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Abstract

Spectral similarity is used as a proxy for structural similarity in many tandem mass spec-

trometry (MS/MS) based metabolomics analyses such as library matching and molecular

networking. Although weaknesses in the relationship between spectral similarity scores and

the true structural similarities have been described, little development of alternative scores

has been undertaken. Here, we introduce Spec2Vec, a novel spectral similarity score

inspired by a natural language processing algorithm—Word2Vec. Spec2Vec learns frag-

mental relationships within a large set of spectral data to derive abstract spectral embed-

dings that can be used to assess spectral similarities. Using data derived from GNPS MS/

MS libraries including spectra for nearly 13,000 unique molecules, we show how Spec2Vec

scores correlate better with structural similarity than cosine-based scores. We demonstrate

the advantages of Spec2Vec in library matching and molecular networking. Spec2Vec is

computationally more scalable allowing structural analogue searches in large databases

within seconds.

Author summary

Most metabolomics analyses rely upon matching observed fragmentation mass spectra to

library spectra for structural annotation or compare spectra with each other through net-

work analysis. As a key part of such processes, scoring functions are used to assess the sim-

ilarity between pairs of fragment spectra. No studies have so far proposed scores

fundamentally different to the popular cosine-based similarity score, despite the fact that

its limitations are well understood. We propose a novel spectral similarity score known as

Spec2Vec which adapts algorithms from natural language processing to learn relation-

ships between peaks from co-occurrences across large spectra datasets. We find that simi-

larities computed with Spec2Vec i) correlate better to structural similarity than cosine-

based scores, ii) subsequently gives better performance in library matching tasks, and iii)

is computationally more scalable than cosine-based scores. Given the central place of
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similarity scoring in key metabolomics analysis tasks such as library matching and spectral

networking, we expect Spec2Vec to make a broad impact in all fields that rely upon untar-

geted metabolomics.

This is a PLOS Computational Biology Methods paper.

Introduction

In metabolomics the high throughput characterisation of metabolites present in a biological

sample, is increasingly important across the biomedical and life sciences [1,2]. This is largely

due to the manner in which the metabolome complements the genome, transcriptome and

proteome as the data type most closely representing phenotype [3], and to the increased sensi-

tivity and coverage of modern measurement equipment.

Of the available measurement platforms, liquid chromatography coupled to mass spectrom-

etry (LC/MS) is the most widely used. Modern untargeted LC/MS experiments produce large

datasets that are challenging to fully analyse and exploit. A main bottleneck is the structural

annotation and identification of the chemical ions detected by the mass spectrometer, primar-

ily because the mass-to-charge ratio (m/z) of an observed ion species is very often insufficient

to unambiguously assign it to one chemical formula, and certainly insufficient to assign it to a

specific chemical structure. Building upon the assumption that molecules fragment in a man-

ner that is dependent on their structure, fragment data (also known as MS2 or MS/MS) is

often used to overcome this bottleneck. Fragmentation spectra can act as an aid to annotation

via either comparison with databases [4,5] such as MassBank [6], Metlin [7], GNPS [8], etc., or

as input to in-silico identification algorithms such as SIRIUS/CSI:Finger ID [9] or MS2LDA

[10].

At the heart of much analysis of mass spectrometry fragmentation data is the computation

of similarity between pairs of MS2 spectra (Fig 1A and 1B). For example, when searching an

unknown spectrum against a database, a similarity score is computed between the query

spectrum and database spectra. Similarly, when creating molecular networks[11], edges are

drawn between spectra if their similarity exceeds a user-defined threshold. In all such analy-

ses, spectral similarity is being used as a proxy for structural similarity, the real quantity of

interest[12]. Cosine-based scores are the most widely used measures of spectral similarity.

Studies investigating whether molecules with high structural similarity result in spectra

with a high spectral cosine similarity score only partly support the assumed relationship

between spectral and structural similarity [13,14]. As a result, various modifications of the

cosine similarity score have been proposed, including raising the m/z and intensity compo-

nents to different powers, and shifting fragment peaks by the difference in precursor m/z

(‘modified cosine score’ [11]). Cosine-based methods are very good at revealing nearly

equal spectra, but by design they are not well-suited to handle molecules with multiple local

chemical modifications. Despite these limitations, thus far no fundamentally different spec-

tral similarity scores have been proposed.

Within the context of metabolite identification from MS/MS data, much effort has gone

into the prediction of structural information from spectra. This is because it allows spectra to

be queried against structural databases that are typically orders of magnitude larger than spec-

tral ones. Despite the fact that database searching is still the gold standard for metabolite
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annotation [15], methods such as MAGMa [16], SIRIUS [17], CSI:FingerID [9], MetFrag [18],

IOKR [19], DeepMASS [20], and MetDNA [21] have been effective at widening the search

space and clearly demonstrate that useful structural information can be learnt from MS2

spectra.

