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Abstract

Gambiense human African trypanosomiasis (gHAT) is a virulent disease declining in burden

but still endemic in West and Central Africa. Although it is targeted for elimination of trans-

mission by 2030, there remain numerous questions about the drivers of infection and how

these vary geographically.

In this study we focus on the Democratic Republic of Congo (DRC), which accounted for

84% of the global case burden in 2016, to explore changes in transmission across the coun-

try and elucidate factors which may have contributed to the persistence of disease or suc-

cess of interventions in different regions. We present a Bayesian fitting methodology,

applied to 168 endemic health zones (�100,000 population size), which allows for calibra-

tion of a mechanistic gHAT model to case data (from the World Health Organization HAT

Atlas) in an adaptive and automated framework.

It was found that the model needed to capture improvements in passive detection to

match observed trends in the data within former Bandundu and Bas Congo provinces indi-

cating these regions have substantially reduced time to detection. Health zones in these

provinces generally had longer burn-in periods during fitting due to additional model

parameters.

Posterior probability distributions were found for a range of fitted parameters in

each health zone; these included the basic reproduction number estimates for pre-

1998 (R0) which was inferred to be between 1 and 1.14, in line with previous gHAT esti-

mates, with higher median values typically in health zones with more case reporting in the

2000s.

Previously, it was not clear whether a fall in active case finding in the period contributed

to the declining case numbers. The modelling here accounts for variable screening and sug-

gests that underlying transmission has also reduced greatly—on average 96% in former

Equateur, 93% in former Bas Congo and 89% in former Bandundu—Equateur and
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Bandundu having had the highest case burdens in 2000. This analysis also sets out a frame-

work to enable future predictions for the country.

Author summary

Gambiense human African trypanosomiasis (gHAT; sleeping sickness) is a deadly disease

targeted for elimination of transmission by 2030, however there are still several unknowns

about what factors influence continued transmission and how this changes with geo-

graphic location.

In this study we focus on the Democratic Republic of Congo (DRC), which reported

84% of the global cases in 2016 to try and explain why some regions of the country have

had more success than others in bringing down case burden. To achieve this we used a

state-of-the-art statistical framework to match a mathematical gHAT model to reported

case data for 168 regions with some case reporting during 2000–2016.

The analysis indicates that two former provinces, Bandundu and Bas Congo had sub-

stantial improvements to case detection in fixed health facilities in the time period. Over-

all, all provinces were estimated to have reductions in (unobservable) transmission

including�96% in former Equateur. This is reassuring as case finding effort has decreased

in that region.

The model fitting presented here will allow predictions of gHAT under alternative

intervention strategies to be performed in future studies.

Introduction

Gambiense human African trypanosomiasis (gHAT) is a disease caused by the protozoan para-

site Trypanosoma brucei gambiense which is transmitted by tsetse. The disease has two distinct

stages during which the disease progresses from mild to severe, and can lead to death without

treatment.

gHAT occurs throughout Western and Central Africa, with 15 countries reporting new

cases in the period 2000–2016 [1]. The majority of the detected gHAT cases are in the Demo-

cratic Republic of Congo (DRC) where 84% of the new cases in 2016 were reported [2]. While

these cases are predominantly in the former province of Bandundu, they are widespread across

this large country (230 of 516 health zones had reported cases between 2012 and 2016).

It has long been understood that treatment of gHAT patients not only prevents excess mor-

tality but it can also reduce the time spent infectious, and thereby reduce onward transmission

in the population. A combination of active screening and passive surveillance followed by

treatment of cases has resulted in a decline in the number of new cases from 25,841 (16,951 in

DRC) in 2000 to 2,110 (1,768 in DRC) in 2016 [1]. During this time period both diagnostics

and drugs for gHAT have evolved with vast improvements for patients.

Traditional active screening of at-risk populations is done by mobile teams visiting villages

and performing an initial mass screen using serological tools (usually the card agglutination

test for trypanosomes—CATT), followed by microscopy for serologically positive suspects to

confirm presence of the parasite. This microscopic parasitological confirmation of a case was

required before drug administration. For the treatments available in the previous two decades,

a final “staging” test—a lumbar puncture to establish whether a patient has trypanosomes or

elevated white blood cell count in cerebrospinal fluid—was required to select appropriate
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treatment. This necessary, multi-step diagnostic pathway currently precludes the possibility of

mass drug administration as used in control programmes for other neglected tropical diseases

(NTDs).

For infected people who evade detection by active screening due to imperfect diagnostics,

non-attendance in active screening, or whose village is not screened, it is possible for them to

self-present at fixed health facilities and be diagnosed through passive surveillance. Not all

fixed health facilities have gHAT diagnostics but this has been improved over the last 20 years.

Globally, WHO estimate that in 2012, 41%, 71%, and 83% of at-risk population lived within 1,

3 and 5 hours of health facilities with these diagnostics respectively [3], and by 2017 this

increased to 58%, 79%, 89% [1]. It is not clear what quantitative impact this improvement has

had on time to detection.

Along with many other NTDs, gHAT is the subject of two World Health Organisation

goals; for gHAT these are (1) elimination as a public health problem by 2020 and (2) elimina-

tion of transmission (EOT) by 2030. If we are to truly strive to reach this second elimination of

transmission goal, then it is of utmost importance to understand and quantify the reasons for

success to date (indeed, it is expected that we are on track for the first goal [1] with some coun-

tries identified as eligible for validation of gHAT elimination as a public health problem in the

latest WHO report [4]), and identify what factors may have hindered progress.

gHAT transmission is known to be highly focal—now burden of disease is decreasing glob-

ally, there remain pockets of infection in geographically disconnected areas [1]. Previous

mathematical modelling work has shown that, whilst persistence of infection at very low preva-

lences is generally surprising for infectious diseases, the slow progression of gHAT in individu-

als enables this infection to remain extant for long periods of time in small settlements [5].

Other transmission modelling has examined drivers of gHAT in specific foci and concluded

that, by fitting to longitudinal human case data, there must exist heterogeneity in risk of

humans populations both in terms of exposure to tsetse and also in participation in active

screening [6, 7]. Other factors which are likely to vary geographically include access to fixed

health facilities with gHAT diagnostics—this can impact the time individuals spend infected

and the risk that they die without diagnosis—and the regional density of tsetse. At present it is,

however, unknown which drivers are influencing transmission in different regions.

