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Abstract

In an epidemic, individuals can widely differ in the way they spread the infection depending

on their age or on the number of days they have been infected for. In the absence of phar-

maceutical interventions such as a vaccine or treatment, non-pharmaceutical interventions

(e.g. physical or social distancing) are essential to mitigate the pandemic. We develop an

original approach to identify the optimal age-stratified control strategy to implement as a

function of the time since the onset of the epidemic. This is based on a model with a double

continuous structure in terms of host age and time since infection. By applying optimal con-

trol theory to this model, we identify a solution that minimizes deaths and costs associated

with the implementation of the control strategy itself. We also implement this strategy for

three countries with contrasted age distributions (Burkina-Faso, France, and Vietnam).

Overall, the optimal strategy varies throughout the epidemic, with a more intense control

early on, and depending on host age, with a stronger control for the older population, except

in the scenario where the cost associated with the control is low. In the latter scenario, we

find strong differences across countries because the control extends to the younger popula-

tion for France and Vietnam 2 to 3 months after the onset of the epidemic, but not for Burkina

Faso. Finally, we show that the optimal control strategy strongly outperforms a constant uni-

form control exerted over the whole population or over its younger fraction. This improved

understanding of the effect of age-based control interventions opens new perspectives for

the field, especially for age-based contact tracing.

Author summary

COVID-19 infected individuals differ in the way they spread the infection depending on

their age or on the number of days elapsed since the contamination. This individual het-

erogeneity can impact the design of public health control measures to contain epidemics.

Using optimal control theory, we identify a strategy that minimizes deaths and costs due

to the implementation of the control measures themselves. We also implement this
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strategy for three countries with contrasted age distributions (Burkina-Faso, France, and

Vietnam). This strategy consists in rapidly intervening in older populations to protect the

older people during the initial phase of the epidemic and (if the cost is intermediate or

low) to control the epidemic, before progressively alleviating this control. Interventions in

the younger population can occur later if the cost associated with the intervention is low.

Such interventions targeted at younger people aim at suppressing the epidemic.

Introduction

Following its emergence in December 2019, COVID-19 has become an international public

health emergency [1]. The infection has many similarities with that caused by influenza virus

regarding its clinical manifestations and transmission mechanisms [1]. However, contrary to

seasonal influenza, COVID-19 has become pandemic by spreading rapidly among completely

naive host populations, i.e. with no pre-existing immunity [2–5]. Initially, no pharmaceutical

interventions such as vaccines or treatments were available and it usually takes several months

before their deployment. For this reason, non-pharmaceutical intervention (NPI) strategies,

such as social distancing, are key to controlling the pandemic [6].

When an intervention is summarized by one or few parameter values, identifying an opti-

mal strategy according to some criterion variable can readily be done, e.g. using a gradient

approach [7]. Things become more challenging when the intervention parameter value is a

function of time. Optimal control theory [8], specifically addresses this issue by identifying a

function of time such that some criterion is optimized. This has allowed studies to identify

optimal non-pharmaceutical interventions to control infectious diseases such as influenza and

COVID-19 [9–12]. However, a strong limitation of these studies is that they all ignore at least

one aspect of the host population structure. First, infection parameters (contagiosity, recovery)

vary with infection age, i.e. depending on the number of days since infection. Second, hosts

vary in age. The latter point is particularly important because, in addition to being a function

of time since the onset of the outbreak, optimal strategies involving physical distancing can

also vary depending on host age [13–17]. Accounting for two dimensions, time and host age,

make the optimization procedure much more challenging because optimal control theory is

usually applied to ordinary differential equations (ODEs) –something very common– while

here we are working on partial differential equations (PDEs) –which is less common, and

much more challenging. Here, we address this challenge and identify interventions varying in

intensity with time and host age that significantly reduce morbidity associated with COVID-

19 at a minimal cost. Furthermore, we compare the situation in countries with contrasted age-

structure, namely Burkina-Faso, France, and Vietnam, to show how this affects optimal

strategies.

The age structure of the population is a known key determinant of acute respiratory dis-

eases, especially when it comes to infection severity. For example, children are considered to

be responsible for most of the transmission of influenza virus [18] but the related hospitaliza-

tion and mortality burden is largely carried by people of ages over 65 years [19, 20]. While

much remains unknown about the COVID-19 epidemics, evidence to date suggests that mor-

tality among people who have been tested positive for the coronavirus is substantially higher at

older ages and near zero for young children [3, 21]. Moreover, the infectiousness of an individ-

ual has been reported to vary as a function of time since infection [22], which is known to

affect epidemic spread [23–26].
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Our model for the disease stage-progression is structured both by a (continuous) age of the

host and a (continuous) age of infection. A variety of epidemiological models allow for one or

the other type of structure [27–30], starting with a seminal article from the 1920s [23]. How-

ever, models allowing for a double continuous structure are rare [30–37], even though it is par-

ticularly suited to investigate infections such as COVID-19, with strong effects of host and

infection age. Indeed, in addition to taking into account the age structure of the host popula-

tion, as well as the gradient of disease severity from mild to critical symptoms, the model read-

ily captures the variation in infectiousness as a function of the time since infection. From a

theoretical point of view, age-structured models have been proposed to investigate the spread

of acute respiratory diseases [38–42], and some rare models of acute respiratory diseases con-

sider both structures as continuous variables [30, 32], although not in the context of optimal

control theory.

We first introduce the mathematical model and define its parameters and outputs. Next, we

characterize the optimal control strategy that minimizes the number of deaths as well as the

cost due to the implementation of the control strategy itself. The main body of the results then

follows. We first analyze the epidemic spread without any intervention for three countries with

contrasted age distributions (Burkina-Faso, France, and Vietnam). Second, we compare the

performance of optimal control in terms of deaths and hospitalizations for different costs of the

control measure. Finally, we compare our optimal control strategy to two other strategies that

use the same amount of resources to control the outbreak. Finally, we discuss our model in

results in the context of the current pandemic and identify perspective for future work.

Materials and methods

An age-structured epidemiological model

Model overview. We denote by S(t, a) the density of individuals of age a 2 [0, amax] that

are susceptible to the infection at time t 2 [0, T]. These individuals can become infected with a

rate called the force of infection and denoted λ(t, a). We assume that a fraction p of these indi-

viduals are paucisymptomatic, which means that they will develop very mild to no symptoms,

and enter group Ip. Note that p is likely to depend on age, but, because it is currently unknown,

we assume it to be constant. This class Ip can also be interpreted as the fraction of the popula-

tion that will not isolate themselves during their infection. Other individuals are assumed to

develop more symptomatic infections, either severe Is with proportion q(a) depending on the

age a, or mild Im with proportion 1 − q(a).