Building on that insight, we present a novel spectral similarity score based upon learnt

embeddings of spectra. Inspired by the success of algorithms from the field of natural language

Fig 1. (A) MS-MS spectra can be considered as signatures of molecules: spectra are known to contain structural information of the original molecule, but without a

straightforward way to translate mass spectral features into structural ones describing the fragmented molecule. (B) Spectra are commonly compared by similarity

measures such as cosine or modified cosine scores. While those measures are very good at revealing (nearly-) equal spectra, they often underperform when it comes to

spectra of complex molecules with high structural similarity, but which differ in multiple locations (C) Spec2Vec is based on algorithms from natural language

processing and learns relationships between peaks based on how frequently they co-occur. (D) Two spectra from different yet similar molecules will hence be

represented by similar spectral vectors even if many of their peak positions will differ.

https://doi.org/10.1371/journal.pcbi.1008724.g001
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processing in accounting for element relatedness for overall similarity assessment of objects,

we aimed at adapting such tools to mass spectra data. A language-based analogy would be

words like ‘cookie’ and ‘cake’ which often occur in similar contexts (e.g. together with words

like ‘dough’, ‘sweet’, ‘eating’) and are hence assumed by the model to represent related entities

(Fig 1C).

Adapting Word2Vec, a well-established machine learning technique in natural language

processing [22], Spec2Vec learns from co-occurrences across large datasets to represent highly

related fragments or neutral losses by vectors pointing in similar directions within a continu-

ous abstract space. A spectrum can then be represented by a low-dimensional vector calculated

as the weighted sum of all its fragment (and loss) vectors (Fig 1D). Instead of relying on only a

binary assessment of each fragment (match/no match), Spec2Vec hence takes the relation

between fragments into account. This can be illustrated by comparing two spectra of molecules

with multiple (small) chemical modifications that Spec2Vec could relate to each other despite

the low amount of direct peak matches (Fig 2).

In contrast to the database searching methods mentioned above, Spec2Vec is unsupervised

and can be trained on any collection of spectra. We demonstrate that Spec2Vec similarity

scores are well suited to identify structural similarities on the basis of given MS/MS spectra.

Spec2Vec similarity scores are very fast to compute, which -taken together- creates promising

use cases of Spec2Vec in library matching as well as in molecular networking.

Results

Spectral similarity vs structural similarity

In order to quantify how well different spectral similarity scores correlate with structural simi-

larity, we calculated multiple spectral similarity scores for all possible pairs across a mass spectra

dataset of representative character, but computationally manageable size. To create this dataset,

we started with a large collection of mass spectra provided by GNPS (see Methods). Library

spectra were used to compare spectral similarity scores with scores based on (the known)

molecular structures. It is important to note, however, that Spec2Vec is an unsupervised

machine learning technique that can be trained on any collection of spectra, independent of

whether the chemical structures are known. After filtering, processing, and removing all spectra

with fewer than 10 fragment peaks (see Methods), the remaining AllPositive dataset comprised

95,320 positive ionization mode mass spectra, 77,092 of which had InChIKey annotations.

Because many similarity scores are computationally expensive, the quantitative similarity score

assessment was done on a subset of this data, UniqueInchikey, consisting of 12,797 spectra with

unique InChIKeys (first 14 characters, also termed planar InChIKeys, see Methods).

For the UniqueInchikey data it was possible to compare the different spectra similarity

scores to the structural similarity, represented by Tanimoto scores. One of our core interests

was to evaluate to what extent a high spectral similarity score, g(s1, s2) between a pair of spectra

reflects a high structural similarity score f(m1, m2) between the respective molecules. The vast

majority of those spectra pairs correspond to entirely unrelated molecules, resulting in a distri-

bution of fingerprint-based structural similarities as shown in Fig 3A.

With Spec2Vec being an unsupervised method, it is possible to train on the same data the

model later is applied to. We computed different similarity scores for all possible spectra pairs,

hence between all 12,797 spectra in UniqueInchikey. To compute the Spec2Vec similarities

we used a model that was trained on the same 12,797 spectra as well as a model that was

trained on all 95,320 spectra from AllPositive (see methods for more details).

We then selected only the structural similarities that correspond to the highest scoring pairs

according to each of three different similarity measures: Spec2Vec, cosine score, and modified
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Fig 2. In-depth comparison example of two spectra. Since the two molecules differ slightly in three locations, both cosine and modified cosine scores fail to

recognize the overall structural similarity and return low spectral similarity scores. Spec2vec for many peaks acknowledges that they often co-occur across the
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cosine score. The cosine score focuses on peak m/z matches, while the modified cosine score

combines both the matching peak m/z and the peak m/z shifted by the precursor m/z differ-

ence (see methods). Fig 3B displays the average structural similarity over the highest 0.1% of

each respective spectra similarity score, with 0.1% corresponding to about 80,000 spectra pairs.