In the present study we consider what epidemiological variables are driving transmission

across the health zones (� 100,000 population size) of DRC using a dynamic transmission

model, and examine how control interventions from 2000 to 2016 have impacted infection

and modified some of these variables over time. To achieve parameter estimation across the

country we utilise an automated Bayesian fitting procedure with an adaptive Metropolis-Has-

tings random walk and in-built convergence diagnostics. The samples from the posterior prob-

ability distributions of fitted parameters from this method can be used to examine within

health zone parameter averages and uncertainty as well as comparing estimates across health

zones. The mechanistic model can be used to infer the level of transmission to humans over

time even though it is not directly observable in data; the posterior parameters are used to do

this.

There are three major outputs from this study. Firstly, the parameterisation of our gHAT

transmission model which allows future predictions to be made considering different gHAT

intervention strategies [8]. With future predictions based on realistic, localised epidemiological

parameters; economic evaluations of the cost-effectiveness of different approaches to the con-

trol of gHAT are possible [9]. Secondly, the evaluation of the effectiveness of interventions

against gHAT in DRC across the period 2000 to 2016. Lastly, but potentially of most value to

our research going forwards, the provision of a rapid, repeatable model fitting framework

to facilitate future research around the model presented here and other variants of it.
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Materials and methods

Data

Data on gHAT cases in DRC were obtained from the WHO who curate the global HAT Atlas

database [1, 10, 11]. The data in the HAT Atlas are case data aggregated by location, year and

surveillance type. Location was defined by the available geolocation and geographical identifier

information, while surveillance type was either active or passive screening. There were 117,573

records in the HAT Atlas data file covering the period 2000–2016. Although many data entries

for 2015 and 2016 have information of the stage (1 or 2) of disease, very little staging informa-

tion was available prior to 2015.

Because administrative areas may be redefined or renamed over time, the HAT Atlas rec-

ords were matched to a single, recent map obtained as a shapefile (UCLA, personal communi-

cation). Matching to the shapefile was performed by geolocation, where available, plus an

identifier matching both to geolocated locations and directly to the administrative areas stored

in the shapefile. Other geographical data were sourced from the Humanitarian Data Exchange

—an older United Nations Office for the Coordination of Humanitarian Affairs (OCHA)

health zone shapefile, and geolocations of localities (OCHA) and health facilities (Global

Healthsite Mapping Project) within DRC. The additional geographical data provided alterna-

tive names for administrative/health areas as well as names and geolocations of locations and

hence facilitate the data cleaning and matching process. While geolocations (longitude and lat-

itude) were available for most records they may not be reliable indicators of position as they

may have been assigned as the centroid of the lowest available level administrative/health area

if not recorded directly. A standardisation procedure was performed on area and location

names from all sources. Sequential matching was then carried out, with unmatched records

being carried forward to the next step. The location and health site lists were combined and

located on the UCLA shapefile to obtain administrative area names consistent with this map.

Detail on this process is available in the Supporting Information (S1 Text).

Following data matching, the data were aggregated within health zone, year and surveil-

lance type to produce health zone level data sets for all health zones in which cases were

reported. It is noted that for a small number of health zone–year combinations the reported

number of cases detected by active screening was more than the declared number of people

screened, which was zero in some instances.

Cases of gHAT are not recorded across all of the DRC; for many regions this is because they

have not historically observed gHAT cases and are not believed to be endemic for gHAT, but

for others it is due to challenging accessibility. Fig 1 shows the regions where there were no

data as well as the status of the analysis performed in the present study. Inference was not per-

formed for all health zones where there were data available; either because there were too few

observations (Data< 10), no cases were detected (No Detections) or because transmission is

believed not to be taking place, since there is an absence of tsetse habitat (No Transmission).

Inference was deemed to be possible where there were 10 or more observations, where an

observation was an aggregate record for a single year relating to either more than 20 people

being actively screened or cases detected passively.

Fig 2 contains three maps of aggregated numbers of new cases by health zone for three

non-consecutive five-year periods spanning the period 2000–2016 for which data were avail-

able. These maps illustrate the decrease in cases reported over time, in particular in the former

provinces of Equateur (in the North-West of DRC), which had the highest burden in 2000,

and Bandundu (situated to the east of Kinshasa), which despite its decrease is now the most

highly-endemic region globally. In the North there was an increase in reported cases due to

the presence of Médecins Sans Frontières (MSF) who use an alternative diagnostic algorithm
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to that used by the national programme. The MSF algorithm did not feature parasitological

confirmation after serological testing, and hence had a higher sensitivity but lower specificity

(similar to those described in [12]). Some cases were reported in urban Kinshasa (Fig 2), how-

ever these are believed to be the result of infections that occurred elsewhere and there is

Fig 1. Status of the individual health zone-level analyses, if the analysis was not run the reason is indicated.

Shapefiles used to produce these maps are available under an ODC-ODbL licence at https://data.humdata.org/dataset/

drc-health-data.

https://doi.org/10.1371/journal.pcbi.1008532.g001

Fig 2. Total number of new cases recorded within health zone and five-year period. Shapefiles used to produce these maps are available under an ODC-ODbL licence

at https://data.humdata.org/dataset/drc-health-data.

https://doi.org/10.1371/journal.pcbi.1008532.g002
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assumed to be no transmission within urban Kinshasa (Fig 1) and hence no model fitting was

performed for those health zones.

Model

gHAT infection model. The deterministic gHAT model equations are ordinary differen-

tial equations given in Eq (1) and correspond to the model schematic presented in Fig 3. The

model is the variant “Model 4” of that presented elsewhere [6, 7, 13–16]: in this model variant

human hosts are assumed to be either at low-risk and randomly participate in screening (sub-

script H1), or high-risk and never participate in screening (subscript H4). Eq (1) therefore uses

indices to denote the risk classes, using only i 2 {1, 4}, with other subscripts being reserved for

model variants with high-/low-risk structures as presented in other publications [6, 7] but not

considered here. In Model 4, tsetse bites are assumed to be taken on humans or non-reservoir

animals, however, the non-reservoir animal species do not need to be explicitly modelled.

Infection occurring in animals is not modelled in the present study.