Each of the three infected host populations are structured in time since infection, so that

Iv(t, a, i), v 2 {p, s, m}, denotes the density at time t of individuals of age a that have been

infected for a duration i 2 Rþ. Upon infection, all exposed individuals are assumed to remain

non-infectious during an average period ilat. Next, they enter an asymptomatic period during

which they are infectious. Only Im and Is develop significant symptoms after an average time

since infection isympt, which can allow them to self-isolate to limit transmission. During their

infection, individuals can recover at a rate hv(a, i) (v 2 {p, m, s}) that depends on the severity of

the infection and the time since infection i. Severely infected individuals of age a may also die

from the infection at rate γ(a, i).
The infection life cycle is shown in Fig 1. The total size of the host population of age a at

time t is

Nðt; aÞ ¼ Sðt; aÞ þ Rðt; aÞ þ
Z 1

0

ðIpðt; a; iÞ þ Imðt; a; iÞ þ Isðt; a; iÞÞdi: ð1Þ

PLOS COMPUTATIONAL BIOLOGY Age-structured non-pharmaceutical interventions for optimal control of COVID-19 epidemic

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008776 March 4, 2021 3 / 25

https://doi.org/10.1371/journal.pcbi.1008776


Remark. Contrarily to classical SEAIR models, disease-stage progression in our model is not
captured by discrete compartments (exposed, asymptomatic, and infected) with exponentially
distributed waiting times to switch between compartments. The advantage of our formalism is
that disease progression can be modeled using a continuous variable, called the time since infec-
tion (in days) denoted here by i. Every infected person then remains in the “infection compart-
ment” from exposure until recovery (or death). Latency from exposed to asymptomatic and time
of symptoms onset are not needed for this modeling approach because these are captured through
the functions describing the transmission rate, the mortality rate, and the recovery rate at time i
post infection. More precisely, the average latency from exposed to asymptomatic (ilat) is simply
mentioned to define the average time to infectiousness onset (isympt), and also to help the readers
to understand the model flow diagram (Fig 1). On the other hand, isympt is used to define infec-
tiousness reduction factors (ξs, ξm) and the mortality rate due to the infection (γ).

Age-structured transmission and severity. We use two components to model the infec-

tion process. First, we define the transmission probability βv(a, i) (v 2 {p, m, s}) for each con-

tact between an infected of age a and a susceptible person, which depends on the time since

infection i. Second, we introduce the kernel K(a, a0) that represents the average number of

contacts by unit of time between an individual of age a0 and an individual of age a. The numer-

ical values of this contact matrix are based on data from an earlier study [43]. The force of

infection underwent by susceptible individuals of age a at time t is then given by

lðt; a; cÞ ¼ ð1 � cðt; aÞÞ

�

Z amax

0

Kða; a0Þ
Z 1

0

ðbsða
0; iÞIsðt; a

0; iÞ þ bmða
0; iÞImðt; a

0; iÞ þ bpða
0; iÞIpðt; a

0; iÞÞdi da0:ð2Þ

where c = c(t, a) is the percentage of contacts reduction towards people with age a, due to con-

trol measures, at time t. The total force of infection at time t in the whole population is com-

puted as
R amax

0
lðt; a; cÞda. The dynamics of newly infected individuals (i.e. i = 0) in each group

is thus defined by

Isðt; a; 0Þ ¼ ð1 � pÞqðaÞlðt; a; cÞSðt; aÞ;

Imðt; a; 0Þ ¼ ð1 � pÞð1 � qðaÞÞlðt; a; cÞSðt; aÞ;

Ipðt; a; 0Þ ¼ plðt; a; cÞSðt; aÞ:

8
><

>:
ð3Þ

Fig 1. The model flow diagram. Susceptible hosts of age a at time t (S(t, a)) are exposed to the virus with a force of

infection λ(t, a). A fraction p of exposed individuals, which are infected since time i, will never develop symptoms and

enter the group of paucisymptomatic infections (Ip(t, a, i)). The rest will develop symptomatic infections, either severe

(Is(t, a, i)) with proportion q(a) depending on age a of individuals, or mild (Im(t, a, i)). Exposed individuals remain

non-infectious for a duration ilat after infection. Next, they become asymptomatic infectious and only symptomatic

infected will develop symptoms at time isympt after infection. Infected individuals recover at rate hv(a, i). Only severely

infected of age a die from the infection at rate γ(a, i). Notations are shown in Table 1.

https://doi.org/10.1371/journal.pcbi.1008776.g001
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Further, we assume that only severe infections Is lead to hospitalization and we denote by

HðtÞ ¼
Z amax

0

Z 1

isympt

Isðt; a; iÞdi da ð4Þ

the total population hospitalized at time t, where isympt is the average time to symptoms onset.

Each individual of age a dies at a rate μ(a, H(t)) at time t, defined by

mða;HðtÞÞ ¼ mnatðaÞ þ maddða;HðtÞÞ:

where μnat denotes the natural mortality rate when hospitals are not saturated. We assume that

this rate increases significantly as soon as the number of severe cases exceeds the healthcare

capacity Hsat and denote by μadd this additional death rate due to hospital saturation.

We apply the same reasoning by assuming that the disease-related mortality can increase

because of hospital saturation. Therefore, severely infected individuals of age a who have been

infected since time i die at time t at rate γ(a, i, H(t)) defined by

gða; i;HðtÞÞ ¼ ðgdirðaÞ þ gindirða;HðtÞÞÞ1½isympt ;ismax�
ðiÞ:

where γdir and γindir are mortality rates directly and indirectly due to the COVID-19 respec-

tively. The disease-related mortality occurs after the emergence of symptoms and before the

mean final time of infection for severe cases, i.e. for i 2 ½isympt; ismax�:

Finally, infected individuals of age a infected since time i recover at rates hs(a, i), hm(a, i),
and hp(a, i) for severe, mild, and paucisymptomatic infections respectively.