This reveals that a high Spec2Vec spectrum similarity score correlates stronger with structural

similarity than the cosine or modified cosine scores (Fig 3). As a consequence, Spec2Vec simi-

larities allow retrieving notable larger fractions of spectra pairs above a desired mean structural

similarity score (see example in Fig 3B). Cosine scores exist in numerous flavors (e.g. using dif-

ferent peak weighting) and can vary largely depending on their key parameters (tolerance and

min_match, the minimum number of matching peaks). Several different cosine score flavors

and parameter ranges were tested, without resulting in major improvements regarding Fig 3,

see also supporting information S2 Text.

We observed that the poorer correlation between cosine and modified cosine similarity

scores and structural similarity can largely be explained by high false positive rates (Fig A in S3

Text). This shortcoming can to some extent—though never fully—be reduced by using lower

training data, hence showing a high peak context similarity which overall leads to a high Spec2Vec similarity score. For illustrative purposes, this figure only

displays peaks between 400 and 1000 Da.

https://doi.org/10.1371/journal.pcbi.1008724.g002

Fig 3. (A) histogram of the structural similarity scores across all possible spectra pairs between the 12,797 spectra in the UniqueInchikey dataset (81,875,206 unique

pairs, not including pairs of spectra with themselves). The histogram indicates that randomly chosen pairs will most likely show scores between 0 and 0.5. Structural

similarity scores> 0.6 are rare and hence unlikely to achieve by randomly choosing pairs (p = 0.0103 is the probability for randomly picking a pair with a structural

similarity score> 0.6, p = 0.0034 for a score> 0.7). (B) Different spectral similarity scores were calculated for the same 81,875,206 spectral pairs. Comparing the

highest 0.1% the resulting scores to the structural similarities reveals that Spec2Vec similarities show a notably higher correlation with actual structural similarities.

Used parameters were 1) Spec2Vec, trained on UniqueInchikey for 50 iterations or trained on AllPositive for 15 iterations, 2) Modified cosine score with

tolerance = 0.005 and min_match = 10, and 3) Cosine score with tolerance = 0.005 and min_match = 6 and 4) the theoretical maximum that can be achieved by

choosing the highest possible Tanimoto scores for every percentile.

https://doi.org/10.1371/journal.pcbi.1008724.g003
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peak match tolerances (here: tolerance = 0.005 Da) and ignoring scores based on fewer than

min_match matching peaks (here: min_match = 10, see Figs B and C in S1 Text).

Library matching

Next, we evaluated the potential of Spec2Vec to aid in matching unknown spectra to library

spectra run on various instruments under different conditions. We worked with the AllPosi-

tive dataset (95,320 spectra), which we split into a library set (94,320 spectra) and a query set

(1000 spectra). The query spectra were randomly selected such that they would all have a dif-

ferent planar InChIKey and that we had at least 1 spectra with identical InChIKey remaining

in the library set. Therefore, for each of the 1000 query spectra, one or multiple positive hits

existed in the library set. A Spec2Vec model was trained only on the library set and Spec2Vec

scores were compared with cosine similarity scores for library matching (Fig 4). Both Spec2-

Vec and cosine similarity scores were used in the same way: potentially matching spectra were

pre-selected based on precursor-m/z matches (tolerance = 1ppm) before the highest scoring

candidate above a similarity threshold was chosen. Gradually lowering this threshold from

0.95 to 0, increases both the number of true and false positives per query. While the general

trend for both scores is similar, Spec2Vec resulted in a notably better true/false positive ratio at

all thresholds. Spec2Vec also allowed to correctly match the query spectra with up to 88%

accuracy and showed both higher accuracy and retrieval rates when compared to the cosine

score based library matching (Fig 4). In addition to using a pre-trained model that was never

Fig 4. Spec2Vec similarity scores deliver improved true-to-false-positive ratios during library matching. 1000 randomly selected spectra, all with at least 2

identical InChIKey in the entire dataset, were removed from a AllPositive and then matched to the remaining spectra. Matching was done by pre-selecting spectra

with the same precursor-m/z (tolerance = 1ppm) and then choosing the candidate with the highest spectral similarity score if this score was larger than a set

threshold. The left plot shows the true-vs-false positive rate when using Spec2Vec (red) or cosine scores (black). Due to the required precursor-m/z match, the

modified cosine scores here are virtually identical to the cosine scores and are hence not shown. Labels near the first and final dots report the used similarity score

thresholds. The inset plot on the left displays how many spectra identical InChIKey are part of the library for the 1000 query spectra. The plot on the right displays

the resulting accuracy and retrieval rates for the same parameters. Using Spec2Vec, library matching could be done with notably higher accuracy across all tested

retrieval rates. Please note: Retrieval rates for the cosine score do not fully reach the level of the Spec2Vec based matching due to the set min_match parameter

which in the presented case will assign a score of 0.0 to each pair with less than six matching peaks. Lowering the min_match parameter will increase the retrieval

but also lower the accuracy (see also Fig A in S3 Text).