For simplicity we consider a closed population of size NH individuals, with natural mortality

and births. Furthermore, we assume that any deaths related to gHAT will be replaced by new

susceptibles entering the population, therefore the parameter γH represents a mix of disease-

induced deaths and detection in stage 2. To compute the cases found in stage 2 passive detection

Fig 3. Illustration of compartmental gHAT model. Multi-host model of gHAT with one host species able to confer T. b. gambiense (humans), a further

non-reservoir species and tsetse. After a short incubation period, infected human hosts follow the progression which includes an infectious stage 1 disease,

I1H, infectious stage 2 disease, I2H, and a hospitalised/recovering class, R. Pupal stage tsetse, PV, emerge into unfed adults. Unfed tsetse are susceptible, SV,

and following a blood-meal become either exposed, EV, or have reduced susceptibility to the trypanosomes with subsequent bloodmeals, GV. Tsetse select

their blood-meal from one of the host types dependant upon innate feeding preference and relative host abundance. High-risk humans are r-fold more

likely to receive bites than low-risk humans. Any blood-meals taken upon non-reservoir animals do not result in infection. The transmission of infection

between humans and tsetse is shown by grey paths. This figure is adapted from the original model schematic [6].

https://doi.org/10.1371/journal.pcbi.1008532.g003
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we multiple the reporting rate u by the stage 2 exit rate γH. As we only expect disease-induced

deaths from stage 2 infection, the same does not apply to the stage 1 detection rate.

The model is parameterised with a combination of fixed and fitted parameters. Fixed

parameters (see Table 1) generally correspond to assumed biological values that are unlikely to

vary across the DRC, such as the human mortality rate (μH), tsetse bite rate (α) and stage 1 to

stage 2 disease progression in humans (φH). Fitted parameters (see Table 2) are those which

are likely to be correlated with region including the proportion of the population at low-risk of

infection (k1), the relative rate at which high-risk humans are bitten by tsetse (r), the reporting

rate (u) (corresponding to access to health facilities with gHAT testing capacity), and parame-

ters linked to the time to passive detection or disease-induced mortality (ηH for stage 1 and γH
for stage 2). Some parameters of the model are not fitted themselves but are functions of other

parameters. The proportion of high-risk people in the population was calculated as k4 = 1 − k1.

The exit rate from stage 2 pre-1998 was assumed to be less than that achieved post-1998, and

was therefore calculated as g
pre
H ¼ bgpreH

g
post
H , where g

post
H was the treatment rate from stage 2 post-

1998 and bgpreH
is a fitted value in the range zero to one. The tsetse-to-human relative density,

meff, is calculated from R0 using the next generation matrix approach.

Humans

dSHi
dt

¼ mHNHi þ oHRHi � ameff fi
SHi
NHi

IV � mHSHi

dEHi
dt

¼ ameff fi
SHi
NHi

IV � ðsH þ mHÞEHi

dI1Hi
dt

¼ sHEHi � ðφH þ ZHðYÞ þ mHÞI1Hi

dI2Hi
dt

¼ φHI1Hi � ðgHðYÞ þ mHÞI2Hi

dRHi

dt
¼ ZHðYÞI1Hi þ gHðYÞI2Hi � ðoH þ mHÞRHi

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Tsetse

dPV
dt

¼ BVNH � ðxV þ
PV
K ÞPV

dSV
dt

¼ xVPðpupatingÞPV � aSV � mVSV

dE1V

dt
¼ að1 � fTðtÞÞpVð

P
ifi
ðI1Hi þ I2HiÞ

NHi
þ fA

IA
NA
ÞðSV þ εGVÞ

� ð3sV þ mV þ afTðtÞÞE1V

dE2V

dt
¼ 3sVE1V � ð3sV þ mV þ afTðtÞÞE2V

dE3V

dt
¼ 3sVE2V � ð3sV þ mV þ afTðtÞÞE3V

dIV
dt

¼ 3sVE3V � ðmV þ afTðtÞÞIV

dGV

dt
¼ að1 � fTðtÞÞSV

� a
�
fTðtÞ þ ð1 � fTðtÞÞpVεð

P
ifi
ðI1Hi þ I2HiÞ

NHi
þ fA

IA
NA
ÞGV

�

� mVGV

ð1Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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Table 1. Model parameterisation (fixed parameters). Notation, a brief description, and the values used for fixed parameters.

Notation Description Value

NH Total human population size in 2015 Fixed for each health zone [17]

μH Natural human mortality rate 5.4795 × 10−5 days−1 [18]

BH Total human birth rate = μH NH

σH Human incubation rate 0.0833 days−1 [19]

φH Stage 1 to 2 progression rate 0.0019 days−1 [20, 21]

ωH Recovery rate or waning-immunity rate 0.006 days−1 [22]

Sens Active screening diagnostic sensitivity 0.91 [12]

BV Tsetse birth rate (per capita rate of depositing new pupae) 0.0505 days−1 [13]

ξV Rate of pupal development to adult flies 0.037 days−1

K Pupal carrying capacity = 111.09NH [13]

PðpupatingÞ Probability of a pupa surviving to emerge as an adult fly 0.75

μV Tsetse mortality rate 0.03 days−1 [19]

σV Tsetse incubation rate 0.034 days−1 [23, 24]

α Tsetse bite rate 0.333 days−1 [25]

pV Probability of tsetse infection per single infective bite 0.065 [19]

ε Reduced susceptibility factor for non-teneral (previously fed) flies 0.05 [6]

fH Proportion of blood-meals on humans 0.09 [26]

dispact Overdispersion parameter for active detection 4 × 10−4 –

disppass Overdispersion parameter for passive detection 2.8 × 10−5 –

The value of BV was chosen to maintain constant population size in the absence of vector control interventions. The value of K was chosen to reflect the observed

bounce back rate.

https://doi.org/10.1371/journal.pcbi.1008532.t001

Table 2. Model parameterisation (fitted parameters). Notation, brief description, and information on the prior distributions for fitted parameters.

