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Abstract

MIGNON is a workflow for the analysis of RNA-Seq experiments, which not only efficiently

manages the estimation of gene expression levels from raw sequencing reads, but also

calls genomic variants present in the transcripts analyzed. Moreover, this is the first work-

flow that provides a framework for the integration of transcriptomic and genomic data based

on a mechanistic model of signaling pathway activities that allows a detailed biological inter-

pretation of the results, including a comprehensive functional profiling of cell activity.

MIGNON covers the whole process, from reads to signaling circuit activity estimations,

using state-of-the-art tools, it is easy to use and it is deployable in different computational

environments, allowing an optimized use of the resources available.

Author summary

Currently, RNA massive sequencing RNA-seq is the most extensively used technique for

gene expression profiling in a single assay. The output of RNA-seq experiments contains

millions of sequences, generated from cDNA libraries produced by the retro-transcription

of RNA samples, that need to be processed by computational methods to be transformed

into meaningful biological information. Thus, a number of bioinformatic workflows and

pipelines have been proposed to produce different types of gene expression measure-

ments, including in some cases, functional annotations to facilitate biological interpreta-

tion. While most pipelines focus exclusively on transcriptional data, the ultimate activity

of the resulting gene product also depends critically on its integrity. Although traditional

hybridization-based transcriptomics methodologies (microarrays) miss this information,

RNA-seq data also contains information on variants present in the transcripts that can

affect the function of the gene product, which is systematically ignored by current RNA-
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seq pipelines. MIGNON is the first workflow able to perform an integrative analysis of

transcriptomic and genomic data in the proper functional context, provided by a mecha-

nistic model of signaling pathway activity, making thus the most of the information con-

tained in RNA-Seq data. MIGNON is easy to use and to deploy and may become a

valuable asset in fields such as personalized medicine.

This is a PLOS Computational Biology Software paper.

Introduction

Because of the plummeting in the cost of sequencing technologies during the last decade, RNA

massive sequencing (RNA-seq) has become mainstream to study the transcriptome [1]. Cur-

rently, short-read sequencing technologies, typically producing outputs of 30 million reads per

sample, are the most extensively used methodologies for gene expression profiling [2]. This

pace of data generation requires computational processing to produce interpretable results.

Thus, the use of pipelines to perform the different steps of transcriptomic data processing have

become a widespread practice. The core of these is usually composed by spliced aligners as

STAR [3], HISAT2 [4] or Rail-RNA [5], which map reads against a reference genome, or by

pseudo-alignment tools as Salmon [6] or Kallisto [7], that directly obtain a quantification for

the regions of interest using probabilistic models. Additionally, there are pipelines which are

intended to be run by the user in local computers or high-performance environments, as

QuickRNASeq [8], or interactively in cloud-based platforms, after uploading raw data to an

external service, as BioJupies [9] or RaNA-Seq [10]. Typically, the interpretation of the experi-

ment involves differential expression analysis, carried out using count based or linear models,

with packages as edgeR [11], DESeq2 [12] or limma [13], followed by methods, such as over

representation analysis [14] or the gene set enrichment analysis [15], to extract functional

information from the obtained results.

Despite different pipelines to perform the aforementioned tasks are available (Tables 1 and

2), most of them present two major drawbacks. First, the genomic information contained in

the RNA-Seq reads usually remains unused. However, genomic variants, which may contain

crucial information about the functionality and potential activity of the resulting proteins in

the different processes where they participate, can be retrieved from such sequences. In this

sense, it is well known that RNA-Seq has some limitations for DNA variant calling. There are

two main points to consider: (i) lowly expressed genes include lower depth, so variant calling

is harder in those regions and (ii) the detection of heterozygous variants can be limited due to

allele-specific gene expression [16]. Despite these limitations, it has been demonstrated that

variants can be called even for low expressed genes in deeper RNA-Seq sequence samples.

Moreover, some studies have shown that RNA-Seq variant calling is able to provide a good

sensitivity of 99.7%-99.8% in both heterozygous and homozygous variants whereas precision

still reaches 97.6% in homozygous but 90% in heterozygous [17]. The second major drawback

is that conventional functional analysis strategies are mainly descriptive, and very limited in

providing biological insights of the underlying molecular mechanisms that produce the

observed phenotypic responses. Recently, a new generation of methods, known as mechanistic

pathway analyses, are outperforming traditional approaches in both biological explanatory

power and interpretability [18]. Here we present MIGNON (Mechanistic InteGrative aNalysis
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Of rNa-seq), a complete and versatile workflow able to exploit all the information contained in

RNA-Seq data and producing not only the conventional normalized gene expression matrix,

but also an annotated VCF file per sample with the corresponding mutational profile.