https://doi.org/10.1371/journal.pcbi.1008724.g004
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trained on the query spectra, it would in practice also be possible to quickly retrain such a

model on the set of query spectra (see Fig G in S4 Text).

In practice, we expect that actual library matching is likely to be an even more difficult task

with a considerable amount of the query spectra not being represented in the library at all.

One such test scenario is displayed in Fig A in S4 Text, which expectedly displays higher num-

bers of false positives, but still showing better results for the Spec2Vec-based selection. We fur-

ther expect that actual library matching can be improved by consulting both Spec2Vec and

cosine similarity scores which can potentially make use of the apparent complementarity of

the methods as described in the next section.

Unknown compound matching

Once the underlying model has been trained, Spec2Vec similarity scores are computationally

more efficient to calculate than cosine-based scores, more easily allowing brute-force all-vs-all

comparisons of query spectra against large datasets (100,000 or more reference spectra).

Although computation times for the different similarity scores will depend upon multiple fac-

tors such as the chosen spectra preprocessing steps (key variable: resulting number of peaks),

and implementation or hardware details. Training a model on the UniqueInchikey dataset

takes about 30 minutes on an Intel i7-8550U CPU. The main performance gain results from

the fact that Spec2Vec embedding vectors are fixed length vectors, comparison of which is

computationally very efficient. Conversely, cosine-based methods, despite their name, do not

tend to operate on fixed lengths vectors as this would require a binning step. Instead, they rely

on a costly alignment step in which all pairs of fragment ions with matching m/z (within some

tolerance) are extracted. This assignment problem (a subcase of the maximum weight match-

ing problem) can quickly become a computationally intensive procedure for large numbers of

possible peak matches [23]. Even though using a greedy implementation which takes linear

time, and further optimizing Python code using Numpy [24] and Numba [25], we were not

able to have the cosine-based methods perform at a comparable speed as Spec2Vec when com-

paring large number of spectra, or when embeddings were pre-calculated and stored (see Fig

D in S3 Text). For all use-cases illustrated in the presented work, running cosine-based meth-

ods was still feasible, but we expect that performance could become an issue for even larger

data comparisons or when fast comparisons are needed (e.g. large-scale screenings). In addi-

tion, Spec2Vec similarity correlates more closely with structural similarity (Fig 3) which makes

it better suited for identifying relationships between spectra of different yet chemically related

molecules. Taken together, this makes it possible to use Spec2Vec similarity for rapidly query-

ing spectra of unknown molecules against all spectra in a large database (Fig 5).

To test whether Spec2Vec similarity scores can be used to help detect highly related mole-

cules, we moved all spectra belonging to 200 randomly chosen InChIKey (1030 spectra in

total) from the AllPositive dataset to a query dataset. To make sure that there is no overlap

regarding molecules between training and query data, we also removed all spectra without

InChIKey annotation. A separate Word2Vec model was trained on the remaining data of

76,062 spectra, and therefore the model did not see any spectra of the selected 200 molecules.

Finally, each of the 1030 query spectra was compared to all remaining spectra. The ten highest

scoring matches for each query were selected and the quality of this selection was assessed by

computing the structural similarities between all found matches and the query molecules (Fig

5). For 60% of the queries, the resulting top-10 list would contain suggested molecules with a

structural similarity score of> 0.6 (the probability to randomly draw a pair with a structural

similarity score > 0.6 is p = 0.0103, see Fig 3A). In particular for molecules with masses larger

than 200 Da, Spec2Vec was often able to detect highly related molecules for unknown queries.
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For query spectra of larger molecules (>400 Da), Spec2Vec similarities were very likely to

point to chemically related library molecules with an average Tanimoto similarity for the best

suggestions above 0.8 (Fig 5B). The improved performance for larger compounds can likely be

explained by the expected higher number of relevant fragments, and is also seen when running

the unknown compound matching experiment using the modified cosine score instead of

Spec2Vec (see Fig B in S4 Text).