Notation Description Prior distribution1 Percentiles of prior distribution [2.5, 50 &

97.5%]

Unit

R0 Basic reproduction number (NGM approach) 1 + Exp(10) [1.003, 1.069, 1.369] -

r Relative bites taken on high-risk humans 1 + Γ(3.68, 1.09) [2.015, 4.654, 10.028] -

k1 Proportion of low-risk people B(16.97, 3.23) [0.6564, 0.8514, 0.9609] -

Z
post
H

2 Treatment rate from stage 1, 1998 onwards Γ(3.54, 5.32 × 10−5) [4.59, 17.1, 42.9] × 10−5 days−1

g
post
H

2 Combined treatment and disease-induced death rate from stage 2,

1998 onwards

Γ(2.45, 0.00192) [7.59, 40.7, 121] × 10−4 days−1

bgpreH
Relative treatment/death rate from stage 2 factor, pre-1998 B(1, 1) [0.025, 0.500, 0.975] -

Spec Active screening diagnostic specificity 0.998 + (1 − 0.998)B(7.23,

2.41)

[0.9989, 0.9995, 0.9999] -

u Proportion of stage 2 passive cases reported B(20, 40) [0.2208, 0.3315, 0.4564] -

dchange
3 Midpoint year for passive improvement 2000 + (2017 − 2000)B(5, 6) [2003.2, 2007.7, 2012.5] Year

ZHamp

4 Relative improvement in passive stage 1 detection rate Γ(2.013, 1.049) [0.258, 1.775, 5.870] -

gHamp

4 Relative improvement in passive stage 2 detection rate Γ(1.001, 5) [0.127, 3.471, 18.455] -

dsteep
4 Speed of improvement in passive detection rate Γ(39.57, 0.0270) [0.761, 1.058, 1.424] years−1

1 Where Exp(.), Γ(.) and B(.) are the exponential, gamma (parameterised with shape and scale) and beta distributions, respectively.

2 Former province-specific priors used for Z
post
H and g

post
H ; prior distributions and percentiles for Bandundu presented, see SI “S1 Text” for other former provinces.

3 dchange is only fitted in the former province of Bandundu.
4 ZHamp

, gHamp
and dsteep are only fitted in the former provinces of Bandundu and Bas Congo; the prior distributions and percentiles presented relate to Bandundu, see SI

“S1 Text” for Bas Congo.

https://doi.org/10.1371/journal.pcbi.1008532.t002
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The actual number of vectors is SV, E1V, E2V, E3V, IV and GV multiplied by NV/NH, where

NV is the total population of adult tsetse and NH = NH1 + NH4 denotes the total human popula-

tion. Then, the effective probability of human infection per single infective tsetse bite meff is

defined as NV pH/NH with the original vector-to-human transmission probability pH.

Whilst the tsetse population size is assumed constant in almost all simulations presented,

we use an explicitly host-vector model to enable us to simulate the impact of tsetse interven-

tions. Vector control is included in Eq (1) as fT(t), the probability of a fly both hitting a tiny

target and subsequently dying at time t. The value of fT(t) is dependent on the population

reduction achieved by any vector control performed. For Yasa Bonga health zone, the only

health zone in which vector control took place prior to the end of the data collection period, a

90% reduction in tsetse population in the first year after biannual deployment of tiny targets

was introduced [27]; more details are given in the SI (S1 Text) about the functional form of

fT(t), which was originally presented elsewhere [13]. Other tsetse parameters include the pupal

stage PV from which new, unfed (teneral) adult flies emerge and it is on this pupal class where

we place our density-dependent carrying capacity K, which governs the bounceback speed of

the population in the case where fT(t) 6¼ 0. Teneral flies, SV, are considered susceptible to T. b.
gambiense infection with probability pV on their first blood meal, after this time the “teneral

phenomenon” results in previously fed flies, GV, having reduced susceptibility to infection by a

factor ε compared to unfed flies.

The proportion of tsetse bites taken on low-risk and high-risk humans are f1 and f4, depend-

ing on the relative abundance and proximity of the two risk groups. If si is the relative availabil-

ity of host type i and high-risk humans are assumed to be r-fold more likely to receive bites,

then s1 = 1 and s4 = r. Therefore, fi’s can be calculated using fi ¼
siNHiP
jsjNHj

.

Improvements to passive case detection. For simulations in this study, we assumed

that prior to 1998 there was limited passive case detection, which would not detect stage 1

cases (Z
pre
H ¼ 0) and have a slower time to detection for stage 2 (g

pre
H ¼ bgpreH

� g
post
H where

bgpreH
¼ ½0; 1�). In 1998 we assume that the introduction of the card agglutination test for try-

panosomes (CATT) enabled better diagnosis and stage 1 and 2 rates were increased to Z
post
H

and g
post
H respectively.

As explored in a previous modelling study focusing on former Bandundu province [16],

there is strong evidence of improvements to the passive surveillance system during 2000–2012

from examining the changes to the proportion of passive cases identified in stage 1 compared

to stage 2. The health-zone level data utilised here for the main model fitting do not contain

staging information before 2015 (and generally there are relatively few cases in 2015 and

2016). The staged case information from 2015 and 2016 were aggregated to the former prov-

ince level and used alongside the provincial-level staged case data for 2000–2012 [28] to set

prior distributions for logistic functions which we use to describe improvements to both the

passive stage 1 and stage 2 detection rates in each year:

ZHðYÞ ¼ Z
post
H 1þ

ZHamp

1þ exp ð� dsteepðY � dchangeÞÞ

" #

ð2Þ

gHðYÞ ¼ g
post
H 1þ

gHamp

1þ exp ð� dsteepðY � dchangeÞÞ

" #

ð3Þ
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These functional forms were used in former Bandundu and Bas Congo provinces where

there was strong evidence of improvement in the data. In Bas Congo the “change year”,

dchange, was fixed to 2015.5 as this corresponds to the year in which there was a substantial

increase in the number of fixed health facilities with gHAT rapid diagnostic tests (RDTs)

[29].

It is noted that only the stage 1 detection rate was changed in Model W in Castaño et al.
[16] as this provided a good fit to the data at the province level. Here we alter both stage 1 and

stage 2, firstly because it is logical that passive detection improvements would lead to faster

rates for both stages of disease, and secondly as this is better able to capture passive detection

patterns observed in health zone level data. In the present study other provinces were assumed

to have constant passive detection rates since 1998.

