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Abstract

There has been a spate of interest in association networks in biological and medical

research, for example, genetic interaction networks. In this paper, we propose a novel

method, the extended joint hub graphical lasso (EDOHA), to estimate multiple related inter-

action networks for high dimensional omics data across multiple distinct classes. To be spe-

cific, we construct a convex penalized log likelihood optimization problem and solve it with

an alternating direction method of multipliers (ADMM) algorithm. The proposed method can

also be adapted to estimate interaction networks for high dimensional compositional data

such as microbial interaction networks. The performance of the proposed method in the sim-

ulated studies shows that EDOHA has remarkable advantages in recognizing class-specific

hubs than the existing comparable methods. We also present three applications of real data-

sets. Biological interpretations of our results confirm those of previous studies and offer a

more comprehensive understanding of the underlying mechanism in disease.

Author summary

Reconstruction of multiple association networks from high dimensional omics data is an

important topic, especially in biology. Previous studies focused on estimating different

networks and detecting common hubs among all classes. Integration of information over

different classes of data while allowing the difference in the hub nodes is also biologically

plausible. Therefore, we propose a method, EDOHA, to jointly construct multiple interac-

tion networks with the capacity in finding different hub networks for each class of data.

Simulation studies show better performance over conventional methods. The method has

been demonstrated in three real-world data.

Introduction

With advances in high-throughput sequencing and omics technologies, biological information

is being collected at an amazing rate, which stimulates researchers to discover modular
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structure, relationships and regularities in complex data. Interactions between various biologi-

cal nodes (e.g. genes, proteins, metabolites) on different levels (e.g. gene regulation, cell signal-

ling) can be represented as graphs and, thus, analysis of such networks might shed new light

on the function of biological systems. Hubs, the highly connected nodes at the tail of the

power law degree distribution, are known to play a crucial role in biological networks. Some

studies have shown that scale-free topology exists in many different organizational levels, such

as metabolic networks [1] and cellular networks [2]. Hub nodes may be the most essential ele-

ments for community stability and play an important role in the infection and pathogenesis of

the virus.

The objective of our research is to estimate multiple interaction networks for high dimen-

sional omics data (e.g. genomics, metagenomics, proteomics and metabolomics) across multi-

ple classes. A common characteristic of the omics data is the deficiency of independent

samples (n) in comparison with the abundance of features (p), that is to say, p� n. There have

been a number of studies proposed to construct interaction networks in the high dimensional

setting. Meinshausen and Bühlmann [3] present neighborhood selection to discover network

structures. Friedman et al. [4] propose the graphical lasso algorithm to estimate networks

using the LASSO penalty. Fan et al. [5] introduce nonconcave penalties and the adaptive

LASSO penalty to explore networks. Nevertheless, the aforementioned methods are used to

depict the relationship networks between features for one class only. When there are multiple

classes, such as healthy and diseased conditions, a straightforward method is to construct the

network for each class separately and then compare their differences. However, these proce-

dures may sacrifice the similarity shared between multiple classes, which may be critically

important to find out the principal elements related to the disease. One would expect these net-

works to be similar to each other since they are from the same type of entities. The joint graph-

ical lasso (JGL) [6] is proposed to estimate multiple models simultaneously, which ignores the

scale-free network and is unable to detect hubs explicitly. The model of JRmGRN [7] identifies

common hub elements across multiple classes by jointly using distinct datasets. In many situa-

tions, hub nodes that are specific to an individual network also exist. For example, in the tis-

sue-specific networks associated with SARS-CoV-2, both common and class-specific key hubs

are revealed in diverse tissues [8]. Common hub features are essential to all classes and class-

specific hubs could convey particular biology information. This inspires us to explore a new

model to incorporate both common and class-specific hub nodes when jointly constructing

interaction networks.

The proposed method can be applied to any omics data which follow multivariate normal

distribution. It can also be easily adapted to study multiple interaction networks for high

dimensional compositional data such as microbial networks by employing some suitable trans-

formation. The performance of the proposed method and comparison with other methods will

be evaluated by simulation studies for compositional data and real data analysis.

Materials and methods

Gaussian graphical models (GGMs) are now frequently used to describe biological feature

association networks and to detect conditionally dependent features. Correlation networks

could be expressed as an undirected, weighted graph G ¼ ðV;EÞ where the vertex set V = {v1,

v2, . . ., vp} represents the p feature nodes (e.g., genes, microbes or proteins) and the edge set E

contains the possible associations among nodes. Suppose the observations (suitably trans-

formed if necessary) (r1, . . ., rp) are drawn from a multivariate normal distribution with

covariance S, the non-zero elements of the off-diagonal entries of the inverse covariance

matrix Θ = S−1 define the adjacency matrix of the graph G and thus describe the factorization
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Consortium(https://cptc-xfer.uis.georgetown.edu/

publicData). The population-based proteomic

datasets are from lung(https://cptc-xfer.uis.

georgetown.edu/publicData/Phase_III_Data/

CPTAC_LUAD_S046/CPTAC_LUAD_Proteome_

CDAP_Protein_Report.r1/CPTAC3_Lung_Adeno_

Carcinoma_Proteome.tmt10.tsv); liver(https://cptc-

xfer.uis.georgetown.edu/publicData/External/

S049_Liver_Cancer_Gao2019/Liver_Cancer_

Proteome_CDAP_Protein_Report.r1/Zhou_Liver_

Cancer_Proteome.tmt11.tsv); colon(https://cptc-

xfer.uis.georgetown.edu/publicData/Phase_II_

Data/CPTAC_Colon_Cancer_S037/CPTAC_

COprospective_PNNL_Proteome_CDAP_Protein_

Report.r1/CPTAC2_Colon_Prospective_Collection_

PNNL_Proteome.tmt10.tsv); kidney(https://cptc-

xfer.uis.georgetown.edu/publicData/Phase_III_

Data/CPTAC_CCRCC_S044/CPTAC_CCRCC_

Proteome_CDAP_Protein_Report.r1/CPTAC3_

Clear_Cell_Renal_Cell_Carcinoma_Proteome.

tmt10.tsv).
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of the normal distribution into conditionally dependent components [9]. Because the number

of samples n is smaller than the number of features p and Θ is expected to be sparse, penalized

maximum likelihood approaches are proposed to estimate the precision matrix S−1, which

yields a sparse estimation of precision matrix.