This experiment purposely considered Spec2Vec as the only means to find related matches

to best illustrate its ability to quickly find related molecules in a large library dataset. Querying

1030 spectra against 76,062 spectra took 140s on an Intel i7-8550U CPU, or 0.14s per query

spectrum. Library matching can easily be run even faster by storing library embeddings with

the library itself (see also S3 Text, section on “similarity score performance”). Spec2Vec hence

easily allows to compare large numbers of spectra purely based on their spectral similarity

even without any need for pre-filtering such as by precursor m/z. In addition to being very fast

to compute, our results also suggest that Spec2Vec is a better suited similarity score for detect-

ing related yet different molecules when compared to cosine-based scores. This can be seen in

the considerably lower correlation between high spectral similarity and molecular similarity

for the cosine and modified cosine score (Fig 3), as well as the observed high fraction of false

positives (Fig A in S3 Text) which on average indeed results in less accurate compound sugges-

tions for unknown compounds (Fig B in S4 Text).

Unlike in our controlled experiments, we will in practice generally not know if our library

contains exact compound matches for our query spectra. We expect the most reliable library

search results when combining different measures. Thus, in the future, we could imagine that

Spec2Vec similarity scores together with precursor-m/z matching are very suitable methods

for pre-selecting promising candidates for library matching. In a second step, computationally

more expensive similarity measures, including cosine and modified cosine scores, but also

scores such as those derived from SIRIUS/CSI:Finger ID [9] could then be added to the Spec2-

Vec similarity measure to facilitate a well-informed decision. For instance, high Spec2Vec sim-

ilarity combined with low cosine score could be used as a signature of a chemically related yet

distinct compound. Having both a high Spec2vec and cosine score together with a precursor-

m/z match would then suggest an exact match.

Network analysis

Based on the finding that Spec2Vec similarity correlates well with structural similarity (Fig 3),

we investigated how Spec2Vec could be applied to molecular networking which is becoming

an increasingly popular tool for exploring metabolomic datasets [8]. Molecular networking

refers to representing spectra as a network in which spectra are nodes connected by edges

based upon a user defined cutoff for the similarity score (along with some heuristic pruning).

Current molecular networking relies on the modified cosine score [8,11].

Such networks are frequently used to define clusters (or communities) which are termed

molecular families. Detecting clusters in complex networks without ground truth is generally

Fig 5. Matching of unknown molecules (not part of library) using Spec2vecs similarities. All spectra of 200 randomly selected InChIkeys (1030 spectra) were

removed from the AllPositive dataset. Using a word2vec model that was trained on the remaining dataset, also excluding non-annotated spectra (76,062 spectra), each

removed “query” spectrum was compared to the dataset by only using the Spec2Vec similarity score. (A) shows a histogram of the best structural similarity score out of

the found top-10 Spec2Vec similarities for each query. For nearly 60% of all queries, Spec2Vec finds a match with a structural similarity score> 0.6 reflecting high

molecular similarity. (B) The quality of the suggested matches is highly dependent on the mass of the query compound. In particular for larger molecules (> 400 Da),

Spec2Vec similarities allow finding highly similar molecules. (C+D) Examples of unknown molecules (not part of library) that are compared to all library spectra to find

most similar matches using Spec2Vec. In both cases the algorithm is able to return highly related molecules to the query molecules that could be used to help with

annotating the query spectra or to infer its chemical class.

https://doi.org/10.1371/journal.pcbi.1008724.g005
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regarded as an ill-defined problem [26], which makes absolute quantitative comparisons diffi-

cult. In the present case, clusters depend strongly on the chosen parameters (e.g. similarity cut-

off) and algorithm (processing, cleaning and trimming of the network). To better isolate the

effect of different similarity scores we have chosen a simple workflow. For each spectrum (=

node) the up to 10 highest-scoring links (= edges) to other spectra are added if those links have

similarity scores above a given threshold. To improve the overall quality of the clustering, but

also to make the results more robust we further apply the Louvain algorithm to split up large,

poorly connected clusters [26,27]. Graphs in Fig 6 were generated using different similarity

thresholds and the resulting clusters were quantified by counting them as well-clustered if the

mean structural similarity within all cluster edges was� 0.5, and poorly-clustered if it

was< 0.5. The rationale behind setting the cutoff to 0.5 was the low probability of finding

scores above 0.5 by chance as observed in the histogram of all possible structural similarity

scores within the UniqueInchikey dataset (Fig 3A). The results in Fig 6 show that Spec2Vec is

able to cluster higher fractions of spectra into high structural similarity clusters when com-

pared to the modified cosine. In terms of computation time, the presented molecular network-

ing procedure requires to calculate the spectral similarities between all possible spectra pairs

(�82�106 unique pairs), which Spec2Vec is able to compute in relatively short time (300s on an

Intel i7-8550U CPU, see more performance analysis in the supporting information S3 Text).