Active screening algorithms. Active screening since 2000 has generally comprised

mobile teams screening as many people as possible in villages using a multi-diagnostic algo-

rithm. The first diagnostic used is the CATT test on finger prick blood, and this may be

followed by CATT dilutions and finally microscopy to visually confirm presence of the para-

site. After parasite confirmation, the individual is a confirmed case and required further

testing using lumbar puncture to diagnose disease stage to be able to provide the correct

stage-specific treatment. In the model we assume this algorithm has a sensitivity of 0.91, and

very high but imperfect specificity with a prior around 0.9995 and fitted to health zone level

data.

Whilst the national programme, PNLTHA, have consistently used the algorithm with

parasitilogical confirmation, in former Oriental province in the North of the country, some

of the screening activities (pre-2013) were performed by MSF. The MSF algorithm was more

contracted and individuals who were found positive on a CATT 1:32 were reported as cases

and given treatment. Therefore, a higher fixed sensitivity (MSF sensitivity = 0.95 in contrast

to PNLTHA sensitivity = 0.91) and a lower fitted specificity (= bspecificity × specificity with

targeted mean = 0.991, where bspecificity = [0, 1]) are used for years up to 2012 in these

regions.

Since 2015, video confirmation of parasitological diagnosis was introduced to Mosango and

Yasa Bonga health zones in former Bandundu province. This additional validation diagnostic

is designed to ensure quality control of case confirmation, which is especially important as

elimination is approached and very few cases remain. The model uses the assumption that

there have therefore been no false positives in active screening since 2015 in Mosango and

Yasa Bonga.

Vector control. Between 2000–2016 there were very limited vector control activities in

DRC, with tsetse control implemented in a single health zone, Yasa Bonga in former Ban-

dundu province, via the deployment of tiny targets since mid-2015. This method of control,

using insecticidal impregnanted blue targets, has successfully reduced fly populations in other

countries (90% in Uganda [30], 80% in Guinea, and 99% in Chad). In the present study we

incorporate vector control with a 90% reduction in tsetse for Yasa Bonga [27] (see SI “S1 Text”

for further details).

Likelihood

Eight parameters; R0; r; Z
post
H ; g

post
H ; bgpreH

; k1; u, and Spec were fitted in all health zones. Additional

parameters were included as required (combinations of dchange, ZHamp
, gHamp

, dsteep and bspecificity

as appropriate, see above).
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The Metropolis-Hastings MCMC used a log-likelihood function:

LLðyjxÞ ¼ log ðPðxjyÞÞ

/
X2016

t¼2000

 

log BetaBin AD1ðtÞ þ AD2ðtÞ; zðtÞ;
AM1ðtÞ þ AM2ðtÞ

zðtÞ
; dispact

� �� �

þ log Bin AD1ðtÞ;AD1ðtÞ þ AD2ðtÞ;
AM1ðtÞ

AM1ðtÞ þ AM2ðtÞ

� �� �

þ log BetaBin PD1ðtÞ þ PD2ðtÞ;NH;
PM1ðtÞ þ PM2ðtÞ

NH
; disppass

� �� �

þ log Bin PD1ðtÞ; PD1ðtÞ þ PD2ðtÞ;
PM1ðtÞ

PM1ðtÞ þ PM2ðtÞ

� �� �!

The model takes parameterisation θ, x is the data, PDj(t) and ADj(t) are the number of pas-

sive/active cases (of stage j) in year t of the data, PMj(t) and AMj(t) are the number of passive/

active cases (of stage j) in year t of the model, and z(t) is the number of people screened in year

t. BetaBin(m;n, p, ρ) gives the probability of obtaining m successes out of n trials with probabil-

ity p and overdispersion parameter ρ. The overdispersion accounts for larger variance than

under the binomial. The pdf of this distribution is given by:

BetaBinðm; n; p; rÞ ¼
Gðnþ 1ÞGðmþ aÞGðn � mþ bÞGðaþ bÞ
Gðn � mþ 1ÞGðnþ aþ bÞGðaÞGðbÞ

where a = p(1/ρ − 1) and b = a(1 − p)/p.

Consequently larger ρ yield more overdispersion. To avoid overfitting, the overdispersion

parameters were left fixed at a value appropriate for a health zone level fit across MCMC runs

(Table 1). The value of ρ was chosen based on the median of the log posterior probability dis-

tribution achieved from MCMC runs with ρ fixed at a range of values for two example health

zones.

For four health zones there was no screening reported in one or two years in which there

was more than 20 active cases recorded. In this scenario the number of negative test results

in year t, A�DðtÞ, was sampled from a negative binomial distribution and ẑðiÞ ¼ AD1ðtÞ þ
AD2ðtÞ þ A�DðtÞ was used in the calculation of the log-likelihood in place of zt. More detail is

provided in the Supplementary Information (S1 Text).

Health zone results are aggregated by provinces and are compared to the province level

data as a check that the health zone fits make sense.

Priors

Prior distributions for the fitted parameters are given in Table 2 for the parameters fitted in all

health zones and those fitted in former Bandundu province. Information on other former

province–specific priors is given in the SI (S1 Text).

Informative priors were used for most parameters. There was little information on the stage

of the disease in the data, essentially none before 2015. Former–province level staged case

numbers were available from 2000–2012 [28] and we augmented these with our data aggre-

gated to the former–province level for the years 2013 to 2016. The model was fitted to these

staged former–province level data and informative priors for the parameters relating to treat-

ment rates from stages 1 and 2 (Z
post
H and g

post
H ), and improvement in passive detection (ZHamp

,

gHamp
and dsteep) were based on the respective posterior distributions from these analyses.
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Markov chain Monte Carlo algorithm

For each health zone the model was fitted using the adaptive Metropolis-Hastings random

walk algorithm [31]. Two independent chains were run in parallel from different starting val-

ues. The chains were run in 3 phases: a transient phase, an adaptive phase and a sampling

phase and only samples from the final phase were used in the analysis.

The aim of the transient phase was to move the chains towards the posterior mass. In this

phase, lasting B = 500 iterations, single site parameter updates were used with proposal stan-

dard deviation sin for parameter i in proposal n. If proposal n was accepted then sinþ1
¼ 2sin

and if it was rejected then sinþ1
¼ 2a=ða� 1Þsin. Here, we target an acceptance rate of a = 0.44,

which was found to be optimal in [32].