The boundary conditions (3) are coupled with the following equations:

@S
@t
ðt; aÞ ¼ � mða;HðtÞÞSðt; aÞ � lðt; a; cÞSðt; aÞ;

@Is
@t
þ
@Is
@i

� �

ðt; a; iÞ ¼ � ½mða;HðtÞÞ þ gða; i;HðtÞÞ þ hsða; iÞ�Isðt; a; iÞ;

@Im
@t
þ
@Im
@i

� �

ðt; a; iÞ ¼ � ½mða;HðtÞÞ þ hmða; iÞ�Imðt; a; iÞ;

@Ip
@t
þ
@Ip
@i

� �

ðt; a; iÞ ¼ � ½mða;HðtÞÞ þ hpða; iÞ�Ipðt; a; iÞ;

@R
@t
ðt; aÞ ¼

X

v2fs;m;pg

Z 1

0

hvða; iÞIvðt; a; iÞdi � mða;HðtÞÞRðt; aÞ;

ð5Þ

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

for any ðt; a; iÞ 2 ð0;T� � ½0; amax� � Rþ, with initial conditions (at t = 0):

Sð0; aÞ ¼ S0ðaÞ; Rð0; aÞ ¼ 0;

Isð0; a; iÞ ¼ Is;0ða; iÞ; Imð0; a; iÞ ¼ Im;0ða; iÞ; Ipð0; a; iÞ ¼ IA;0ða; iÞ;

for each ða; iÞ 2 ½0; amax� � Rþ. Numerical values for initial conditions are detailed later. Using

equation system (3) and an integration over i of system (5), one may observe that the total pop-

ulation N defined by Eq (1) is strictly decreasing since it satisfies the following inequality:

@N
@t
ðt; aÞ � � mnatðaÞNðt; aÞ; 8a 2 ½0; amax�; 8t � 0:

This is due to the fact that population aging and births are neglected in this model since we

consider a time horizon of only one year. Basic properties of the model such as existence and

positiveness of solutions is out of the primary scope of our study but these can be specifically
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addressed using an integrated semigroup approach and Volterra integral formulation (see e.g.

[44–47] and references therein). More specifically, one can refer to [31], where the well-posed-

ness of an epidemiological model with a double continuous structure is handled.

Epidemiological outputs, model parameters and initial conditions

In this section we briefly describe some useful epidemiological outputs, the shape of age-

dependent parameters considered for the simulations of model (3)–(5), and the initial condi-

tions. All state variables and other parameters are summarized in Table 1.

Epidemiological outputs. In addition to the total number of hospitalized cases H(t) at

time t defined by Eq (4), we define additional epidemiological outputs. The first one is the

number of non-hospitalized cases (NH(t))

NHðtÞ ¼
Z amax

0

Z isympt

0

Isðt; a; iÞdiþ
Z 1

0

ðImðt; a; iÞ þ Ipðt; a; iÞÞdi
� �

da ð6Þ

which encompasses paucisymptomatic, mildly infected, and severely infected but not yet hos-

pitalized hosts.

For the cumulative number of deaths, we distinguish between those directly due to

COVID-19 infections (Dcum
dir ðtÞ), and those indirectly due to the epidemic (Dcum

indirðtÞ), which

originate from the saturation of the health system:

Dcum
dir ðtÞ ¼

Z t

0

DdirðsÞds; Dcum
indirðtÞ ¼

Z t

0

DindirðsÞds; ð7Þ

where DdirðtÞ and DindirðtÞ are the number of deaths at time t respectively defined by

DdirðtÞ ¼
Z amax

0

Z ismax

isympt

gdirðaÞIsðt; a; iÞdi da;

DindirðtÞ ¼
Z amax

0

maddða;HðtÞÞNðt; aÞdaþ
Z amax

0

gindirða;HðtÞÞ
Z ismax

isympt

Isðt; a; iÞdi da:

Every aforementioned output implicitly depends on parameter c = c(t, a), which we will

omit in the notations when no confusion is possible. However, for clarity, we do explicitly

write this dependence to compare public health measures. The relative performance between

two strategies c1 and c2, denoted by Δ(c1, c2), is estimated by assessing the cumulative number

of deaths in the whole population during the T days of control period with the strategy c1 rela-

tively to deaths with the strategy c2. Formally, we have

Dðc1; c2Þ ¼ 1 �
Dcum

dir ðc1;TÞ þ Dcum
indirðc1;TÞ

Dcum
dir ðc2;TÞ þ Dcum

indirðc2;TÞ
:

Hence, a relative performance Δ(c1, c2) = 0.1 implies that strategy c1 reduces the number of

deaths by 10% relatively to strategy c2.

Model parameters. Mortality rates. We assume that indirect mortality, i.e. not directly

due to COVID-19, increases when the number of hospitalisations H(t), at time t, exceeds a

healthcare capacity threshold Hsat (which we approximate with the maximal intensive care

capacity). The natural mortality rate then increases by μadd(a, H) for the whole population, and

by γindir(a, H) for severely infected individuals of age a. These rates are modeled by logistic
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functions that are arbitrarily chosen as:

maddða;HðtÞÞ ¼
10� 2 mnatðaÞ

1þ 99 exp � 10
HðtÞ
Hsat
� 1

� �� � ;

gindirða;HðtÞÞ ¼
gdirðaÞ

1þ 99 exp � 10
HðtÞ
Hsat
� 1

� �� � :

ð8Þ

Table 1. Model variables and parameters. We show the notations used and indicate references for the numerical values used.

Param. Description (unit) Values [source]

State variables

S Susceptible individuals

Is Severely infected individuals

Im Mildly infected individuals

Ip Paucisymptomatic infected individuals

R Recovered individuals

General parameters

t, T time and final time of simulations (days) t 2 [0, T] (ad hoc)

a, amax age and maximal age of individuals (years) a 2 [0, amax], amax = 100 (ad hoc)

i time since infection (days) Rþ (ad hoc)

ilat average latency from exposed to asympt. (days) 4.2 [49]

isympt average time of symptoms onset (days) ilat + 1 = 5.2 [48]

ismax mean final time of infection for severe cases (days) isympt + 20 = 25.2 [50]

immax mean final time of infection for mild cases (days) isympt + 17 = 22.2 [50]

μadd additional death rate (days−1) defined by (8)

βs, βm, βp transmission probabilities (unitless) computed

ξs, ξm, ξp infectiousness reduction factors (unitless) defined by (9) and ξp = 0.1 [22]

hs, hm, hp recovery rates per infection (days−1) defined by (10)

c, cmax percentage of contacts reduction and its upper bound c 2 [0, cmax], cmax = 0.95 (assumed)

γdir mortality rate directly due to the COVID-19 (days−1) [48]