Finally, we expect that Spec2Vec similarity scores bring new options for further improving

molecular networking. A simple first proof-of-principle test on combining Spec2Vec similarity

and modified cosines scores reveals that combined scores will likely be able to further increase

Fig 6. Comparison of spectra clustering using modified cosine (left) or Spec2Vec (right) across a range of similarity score cutoffs. The cluster quality is assessed by

measuring the average structural similarity across all linked pairs within each cluster. Setting a structural similarity threshold of 0.5 (see Fig 3A) allows to compare the

fraction of spectra that ends up in chemically homogenous clusters (red) with those in more heterogeneous clusters (green) and the fraction of spectra that is not

clustered at all (those with no links above set threshold). Clustering is done here by creating edges between spectra (= nodes) for similarities above a certain cutoff

(adding max. 10 links per node). To make the resulting clustering more robust and better comparable across different scores, we used the Louvain algorithm to break

up the large clusters. Dashed squares mark regions of relatively high retrieval (high fraction of clusters with high structural similarity) and high accuracy (large

discrepancy between fraction of high structural similarity and low structural similarity clusters). Overall, Spec2Vec allows to cluster higher fractions of spectra into high

structural similarity clusters (> 35% of all spectra are in high similarity clusters for a Spec2Vec similarity threshold of 0.7).

https://doi.org/10.1371/journal.pcbi.1008724.g006
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clustering accuracy (see Fig C in S4 Text). More extensive future work will be necessary to sys-

tematically explore the full potential of such score combinations.

Discussion

In conclusion, here we introduce a spectral similarity score with advantageous properties over

the currently widely used cosine similarity score (and its popular variant, modified cosine).

Inspired by natural language processing, much like topic modelling enabled substructure find-

ing in metabolomics data [10], we here show how a popular text mining algorithm (Word2Vec

[22]) can be adapted to learn meaningful relations between mass fragments and neutral losses

in mass fragmentation spectra. We demonstrate how the Spec2Vec score better resembles the

structural similarity of fragmented molecules and outperforms the cosine score in key tasks

underpinning metabolomics analyses including library matching. Being a machine learning

algorithm, one limitation of Spec2Vec as compared to cosine scores is that it needs training

data to learn the fragment peak relationships; however, since this not necessarily needs to be

library spectra and in light of the enormous increase in publicly available metabolomics data,

we do not see this as a major bottleneck. Still, for Spec2Vec to work it is important that the

training set includes a large fraction of the features (fragment ions and losses) that we see in

the data for which similarities are required. For many cases, we expect that a model pre-trained

on a large spectra dataset will cover a large enough fraction of the features to work well without

the need for additional re-training (see Fig G in S3 Text). Here, the performance was assessed

and compared based on library matching and unknown compound matching results; and it is

not unlikely that other applications such as network analysis may benefit more from a massive

training set or retraining the Spec2Vec model including the new experimental spectra. Train-

ing time is not a limitation: training the embedding on 95,320 spectra took 40 minutes (when

training for 15 iterations).

Spec2Vec is not meant to be the endpoint but rather a start of a new direction in spectral

similarity scores. The low computational costs of Spec2Vec similarity scores make it possible

to run extensive searches on very large library datasets. This makes it particularly suited to act

as a pre-selection funnel for selecting promising candidates for further exploration using com-

putationally more expensive approaches such as in silico fragmentation trees which also are

able to provide comparable improvements detecting structurally highly related compound

[28]. In addition, one could think of adding relevant mass differences as input to train the

model, for example following the approach of Kreitzberg et al. [29]. In future work we are also

keen to explore how Spec2Vec can be combined with the concept of hypothetical neutral losses

as proposed by [30].

Finally, metabolomics is increasingly used as a tool to understand metabolic profiles and to

perform integrative systems biology; furthermore, the use of MS/MS data has been promoted

by community based platforms such as MassBank [6], MS2LDA [10] and GNPS [8]. We

would like the community to use our novel score and therefore we created the modular

matchms [31] and Spec2Vec [32] packages that can easily be incorporated in platforms such as

GNPS. Currently, as a start, GNPS users can calculate Spec2Vec scores for spectra in their

molecular networks of positive ionisation mode datasets using a pretrained model (see S5 Text

which includes links to molecular networks created with release 27; Spec2Vec networks are

available for both classical and feature-based [33] molecular network jobs from MolNetEnhan-

cer [34] and GNPS example datasets). It could also be used in other systems that rely upon

spectral similarity. For example, SIRIUS [17] and IOKR [19] both use kernel matrices that are

constructed from spectral similarities and whether Spec2Vec similarities could improve these

pipelines is clearly worth investigation. In the present work, we have only demonstrated
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performance on LC-MS data. A very promising avenue will hence be to assess the utility of

Spec2Vec for GC-MS data. When measuring molecules with GC-MS, precursor m/z values are

usually not measured. This means that the initial precursor filtering to reduce the number of

similarity calculations that can be done for LC-MS is not possible suggesting that the low

computational costs of Spec2Vec would be particularly desirable. Our work represents the first

machine learning inspired spectral similarity score and, given its central place in metabolomics

analyses, we believe Spec2Vec opens up new possibilities that will impact metabolomics analy-

ses across all disciplines including clinical, food, and microbial metabolomics as well as bio-

marker and natural products discovery by improving identification, annotation, and

networking.

