, and Nigeria, hospital admissions attrib-

utable to LASV infection generally peak late in the dry season [54, 69, 81]. In these regions, the

mechanism of seasonal spillover likely involves a combination of seasonal rainfall and land use

practices, such as crop-harvesting and subsequent burning of agricultural fields, that drive

rodents into domestic dwellings in search of food-stuffs [54, 82]. It is not understood whether

these factors operate uniformly across all of West Africa. Temporal fluctuations in the density

of the reservoir population, due to seasonal cycles of reproduction, are another potentially

important factor that could drive a seasonal spike of human LF cases. However, it is unclear

whether the density fluctuations that have been observed outside of the LASV geographic

range (e.g., Tanzania [79]) also occur within West Africa. At least in Guinea and Sierra Leone,

research on the population dynamics ofM. natalensis indicates that density fluctuations are

much weaker than those in East Africa [83]. In the case of rodent vaccination, understanding

population dynamics is particularly important because distributing vaccines at seasonal popu-

lation lows in wildlife demographic cycles can, in theory, substantially increase the probability

of pathogen elimination [83, 84].

Although the methods we have used here make efficient use of available data, the accuracy

of our risk forecasts remains difficult to rigorously evaluate due to the limited availability of

current data from human populations across West Africa. The sparseness of modern human

data arises for two reasons: 1) the lack of robust surveillance and testing across much of the

region where LASV is endemic and 2) the absence of publicly available databases reporting

human cases in those countries that do have relatively robust surveillance in place (i.e., Nige-

ria). Improving surveillance for LASV across West Africa and developing publicly available

resources for sharing the resulting data would allow more robust risk predictions to be devel-

oped and facilitate risk reducing interventions. Despite these limitations of existing data, the

structured machine-learning models we develop here provide insight into what aspects of

environment, reservoir, and virus, contribute to spillover, and the potential risk of subsequent

emergence into the human population. By understanding these connections, we can design

and deploy more effective intervention and surveillance strategies that work in tandem to

reduce disease burden and enhance global health security.
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55. Kernéis S, Koivogui L, Magassouba N, Koulemou K, Lewis R, Aplogan A, et al. Prevalence and risk fac-

tors of Lassa seropositivity in inhabitants of the forest region of Guinea: a cross-sectional study. PLoS

Negl Trop Dis. 2009; 3(11). https://doi.org/10.1371/journal.pntd.0000548 PMID: 19924222

56. Lukashevich I, Clegg J, Sidibe K. Lassa virus activity in Guinea: Distribution of human antiviral antibody

defined using enzyme-linked immunosorbent assay with recombinant antigen. J Med Virol. 1993; 40

(3):210–217. https://doi.org/10.1002/jmv.1890400308 PMID: 8355019

PLOS COMPUTATIONAL BIOLOGY Using reservoir ecology and human serosurveys to estimate Lassa virus spillover

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008811 March 3, 2021 22 / 24

https://doi.org/10.3201/eid1212.060812
https://doi.org/10.3201/eid1212.060812
http://www.ncbi.nlm.nih.gov/pubmed/17326956
https://doi.org/10.1080/14772000.2017.1358220
https://doi.org/10.4269/ajtmh.1983.32.624
https://doi.org/10.4269/ajtmh.1983.32.624
http://www.ncbi.nlm.nih.gov/pubmed/6859406
https://doi.org/10.3201/eid2510.180523
https://doi.org/10.3201/eid2510.180523
http://www.ncbi.nlm.nih.gov/pubmed/31365854
https://doi.org/10.1007/s10531-008-9389-1
https://doi.org/10.1007/s10531-008-9389-1
https://doi.org/10.3201/eid1607.100146
http://www.ncbi.nlm.nih.gov/pubmed/20587185
https://doi.org/10.1371/journal.pntd.0002582
https://doi.org/10.1371/journal.pntd.0002582
http://www.ncbi.nlm.nih.gov/pubmed/24340119
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1890/07-2153.1
http://www.ncbi.nlm.nih.gov/pubmed/19323182
https://doi.org/10.15468/dl.tbe47y
https://doi.org/10.1093/nar/gkw1070
http://www.ncbi.nlm.nih.gov/pubmed/27899564
https://doi.org/10.1089/vbz.2013.1484
https://doi.org/10.1089/vbz.2013.1484
http://www.ncbi.nlm.nih.gov/pubmed/25229705
https://doi.org/10.1038/srep21977
http://www.ncbi.nlm.nih.gov/pubmed/26911443
https://doi.org/10.3201/eid2104.141469
https://doi.org/10.3201/eid2104.141469
http://www.ncbi.nlm.nih.gov/pubmed/25811712
https://doi.org/10.1126/science.185.4147.263
https://doi.org/10.1126/science.185.4147.263
http://www.ncbi.nlm.nih.gov/pubmed/4833828
https://doi.org/10.1186/s13071-018-2991-5
https://doi.org/10.1186/s13071-018-2991-5
http://www.ncbi.nlm.nih.gov/pubmed/30005641
http://www.ncbi.nlm.nih.gov/pubmed/1085216
https://doi.org/10.1089/vbz.2006.0520
http://www.ncbi.nlm.nih.gov/pubmed/17627428
https://doi.org/10.1371/journal.pntd.0000548
http://www.ncbi.nlm.nih.gov/pubmed/19924222
https://doi.org/10.1002/jmv.1890400308
http://www.ncbi.nlm.nih.gov/pubmed/8355019
https://doi.org/10.1371/journal.pcbi.1008811