γindir mortality rate indirectly due to the COVID-19 (days−1) defined by (8)

p proportion of paucisymptomatic (unitless) variable

q proportion of symptomatic requiring hospitalisation (unitless) [48]

B cost of the control measure variable

Specific parameters for each country

Param. Description (unit) Burkina Faso France Vietnam

S0 initial population of susceptible [51] [52, 53] [54]

Ið�Þ0
initial epidemic size 288 (WHO)(��) 130 [55] 217 (Ministry of Health)

μnat natural death rate (days−1) [56] [57] [58]

Hsat maximal healthcare capacity (unitless) 11 [59] 5000 [55] 5932 (NIHE)(��)

K Contacts matrix of social contacts (days−1) [43] [43] [43]

Parameters and range for the global sensitivity analysis

Population structure {Burkina Faso, France, Vietnam}

Hsat {10, 100, 500, 2000, 5000, 6000, 50000, 5e+05, 5e+06}

p {0.05 to 0.95} by step of 0.1

isympt {1.2 to 9.2} by step of 2

ξp {0.1, 0.3, 0.5, 0.7, 1}

(�): On Mar, 1st, 2020 in France and on Apr, 1st, 2020 in Burkina Faso and Vietnam.
(��): WHO: World Health Organisation, NIHE: National Institut of Hygiene and Epidemiology.

https://doi.org/10.1371/journal.pcbi.1008776.t001
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This choice of functional parameters implies that

maddða; 0Þ � 0; gindirða; 0Þ � 0;

maddða;HsatÞ ¼ 10� 4mnatðaÞ; gindirða;HsatÞ ¼ 10� 2gdirðaÞ

which means these additional mortalities are negligible when hospitals are not saturated

(Fig 2B). In case of full saturation, we have

lim
H!1

maddða;HÞ ¼ 10� 2mnatðaÞ; lim
H!1

gindirða;HÞ ¼ gdirðaÞ

for each a 2 [0, amax], meaning that the natural mortality rate is only increased by 1%, while

the disease-induced mortality rate γ is doubled. Indeed, according to [48], less than 50% of

patients in critical care will die in case of no saturation of hospitals.

Transmission rates. The infectiousness of an individual aged a who is infected since time i,
is given by βv(a, i) (v 2 {s, m, p}). Based on estimates described in [22], we assume that βv does

not depend on host age a, i.e., βv(a, i) = βv(i). As discussed later, this assumption is only made

for parameterization purpose and does not impact the general formulation of the model pro-

posed here.

The transmission rate at a given day i post infection of a given type of infectious host is

defined such that bvðiÞ ¼ a� xvðiÞ � �bðiÞ, for v 2 {s, m, p}. As detailed below, α is a scaling

parameter obtained from the value of the basic reproduction number R0, which is the mean

number of secondary infections caused by an infected host [24]. As [22], we assume that

parameter �b, which strongly depends on the generation interval, follows a Weibull distribution

�b �Wð3; 5:65Þ. Finally, parameters ξv(i) are factors that capture variations in infectiousness

based on the type of host. For paucisymptomatic individuals, for instance, these are assumed

to be constant (ξp(i) = ξp), while the reduction factor in more symptomatic infections (severe

and mild) is assumed to vary after symptom onset to capture admission in a healthcare facility

Fig 2. (A) Transmission probabilities of paucisymptomatic infections (βp), symptomatic severe (βs), and mild infections (βm). (B) Disease-induced

mortality rate with a maximal healthcare capacity Hsat = 5 × 103.

https://doi.org/10.1371/journal.pcbi.1008776.g002
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or self-isolation at home. More precisely, we assume that

xsðiÞ ¼
1 if i 2 ½0; isympt�;

e� lnð10Þði� isymptÞ if i > isympt

8
><

>:
and

xmðiÞ ¼
1 if i 2 ½0; isympt�;

e� lnð2Þði� isymptÞ if i > isympt:

8
><

>:

ð9Þ

These two functions are chosen arbitrarily by assuming that individuals do not isolate

before symptoms onset (i� isympt), and that isolation is stronger when symptoms are more

severe (Fig 2A). We therefore assume that the transmission probability �b is divided by 10

(respectively 2) every day after the average time of symptoms onset for individuals severely

(resp. mildly) infected.

Recovery rates. We assume that recovery rates hv(a, i), v 2 {s, m, p}, of infected individuals

of age a infected since time i are independent of a and take the following form:

hsð�; iÞ ¼ 1½ismax;1�
ðiÞ; hmð�; iÞ ¼ hpð�; iÞ ¼ 1½immax;1�

ðiÞ; 8i 2 Rþ: ð10Þ

That is, one can recover from severe (resp. mild and paucisymptomatic) infections only

after a time since infection ismax (resp. immax) corresponding to the mean duration of infection.

Initial conditions. The initial susceptible population S0 and epidemic size I0 are given in

Table 1. Since, initially, screening is usually restricted to individuals with severe symptoms, we

assume that all initial cases are severe infections. Thus, we set
R ismax
isympt

R amax
0

Is;0ða; iÞda di ¼ I0 as

the initial severely infected individuals, which we assume to be uniformly distributed with

respect to the time since infection i on the interval ½0; ismax�. Using estimates from [55, 60] on

the age distribution of hospitalised people, we derive an estimation of Is,0(a, i) for each

ða; iÞ 2 ½0; amax� � Rþ. Next, following the life cycle (Fig 1), we obtain an estimation of the

total initial infected population by
Is;0ða;iÞ
ð1� pÞqðaÞ. From there, we deduce the initial mildly and pauci-

symptomatic infected populations, which can be denoted respectively by

Im;0ða; iÞ ¼
1 � qðaÞ
qðaÞ

Is;0ða; iÞ and IA;0ða; iÞ ¼
p

qðaÞð1 � pÞ
Is;0ða; iÞ:

Optimal intervention

As explained above, our goal is to find an optimal control strategy that is allowed to vary

depending on the number of days since the onset of the epidemic (t) and on host age (a). In

this section, following well established methodology in optimal control theory [13–16, 61], we

search for the optimal control effort function c� that minimizes the objective functional

J : L1ðRþ � ½0; amax�Þ∍c7!JðcÞ 2 R, where

JðcÞ ¼ Dcum
dir ðc;TÞ þ Dcum

indirðc;TÞ þ
Z T

0

Z amax

0

BðaÞc2ðt; aÞda dt;

Dcum
dir , Dcum

indir being the cumulative number of deaths defined by (7), and B(a) the cost associated

with the implementation of such control c for the age class a. Our aim is to find the function c�
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satisfying

Jðc�Þ ¼ min
c2U

JðcÞ ð11Þ

wherein the set U is defined by

U ¼ fc 2 L1ðRþ � ½0; amax�Þ : 0 � cð�; �Þ � cmaxg;

with cmax� 1 a positive constant. That is to say, the function c� will minimize the cumulative

number of deaths during T days, as long as the cost of the control strategy is not too large.