The general formulation for EDOHA

We present the extended joint hub graphical lasso (EDOHA) algorithm for constructing mul-

tiple interaction networks from multiple classes. Suppose that there are K classes of data sets,

corresponding to K different levels of a phenotype variable or K different conditions, such as

control group, carrier group and disease group. Let RðkÞ 2 Rnk�p be a matrix representing the

data of p features and nk samples for the kth class. Assume that the observations (suitably trans-

formed if necessary) are independent, identically distributed: rðkÞ1 ; . . . ; rðkÞnk � NðmðkÞ;ΣðkÞÞ,
where r(k) represents biological data from the kth class. The log likelihood for the data takes

the form

lðfΘgÞ ¼
1

2

XK

k¼1

nk logðdetΘðkÞÞ � trðSðkÞΘðkÞÞ
� �

: ð1Þ

where S(k) is the empirical covariance estimation of r(k). The non-zero element y
ðkÞ
ij in ΘðkÞ ¼

ΣðkÞ
� 1

indicates node i and j for the kth class are conditionally dependent. Most elements in

Θ(k) are expected to be zero. JRmGRN [7] has decomposed the precision matrix Θ(k) into two

parts: the elementary symmetric network for the kth class Z(k), mainly containing the non-hub

node correlation information, and the network for hub nodes V, where V is a matrix with

entirely zero or almost completely nonzero columns, so that a few hub nodes are expected to

have a large number of interactions with many other nodes. Considering that some of the hub

codes are common among all classes and others are specific to different classes, we replace the

same network V with V(k) for the kth class, including common and class-specific hub correla-

tion information. Our method aims to investigate these class-specific hub nodes explicitly. To

estimate {Θ} = (Θ(1), Θ(2), . . ., Θ(K)) when p> nk, we take a penalized log likelihood approach

min
fΘg
�
XK

k¼1

nkðlogðdetΘ
ðkÞ
Þ � trðSðkÞΘðkÞÞÞ þ PðfΘgÞ: ð2Þ

The penalty function P({Θ}) has the following form,

PðfΘgÞ ¼ l1

XK

k¼1

kZðkÞ � diagðZðkÞÞk1

þl2

X

k<k0
kZðkÞ � Zðk

0Þ � diagðZðkÞ � Zðk
0ÞÞk1

þl3

X

k

kVðkÞ � diagðVðkÞÞk1 þ l4

X

k

kVðkÞ � diagðVðkÞÞk1;2

þl5

X

k<k0
kVðkÞ � Vðk0Þ � diagðVðkÞ � Vðk0ÞÞk1

where Z(k) + V(k) + (V(k))T = Θ(k), and kVðkÞk1;2 ¼
Pp

j¼1
kVðkÞj k2, VðkÞj is the jth column of matrix

V(k). Here λ1, λ2, λ3, λ4, λ5 are five nonnegative tuning parameters. λ1 and λ3 control the spar-

sity of elementary network Z(k) and hub network V(k) respectively. λ4 allows V(k) to have zero

columns and dense non-zero columns, where the non-zero columns represent the respective
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hub nodes in the kth class. And λ2, λ5 encourage the elementary networks and hub networks

to have the similarity. When λ1, λ2, λ3, λ4 and λ5 are fixed, the expression of (2) is a convex

optimization problem, which can be solved by efficient algorithms. The convexity of (2) is

based on the following facts: both negative log determinant and norm functions are convex

functions, so is the nonnegative combination of convex functions.

Remark 1. JRmGRN has four parameters, which accommodate connectivity levels among
non-hubs in each class, similarity between non-hubs networks, different numbers of hubs and
sparsity levels of hubs. It decomposes the precision matrix into an elementary network unique to
each class and a common hub network, which is equipped with the ability to identify common
hubs. Its penalty function is

PðfΘgÞ ¼ l1

X

k

kZðkÞ � diagðZðkÞÞk1 þ l2

X

k<k0
kZðkÞ � Zðk

0Þk1 þ l3kVk1 þ l4kVk1;2:

Compared with the JRmGRNmodel, EDOHA replaces the common hub network with respec-
tive hub network for each class and thus we are able to find out the common and class-specific
hub nodes simultaneously. It is easy to find that JRmGRN is a sub-case of EDOHA when λ5 is
large enough. Common hub features across multiple classes could be crucial to regulate biological
interaction, while class-specific hubs may mediate specific phenotype. Our proposed method may
help to explain which features play a significant part in different phenotypic traits or in different
conditions.

An ADMM algorithm for EDOHA

We solve the problem using an alternating directions method of multipliers algorithm [10],

which allows us to decouple some of the terms that are difficult to optimize jointly. We assume

that Θ(k) is positive definite for k = 1, . . ., K. We note that the problem can be reformulated as

a consensus problem [11]:

minFðXÞ þ h1ð
~~VÞ þCð~XÞ s:t: X ¼ ~X V ¼ ~~V ; ð3Þ

where X = (Θ(1), Z(1), V(1), . . ., Θ(K), Z(K), V(K)), ~X ¼ ð ~Θð1Þ; ~Zð1Þ; ~Vð1Þ; . . . ; ~ΘðKÞ; ~ZðKÞ; ~VðKÞÞ, and

FðXÞ ¼ f ðΘÞ þ gðZÞ þ hðVÞ; ð4Þ

Cð~XÞ ¼
XK

k¼1

Ið ~ΘðkÞ ¼ ~ZðkÞ þ ~VðkÞ þ ð~VðkÞÞTÞ; ð5Þ

where

f ðΘÞ ¼ �
XK

k¼1

nkðlogðdetΘ
ðkÞ
Þ � trðSðkÞΘðkÞÞÞ; ð6Þ

gðZÞ ¼ l1

XK

k¼1

kZðkÞ � diagðZðkÞÞk
1
þ l2

X

k<k0
kZðkÞ � Zðk

0Þ � diagðZðkÞ � Zðk
0ÞÞk

1
; ð7Þ
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hðVÞ ¼ l3

X

k

kVðkÞ � diagðVðkÞÞk1 þ l4

X

k

kVðkÞ � diagðVðkÞÞk1;2; ð8Þ

h1ð
~~VÞ ¼ l5

X

k<k0
k

~~V ðkÞ � ~~V ðk0Þ � diagð ~~V ðkÞ � ~~V ðk0ÞÞk
1
: ð9Þ

And

Ið ~ΘðkÞ ¼ ~ZðkÞ þ ~VðkÞ þ ð~VðkÞÞTÞ ¼
0 if ~ΘðkÞ ¼ ~ZðkÞ þ ~VðkÞ þ ð~VðkÞÞT

1 otherwise

(

The scaled augmented Lagrangian is given by

LðX; ~X; ~~V ;W; ~WÞ ¼ FðXÞ þ h1ð
~~VÞ þCð~XÞ þ

r

2
kX � ~X þWk2

F �
r

2
kWk2

F

þ
r

2
k

~~V � Vþ ~WVk
2

F �
r

2
k ~WVk

2

F; ð10Þ

where X; ~X; ~~V are the primal variables, W ¼ ðfWðkÞ
Θ g; fW

ðkÞ
Z g; fW

ðkÞ
V gÞ, ~WV are the dual vari-

ables. kAk2

F denotes the Frobenius norm of A. Here ρ is a positive parameter for the scaled

Lagrangian form. We set ρ = 2.5 as is used in Deng et al. [7].

The iteration of ADMM can be described as follows:

Xtþ1 ¼ argmin
X

FðXÞ þ
r

2
kX � ~X t þWtk

2

F þ
r

2
k

~~V t � Vþ ~WVt
k

2

F

n o

~~V tþ1 ¼ argmin
~~V

fh1ð
~~VÞ þ

r

2
k

~~V � Vtþ1 þ
~WVt
k

2

Fg

~Xtþ1 ¼ argmin
~X
fCð~XÞ þ

r

2
kXtþ1 �

~X þWtk
2

Fg

Wtþ1 ¼Wt þ Xtþ1 �
~X tþ1

~WVtþ1
¼ ~WVt

þ
~~V tþ1 � Vtþ1

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð11Þ

Theorem 1. There exists a solution ðX�; ~X�; ~~V�Þ to the EDOHA optimization problem (3),

and the ADMM iterations via (11) approach the optimal value, i.e. pt! p�, where pt ¼

FðXtÞ þ h1ð
~~VtÞ þCð

~XtÞ and p� ¼ FðX�Þ þ h1ð
~~V�Þ þCð~X�Þ.