The aim of the adaptive phase was to begin learning the covariance matrix of the posterior

in order to find an efficient proposal. In this phase proposals were drawn from

Ynþ1 � Nd Xn;
2:382l2

n
d Σn

� �
, where Xn is the location of the chain after n iterations. The covari-

ance matrix was initially SB (the initial variances used can be found in the parameter file

which accompanies the code, https://doi.org/10.17605/osf.io/ck3tr) and subsequently

Σnþ1 ¼
n � B

n � Bþ 10
CovðXBþ1; . . . ;XnÞ þ

10

n � Bþ 10
ΣB: ð6Þ

The scaling factor was λn = 1 on even iterations and updated adaptively on odd iterations,

namely λn+ 2 = xnλn if iteration n was accepted and lnþ2 ¼ xa=ða� 1Þ
n ln if rejected. We used

xn ¼ 1þ 50

50þn� B and targeted an acceptance rate of a = 23.4%, which was found to be optimal

in [32].

The duration of the last two phases was determined adaptively, by examining the Gelman-

Rubin convergence diagnostic [33] and the Effective Sample Size (ESS) diagnostic [34]. The

adaptive phase was increased iteratively by 100 up to a maximum of 105 iterations until the fol-

lowing convergence criteria were satisfied for the most recent 2000 observations. First Rði;jÞwithin <

1:1 for every parameter i and chain j; and second RðiÞbetween < 1:5 for all i.
Finally, in the sampling phase, proposals were drawn as for the adaptive phase. The dura-

tion of this phase was determined based on ESS. To achieve a sample of 2,000 states with an

ESS of at least 1,000, each chain was run for 1,000 iterations, thinned by a factor κ = 1 and the

ESS calculated to be twice the minimum ESS over the parameters and the two chains. If the

ESS criterion was not satisfied then a further 1,000 iterations were sampled from each chain

and the thinning factor κ was increased by 1, up to a maximum of 200. If the ESS criterion was

still not satisfied then the health zone was flagged for investigation. If an analysis finished with

ESS� 500 or maxRðiÞbetween � 1:2 then that analysis was flagged for investigation, consisting of

manual appraisal of the joint posterior distributions and progress to convergence. None of the

analyses had maxRðiÞbetween � 1:2, and there was no evidence that those with ESS� 500 were not

converging correctly. Additional sampling was carried out for all analyses where ESS< 1, 000,

allowing κ to exceed 200.

Results

Fig 4 shows the final maximum values of the Gelman-Rubin convergence diagnostic for each

health zone level analysis within former province. A good level of convergence was achieved,

with only 1 of 168 analyses having maxRðiÞbetween > 1:02 while 149 of the 168 analyses had

maxRðiÞbetween � 1:01.
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The maximum number of iterations for the adaptive phase was required in 28 analyses. Of

these, 18 were in the former province of Bandundu in which all health zone analyses included

fitting of additional parameters to account for changes in the effectiveness of passive surveil-

lance. It may be possible to improve the adaptive MCMC to reduce the number of analyses car-

rying out the maximum adaptive phase length, however the levels of convergence already

achieved imply that the effort required may not result in markedly improved analysis results.

The observed effective sample size (ESS) exceeded 1,000 in 140 of the individual health

zones analyses, and was less than 500 for 13 analyses. As with the adaptive phase, 14 of 28 anal-

yses with an ESS less than 1,000 were for health zones in Bandundu. This again reflects the

additional complexity of fitting the model in this former province.

The fitting process matches model outcomes to reported timeseries of actively- and pas-

sively-detected cases. Fig 5 shows examples of these trends for two example health zones;

Kwamouth (in the former province of Bandundu) and Tandala (in the former province of

Equateur). Kwamouth has a much higher incidence of gHAT infection than Tandala, and con-

sequently has higher numbers of people being actively screened each year—the average num-

ber of people actively screened annually in Kwamouth was 52% of the estimated population in

2015 (127,205), while this was 6.8% for Tandala (estimated 2015 population of 274,945). Fig 5

shows how well the model fits to the timeseries of reported cases both actively and passively

Fig 4. Maximum between-chain Gelman-Rubin convergence diagnostics for the final posterior samples, grouped

by former province and whether or not the maximum length of adaptive phase (100,000 iterations) was reached.

https://doi.org/10.1371/journal.pcbi.1008532.g004
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detected. In addition, Fig 5 also shows the unobservable downward trend in new infections

estimated by the model. The results of all 168 health zone level fits including inferences about

annual numbers of new infections, are available online via a graphical user interface (https://

hatmepp.warwick.ac.uk/fitting/v2/).

In Kwamouth health zone there is a noticeable “humped” trend in passive case detection,

with higher case reporting in 2005–2008. The model is able to replace this trend by increasing

the passive detection rates, ηH(Y) and γH(Y), and importantly we infer that underlying

Fig 5. Demonstration of fit to the observed trends in new case detection over time and predicted numbers of new infections

for two example health zones; Kwamouth in former Bandundu province and Tandala in former Equateur province.

https://doi.org/10.1371/journal.pcbi.1008532.g005
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transmission actually declines during this time period, despite increased case reporting (see

Fig 5 and online results https://hatmepp.warwick.ac.uk/fitting/v2/). This humped shape of pas-

sive case reporting is observed in many health zones of former Bandundu province, such as

Bokoro, Bolobo, Ipamu, and Yasa Bonga. Much of former Equateur province has a different

typical pattern in its passive detection trend which looks similar to exponential decay, espe-

cially in the north (e.g. Bominenge, Boto, Budjala, Gemena, Karawa, Kungu, Libenge, Tandala)

where there was very high case reporting in the early 2000s. In these locations we reproduce

the trend using fixed passive case detection rates combined with successful active screening.

Table 3 contains former province-level estimates of the number of new infections in 2000,

2008 and 2016 and the percentage reduction in new infections between these years. The values

from each of 1,000 posterior samples for each analysed health zone within a former province

were summed to give 1,000 former province–level values, each health zone being independent

in our analyses. Over this period, a 96% median reduction in the number of new infections has

been achieved in Equateur. The largest percentage reductions in the number of new infections

are seen in the former provinces with the highest reported cases in 2000. Notably the province

with the highest reporting in 2000 (Equateur), was not estimated to have the highest transmis-

sion (Bandundu was higher), but does have a huge inferred reduction in transmission of 96%.