Let (S, Is, Im, Ip, R) be a given solution of equation systems (3)–(5) then let λ and H be

respectively defined by Eqs (2) and (4). After some computations (S1 Text), we find that the

adjoint system of (5) can be expressed as

@zS
@t
ðt; aÞ

@zR
@t
ðt; aÞ

@zIs
@t
þ
@zIs
@i

� �

ðt; a; iÞ

@zIm
@t
þ
@zIm
@i

� �

ðt; a; iÞ

@zIp
@t
þ
@zIp
@i

 !

ðt; a; iÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

mða;HðtÞÞzSðt; aÞ � maddða;HðtÞÞ

mða;HðtÞÞzRðt; aÞ � maddða;HðtÞÞ

ðmða;HðtÞÞ þ hsða; iÞÞzIsðt; a; iÞ � maddða;HðtÞÞ � gða; i;HðtÞÞð1 � zIsðt; a; iÞÞ

ðmða;HðtÞÞ þ hmða; iÞÞzImðt; a; iÞ � maddða;HðtÞÞ

ðmða;HðtÞÞ þ hpða; iÞÞzIpðt; a; iÞ � maddða;HðtÞÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

�

z2ðt; aÞ
R R

Kða; a0Þðbsða0; iÞIsðt; a0; iÞ þ bmða0; iÞImðt; a0; iÞ þ bpða0; iÞIpðt; a0; iÞÞda0di

0

z1ðt; aÞ1½isympt ;1Þ
ðiÞ þ bsða; iÞ

R amax
0

z2ðt; a0ÞSðt; a0ÞKða0; aÞda0 þ z3ðt; aÞhsða; iÞ

bmða; iÞ
R amax

0
z2ðt; a0ÞSðt; a0ÞKða0; aÞda0 þ z3ðt; aÞhmða; iÞ

bpða; iÞ
R amax

0
z2ðt; a0ÞSðt; a0ÞKða0; aÞda0 þ z3ðt; aÞhpða; iÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð12Þ

with final conditions zS(T, a) = zR(T, a) = 0, zu(T, a, i) = 0 and limi!1 zu(t, a, i) = 0, for any u
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2 {Is, Im, Ip} and ða; iÞ 2 ½0; amax� � Rþ; while zk (k 2 {1, 2, 3}) satisfy the system:

z1ðt; aÞ

z2ðt; aÞ

z3ðt; aÞ

0

B
B
B
@

1

C
C
C
A
¼

@m

@H
ða;HðtÞÞðSðt; aÞð1 � zsðt; aÞÞ þ Rðt; aÞð1 � zRðt; aÞÞÞ

½1 � cðt; aÞ�½ð1 � pÞðqðaÞzIs þ ð1 � qðaÞÞzImÞ þ pzIp �ðt; a; 0Þ � ð1 � cðt; aÞÞzSðt; aÞ

zRðt; aÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

þ

Z 1

0

@m

@H
ða;HðtÞÞðIsðt; a; iÞð1 � zIsðt; a; iÞÞ þ Imðt; a; iÞð1 � zImðt; a; iÞÞÞdi

0

0

0

B
B
B
B
B
@

1

C
C
C
C
C
A

þ

Z 1

0

@m

@H
ða;HðtÞÞIpðt; a; iÞð1 � zIpðt; a; iÞ þ

@g

@H
ða; i;HðtÞÞIsðt; a; iÞð1 � zIsðt; a; iÞÞ

� �

di

0

0

0

B
B
B
B
B
@

1

C
C
C
C
C
A

:

ð13Þ

Finally, the Hamiltonian H of (11) is detailed in S1 Text. By solving @H
@c ¼ 0, it comes that

c�ðt; aÞ ¼ maxð0;minðĉðt; aÞ; 1ÞÞ; ð14Þ

for every (t, a) 2 [0, T] × [0, amax], where

ĉðt; aÞ ¼
Sðt; aÞl0ðt; aÞ½ð1 � pÞð1 � qðaÞÞzImðt; a; 0Þ þ ð1 � pÞqðaÞzIsðt; a; 0Þ þ pzIpðt; a; 0Þ�

2BðaÞ
;

with λ0 detailed in S1 Text.

We also assume that the cost B(a) of the control measure over individuals aged a 2 [0, amax]

is proportional to their density in the initial susceptible population S0, i.e.

BðaÞ ¼
B�S0ðaÞR amax

0
S0ðuÞdu

;

where B� 2 Rþ is a variable parameter characterizing the relative cost in implementing the

strategy.

Additionally, one could also factor in the age distribution of the economic cost on the shape

of the function B. For example, the economic cost is likely to be more important for the work-

ing population (i.e. age group 20–60) compared to the older, mostly retired, population. How-

ever, in absence of relevant references regarding this topic, we stand with our primary

assumption.

The state system (3)–(5) and the adjoint system (12) and (13) together with the control

characterization (14) form the optimality system to be solved numerically. Since the state equa-

tions have initial conditions and the adjoint equations have final time conditions, we cannot

solve the optimality system directly by only sweeping forward in time. Here, we use an iterative

algorithm, forward-backward sweep method [8]. In other words, finding c� numerically first
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involves solving the state variables (3)–(5) forward in time, then solving the adjoint variables

(12) and (13) backward in time, before finally plugging the solutions for the relevant state and

adjoint variables into (14), subject to bounds on the control function. The proof of the exis-

tence of such control is standard and is mostly based on Ekeland’s variational principle [62].

Therefore, we assume the existence of the solution to the above problem and refer to [13] for

additional details.

Results

Here we consider three countries as case studies: Burkina Faso, France, and Vietnam. Their

populations have quite contrasted age-structure and social or physical contacts (Fig 3). In Bur-

kina Faso, the vast majority (96.1%) of the population is less than 60 years old, whereas this is

less the case in Vietnam and in France (87.7% and 73.4% respectively) as shown in Fig 3A and

3B. It shows that a higher proportion of the population is older than 60, hence at risk for

COVID-19 infection, in France 26.6%, in comparison to Vietnam 12.3%, or to Burkina Faso

3.9%. Also, contacts are more frequent among the older population in France compared to

Vietnam (Fig 3D and 3E). By contrast, very few contacts are observed among older popula-

tions in Burkina Faso (Fig 3C).