The theorem establishes the convergence of the ADMM algorithm to achieve the optimal

solution for EDOHA. It also automatically establishes algorithmic convergence for any optimi-

zation problem that can be regarded as a sub-case of EDOHA, for example, JRmGRN, which

was not established before. A general algorithm for solving the optimization problem is shown

in S1 Text. And the proof of Theorem 1 is shown in S2 Text.
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Faster computations for EDOHA

We now present a theorem that leads to substantial computational improvements to the

EDOHA. Using the theorem, one can inspect the empirical covariance matrices S(1), . . ., S(K)

in order to determine whether the solution to the EDOHA optimization problem is block diag-

onal after some permutation of the features. Previous studies [6, 7] use uniform thresholding

to decompose the precision matrices of different classes in exactly the same way. Non-uniform

thresholding generates a non-uniform feasible partition by thresholding the K empirical

covariance matrices separately. In a non-uniform partition, two variables of the same group in

one class may belong to different groups in another class [12]. Here we recommend a novel

non-uniform thresholding approach that can split precision matrices into smaller submatrices

without ignoring the different sparsity patterns from different matrices. Now we provide the

key result. The following theorem states the sufficient conditions for the presence of non-uni-

form block diagonal structure.

Theorem 2. A sufficient condition for the solution to (2) to be block diagonal with blocks
given by Ck

1
;Ck

2
; . . . ;Ck

Tk
is that

min
l1 � ðK � 1Þl2

n1

; . . . ;
l1 � ðK � 1Þl2

nK
;
l3 � ðK � 1Þl5

2n1

; . . . ;
l3 � ðK � 1Þl5

2nK

� �

� jSðkÞij j

for 8k, i 2 Ck
t ; j 2 Ck

t0 ; t 6¼ t0.
Proof of Theorem 2 is given in S3 Text. Similar to Theorem 1 in [7], we decompose the

reconstruction of a big network into the reconstruction of two or more small networks sepa-

rately. JRmGRN has a sufficient condition for the presence of block diagonal structure. We

now allow to split the precision matrices into class-specific block diagonal structures. It sup-

plies us with a criterion if, given a partition of features Ck
1
;Ck

2
; . . . ;Ck

Tk
,
P

tC
k
t ¼ p, the solution

of the optimization problem is block diagonal with each block corresponding to features in Ck
t .

In practice, for any given (λ1, λ2, λ3, λ4, λ5), we can quickly perform the following two-step

procedure to identify any block structure in each class in the solution.

• Create B(k), a p � p matrix with BðkÞii ¼ 1 for i = 1, . . ., p. For i 6¼ j, let BðkÞij ¼ 0 if the conditions

specified in Theorem 2 are met for that pair of variables. Otherwise, set BðkÞij ¼ 1.

• Identify the connected components of the undirected graph whose adjacency matrix is given

by B(k).

Theorem 2 guarantees that the connected components identified correspond to distinct

blocks in the kth class. Therefore, one can quickly obtain these solutions based on a non-uni-

form feasible partition. The block diagonal condition leads to massive computational speed-

ups. Instead of computing the eigen decomposition of K p � p matrices, we compute the eigen

decomposition of ∑k Tk matrices of dimensions pCk
1
� pCk

1
; . . . ; pCk

Tk
� pCk

Tk
. The computational

complexity per-iteration is reduced from O(p3) to
P

k

PTk
t¼1

Oðp3

Ck
t
Þ.

Tuning parameter selection

In this paper, we use Bayesian information criterion(BIC)-type quantity to select tuning

parameters. We choose (λ1, λ2, λ3, λ4, λ5) to minimize the following function which balances
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the model likelihood and model complexity.

BICðΘ̂; Ẑ; V̂Þ ¼
XK

k¼1

½nkð� logðdetΘ̂
ðkÞÞ þ trðSðkÞΘ̂ðkÞÞÞ� þ LðZÞ þ LðVÞ;

LðZÞ ¼
XK

k¼1

logðnkÞjẐðkÞj � logðnÞj
T
ẐðkÞj;

LðVÞ ¼
XK

k¼1

logðnkÞðv̂ðkÞ þ cðjV̂ðkÞj � v̂ðkÞÞÞ � logðnÞðv̂ þ cðj
T
V̂ðkÞj � v̂ÞÞ:

ð12Þ

Here fΘ̂ðkÞ; ẐðkÞ; V̂ðkÞg are the estimated parameters with a fixed set of tuning parameters

(λ1, λ2, λ3, λ4, λ5), |A| is the number of nonzeros of A, |
T

A(k)| is the number of common edges

of {A(k)}, v̂ðkÞ is the number of estimated hubs for the kth class, that is, v̂ðkÞ ¼
Pp

j¼1
IðkV̂ðkÞj k0

>

0Þ and v̂ is the number of estimated common hubs, and c is a constant between zero and one.

The term Λ(Z) is motivated by an approximation of the degrees of freedom from the ℓ1 penalty

on the complexity of edges, and the term Λ(V) is motivated by an approximation of the

degrees of freedom of the ℓ2 penalty on the complexity of hubs proposed by Yuan and Lin

[13]. We select the set of tuning parameters (λ1, λ2, λ3, λ4, λ5) which minimizes the quantity

BICðΘ̂ðkÞ; ẐðkÞ; V̂ðkÞÞ, which is similar to the BIC quantity in Deng et al. [7]. Note that BIC will

favor more hub nodes in V̂ðkÞ when constant c is small. So c is used to adjust the number of

hubs. In this paper, we choose c = 0.3. This can be regarded as a compromise between [14],

who chose c = 0.2 to identify separate hubs from every single condition, and [7], who chose

c = 0.5 to identify common hubs shared across all conditions.

We use the grid search to find the tuning parameters. However, computing BIC over a

range of values for five tuning parameters (λ1, λ2, λ3, λ4, λ5) may be computationally intensive.

In this case, we suggest a dense search over (λ1, λ3, λ4) while holding (λ2, λ5) at fixed low values,

followed by a quick search over (λ2, λ5), holding (λ1, λ3, λ4) at the selected values. With the

number of features involved in the analysis dramatically increasing, tuning parameter selection

becomes very complicated. In this situation, we need to explore some theoretical properties of

the problem that can be used to provide guidance on our search of tuning parameters. This

approach follows Deng et al. [7] and we provide the following theorems that extend their theo-

retical results to our present case with class-specific hubs.

Theorem 3. Let (Θ�(k), Z�(k), V�(k)) be a solution to (2), a sufficient condition for Z�(k) to be a
diagonal matrix is that λ3 + λ4 < 2λ1 and λ5 < 2λ2.

Proof of Theorem 3 is given in S4 Text.

Theorem 4. Let (Θ�(k), Z�(k), V�(k)) be a solution to (2), a sufficient condition for V�(k) to be a
diagonal matrix is that 2l1 < l3 þ

l4ffiffi
p
p and 2λ2 < λ5.

Proof of Theorem 4 is given in S5 Text.