Despite a calculated 89% transmission reduction, Bandundu province remained the province

with most ongoing transmission in 2016.

The fits of the model to the reported case timeseries as exemplified in Fig 5 reflect the

parameters of the model, many of which are estimated within the fitting process. Fig 6 illus-

trates the posterior distribution of R0 within each health zone for which inference was per-

formed. The map of DRC was partitioned into hexagons and partial hexagons, based on health

zone boundaries, which were then filled with a colour based on a random value from the pos-

terior distribution of R0 for that health zone. By representing the posterior distributions in this

way the aim is to illustrate how both the level and variability of the parameter differs between

health zones. The geographical unit of interest here is the health zone and the locations of the

hexagons within the healthzone are meaningless. Further examples of this representation of

posterior distributions are available for the parameters fitted across all health zone analyses in

the Supporting Information (S2 Text) and online https://hatmepp.warwick.ac.uk/fitting/v2/).

The R0 posterior map shows that some of the highest R0 estimates are in Kwamouth health

zone, former Bandundu province, although more generally R0 estimates remain very low—

typically only slightly above one—for the whole country. R0 is a bundled parameter, linked

to the ability of an infection to persist for a particular geographic setting. Higher R0 values

Table 3. Reduction in new gHAT infections by former province. Medians and 95% credible intervals (CIs) of aggregated health zone-level outcomes.

Former province New infections (median [95% CI]) Percentage reduction

2000 2008 2016 2000–2008 2000–2016

Bandundu 7336 [6758, 7929] 3186 [2917, 3433] 801 [682, 954] 57 [54, 59] 89 [87, 91]

Bas Congo 804 [721, 891] 204 [181, 231] 58 [45, 76] 75 [72, 77] 93 [90, 94]

Equateur 4564 [4149, 4978] 446 [405, 490] 160 [136, 190] 90 [89, 91] 96 [96, 97]

Kasai Occidental 700 [597, 835] 313 [268, 364] 163 [133, 198] 55 [51, 59] 77 [72, 81]

Kasai Oriental 3534 [3232, 3880] 1461 [1330, 1623] 857 [746, 1021] 59 [55, 61] 76 [72, 79]

Katanga 145 [109, 193] 135 [102, 178] 117 [85, 161] 7 [-3,17] 20 [-1,37]

Kinshasa 238 [173, 322] 135 [102, 184] 85 [57, 125] 43 [32, 53] 64 [50, 75]

Maniema 233 [191, 285] 174 [147, 209] 150 [121, 186] 25 [17, 34] 36 [22, 49]

Orientale 2301 [2054, 2550] 1528 [1324, 1742] 739 [596, 897] 33 [26, 41] 68 [61, 74]

https://doi.org/10.1371/journal.pcbi.1008532.t003
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on the map roughly correspond to health zones which have reported high number of cases

historically.

Maps showing posterior passive detection rates (see Z
post
H in SI; file S2, Fig S2.3) show that

there is geographic variability in time to detection, with typically quicker diagnosis in 2000 in

former Equateur province and slower times in former Orientale, Maniema and Katanga. The

average time that a person spent infectious, if not identified by active screening, can be esti-

mated in each health zone using the posterior parameters (see S3 Text); in Kwamouth health

zone this duration changes from a median of 1224 days in 2000 to 813 days in 2016 and in

Tandala this is fixed at 716 days between 2000 and 2016.

The specificity of the active screening diagnostic algorithm is computed to be very high,

with former Equateur province having near perfect specificity. The parameter u corresponds

to the proportion of cases that are reported if not picked up in active screening. High u is inter-

preted as high reporting and fewer deaths outside the health care system. Average reporting

generally follows the prior of u although it appears that former Equateur has better reporting

(lower under-reporting/fewer deaths). The estimated proportion of reporting including active

screening can be computed using model outputs for cases and deaths (see S3 Text). In Kwa-

mouth this is estimated to have changed from 0.67 (95%: 0.54–0.84) in 2000 to 0.82 (95%:

0.62–0.93) in 2016, while in Tandala it fluctuated over time from 0.65 (95%: 0.53–0.75) in 2000

Fig 6. Within health zone posterior distribution of R0. Fill colours for hexagons within a health zone are determined

by randomly sampled values from the posterior distribution of R0 from the analysis of that health zone. Shapefiles used

to produce these maps are available under an ODC-ODbL licence at https://data.humdata.org/dataset/drc-health-data.

https://doi.org/10.1371/journal.pcbi.1008532.g006
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and finishing back at 0.65 (95%: 0.0–1.0) in 2016, with the median varying between 0.40 (in

2010) and 0.76 (in 2003). The low case numbers in later years are the cause of the higher uncer-

tainty in the percentage reporting in 2016.

Discussion

The fitting process presented in this study enabled exploration of the underlying epidemiology

of gHAT at the health zone level, estimating parameters of the transmission model based on

historical data. The fits highlight the success of past interventions, both in the obvious decline

in the number of reported cases but also through quantification of improvements in surveil-

lance, such as in the case of changes in passive surveillance over time in Bandundu and Bas

Congo.

Even in areas where there has been a decline in active screening activity over time (espe-

cially in former Equateur province where the mean annual screening from 2012–2016 was

�150,000 compared to a maximum in 2003 of around 900,000), the modelling indicates that

there has been a real reduction in transmission (�96% in Equateur), rather than simply a

decline in reported cases due to scaling back the detection effort.

We note that the health zone-level longitudinal case data typically did not have staging

information associated with them prior to 2015. The staging information for 2015 and 2016

were highly informative in quantifying passive detection improvements when combined with

provincial-level staged data published separately [28]. We reiterate the recommendation of

Castaño et al. [16], in collecting and digitising staged case data whenever possible to enable

continued assessment of the passive surveillance system. The number and type of diagnostic

tests used in passive surveillance would also be valuable in assessing the effectiveness and activ-

ity levels of the passive surveillance system.

There are other areas where additional data recording, either routine or as part of system-

atic surveys could be beneficial. For example, the age and gender profile of gHAT cases and

populations screened would provide valuable information regarding high- and low-risk groups

of individuals, and potentially also their participation in screening.