Global sensitivity analysis

We study the sensitivity of infected individuals, hospitalizations, and deaths to five parameters:

the proportion of paucisymptomatic infections (p), the average time of symptoms onset

(isympt), the infectiousness reduction of paucisymptomatic infections (ξp), the healthcare capac-

ity (Hsat), and the population structure (including the natural mortality, the size of the popula-

tion, age-structure, and social contacts). The variation range of the above parameters is

Fig 3. The population age-structure of Burkina Faso, France and Vietnam in numbers (A) and frequencies (B). (C)-(E) Contact matrices in the three

countries, in log scale where dark color intensities indicate less likely events i.e. smaller tendency of having a household member of that age, lower

proclivity of making the age-specific contact.

https://doi.org/10.1371/journal.pcbi.1008776.g003
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assigned in Table 1. Sensitivity indices are estimated by fitting an ANOVA (Analysis Of Vari-

ance) linear model, including third-order interactions, to the data generated by simulation.

This ANOVA linear model fitted well with 99% of variance explained.

Overall, the population structure is the main parameter highlighted by the sensitivity analy-

sis. It explains 70% of the variance for the number infected individuals and 40% for hospitali-

zations and deaths (S1 Fig). The population structure is followed by ξp, p, and isympt which

have a similar impact on the number infected individuals with a slight dominance of ξp (S1

Fig). For hospitalizations and deaths, the population structure is followed by p with 40% and

30% of the variance explained respectively; while ξp and isympt have very marginal impact (S1

Fig). Finally, the importance of Hsat on the three output variables is largely negligible, with,

however, greater importance on deaths as compared to hospitalizations and infections

(S1 Fig).

The basic reproduction number R0

An explicit expression of the R0 of the model defined by Eqs (3)–(5) is difficult to obtain in

general. We show in S2 Text that it is possible to write R0 ¼ a� rð �UÞ, where α is the scaling

parameter introduced earlier, and rð �UÞ is the spectral radius of the next generation operator

�U defined on L1(0, amax) by

�U : L1ð0; amaxÞ∍v7!S0ð�Þ

Z 1

0

Z amax

0

Kð�; a0Þoða0; iÞvða0Þda0 di 2 L1ð0; amaxÞ: ð15Þ

where S0 is the initial susceptible population, K is the contact matrix, and ω(a, i) is the infec-

tiousness of individuals of age a infected since time i (S2 Text). It follows that

a ¼
R0

rð �UÞ
: ð16Þ

In our numerical approach, we set R0 = 3.3 [63, 64] for all three countries and correspond-

ing values for S0 and K for each country. We then successively determine rð �UÞ and α by (15)

and (16) respectively.

Uncontrolled epidemic

We first use the model (3)–(5) to describe the outbreak of the epidemics for all three countries,

in absence of public health measure (i.e. c� 0), with R0 = 3.3 and other parameters defined

previously and summarized in Table 1.

The peak of the epidemics is then reached approximately at day t = 51 for hospitalised peo-

ple, and day t = 46 for non-hospitalised people in the France scenario (Fig 4E). Such times to

peaks for hospitalised and non-hospitalised people are 47 and 41 (resp. 50 and 45) for Burkina

Faso (resp. Vietnam) scenario (Fig 4A, resp. Fig 4I). The delay between the two peaks is

explained by the latency time isympt for symptoms onset (Table 1).

In absence of control measures, the healthcare capacity is quickly exceeded, about twenty

days for the ‘France’ scenario (Fig 4E), and the number of deaths increases sharply from then

on. A similar configuration is observed for Vietnam (Fig 4I). By contrast, because of the very

low healthcare capacity in Burkina Faso, the health system is exceeded within a few days (Fig

4A). However, this overloading does not have the same consequences in terms of mortality in

Burkina Faso compared to France and Vietnam. This is partially explained on the one hand by

the fact that less than 4% of the population is above 60 years in Burkina Faso (Fig 3A) and on

the other hand by the fact that very few contacts are observed within the older population in

Burkina Faso compared to France or Vietnam (Fig 3B and 3D).
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Fig 4. Epidemic scenario without any control measures. (A) Dynamics of epidemiological outputs, (B) number of

cumulative deaths, (C) number of hospitalised and (D) non-hospitalised people in Burkina Faso. (E-H) As for (A-D)

but in France. (I-L) As for (A-D) but in Vietnam. Parameter values are default in Table 1, R0 = 3.3, and the proportion

of paucisymptomatic infections is p = 0.5.

https://doi.org/10.1371/journal.pcbi.1008776.g004
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At the end of the simulation (t = 150 days), without any control measures, the herd immu-

nity threshold (1 − 1/R0� 69.7%) is clearly reached in France and in Vietnam (Fig 5), where

the average size of the epidemic (severe, mild, and paucisymptomatic infections) is close to

90%. The threshold is also reached in Burkina Faso but only with an epidemic size of 78% (Fig

5). In all three countries, the proportion of the population less than 20 years old that has been

infected is around 93%. In the [20–60] group, we find a similar percentage in France and Viet-

nam (94%), but only 65% in Burkina Faso. This proportion then decreases for the population

older than 60, more or less quickly depending on the country: it is around 73% in France, 56%

in Vietnam, and 33% in Burkina Faso. Finally, among the infected population, more than 98%

are less than 60 in Burkina Faso, while this proportion is 92% in Vietnam and 76% in France.

This age structure of infected populations is particularly important since most of the infections

that occur in the young population do not require hospitalization (Fig 4C, 4G and 4K) while

people older than 60 represent the age class with the highest cumulative number of deaths (Fig

4B, 4F and 4J).

Optimal intervention

We now investigate the result of implementing an optimal intervention that accounts for the

age structure of the population. Strategies performances are here compared in terms of the

cumulative number of deaths for three costs of control measures; low (B� = 102), intermediate

(B� = 103), and high (B� = 104).