57. Nimo-Paintsil SC, Fichet-Calvet E, Borremans B, Letizia AG, Mohareb E, Bonney JH, et al. Rodent-

borne infections in rural Ghanaian farming communities. PloS One. 2019; 14(4). https://doi.org/10.

1371/journal.pone.0215224

58. Sogoba N, Rosenke K, Adjemian J, Diawara SI, Maiga O, Keita M, et al. Lassa virus seroprevalence in

sibirilia commune, Bougouni District, Southern Mali. Emerg Infect Dis. 2016; 22(4):657. https://doi.org/

10.3201/eid2204.151814 PMID: 26981786

59. Yalley-Ogunro J, Frame J, Hanson A. Endemic Lassa fever in Liberia. VI. Village serological surveys for

evidence of Lassa virus activity in Lofa County, Liberia. Trans R Soc Trop Med Hyg. 1984; 78(6):764–

770. https://doi.org/10.1016/0035-9203(84)90013-0 PMID: 6398530

60. Fraser DW, Campbell CC, Monath TP, Goff PA, Gregg MB. Lassa fever in the eastern province of

Sierra Leone, 1970–1972. Am J Trop Med Hyg. 1974; 23(6):1131–1139. https://doi.org/10.4269/ajtmh.

1974.23.1131 PMID: 4429182

61. Leirs H, Verhagen R, Verheyen W. Productivity of different generations in a population of Mastomys

natalensis rats in Tanzania. Oikos. 1993; p. 53–60. https://doi.org/10.2307/3545308

62. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and pre-

diction. Springer Science & Business Media; 2009.

63. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008; 77

(4):802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x PMID: 18397250

64. Hijmans RJ, Phillips S, Leathwick J, Elith J. dismo: Species Distribution Modeling; 2017. Available from:

https://CRAN.R-project.org/package=dismo.

65. Hijmans RJ. Cross-validation of species distribution models: removing spatial sorting bias and calibra-

tion with a null model. Ecology. 2012; 93(3):679–688. https://doi.org/10.1890/11-0826.1 PMID:

22624221

66. McCullagh P, Nelder JA. Generalized linear models. 2nd ed. CRC Press; 1989.

67. Fisher-Hoch S, Hutwagner L, Brown B, McCormick J. Effective vaccine for Lassa fever. Journal of virol-

ogy. 2000; 74(15):6777–6783. https://doi.org/10.1128/jvi.74.15.6777-6783.2000 PMID: 10888616

68. WorldBank. Life expectancy at birth, total (years); 2020. https://data.worldbank.org/indicator/SP.DYN.

LE00.IN.

69. Shaffer JG, Grant DS, Schieffelin JS, Boisen ML, Goba A, Hartnett JN, et al. Lassa fever in post-conflict

Sierra Leone. PLoS Negl Trop Dis. 2014; 8(3):e2748. https://doi.org/10.1371/journal.pntd.0002748

PMID: 24651047

70. Redding DW, Moses LM, Cunningham AA, Wood J, Jones KE. Environmental-mechanistic modelling of

the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Meth-

ods Ecol Evol. 2016; 7(6):646–655. https://doi.org/10.1111/2041-210X.12549

71. Antia R, Regoes RR, Koella JC, Bergstrom CT. The role of evolution in the emergence of infectious dis-

eases. Nature. 2003; 426(6967):658–661. https://doi.org/10.1038/nature02104 PMID: 14668863

72. Richmond JK, Baglole DJ. Lassa fever: epidemiology, clinical features, and social consequences. BMJ.

2003; 327(7426):1271–1275. https://doi.org/10.1136/bmj.327.7426.1271 PMID: 14644972

73. CDC. NCDC Lassa cases; 2020. https://ncdc.gov.ng/data.

74. Yun NE, Walker DH. Pathogenesis of Lassa fever. Viruses. 2012; 4(10):2031–2048. https://doi.org/10.

3390/v4102031 PMID: 23202452

75. Worldometers. Western Africa Population;. https://www.worldometers.info/world-population/western-

africa-population/.

76. Cross M, Buddle B, Aldwell F. The potential of oral vaccines for disease control in wildlife species. Vet J.

2007; 174(3):472–480. https://doi.org/10.1016/j.tvjl.2006.10.005 PMID: 17113798

77. Murphy AA, Redwood AJ, Jarvis MA. Self-disseminating vaccines for emerging infectious diseases.

Expert Rev Vaccines. 2016; 15(1):31–39. https://doi.org/10.1586/14760584.2016.1106942 PMID:

26524478
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