Methods

Data preparation

The current study was done using a large LC-MS dataset provided on GNPS containing

154,820 spectra (https://gnps-external.ucsd.edu/gnpslibrary/ALL_GNPS.json from 2020-05-

11, the raw data can be now be found on https://doi.org/10.5281/zenodo.3979010). The pro-

vided metadata was cleaned and corrected using matchms [31] resulting in 94,121 spectra with

InChIKey annotations. Using key metadata information such as compound names, chemical

formulas and estimated parent masses, an extensive automated lookup search was run against

PubChem [35] (via pubchempy [36]). As a result, 128,042 out of 154,820 spectra could be

linked to an InChIKey (14,978 unique InChIKeys in the first 14 characters).

The here used subset contains all spectra with positive ionization mode containing 112,956

spectra, out of which 92,954 with InChIKey (13,505 spectra with unique planar InChIKeys in

first 14 characters before Spec2Vec related filtering).

We also worked with the considerably smaller subset UniqueInchiKeys which was reduced

on purpose to be accessible for extensive benchmarking. It contains only one spectrum for

every unique InChIKey from the AllPositive dataset (see notebooks in https://github.com/

iomega/spec2vec_gnps_data_analysis for details on the selection procedure).

In a next step we removed all peaks with m/z ratios outside the range [0, 1000] and dis-

carded all spectra with less than 10 peaks. This left us with 95,320 spectra (out of which 77,092

with InChIKey) for the AllPositive dataset, and 12,797 spectra (all with InChIKey) for the

UniqueInchiKeys dataset.

Since Spec2Vec similarity scores are conceptually very different from cosine-like similarity

scores we decided to use two different peak filtering procedures for the two methods. For both

the cosine and modified cosine score calculations we ignored all peaks with relative intensities

<0.01 compared to the highest intensity peak. This is both to remove potential noise, but also

to reduce the computational costs for the classical similarity scores.

Spec2Vec is comparing spectrum documents using language model analogies. For the

underlying Word2Vec models we hence aimed at training on documents of comparable size

which is achieved by removing excessive amounts of low intensity peaks. Since we expect that

larger molecules on average will produce a higher number of meaningful fragmentation peaks,

the maximum number of kept peaks per spectrum was set to scale linearly with the estimated

parent mass:

maxðnpeaksÞ ¼ 0:5 � parentmass

To assess if this procedure of having different peak filtering for the different similarity

scores was indeed doing justice to the cosine and modified cosine score, we also repeated the
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library matching with cosine scores computed based on the Spec2Vec-processed data. This

resulted in a slightly lower overall performance of the cosine score based library matching.

From spectrum to document

After processing, spectra are converted to documents. For this, every peak is represented by a

word that contains its position up to a defined decimal precision (“peak@xxx.xx”). For all pre-

sented results, a binning of two decimals was used, so that a peak at m/z 200.445 translates into

the word “peak@200.45”. In addition to all peaks of a spectrum, neutral losses between 5.0 and

200.0 Da were added as “loss@xxx.xx”. Neutral losses are calculated as precursorm/z−peakm/z. A

list of all created peak and loss words is what we here refer to as a document.

A Word2Vec [22] model is trained on all documents of a chosen dataset using gensim [37].

However, Spec2Vec in several aspects differs significantly from typical NLP applications so

that some key parameters of the model also differ notably from the default settings. First of all,

peaks in the mass spectra have no particular order that is comparable to the word order in a

document. We hence set the window-size to 500, which in our case means that the entire spec-

trum (i.e. the entire document) counts as context. The two key types of word2vec models are

skip gram and continuous bag of words (CBOW), the latter was generally observed to perform

better in our case. All used parameters are listed in the supporting information S1 Text.

Although it is often considered that longer training will improve the results of a Word2Vec

model, we found that this does not necessarily hold for our Spec2Vec spectral similarity mea-

sures. When using negative sampling during the training, model performance was observed to

decrease for very long training runs. At the same time, however, including negative sampling

allowed to obtain better overall results. Generally we found that training a model with negative

sampling (negative = 5) and 15 (AllPositive) up to 50 (UniqueInchikey) epochs were best

suited for obtaining close to optimal model performance (see S1 Text). To obtain a stable base-

line performance we recommend to also train a model without negative sampling which will

plateau for very long training runs.