Table 1. Features of the workflows for RNA-seq data analysis.

Workflow URL Google

scholar

citations

Year Implementation Read pre-

processing

(Pseudo)

Alignment

Variant

calling and

annotation

Differential

gene

expression

Functional

analysis

Omic

integration

QuickRNASeq https://

sourceforge.net/

projects/

quickrnaseq/

26 2016 Shell, Perl and R

scripts

- STAR VarScan2 - - No

SePIA http://anduril.

org/sepia

25 2016 Anduril

workflow

FastX-Toolkit

Trimmomatic

TrimGalore

STAR

TopHat

Bowtie

Bowtie2

Bambino

ANNOVAR

Cuffdiff

DESeq

DESeq2

EdgeR

SPIA No

Recount2 https://

jhubiostatistics.

shinyapps.io/

recount/

154 2017 Shiny app and R

package

- Rail-RNA - - - No

RNACocktail https://

bioinform.

github.io/

rnacocktail/

71 2017 Python scripts - HISAT2 GATK DESeq2 - No

BioJupies

(ARCHS4)

https://amp.

pharm.mssm.

edu/biojupies/

143 2018 Web service - Kallisto - Limma

Characteristic

direction

Enricher No

GREIN https://shiny.

ilincs.org/grein

9 2019 Shiny app and R

package

Trimmomatic Salmon - EdgeR - No

VaP https://

modupeore.

github.io/VAP/

1 2019 Perl scripts AfterQC

Trimmomatic

TopHat2

HISAT2

STAR

GATK

ANNOVAR

VEP

- - No

DEWE http://www.sing-

group.org/dewe/

3 2019 Java app Trimmomatic Bowtie2

HISAT2

- Ballgown

EdgeR

PathfindR No

RaNa-Seq https://ranaseq.

eu/

0 2019 Web service Fastp Salmon - DESeq2 GOseq

fgsea

No

MIGNON https://github.

com/babelomics/

MIGNON

- 2020 WDL workflow Fastp Salmon

STAR

HISAT2

GATK

VEP

EdgeR hiPathia Yes

https://doi.org/10.1371/journal.pcbi.1008748.t001

Table 2. Analysis outputs of the workflows for RNA-seq data analysis.

Workflow Normalized gene

expression

Differential gene

expression

Transcriptomic-based

functional results

Genomic

variants

Annotated

genomic variants

Integrated Transcriptomic

+ genomic functional results

QuickRNASeq Yes - - Yes - -

SePIA Yes Yes Yes Yes Yes -

Recount2 Yes - - - - -

RNACocktail Yes Yes - Yes - -

BioJupies

(ARCHS4)

Yes Yes Yes - - -

GREIN Yes Yes - - - -

VaP - - - Yes Yes -

DEWE Yes Yes Yes - - -

RaNa-Seq Yes Yes Yes - - -

MIGNON Yes Yes Yes Yes Yes Yes

https://doi.org/10.1371/journal.pcbi.1008748.t002
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Moreover, MIGNON can combine both files to model signaling pathway activities through an

integrative functional analysis using the mechanistic modeling algorithm Hipathia [19]. Sig-

naling circuit outputs can further be easily linked to phenotypic features (e.g. disease outcome,

drug response, etc.) [19–21]. Mechanistic modeling has been successfully applied to under-

stand disease mechanisms in rare diseases [22,23], complex diseases [21], and, especially in

cancer [19,24–26]. Specifically, the hiPathia algorithm has demonstrated to have a superior

sensitivity and specificity than other similar algorithms available [27].

Design and implementation

Workflow implementation

The complete pipeline was developed using the Workflow Description Language (WDL,

https://github.com/openwdl/wdl) due to its flexibility, human-readability and easy deploy-

ment. Thus, all the steps of the pipeline were wrapped into WDL tasks that were designed to

be executed on an independent unit of containerized software through the use of docker con-

tainers, which prevent deployment issues using an independent environment for each execu-

tion. The workflow can be executed in personal computers or in high-performance computing

(HPC) environments, both locally or in cloud-based services with cromwell (https://github.

com/broadinstitute/cromwell), a Java based software that control and interpret WDL, using a

JSON file as input. To run MIGNON, three dependencies are required: Java (v1.8.0), cromwell

and an engine able to run the containerized software (i.e Docker or Singularity). The list of

docker containers employed by MIGNON can be found at the S1 Table.