The optimal control strategy varies in time and depends on host age. In general, regardless

of the country (Burkina Faso, France, or Vietnam), the control is stronger early in the epi-

demic and for older populations (Fig 6, S2 and S3 Figs). Overall, the level of optimal control is

lower in Burkina Faso compared to France and Vietnam (Fig 6, S2 and S3 Figs). If the cost of

implementing the measures B� is intermediate or high, the optimal control is almost restricted

to individuals above 55 and to the first third of the time interval considered, with a significant

reduction in deaths (Fig 6D and 6E, S2 and S3 Figs). In France, the relative performance of the

Fig 5. Simulated age distribution of the proportion of the population infected after 150 days in Burkina Faso, France, and Vietnam in absence of

control measures. Parameter values are default (Table 1, R0 = 3.3, and the proportion of paucisymptomatic infections is p = 0.5.

https://doi.org/10.1371/journal.pcbi.1008776.g005
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optimal control c� compared to a ‘doing nothing’ scenario (Δ(c�, 0)) is at least 92% (resp. 82%)

when the cost is B� = 103 (resp. 104). For Burkina Faso, Δ(c�, 0) is at least 50% (resp. 4%) when

B� = 103 (resp. 104). Finally, for Vietnam Δ(c�, 0) is at least 87% (resp. 62%) when B� = 103

(resp. 104). In the case of Burkina Faso, note that the level of the optimal control is quite low

when the cost of implementation is high (S2 Fig), and, as a result, the effect of this control in

reducing mortality at the population level is negligible. This is due to the relatively small num-

ber of deaths in the whole population in Burkina Faso without any control measures (Fig 4A).

If the implementation of the control measure comes at a low cost (B� = 102), the optimal

control significantly extends to younger populations in all three countries (Fig 6A, S2 and S3

Figs), with a maximum intensity reached near the 4th month of the epidemics and a steady

decrease until the end of the control period. Overall, the optimal control lasts less longer in

Burkina Faso (S2 Fig) compared to the cases of France and Vietnam (Fig 6A and S3 Fig). At

first, the control is mainly applied to people above 35 in all three countries (Fig 6A, S2 and S3

Figs). But, while the control extends to people less than 35 in France and Vietnam after 2 or 3

months (Fig 6A and S3 Fig), such an extension is very moderate (or even negligible) in Burkina

Fig 6. Optimal control strategy (c�) as a function of the cost of the control measures in France. Intensity of the control as a function of time and

host for for (A) relatively low B� = 102, (B) an intermediate B� = 103, and (C) a high B� = 104 cost. (D) Prevalence of hospitalized patients as a function

of the strategy and the cost. (E) Cumulative deaths per age at the end of the time interval (when T = 365 days). Parameter values not related to the

control are identical to Fig 4. Cases of Burkina Faso and Vietnam are shown in S2 and S3 Figs.

https://doi.org/10.1371/journal.pcbi.1008776.g006
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Faso (S2 Fig). The resulting reduction in the number of deaths is very pronounced with a rela-

tive performance Δ(c�, 0) of at least 80% (resp. 99%, 97%) in Burkina Faso (resp. France,

Vietnam).

Performance and practical implementation

To illustrate how the strategy identified using optimal control theory outperforms constant

uniform control exerted over the whole population or its younger fraction, we derive optimal

strategies that do not vary in time and use the same amount of ‘resources’ (that is the same

cumulative cost). Assuming a relatively high cost B� = 103, we first investigate a control strat-

egy that targets the younger fraction of the population (Fig 7A), a second strategy that uni-

formly targets the whole population (Fig 7B). Both strategies have a control level cmax = 0.95

and vary in duration (the total amount of resource used being constant).

In France, when targeting the population uniformly, the epidemic is under control for

approximately 60 days. However, once the control resources are exhausted, the epidemic

reemerges (Fig 7C). With the (longer) control over the younger fraction of the population, the

first epidemic peak is slightly delayed and the epidemic appears to be under control for a

Fig 7. Comparing optimal control with uniform control of the whole population of over its younger fraction in France. (A) Illustration of the

control over the young population and (B) uniform control of the whole population. (C) Number of hospitalizations. (D) Cumulative deaths per age at

final time T = 365 days. (E) Age distribution of the proportions of the population that have been infected before one year. Here, we assume B� = 103 and

p = 0.5.

https://doi.org/10.1371/journal.pcbi.1008776.g007
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longer time (180 days). Unfortunately, resources also become exhausted and a second peak

appears a few months later (Fig 7C). In both cases, i.e. targeting the whole population or its

younger fraction only, the results are similar. A uniform control leads to a cumulative mortal-

ity over the time period of interest comparable to that without any control measure (Fig 7D).

The performance of the optimal control relative to a uniform control is approximately 92%. In

the end, only 55% of the whole population has been infected with the optimal control but at

least 85% with a uniform control (Fig 7E). Similar results are obtained for the case of Vietnam

(S4 Fig).

By contrast, for the case of Burkina Faso, regardless of the control strategy (optimal, uni-

form without targeting, and uniform targeting the younger fraction) the proportion of the

population that is infected is approximately the same as without control (78%). The herd

immunity threshold (1 − 1/R0� 69.7%) is then reached for all the three control measures (Fig

8E) and the epidemic cannot restart (Fig 8C). The cumulative mortality with a uniform control

exerted over the whole population or over its younger fraction is comparable to that without

any control measure (Fig 8D). However, the optimal control performs at least 50% better than

Fig 8. Comparing optimal control with uniform control of the whole population or over its younger fraction in Burkina Faso. (A) Illustration of

the control over the young population and (B) uniform control of the whole population. (C) Number of hospitalizations. (D) Cumulative deaths per age

at final time T = 365 days. (E) Age distribution of the proportions of the population that have been infected before one year. Here, we assume B� = 103

and p = 0.5.

https://doi.org/10.1371/journal.pcbi.1008776.g008
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the uniform control (whether it concerns the whole population or its younger fraction). This

result holds despite the nearly identical proportions of infections in the population under 60

years of age (Fig 8E).

A practical issue regarding the implementation of the optimal control strategy we identified

is that it is a continuous function. One possibility to address this problem is to use step func-

tions. In Supplementary S5 Fig, we subdivided the population into 10-year amplitude classes

and updated the control every 3-weeks. Importantly, even though it is assumed to be constant

during each 3-weeks period for each age-class, the control intensity directly originates from

the results of the continuous optimal control strategy. This discrete implementation of the

optimal strategy achieves similar efficiencies (S5 Fig), with a relative performance of 91% com-

pared to a doing nothing scenario.