Corollary 1. Let (Θ�(k), Z�(k), V�(k)) be a solution to (2), a necessary condition for both Z�(k)

and V�(k) to be non-diagonal matrices is that tuning parameters satisfy any one of the following
conditions:

a). l3 þ
l4ffiffi
p
p < 2l1 < l3 þ l4

b). 2l2 < l5; l3 þ
l4ffiffi
p
p < 2l1

c). λ5 < 2λ2, 2λ1 < λ3 + λ4.
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Specifically, we require that both Z(k) and V(k) are non-diagonal to produce non-trivial

edges and hubs. With Corollary 1, we could reduce the search space of parameters λ1, λ2, λ3, λ4

and λ5 as these five tuning parameters are related. If λ1 and λ2 are large, and λ3, λ4 and λ5 are

too small, then the elementary network Z(k) may be very sparse and the number of hubs

becomes huge. On the contrary, if λ1 and λ2 are quite small, and λ3, λ4 and λ5 are rather large,

then we can get dense Z(k) and few hubs. EDOHA’s conditions on tuning parameter selection

are more complicated, since it involves λ5 which is not present for JRmGRN. In this paper, we

use a uniform grid of log space from 0.01 to 5 (size = 20) for parameter λ1, λ2, λ3, λ4 and λ5 sat-

isfying the conditions in Corollary 1.

EDOHA for compositional data

Numerous studies have shown strong evidence that microbial compositions are closely related

to various diseases such as diabetes [15], inflammatory bowel disease [16] and obesity [17].

Microbial count data are usually generated by sequencing variable regions of bacterial 16S

rRNA gene. They are not directly comparable across samples and are usually transformed to

relative abundance or proportion by dividing the total counts in the sample. A wide range of

methods have been proposed to construct biological correlation networks for composition

data, such as SPIEC-EASI [18], SparCC [19], Reboot [20], REBACCA [21], CCLasso [22] and

COAT [23] for microbial interaction networks. However, these methods are for one class only.

To apply EDOHA to compositional data, we first perform data transformation. Here we

briefly discuss compositional data for one class using microbiome data as an example. The

absolute abundances or counts of p microbes, y = [y1, y2, . . ., yp], living in an environment

such as human gut are usually not directly observable. However, the relative abundances x ¼
y1

m ;
y2

m ; . . . ;
yp
m

� �
where m ¼

Pp
i¼1

yi, can be measured using 16S rRNA sequencing technologies.

Here we apply the centered log-ratio transform [24] to remove the unit-sum constraint of

compositional data. For a compositional variable x = (x1, . . ., xp), we have

r ¼ clrðxÞ ¼ log
x1

gðxÞ

� �

; . . . ; log
xp
gðxÞ

� �� �

¼ log
y1

gðyÞ

� �

; . . . ; log
yp
gðyÞ

� �� �

;

where gðxÞ ¼ ½
Qp

i¼1
xi�

1
p is the geometric mean of the composition vector. It is easy to show

that there is a relationship between the covariance matrix S of r and the population covariance

of the log-transformed absolute abundances ~Σ ¼ Cov½logY� : Σ ¼ G~ΣG [18, 24], where

G ¼ Ip � 1

p J, Ip is the p-dimensional identity matrix, and J is p � p matrix with each of the

entries equals 1. Kurtz et al. [18] mention that the matrix G is close to the identity matrix for

high-dimensional data, and thus a finite sample estimator S of S may be as a good approxima-

tion of the empirical covariance of logY. Actually, Cao et al. [23] have shown that S could be a

proxy for ~Σ as long as ~Σ belongs to a class of large sparse covariance matrices. Therefore the

interaction networks for high dimensional compositional data can be estimated based on the

centered log-ratio transformed data.

Results

Simulation studies

To examine the efficiency of the proposed method for the better identification of common and

class-specific hub nodes, we simulate Erdös-Rényi (ER)-based network [25] and then generate

corresponding compositional data to assess and validate the method. We compare the perfor-

mance of EDOHA with the existing methods, such as the graphical lasso (JGL) and JRmGRN.

PLOS COMPUTATIONAL BIOLOGY Extended graphical lasso for interaction networks for high dimensional omics data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008794 October 20, 2021 8 / 20

https://doi.org/10.1371/journal.pcbi.1008794


Results show that EDOHA is more efficient than other methods when analyzing compositional

data correlation networks which have both common and class-specific hub nodes.

Simulation strategy. To simulate a biological compositional data set such as microbiome

count data, we consider the data are drawn with two steps. We first generate the basis abun-

dance and proportion for each feature and then generate count data given a sequencing size

(i.e. library size). The data structure characteristics are reflected in the basis covariance, which

will be introduced in details later. Here we assume that basis proportions vary from sample to

sample and are generated from one of three different distributions, namely, log ratio normal

(LRN), Poisson log normal (LNP) and Dirichlet log normal (LND) distributions [21]. These

three methods are presented in S6 Text. Then we extract count data from a multinomial distri-

bution using the proportions, which reflects a random process that all sequences are equally

likely to be selected in a biological sample.

To evaluate EDOHA comprehensively, we consider that the features are associated with

ER-based network, in which each pair of nodes is selected with equal probability and con-

nected with a predefined probability. The scale-free ER-based networks are generated by mod-

ifying the procedure used in Deng et al. [7]. Specifically, for a given number of classes (K),

nodes (p), samples (nk), we use the following procedures to simulate ER-based network and

corresponding compositional data.

Step 1 We generate the base sparse matrix A in which Aij is set as a random number in [−0.75,

−0.25]
S

[0.25, 0.75] with probability α (elementary network sparsity 1-α) and zero

otherwise.

Step 2 Given the number of hubs m, we randomly choose m nodes and for each element that

represents the correlation between ith hub node and other node j, ~vij, we set it to be a ran-

dom number in [−0.75, −0.25]
S

[0.25, 0.75] with probability β (hub sparsity 1-β) and zero

otherwise.

Step 3 To construct the hub matrix V(k), we randomly choose a fraction δ (network difference)

of the hub nodes and reset them to be random numbers from 1, 2, . . ., p. The modified hub

nodes are denoted by v(k). As for nonzero elements in V(k), we first set vðkÞij ¼ ~vij and then

randomly adjust a fraction of δ of these elements and reset their values to be random num-

bers in [−0.75, −0.25]
S

[0.25, 0.75] with probability β.

Step 4 To construct the elementary network, Z(k), we first set it equal to A, and then randomly

choose a fraction of δ of elements and reset their values to be random numbers in [−0.75,

−0.25]
S

[0.25, 0.75] with probability α and zero otherwise. We set Z(k) = Z(k) + (Z(k))T so

that Z(k) is symmetric.

Step 5 We define the precision matrix Θ(k) as Z(k) + V(k) + (V(k))T. If Θ(k) is not positive defi-

nite, we add the diagonal element of Θ(k) by 0.1 − λmin(Θ(k)), where λmin(Θ(k)) is the mini-

mum eigenvalue of Θ(k).

Step 6 We generate the compositional data of nk samples for the kth class from a multinomial

distribution using the proportions obtained from LRN with basis covariance (Θ(k))−1.

Here the simulation studies are conducted for three classes with 40 or 80 samples for each

class. The elementary network sparsity, the hub sparsity and the network difference are set as

0.98, 0.7, 0.2, respectively. As we have mentioned, we use the BIC and the grid search to find

the appropriate tuning parameters and model.