Quality control and alignment

First, using raw sequences as the input for the workflow, fastp (v0.20.0) [28] is applied to per-

form the quality trimming and filtering of reads using the default values for windows size and

required mean quality and length. Then, FastQC (v0.11.5) can be used to create a quality

report for each pre-processed read file. After the quality control step, five modes for the execu-

tion of the workflow can be selected (see Table 3). Each execution mode uses a different com-

bination of “core” tools to perform the alignment or pseudo-alignment of pre-processed reads,

as explained in the tool documentation (see also Fig 1). In brief, all of them make use of a com-

bination of STAR (v2.7.2b), HISAT2 (v2.1.0), Salmon (v0.13.0) and FeatureCounts (v1.6.4)

[29] to align (or pseudo-align) reads against a reference genome (or transcriptome) and subse-

quently obtain the counts per gene matrix. The hisat2 and star modes use a conventional

counting strategy, employing FeatureCounts to summarize the number of sequences overlap-

ping the genomic regions of interest (genes), as specified by a genome annotation file. On the

other hand, the core component of salmon-hisat2, salmon-star and salmon consist of the

pseudo-aligner Salmon, which directly obtains transcript level quantification using a probabi-

listic model. Note that in the salmon-hisat2 and salmon-star modes, the execution of STAR or

Table 3. MIGNON execution modes.

Execution mode Alignment Quantification Variant calling Computational profile

salmon-hisat2 HISAT2 Salmon Yes Low memory consumption. Slower than STAR.

salmon-star STAR Salmon Yes High memory consumption. Faster than HISAT2.

hisat2 HISAT2 featureCounts Yes Low memory consumption. Slower than STAR.

star STAR featureCounts Yes High memory consumption. Faster than HISAT2.

salmon - Salmon No Low memory consumption and fast.

https://doi.org/10.1371/journal.pcbi.1008748.t003
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HISAT2 is still necessary to generate the alignment files that feed the variant calling sub-

workflow.

Variant calling and annotation

Genomic data for the expressed genes can be inferred from reads through variant calling. Due

to the number of intermediate steps carried out during this process, it was encapsulated on an

independent sub-workflow which is run at sample level. On it, the input material consists of

the alignments generated with STAR or HISAT2 and the output is a list of variants in the vari-

ant call format (VCF). The whole process is performed using the Genome Analysis ToolKit

(v4.1.3.0) [30], and it was designed following the GATK best practices for the variant calling

from RNA-Seq data. Similar to germline variant discovery with DNA sequencing, this sub-

workflow specifically includes a step to mark duplicate reads, which will help to reduce the

direct dependency of the depth by gene expression. Additionally, the pipeline also includes

other steps to specially deal with RNA-Seq peculiarities for variant calling. Thus, some aligned

reads are reformatted in order to control the expansion produced by introns. Specifically,

reads are split into separate reads when introns are identified inside, thus reducing artifacts in

the downstream variant calling. Mapping qualities are also reassigned and adapted to match

DNA conventions. Finally, in order to avoid variants called under low evidence, our sub-work-

flow includes a filter by depth step to only keep those variants found in at least a number of

reads (by default >5) as recommended in the literature [16]. The output VCFs are then anno-

tated with the Variant Effect Predictor (VeP v99) [31], a powerful tool for the prioritization of

genomic variants that summarizes in two scores (Polyphen [32] and SIFT [33]) the predicted

impact of variants on protein stability and functionality.

Normalization and differential expression analysis

The different execution modes converge at the counts per sample matrix, which is the output

of FeatureCounts. On the other hand, for Salmon quantifications, the count matrix is gener-

ated with txImport (v1.10.0) [34] and a transcript-to-gene file. The lengthScaledTPM option is

used to correct the estimated counts by both transcript length and library size. Then, RNA-seq

gene level counts are normalized with the Trimmed mean of M values (TMM) method and

conventional differential gene expression analysis can be performed with the edgeR package

(v3.28.0) [11].