Discussion

Non-pharmaceutical public health interventions can be implemented either to mitigate the

COVID-19 epidemic wave or to suppress the wave long enough to develop and implement a

vaccine or a treatment. Here, we explicitly factor in the age heterogeneity of the host popula-

tion in the identification of the optimal allocation of the control efforts. We focus on three

countries (Burkina Faso, France, Vietnam) with contrasted population age-structures and

social or physical contacts (Fig 3).

We use optimal control theory [8] to characterize an optimal strategy that significantly

reduces the number of deaths while being sustainable at the population level. Our formulation

assumes a quadratic cost for the control effort. Overall, the optimal control lasts less in Burkina

Faso compared to France and Vietnam. With this strategy, we find that the intensity of the

control is always relatively high on the older fraction of the population during at least a hun-

dred days, before decreasing more or less rapidly depending on the cost associated with the

control and the social structure of the host population. The control over the younger fraction

of the population is weak and only occurs when the cost associated with the optimal control is

relatively low. However, while the control applies to the younger population in France and

Vietnam after 2 or 3 months, this is very moderate (or even negligible) in Burkina Faso. This

late control over the younger part of the population mimics the results found in [10], which

did not include host age but found that control did not peak right away. Intuitively, if control

strategies come at a high cost for the population, it is best to focus on the age classes that are

the most at risk. Conversely, if the control measures are more acceptable to the population, the

optimal strategy is to aim wide to completely suppress the epidemic wave.

Information on the natural history of paucisymptomatic infections of COVID-19 remains

relatively poorly documented [65, 66]. We estimated that a proportion p of infected individuals

remain asymptomatic throughout their infection, but this proportion remains largely unspeci-

fied in the literature [65, 66]. We performed a sensitivity analysis of p on the optimal control

strategy c�. Overall, the proportion of paucisymptomatic infections has marginal effects on the

optimal control strategy (S6 Fig). The optimal control remains strong over the older popula-

tion from the beginning of the epidemic, before being progressively relaxed. The control over

the younger population is weaker and occurs only if the control cost itself is low. But, the level

of control over the younger fraction increases when the proportion of paucisymptomatic infec-

tions decreases. Further, for high values of B� (103 or 104), the shape of the optimal control is

qualitatively the same when the proportion p varies, except for extremely high values of p = 0.9

and B� = 104, for which the control becomes low for the whole population (S6 Fig). The inter-

pretation is that if the epidemic cannot be stopped, the best strategy is then to reduce mortality

by protecting the population the most at risk (here the older population). However, with a low
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value of B� (102), different shapes of the optimal control yield the same result since there are

enough resources to stop the epidemics.

Given the leverage represented by school and university closures, we investigated the effect

of targeted control measures over individuals aged under 25. Our results show that NPIs tar-

geting the younger fraction of the population are not very efficient in reducing cumulative

mortality unless they can be implemented strongly and for a relatively long period. Indeed, the

number of deaths recorded when implementing a control only over the younger population is

similar to a doing nothing scenario for cases of Burkina Faso, France, and Vietnam (Figs 7 and

8, and S4 Fig). This result seems independent from the age-structure and social contacts of the

population considered. However, as we further discuss below, the variation of the transmission

probability with age could matter.

The formulation of the objective functional considered here aims to minimize the cumula-

tive number of deaths. However, other objective functions could be envisaged and factor in,

for example, long-term hospitalizations or long-term health consequences. Practically, this

could be implemented similarly to the one presented here by considering the number of hospi-

talizations as the variable to be minimized and costs associated with long-term hospitalizations

and long-term health consequences. This formulation may indeed be interesting to investigate

in detail but would deserve a dedicated study.

Our model is an extension of models based on ordinary differential equations that tackled

the issue of the optimal control of COVID-19 outbreaks [9–12]. However, the whole popula-

tion is here structured by age (a) and additionally by the time since infection (i) for infectious

individuals, which echoes the model developed in [64] using a discrete-time formulation of

the infection. With our continuous structure, we show that the number of new cases IN(t, a) at

time t in individuals of age a is given by the renewal equation

INðt; aÞ ¼ S0ðaÞ
Z 1

0

Z amax

0

Kða; a0Þoða0; iÞINðt � i; a0Þda0 di;

where K is the contact matrix and ω(a, i) is the infectiousness of individuals aged a which are

infected since time i (S2 Text). For parameterization purposes, we assume that ω(a, i) is the

product between the proportion of individuals of age a in the whole population and the infec-

tiousness �bðiÞ of individuals infected since time i. This is potentially a limitation —not in the

model formulation proposed here, but rather with regards to our parameterization using the

existing literature— since infectiousness �b could depend on the age a, thereby creating an

additional heterogeneity to that of the time since infection i. This issue can be particularly

important since some studies suggest a low risk of transmission in the young population (e.g.

[67]). On the other hand, although superspreading events (of young people) have been docu-

mented, there is still much uncertainty about their relative role in the spread of the epidemic

and about their origin (superspreading could be linked to environmental conditions, such as

massive gatherings, rather than individual properties). Therefore, assuming independence

from age appears to be the most parsimonious assumption given the current data.

Another potential limitation is the lack of gender structure and comorbidities in the model

formulation. Given the observed male-biased in mortality during the COVID-19 pandemic, it

has been suggested that males are more at risk of developing severe infections [68]. This het-

erogeneity could readily be introduced in the model if its biological importance is further

demonstrated.

Contact networks have an important role in transmission dynamic models [69]. Epidemic

models that determine which interventions can best control an outbreak may benefit from

accounting for social structure and mixing patterns. Contacts are known to be assortative with
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age across a given country, but regional differences in age-specific contact patterns are notice-

able [43]. The current model could be modified to explore epidemiological dynamics in a spa-

tially structured population with non-homogeneous mixing, e.g. by using a meta-population

model [70].

Another potential extension of the model would be to allow for the isolation of symptom-

atic cases and their contacts, following the method developed in [71] and applied recently to

digital contact tracing [22]. Indeed, these measures strongly depend on the relative timing of

infectiousness and the appearance of symptoms, which are both well-captured by the formula-

tion of our model. However, this also raises technical challenges due to the double continuous

structure. Being able to identify age classes to follow in priority with contact tracing could be,

though, an asset in controlling epidemic spread.

Finally, a challenge of optimal control theory remains its application in the field. We show

in our results that technical obstacles related to the continuous nature of the strategy identified

can readily be addressed by using discrete time periods. However, as mentioned above, the

choice of the objective function remains delicate because its social implications. Being able to

factor in multiple feed-backs (from clinicians, economists, but also the general public) could

make optimal control approaches even more impactful in epidemiology.
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