Simulation results. We consider simulated network described in the previous section

with 80, 160, 300 nodes and estimate corresponding system with sample size n = 40, n = 80,
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respectively. The effects of EDOHA penalties vary with the sample size. To better present the

simulation study results, we multiply the tuning parameters (λ1, λ2, λ3, λ4, λ5) by the sample

size before performing the EDOHA.

We compare the performance of EDOHA and JRmGRN of identifying non-zero edges and

class-specific edges. The results are computed averaging over 100 simulated data sets. We say

that an edge (i, j) in the kth network is detected if the estimated association Ŷ
ðkÞ
ij 6¼ 0 and we

say that the edge is correctly detected ifY
ðkÞ
ij 6¼ 0. The number of differential edges, which dif-

fer between classes, is defined as follows [6]:

X

k<k0

X

i<j

IðYðkÞij 6¼ Y
ðk0Þ
ij Þ:

We record the sensitivity and specificity associated with detecting non-zero edges and

detecting differential edges. The sensitivity is the proportion of the non-zero or differential

edges that are correctly detected and the specificity represents the proportion of the zero or

non-differential edges that are correctly detected. Hence the sensitivity and specificity of edge

detection (ED) and differential edge detection (DED) are computed as

• ED Sensitivity ¼

PK

k¼1

P

i<j
I
�
Ŷ
ðkÞ
ij 6¼0 and Y

ðkÞ
ij 6¼0

�

PK

k¼1

P

i<j
I
�
Y
ðkÞ
ij 6¼0

�

• ED Specificity ¼

PK

k¼1

P

i<j
I
�
Ŷ
ðkÞ
ij ¼0 and Y

ðkÞ
ij ¼0

�

PK

k¼1

P

i<j
IðYðkÞij ¼0Þ

• DED Sensitivity ¼

P

k<k0

P

i<j
I
�
Ŷ
ðkÞ
ij 6¼Ŷ

ðk0 Þ
ij and Y

ðkÞ
ij 6¼Y

ðk0Þ
ij

�

P

k<k0

P

i<j
I
�
Y
ðkÞ
ij 6¼Y

ðk0Þ
ij

�

• DED Specificity ¼

P

k<k0

P

i<j
I
�
Ŷ
ðkÞ
ij ¼Ŷ

ðk0 Þ
ij and Y

ðkÞ
ij ¼Y

ðk0 Þ
ij

�

P

k<k0

P

i<j
I
�
Y
ðkÞ
ij ¼Y

ðk0 Þ
ij

�

As shown in Table 1, if only the number of non-zero edges is considered, there is little dif-

ference between EDOHA and JRmGRN in terms of the total number of detected pairwise

node-node associations. However, the sensitivity of detecting differential edges using EDOHA

has more than doubled in all cases compared with JRmGRN. This is mainly because EDOHA

is equipped with a better ability to identify the class-specific edges.

Table 1. Means (standard deviations) over 100 replicates using EDOHA and JRmGRN are shown for sensitivity and specificity of edge detection (ED) and differen-

tial edge detection (DED).

n = 40 n = 80

ED Sensitivity ED Specificity DED Sensitivity DED Specificity ED Sensitivity ED Specificity DED Sensitivity DED Specificity

p = 80 EDOHA 0.614(0.089) 0.925(0.054) 0.396(0.098) 0.959(0.049) 0.597(0.110) 0.960(0.024) 0.416(0.104) 0.968(0.019)

JRmGRN 0.535(0.055) 0.914(0.039) 0.138(0.112) 0.986(0.011) 0.542(0.132) 0.928(0.058) 0.161(0.095) 0.989(0.004)

p = 160 EDOHA 0.352(0.055) 0.974(0.011) 0.288(0.059) 0.977(0.005) 0.430(0.063) 0.977(0.010) 0.329(0.058) 0.979(0.006)

JRmGRN 0.355(0.039) 0.955(0.012) 0.077(0.043) 0.992(0.004) 0.417(0.053) 0.989(0.003) 0.114(0.068) 0.987(0.002)

p = 300 EDOHA 0.347(0.032) 0.971(0.007) 0.217(0.081) 0.974(0.016) 0.288(0.036) 0.990(0.005) 0.293(0.050) 0.978(0.011)

JRmGRN 0.297(0.052) 0.939(0.025) 0.068(0.067) 0.988(0.018) 0.253(0.028) 0.991(0.003) 0.110(0.037) 0.991(0.002)

https://doi.org/10.1371/journal.pcbi.1008794.t001
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We then show that EDOHA has substantial improvements over several other methods.

Since the hub nodes cannot be found out by JGL explicitly, the precision-recall curve is con-

structed based on the differential non-zero edges in the network, which is compared with the

results from aforementioned methods intuitively. We simulate the networks with varying spar-

sity and similarity in two conditions and estimate corresponding networks with 160 nodes.

The sample size is 80. To compare the results from different methods, we simulate each situa-

tion 100 times. As can be seen in Fig 1, the precision of EDOHA stays high through a larger

range of recall, whereas for the other methods it quickly drops to the level of random guessing.

This agrees with our expectation since EDOHA distinguishes the differences among elemen-

tary networks and hub networks respectively, which fits the data in the model better.

Hubs are explicitly modeled by EDOHA and JRmGRN. We simulate the networks with

both common and class-specific hubs and compare the results with JRmGRN. To better pres-

ent the performance of identifying class-specific hubs, we also compare the hub detection

capability with HGL [14], which only handles data from a single class. When applying HGL,

networks are fitted for each class separately. The entire procedure is repeated 50 times. Com-

prehensive evaluations of EDOHA on identifying the common and class-specific hubs are pre-

sented in Table 2. The true positive rate (TPR), false positive rate (FPR) and Precision for

common (C) hubs and class-specific (S) hubs are defined as

• TPR-C ¼ #fidentified true common hubsg
#fcommon hubsg

• FPR-C ¼ #fidentified false common hubsg
p� #fcommon hubsg

• TPR-S ¼ #fidentified true class-specific hubsg
#fclass-specific hubsg

• FPR-S ¼ #fidentified false class-specific hubsg
p� #fclass-specific hubsg

• Precision-C ¼ #fidentified true common hubsg
#fidentified common hubsg

• Precision-S ¼ #fidentified true class-specific hubsg
#fidentified class-specific hubsg

Total TPR, FPR and Precision are computed as

• TPR ¼
P

k
#fidentified true hubs in kth classg
P

k
#fhubs in kth classg

• FPR ¼
P

k
#fidentified false hubs in kth classg

Kp�
P

k
#fhubs in kth classg

Fig 1. Precision-Recall curve of EDOHA, JRmGRN and JGL for differential edge detection under different

networks settings. ‘E sparsity’ is the sparsity of elementary network; ‘H sparsity’ is the sparsity of hub network, the last

parameter shown in title is the difference of two networks.

https://doi.org/10.1371/journal.pcbi.1008794.g001
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• Precision ¼
P

k
#fidentified true hubs in kth classg
P

k
#fidentified hubs in kth classg

A simple example computing the TPR, FPR and Precision is described in S7 Text. Since

JRmGRN only detects common hubs, there is no corresponding information on class-specific

hubs. It can be seen that EDOHA has almost the highest precision and lowest FPR when we

count the common hubs and class-specific hubs separately. Although JRmGRN works quite

well in identifying common hubs, it tends to incorrectly identify some common hubs. As we

mentioned earlier, JRmGRN can be viewed as a subcase of EDOHA, i.e. λ5 =1, and HGL is

like EDOHA with λ2 = 0, λ5 = 0. Hence EDOHA has better performance than JRmGRN and

HGL when analyzing correlation networks which have both common and class-specific hub

nodes. Additional simulations for only common hubs and only class-specific hubs are shown

in S1 Table. From simulation results, EDOHA could detect most common hubs in only com-

mon hubs setting and well recognize class-specific hubs in only class-specific hubs setting. We

also find that the results of EDOHA and JRmGRN are similar to each other when most of true

hubs are common ones but quite different when the true networks have more class-specific

hubs. These results suggest the usefulness of EDOHA in identifying true hub nodes in a situa-

tion where one does not know if they are class-specific or common.