Integrative mechanistic signaling pathway activity analysis

The HiPathia R package (v2.2.0) [19] is used to perform the functional analysis, either using

transcriptomic data alone, or integrating them with the genomic data. HiPathia implements a

mechanistic model of signaling pathways that, using gene expression values as proxies of pro-

tein activities, infer signaling circuit activities and the corresponding functional profiles trig-

gered by them. Since the model is mechanistic, it allows to infer the effect of an intervention

(e.g., a knock-out) on the resulting signaling (and functional) profile [35], a concept that can

easily be assimilated to a loss of function (LoF) [21]. In practical terms, MIGNON considers

that a gene harbors a LoF if it presents at least one variant with a SIFT score < 0.05 and a

Fig 1. MIGNON Workflow. Directed graph summarizing the tools employed by the workflow (blue boxes) and the

strategy used by MIGNON to integrate genomic and transcriptomic information into signaling circuits. Gene

expression and LoF variants are obtained from reads and integrated by doing an in-silico knockdown of genes that

present a LoF variant. Then, this combined matrix is used as the input for hiPathia, that estimates the signaling circuits

activation status by using expression values as proxies for protein signaling activities.

https://doi.org/10.1371/journal.pcbi.1008748.g001
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PolyPhen score > 0.95 (default values that can be modified by the user). Then, an in-silico
knock-down is simulated by multiplying the scaled normalized expression values by 0.01 only

in the affected samples. Next, the HiPathia signal propagation algorithm is applied to obtain

the signaling circuit activities. Finally, the profiles of signaling activities of the samples belong-

ing to the groups of interest are compared using a Wilcoxon signed rank test. For more infor-

mation about the HiPathia method, please refer to [19] and [21].

Modularity of the workflow

The choice of methods for the different steps of MIGNON was based on two recent bench-

marking evaluations of the processes to perform the primary analysis of RNA-seq data [1,36].

However, the modular design of the pipeline makes it easy to replace any tool for another one

providing it matches the input/output schema used. Thus, users can easily replace tools in the

pipeline by making small changes to the MIGNON WDL code, as explained in the documenta-

tion (https://babelomics.github.io/MIGNON/4_advanced.html#modularity).

Results

MIGNON integrative approach for the mechanistic interpretation of

multi-omic information into a pathway framework

MIGNON is the first pipeline able to extract genomic and transcriptomic information from

RNA-seq data and integrate them within a mechanistic framework. The ultimate protein activ-

ity is assessed from the transcriptional activity conditioned to the integrity of the gene. No

matter its level of expression, a gene that harbors a deleterious mutation is in-silico knocked-

down by the model to simulate the loss of function (Fig 1). To evaluate how the proposed strat-

egy affects the predicted signaling circuit activities, two different runs of MIGNON were car-

ried out over 462 unrelated human lymphoblastoid cell line samples from the 1000 Genomes

sample collection, corresponding to the CEU, FIN, GBR, TSI and YRI populations [37]. In the

reference run, only transcriptomic information (raw) was used, while in the case example run

the knock-down strategy was applied. Fig 2A and 2B clearly depicts how the knock-down due

to LoF mutations interrupts the transduction of the signal in three circuit/sample pairs. More-

over, Fig 2C shows that the overall predicted signaling circuit activities are significantly lower

(paired Wilcoxon signed-rank test P value < 2.2x10-16) when the genomic information is inte-

grated in the model. This example clearly shows how the use of transcriptomics data alone pro-

duced an incomplete picture of the real signaling activity and proves the usefulness of multi-

omic data integration.

Workflow performance evaluation

To assess MIGNON performance and resource consumption, the workflow was executed over

6 different human datasets (S2 Table), comprising a total of 42 samples. It was tested with

cromwell (v47) and singularity (v3.5), using 6 different CPU configurations on tasks allowing

multi-threading. This analysis revealed that the slower components of the workflow are the

aligners (HISAT2 and STAR) and the MarkDuplicates and HaplotypeCaller steps of the GATK

sub-workflow. Fig 3 summarizes the time and memory consumption of the tools which allow

multi-threading using 6 different CPU configurations. While HISAT2 is slower than STAR,

the second one makes a more intensive use of available memory. Therefore, both aligners are

available in MIGNON since this tradeoff should be considered if planning to deploy the work-

flow in cloud-computing based environments or, contrarily, in limited memory computing

environments. Additionally, Fig 4 shows the time and memory consumption of the different
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steps that compose the GATK sub-workflow. Here, MarkDuplicates displays the highest mem-

ory consumption and HaplotypeCaller shows the longest runtime. Overall, the different tasks

carried out by the workflow show a maximum memory usage under the 32 gigabytes, which

makes the pipeline deployable under most computational environments. Finally, and due to

the WDL, cromwell and docker combination, the workflow is something fast and easy to

deploy and setup.