Spec2Vec similarity score

Spec2Vec similarity scores are derived on the basis of a pre-trained Word2Vec model. Word2-

Vec learns relationships between words (= peaks/losses) from co-occurrences across the seen

documents. It then allows to represent words by abstract word vectors (so called word embed-

dings) in such a way that words of similar meaning are placed close to each other. With Spec2-

Vec our main interest lies in comparing entire spectra, which can be described by the sum of

their words. To account for the dependency between peak relevance and peak intensity we cal-

culate a spectrum vector vS as a weighted sum:

vS ¼
Pn

i¼1

ffiffiffiffiffi
wi
p
� vi;

with wi the intensity (normalized to maximum intensity = 1) and vi the word vector of peak i.
For the similarity between two spectra we then compute the cosine score between two spec-

trum vectors:

gðs1; s2Þ ¼ cosineðvS1; vS2Þ

In practice we expect that Spec2Vec similarities will be most interesting to use when the

underlying word2vec was trained on a large reference dataset containing many different frag-

ments and losses and their structural relationships. It can also mean that it will be applied to

spectra that were not part of the training data. In those cases some words (= peaks) of a given

spectra might be unknown to the model. In those instances we can estimate the impact of the
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missing words by assessing the uncovered weighted part of a spectrum:

missing fraction ¼ 1 �

P
i;wi�model

ffiffiffiffiffiwi
p

Pn
i¼1

ffiffiffiffiffiwi
p

Having few unknown peaks of low intensity in a spectrum will count only little to the miss-

ing fraction, whereas high numbers of unknown peaks or few unknown peaks of high intensity

will result in a high missing fraction. By setting a threshold for the missing fraction (e.g.

<0.05), returning Spec2Vec similarity scores for spectra far outside the learned peaks (and

losses) can be avoided. In practice we expect that missing words will mostly become a relevant

issue when Spec2Vec models are trained on smaller datasets, or when more decimals from

peak m/z are included in words. For models trained on a larger dataset missing words are less

of an issue. For instance, the models we trained on AllPositive (95,320 spectra) with 2-decimal

rounding contained about 97% of all possible peaks and losses. In addition, not all of the

remaining 3% of peaks and losses might even be chemically meaningful (e.g. many low-Dalton

values).

Cosine and modified cosine score

The implementations for the cosine score and the modified cosine score used can be found in

the Python package matchms [31] (> = 0.6.0). Following Watrous [11], our modified cosine

score combines both the matching peak m/z and the m/z shifted by the difference in precursor

m/z. For both cosine and modified cosine score each peak can only be matched once. For the

modified cosine score each peak in one spectrum can either be matched as is, or in its shifted

form.

Structural similarity

Assessing the structural similarity between two molecules remains a complex topic. Finding

the best measure to define structural similarity between two molecules lies outside the scope of

this study; most recent studies converge to the Tanimoto similarity as one of the most practical

and well-performing measures [38]. Thus, for the presented results, the structural similarity

was measured by taking the Tanimoto similarity (Jaccard index) based on daylight-like molec-

ular fingerprints (rdkit molecular fingerprints, version 2020.03.2, 2048 bits, derived using

rdkit [39] via matchms [31]).

Code and trained models

The underlying code was developed into two Python packages to handle and compare mass

spectra, matchms (https://github.com/matchms/matchms) and spec2vec (https://github.com/

iomega/spec2vec). Both packages are freely available and can be installed via conda [31,32].

Spec2Vec was optimised by making extensive use of Numpy [24] and Numba [25], the library

matching was implemented using Pandas [40]. An additional cosine score implementation

used as a reference (Fig C in S3 Text) relies on scipy [41]. All additional functions to analyse

the data and to create the presented plots can be found under https://github.com/iomega/

spec2vec_gnps_data_analysis. This repository also contains extensive Jupyter notebooks to

document the entire workflow from raw data to the figures presented in this work. The note-

books were tested using matchms 0.6.2. and spec2vec 0.3.2.

The two most important trained Word2Vec models used in this work can be downloaded

from https://doi.org/10.5281/zenodo.3978054 (trained on UniqueInchikey dataset) and

https://zenodo.org/record/4173596 (trained on AllPositive dataset).
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Calculated all-vs-all similarity score matrices for cosine score, modified cosine score, and

fingerprint-based similarity (Tanimoto) for the UniqueInchikey dataset can be found on

https://zenodo.org/record/3979074.
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