Real data analysis

We apply the proposed model on three real data sets: one is proteomic data and the other two

are microbiome data. Compared with the analysis methods used in the original publications,

our model possesses the competence in constructing multiple networks with common and

class-specific hubs across multiple classes. We also implement JRmGRN to infer interaction

networks and detect the hubs across classes. We find that some of hubs recognized by

EDOHA, including common and class-specific ones, are identified as common hubs by

JRmGRN. From the simulation study, EDOHA may be more reliable when the results between

them are significantly different.

Application to mouse skin microbiome data. We apply EDOHA to a mouse skin micro-

bial data set (PRJEB1934) including three groups of individuals: non-immunized (Control),

immunized-healthy (Healthy), and immunized-diseased (EBA). Microbial communities are

measured utilizing variable regions of bacterial 16S rRNA sequencing data. These regions are

Table 2. Performances of EDOHA, JRmGRN and HGL for hub detection are compared by True Positive Rate (TPR), False Positive Rate (FPR) and precision. The

network difference is set as 0.3. The results are averaged over 50 simulations.

TPR-C FPR-C Precision-C TPR-S FPR-S Precision-S TPR FPR Precision

80 nodes (5 hubs) EDOHA 0.896 0.021 0.886 0.751 0.056 0.728 0.841 0.027 0.824

JRmGRN 0.986 0.046 0.532 NA NA NA 0.810 0.049 0.688

HGL 0.784 0.016 0.781 0.695 0.168 0.407 0.835 0.051 0.619

160 nodes (8 hubs) EDOHA 0.793 0.004 0.837 0.837 0.035 0.776 0.861 0.005 0.897

JRmGRN 0.904 0.029 0.643 NA NA NA 0.727 0.029 0.674

HGL 0.621 0.006 0.738 0.767 0.038 0.566 0.737 0.023 0.663

300 nodes (12 hubs) EDOHA 0.789 0.001 0.879 0.878 0.018 0.756 0.895 0.001 0.863

JRmGRN 0.887 0.032 0.654 NA NA NA 0.705 0.011 0.706

HGL 0.537 0.001 0.819 0.713 0.023 0.553 0.793 0.021 0.589

NA: JRmGRN could not detect class-specific hubs.

https://doi.org/10.1371/journal.pcbi.1008794.t002
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amplified, sequenced, and then grouped into common Operational Taxonomic Units (OTUs)

according to the similarity and quantified, with OTU counts serving as an intermediary to the

underlying microbial populations abundances. The data set contains 131 core OTUs mainly

coming from four prime phyla, which are Firmicutes (44 OTUs), Proteobacteria (35 OTUs),

Bacteroidetes (26 OTUs), Actinobacteria (17 OTUs). We analyze their abundance data from

261 mouse skin samples. In particular, we wish to reconstruct the pair-wise conditional corre-

lation networks and identify the OTUs that are hubs. Such OTUs likely play an important role

in the environment.

In Fig 2, we plot the networks for the three groups. The hub OTUs are highlighted in

orange. Only OTUs from Firmicutes and Actinobacteria are identified as hub OTUs. The

three networks share only one common hub while Healthy and EBA groups have another

common hub. However, three hub OTUs in the Healthy group do not appear as hubs in the

EBA group. Note that two OTU hubs shared by the Healthy and the Control groups are not

hubs in the EBA group. Such information may be useful to understand the mechanism of pro-

tection from disease, which would not be available without our method of class-specific hub

detection. In contrast, JRmGRN identifies eight common hubs, four of which are detected by

EDOHA as class-specific hubs, one in EDOHA’s common hub. Only one hub recognized by

EDOHA is not included in JRmGRN’s common hub set.

In addition to comparing the hub OTUs, we also investigate whether the correlation pat-

terns among the 131 OTUs are different for different groups of disease status. A correlated

pair of OTUs is considered consistent between two groups if the correlations in both groups

have the same sign. We come to the same conclusion that correlations from the non-immu-

nized individuals are less consistent with the other two immunized groups than between the

two immunized groups. There are 687 consistent pairs between the two immunized groups,

while there are only 639 consistent pairs between the Control and Healthy and 632 between

the Control and EBA groups. The results obtained in Ban et al. [21] were 532 consistent pairs

between the two immunized groups, the other two were 236 and 212 respectively. Hence the

gaps between these groups in our research are much less (See S1 Fig). The reason is mainly

that we jointly model multiple networks simultaneously so that the similarity of networks

could be constructed more accurately by using datasets from multiple classes, which results in

more accurate class-specific networks.

Application to IBD microbiome data. We perform our proposed method on the inflam-

matory bowel disease (IBD) multi-omics database from the Integrative Human Microbiome

Fig 2. The estimated networks for the groups of non-immunized (control), immunized-healthy (healthy) and

immunized-diseased (EBA) individuals. The edges represent the interaction between two OTUs and the hub OTUs

are highlighted in orange. The node radius varies with the number of the correlated edges.

https://doi.org/10.1371/journal.pcbi.1008794.g002
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Project (HMP2 metadata) focusing on the functions of microbes in human health and disease.

IBD further includes two main subtypes, Crohn’s disease (CD) and ulcerative colitis (UC).

Our samples consist of 86 CD patients, 46 UC patients and 46 healthy controls with 342

OTUs. As is known, IBD is a chronic and relapsing inflammatory condition of the gastrointes-

tinal (GI) tract and the GI microbiome of healthy humans is dominated by four major bacterial

phyla: Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria. The data set contains 225,

44, 38, 23 OTUs from these four prime phyla respectively.

We aim to reconstruct the multiple microbial networks of the human gut that represent the

interactions among the OTUs, as well as to identify hub OTUs that tend to have many interac-

tions with other ones. Identifying such regulatory OTUs will lead to a better understanding of

the mechanism of IBD, and eventually may lead to new therapeutic treatments. A large-scale

cross-measurement type association network for host and microbial molecular interactions

has been constructed [26]. Fig 3 displays the microbial interaction networks for the three clas-

ses. More hub OTUs are identified in CD than in UC and healthy controls. And almost every

hub in UC and healthy groups is covered in the hub sets of CD group. We find that species

from Actinobacteria are not detected as hub OTUs in three groups. Several studies [16, 27, 28]

discovered that Faecalibacterium were differentially abundant in IBD and healthy groups. Sub-

doligranulum, Roseburia and Fusobacterium have also been identified as hubs, all of which are

associated, metatranscriptionally as well as metagenomically, with taxonomic features. In our

study, OTUs from Rumiococcus gnavus and Roseburia are recognized as hubs in CD and UC

groups but not in healthy group, OTUs from Alistiles are only detected as hubs in CD group,

which may lead to an entirely new line of medical research into IBD. By comparison, JRmGRN

identifies thirteen common hubs, of which six are common ones, and six are shared in two

classes, according to EDOHA. The remaining one is not found in EDOHA’s list of any class-

specific hubs. Overall, more than half of the common hubs detected by JRmGRN are identified

as class-specific hubs in our method, EDOHA seems more efficient in building class-specific

networks.