Functionality of current available workflows

In order to have a comprehensive list of available pipelines for RNA-seq data processing, only

those published from 2015 onwards and able to use raw read files (fastq) as input data were

considered. Nine workflows fulfilled these criteria: QuickRNASeq [8], SEPIA [38], Recount2

[39], RNACocktail [36], ARCHS4 [40], GREIN [41], VaP [17], DEWE [42] and RaNA-Seq

[10]. Table 1 list the components implemented in each pipeline. Since their performances

depend on their components, which are similar across them, a comparison of their respective

functionalities is listed in Table 2. The first noticeable aspect is that, although some of them

can carry out variant calling (QuickRNASeq, SEPIA, RNACocktail and VaP), none of them

Fig 2. In silico knock-downs effect on predicted signaling circuit activities. A) Network representation of three signaling circuits that contain genes with loss

of function variants for three subjects from the 1000 genomes cohort. The node color indicates whether a gene contained in it has a loss of function variant

(yellow) or not (black). Red and blue arrows indicate stimulations and inhibitions, respectively. B) Predicted signaling activity for three circuit/sample pairs on

the sub-figure A. Color represents signaling circuit activity with and without considering the genomic information. C) Violin plots showing all the predicted

signaling circuit activities with and without the genomic information for the 1000 genomes cohort (paired Wilcoxon signed-rank test P value< 2.2x10-16).

https://doi.org/10.1371/journal.pcbi.1008748.g002

Fig 3. MIGNON performance results. Multi-thread tasks. A) Memory consumption by task. Each boxplot represents the maximum memory consumption

in Gigabytes (y axis) for each CPU configuration (X axis) and each multi-thread task (facets). Dashed lines indicate the following memory configurations: 4,

8, 16 and 32 gigabytes. B) Elapsed time by task. Each boxplot represents the elapsed time (Y axis) for each CPU configuration (X axis) and each task (facets).

Dashed lines indicate time points: 30, 60, 120 and 240 minutes.

https://doi.org/10.1371/journal.pcbi.1008748.g003
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provides a way to integrate the called variants with the gene expression data as MIGNON

does. Among the workflows, only SEPIA provides an option for functional analysis of both

omic results (obviously transcriptomic and genomic data are interpreted independently).

Although the real usage level of these workflows is always difficult to estimate, Google Scholar

citations can provide an approximate measurement of the relative impacts in terms of scien-

tific document quotations. According to these observations, SEPIA displays a modest 6% of

use among the available workflows. Conversely, Recount2 (36%), ARCHS4 (33%) and RNA-

Cocktail (16%) together account for 85% of the citations. Among these, only one (ARCHS4)

provides functional analysis, by conventional enrichment analysis. Thus, a workflow capable,

not only to extract transcriptomic and genomic information from RNA-seq reads, but also to

integrate them and to provide a functional analysis in a sophisticated framework of mechanis-

tic modeling of signaling pathways seems to be a good step forward.

Conclusions

In summary, MIGNON represents an innovative concept of RNA-Seq data analysis that auto-

mates the sequence of steps that leads from the uninformative raw reads to the ultimate sophis-

ticated functional interpretation of the experiment, providing, for the first time, a user-friendly

framework for integration of genomic and transcriptomic data.

MIGNON makes use of several popular methods to perform the initial processing of reads

and utilize the HiPathia mathematical model to provide a mechanistic interpretation of the

experiment in the context of human signaling. MIGNON has an enormous application poten-

tial in personalized medicine, especially in the analysis of cancer transcriptomes, given its

Fig 4. GATK sub-workflow performance results. A) Memory consumption by task. Each boxplot represents the maximum memory consumption in

Gigabytes (Y axis) for each task (X axis). Dashed lines indicate the following memory configurations: 4, 8, 16 and 32 gigabytes. B) Elapsed time by task. Each

boxplot represents the elapsed time (Y axis) for each task (X axis). Dashed lines indicate the following time points: 30, 60, 120 and 240 minutes.

https://doi.org/10.1371/journal.pcbi.1008748.g004
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ability to interpret putative driver mutations along with gene expression in the context of sig-

naling activity, a process highly relevant in tumorigenesis.

MIGNON can be easily deployed in different computer environments making an optimal

use of the resources. Additionally, the modularity with which the workflow has been designed

makes its upgrade and maintenance a straightforward task.
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