Application to SARS-CoV-2 infection proteomic data. A most recent study has identi-

fied 332 high-confidence SARS-CoV-2 protein-human protein interactions that are connected

with multiple biological processes [29]. In the 332 proteins interacted with SARS-CoV-2,

188 of them may interact with the major virus components. We search for the existence of the

188 proteins in four kinds of tissues: colon, liver, lung and kidney, and apply the proposed

method, EDOHA, to construct proteome-wide networks and reveal common key hubs across

different types of tissues and tissue-specific hubs. The proteomic data is downloaded from

the National Cancer Institute Clinical Proteomic Tumor Analysis Consortium database

(CPTAC).

As shown in Fig 4, we identify three common hub proteins DDX21, REEP6 and SEPSECS.

And we identify MRPS5 as a hub only in colon, which is consistent with previous studies [8].

We also detect many other common hubs, including HMOX1, PRKAR2B and TIMM9, which

appear as hubs in two or three organs. Moreover, BCKDK and COMT are involved in hubs

only in liver. BWZ2, SLC44A2 and STOM are recognized as hubs merely in lung. And

ATP1B1, ATP6AP1, ATP6V1A, CCDC86, ETFA, NUP210, PTGES2 and SCARB1 are

screened as hubs only in kidney. All of these hub proteins detected in four tissues and their

functions in living organisms are shown in S2 Table. Eight hub proteins are recognized by

JRmGRN. DDX21 and REEP6 are common hubs detected as common ones by EDOHA, while

BZW2, CCDC86, MRPS5, PRKAR2B and STOM are class-specific hubs in one or two organs.

RRP9 is the only one that is not in the list of EDOHA’s hub set. The difference between the

two results may suggest class-specific hub structures.
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All of these hubs have connectivity at least 4 times larger than that of any non-hubs. Ubiqui-

tous hubs in multiple tissues would be promising drug targets to rescue multi-organ injury

and deal with inflammation. Certain tissue-specific hubs might mediate specific dysfunction.

Such information is urgently needed for the identification of the therapeutic targets for inter-

vention and vaccine development.

Fig 3. The estimated microbial networks for CD, UC and healthy groups. Four major bacterial phyla (Firmicutes, Bacteroidetes,

Proteobacteria and Actinobacteria) are marked by different colors. The larger nodes represent the hub OTUs.

https://doi.org/10.1371/journal.pcbi.1008794.g003
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Discussion

Currently, there has been an increasing interest in the structure of multiple interaction net-

works. In most cases, people implicitly assume that each node has roughly the same number of

interactions within the network when analyzing omics data, and each pair of nodes has equal

probability to be an edge and all edges are independent of each other. However, this assump-

tion is not appropriate in some real-world networks. In biological networks, scale-free proper-

ties are quite universal, which means the number of edges for each node follows a power-law

distribution and a small proportion of nodes interact with many other ones. Barabasi and Olt-

vai [30] have found that most networks within the cell approximate a scale-free topology,

including the metabolic networks, protein-protein interactions and genetic regulatory net-

works. The presence of hubs seems to be a general feature of all cellular networks. For example,

hub proteins play critical roles in the organization and function of cellular protein interaction

Fig 4. The estimated interaction networks of proteins affected by SARS-Cov-2 in four tissues. The protein-protein

networks are constructed based on datasets from colon, liver, lung and kidney. The hub proteins are highlighted in

yellow.

https://doi.org/10.1371/journal.pcbi.1008794.g004
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networks. It has also been demonstrated that such hub proteins may constitute an important

pool of attractive drug targets. One typical aim is to capture more complex interactions and

identify class-specific hubs in class-specific networks. Constructing biological association net-

works based on data sets from the same tissue with different phenotypes or different tissue

enables us to screen out the influential features contributing to life health and disease, which

provides insights into understanding the essential elements in living organisms and ecosys-

tems. As researches into biological correlation networks continue, it has become important to

develop a novel model to jointly estimate the scale-free interactions networks from different

classes.

In this paper, we propose a new statistical procedure to construct class-specific networks

and select informative hub features among multiple classes for high dimensional omics data.

Hub features, including common and specific ones, are accurately identified by decomposing

the precision matrix into two parts. New penalty terms are added to single out class-specific

hubs. Moreover, theoretical properties for selecting tuning parameters are investigated to

improve computation efficiency. For a fixed set of tuning parameters, using a Mac desktop

computer with 2.3 GHz Intel Core i5 processor and 8 GB 2133 MHz LPDDR3 memory, the

average running times for estimating the precision matrices are about 2.5 min for 100 nodes, 7

min for 200 nodes, 20 min for 300 nodes, respectively. In future, we will explore strategies to

speed up the computation, such as the randomized parameter search. The synthetic data are

generated with ER-based network to model as closely as possible the situation in experimental

biological compositional data. Our simulation studies show that the proposed method achieves

higher accuracy in detecting the differential edges from different classes. We show that

EDOHA has the potential to recognize the class-specific hub features and gains the larger area

under the Precision-Recall curves compared with other methods. We also apply the proposed

method to three real omics data sets. One of them is proteomic data from different tissues, and

the other two are microbial data from microbial communities with different phenotypes.

Across all three data sets, EDOHA successfully builds multiple networks and the results are

basically consistent with previous reports. Furthermore, EDOHA identifies some hub features,

both common and class-specific ones, which provides a deeper understanding of the mecha-

nisms involved. Overall, EDOHA could not only jointly reconstruct multiple networks but

also detect class-specific hubs explicitly for omics data with multiple distinct classes. It is prom-

ising in generating networks with such data structure.

EDOHA is in fact a general method applicable to many types of omics data such as gene

expression data, which follow a multivariate normal distribution. When EDOHA is applied to

compositional data, one only needs to take the centered log-ratio transformed data as input. In

fact, many other interaction network methods based on Gaussian graphical models have been

proposed to account for compositionality more recently, such as gCoda [31], CD-trace [32],

and BC-gLASSO [33]. One of our future work is to decompose the precision matrix in these

newer methods as Θ = Z + V + (V)T and use the penalty function P(Θ) in our method to con-

struct multiple interaction networks with common and class-specific hubs.
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3. Meinshausen N,Bühlmann P. High-dimensional graphs and variable selection with the lasso. The

annals of statistics. 2006; 34(3):1436–1462. https://doi.org/10.1214/009053606000000281

4. Friedman Jerome and Hastie Trevor and Tibshirani Robert Sparse inverse covariance estimation with

the graphical lasso. Biostatistics. 2008; 9(3):432–441. https://doi.org/10.1093/biostatistics/kxm045

PMID: 18079126

5. Fan J, Feng Y, Wu Y. Network exploration via the adaptive LASSO and SCAD penalties. The annals of

applied statistics. 2009; 3(2):521–541. https://doi.org/10.1214/08-AOAS215SUPP PMID: 21643444

6. Danaher P, Wang P, Witten DM. The joint graphical lasso for inverse covariance estimation across mul-

tiple classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2014; 76

(2):373–397. https://doi.org/10.1111/rssb.12033 PMID: 24817823

7. Deng W, Zhang K, Liu S, Zhao P, Xu S, Wei H, et al. JRmGRN: joint reconstruction of multiple gene reg-

ulatory networks with common hub genes using data from multiple tissues or conditions. Bioinformatics.

2018; 34(20):3470–3478. https://doi.org/10.1093/bioinformatics/bty354 PMID: 29718177

8. Feng L, Yin Y, Liu C, Xu K, Li Q, Wu J, et al. Proteome-wide Data Analysis Reveals Tissue-specific Net-

work Associated with SARS-CoV-2 Infection. Journal of Molecular Cell Biology. 2020. https://doi.org/

10.1093/jmcb/mjaa033 PMID: 32642770

9. Lauritzen SL. Graphical models. Clarendon Press; 1996.

10. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the

alternating direction method of multipliers. Machine learning. 2010; 3(1):1–122. https://doi.org/10.1561/

2200000016

11. Ma S, Xue L, Zou H. Alternating direction methods for latent variable Gaussian graphical model selec-

tion. Neural computation. 2013; 25(8):2172–2198. https://doi.org/10.1162/NECO_a_00379 PMID:

23607561

12. Tang Q, Yang C, Peng J, Xu J. Exact hybrid covariance thresholding for joint graphical lasso.

Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 2015;593–

607.

13. Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the

Royal Statistical Society: Series B (Statistical Methodology). 2006; 68(1):49–67. https://doi.org/10.

1111/j.1467-9868.2005.00532.x

14. Tan KM, London P, Mohan K, Lee SI, Fazel M, Witten D, et al. Learning graphical models with hubs.

Journal of Machine Learning Research. 2014; 15:3297–3331. PMID: 25620891

15. Dunne JL, Triplett EW, Gevers D, Xavier R, Insel R, Danska J, et al. The intestinal microbiome in type 1

diabetes. Clinical & Experimental Immunology. 2014; 177(1):30–37. https://doi.org/10.1111/cei.12321

PMID: 24628412

16. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal

microbiome in inflammatory bowel disease and treatment. Genome biology. 2012; 13(9):R79. https://

doi.org/10.1186/gb-2012-13-9-r79 PMID: 23013615

17. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, et al. Acetate mediates a microbiome–

brain–β-cell axis to promote metabolic syndrome. Nature. 2016; 534(7606):213–217. https://doi.org/

10.1038/nature18309 PMID: 27279214

18. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA, et al. Sparse and compositionally

robust inference of microbial ecological networks. PLoS computational biology. 2015; 11(5):e1004226.

https://doi.org/10.1371/journal.pcbi.1004226 PMID: 25950956

19. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS computational biol-

ogy. 2012; 8(9):e1002687. https://doi.org/10.1371/journal.pcbi.1002687 PMID: 23028285

20. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence rela-

tionships in the human microbiome. PLoS computational biology. 2012; 8(7):e1002606. https://doi.org/

10.1371/journal.pcbi.1002606 PMID: 22807668

21. Ban Y, An L, Jiang H. Investigating microbial co-occurrence patterns based on metagenomic composi-

tional data. Bioinformatics. 2015; 31(20):3322–3329. https://doi.org/10.1093/bioinformatics/btv364

PMID: 26079350

22. Fang H, Huang C, Zhao H, Deng M. CCLasso: correlation inference for compositional data through

Lasso. Bioinformatics. 2015; 31(19):3172–3180. https://doi.org/10.1093/bioinformatics/btv349 PMID:

26048598

23. Cao Y, Lin W, Li H. Large covariance estimation for compositional data via composition-adjusted

thresholding. Journal of the American Statistical Association. 2019; 114(526):759–772. https://doi.org/

10.1080/01621459.2018.1442340

PLOS COMPUTATIONAL BIOLOGY Extended graphical lasso for interaction networks for high dimensional omics data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008794 October 20, 2021 19 / 20

https://doi.org/10.1007/978-1-59745-243-4_7
http://www.ncbi.nlm.nih.gov/pubmed/19381526
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1093/biostatistics/kxm045
http://www.ncbi.nlm.nih.gov/pubmed/18079126
https://doi.org/10.1214/08-AOAS215SUPP
http://www.ncbi.nlm.nih.gov/pubmed/21643444
https://doi.org/10.1111/rssb.12033
http://www.ncbi.nlm.nih.gov/pubmed/24817823
https://doi.org/10.1093/bioinformatics/bty354
http://www.ncbi.nlm.nih.gov/pubmed/29718177
https://doi.org/10.1093/jmcb/mjaa033
https://doi.org/10.1093/jmcb/mjaa033
http://www.ncbi.nlm.nih.gov/pubmed/32642770
https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2200000016
https://doi.org/10.1162/NECO_a_00379
http://www.ncbi.nlm.nih.gov/pubmed/23607561
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
http://www.ncbi.nlm.nih.gov/pubmed/25620891
https://doi.org/10.1111/cei.12321
http://www.ncbi.nlm.nih.gov/pubmed/24628412
https://doi.org/10.1186/gb-2012-13-9-r79
https://doi.org/10.1186/gb-2012-13-9-r79
http://www.ncbi.nlm.nih.gov/pubmed/23013615
https://doi.org/10.1038/nature18309
https://doi.org/10.1038/nature18309
http://www.ncbi.nlm.nih.gov/pubmed/27279214
https://doi.org/10.1371/journal.pcbi.1004226
http://www.ncbi.nlm.nih.gov/pubmed/25950956
https://doi.org/10.1371/journal.pcbi.1002687
http://www.ncbi.nlm.nih.gov/pubmed/23028285
https://doi.org/10.1371/journal.pcbi.1002606
https://doi.org/10.1371/journal.pcbi.1002606
http://www.ncbi.nlm.nih.gov/pubmed/22807668
https://doi.org/10.1093/bioinformatics/btv364
http://www.ncbi.nlm.nih.gov/pubmed/26079350
https://doi.org/10.1093/bioinformatics/btv349
http://www.ncbi.nlm.nih.gov/pubmed/26048598
https://doi.org/10.1080/01621459.2018.1442340
https://doi.org/10.1080/01621459.2018.1442340
https://doi.org/10.1371/journal.pcbi.1008794


24. Aitchison J. The statistical analysis of compositional data. Journal of the Royal Statistical Society:

Series B (Methodological). 1982; 44(2):139–160.

25. Mendes P, Sha W, Ye K. Artificial gene networks for objective comparison of analysis algorithms. Bioin-

formatics. 2003; 19(suppl_2):ii122–ii129. PMID: 14534181

26. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics

of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019; 569(7758):655–662.

https://doi.org/10.1038/s41586-019-1237-9 PMID: 31142855

27. Kang S, Denman SE, Morrison M, Yu Z, Dore J, Leclerc M, et al. Dysbiosis of fecal microbiota in

Crohn’s disease patients as revealed by a custom phylogenetic microarray. Inflammatory bowel dis-

eases. 2010; 16(12):2034–2042. https://doi.org/10.1002/ibd.21319 PMID: 20848492

28. Mondot S, Barreau F,Al Nabhani Z, Dussaillant M, Le RK, Doré J, et al. Altered gut microbiota composi-
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