Vector control activities are expanding in DRC. In the data used here, vector control had

only begun in 2015 in Yasa Bonga health zone and the model with respect to vector control

was parameterised using a fixed value for the reduction in tsetse population taken from the

entomological follow-up studies in this area. Incorporation of repeated entomological survey

data and human tsetse exposure data as in, for example, Courtin et al. [35] may help the model

be parameterised appropriately for each vector control region, incorporating uncertainty

about the vector control-related parameters.

In this study we have been able to estimate the relative vector-to-host ratio for different

regions through our adaptive MCMC. Maps of meff are shown in SI “S2 Text”, however these

alone do not tell the whole story and are not necessarily reflective of where one might find the

highest density of flies in DRC. In particular the high-/low-risk structure of the model (associ-

ated with parameters k1, the proportion of the population who are low risk, and r the relative

exposure of high-risk individuals) is intimately entwined with the relative vector-to-host ratio.

It would, therefore, be possible in this framework to have a comparatively low meff in a health

zone, but high r due to dense pockets of tsetse habitat which only high-risk people are exposed

to; overall this could lead to a high burden health zone due to population-level heterogeneity

in risk.

Despite the complex nature of inferring the role of tsetse, we do examine a single case

where deliberate vector control has been deployed during the time period of our dataset. In

Yasa Bonga, tiny targets were used from 2015 and although it is not strongly apparent by
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simply looking at case detections in 2016, we estimate that transmission in the region has

sharply fallen from around 22.6 (95% CI: 11.2–41.2) new infections per year in 2015 to 1.3

(95% CI: 0.6–2.5) in 2016. Due to the slow progression of the disease, it would be expected to

take several years of case data until there is a marked decline in both active and passive case

detections. In future studies, more years of human case and tsetse monitoring data from Yasa

Bonga and other health zones, which have subsequently begun tsetse control, will help to pro-

vide deeper insight into the role of these vectors in transmission dynamics.

The model used here did not consider the presence of possible animal reservoirs or trans-

mission via asymptomatic humans. Historically, gHAT has been generally regarded as an

anthroponosis [36], lacking an animal reservoir which would hinder or prevent elimination of

the disease. More recently there have been concerns that this may not be the case; T.b. gam-
biense has been identified in various animals, and have been shown to be transmissible to tsetse

experimentally [37]. Mathematical modelling has attempted to ascertain the likelihood of ani-

mal transmission through various model comparison exercises [6, 7], and also quantify relative

transmission if it occurs. To date there is inconclusive evidence, although declines in transmis-

sion due to medical intervention over the last decades appear to rule out substantial animal

transmission (see [38] for more discussion on this topic). A more detailed analysis of the pres-

ence and/or role of animal reservoirs is beyond the scope of the present study.

The gHAT model presented is an explicitly Ross-Macdonald-style, host-vector model capa-

ble of simulating the impact of vector population size changes on transmission to humans.

This was introduced to enable the simulation of intentional vector control which was deployed

in Yasa Bonga health zone from 2015 and so that future modelling using this framework could

explore the possible impact of vector control in other locations. We did not, however, consider

other sources of fluctuation of tsetse populations, although it is noted that anthropogenic

change in particular could result in loss of tsetse habitat and inadvertently reduce tsetse popu-

lations [39]. There are limited data available on temporal changes in tsetse density across DRC

to inform such an analysis, however it could be a potential avenue for future research in areas

of known deforestation or urbanisation.

One published review [40] has previously suggested that the primary transmission mecha-

nism of gHAT is not tsetse. In the present modelling study, for the most part, it would be

unlikely to make any difference to our results to assume human-to-human transmission as we

assume stable vector populations which could be readily substituted by a quasi-equilibrium

assumption or even modelled as a contagion without substantial quantitative differences.

However, where vector control is implemented, our assumption that gHAT is a vector-borne

infection would produce very different results compared to assuming no or limited tsetse

transmission. This would be very pronounced if the model is subsequently used to make pro-

jections of future vector control impact. We are reassured by various other recent studies that

our tsetse-transmission assumption is valid as (i) the host-vector gHAT model predictions for

regions with vector control appear to match the case reductions well [7] and (ii) the natural

experiment which occurred in Guinea during the 2014–15 West African Ebola outbreak found

that even following interruption of medical screening activities, regions that had vector control

remaining in situ had much lower case burden following resumption of screening than those

without [41, 42].

The model framework utilised in the present study is deterministic, always yielding the

same outputs for the same set of input parameters—deterministic models can be considered to

represent expected average dynamics. Whilst we do address some observational uncertainty

through the overdispersion in the likelihood function and drawing model case reporting out-

puts, the use of stochastic models which capture chance events in transmission and reporting

will become increasingly important as infections approach zero. Other modelling studies
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utilising stochastic model formulations have found that, even at low reported case numbers

and for relatively small populations (>2000 people), gHAT persists with high probability over

long periods [5]. At the health zone level (�100,000 people) model dynamics follow closely to

deterministic ones until reaching extremely low case numbers [16]. We therefore consider that

the deterministic model fits presented here would be similar to those obtained using a stochas-

tic model variant in health zones with appreciable case reporting in the 2000s and regular

good-coverage active screening. In health zones with limited case detection despite good

screening coverage, a stochastic model would be more appropriate to obtain robust model fits.

Future analysis should consider how the adaptive MCMC framework presented here could be

built upon to fit stochastic model variants, especially for fits at smaller geographic scales (e.g.

health areas�10,000 people) are required.

Conclusions

The gHAT model and automated adaptive MCMC approach presented here has facilitated the

fitting of longitudinal case data across the whole DRC for the first time. The flexible framework

will support future studies with straightforward fitting of other model variants (such as those

with animal reservoirs or asymptomatic human infection) or to updated data sets in DRC or

elsewhere.

The results of the fitting suggest that dwindling case reporting in many parts of the country

does correspond to a real reduction in underlying transmission, even in locations where active

screening coverage has also declined; Equateur province is a prime example of this. The passive

detection posterior parameters found for Bandundu province indicate that substantial

improvements have been made to reduce time to detection in the region since the turn of the

century—we are now able to quantify the increase in the proportion of infections that are

eventually reported rather than die undiagnosed for each health zone.

These country-wide analyses have given an insight into why transmission may persist in

some locations more than others, for example the results indicate that passive detection rates

were higher in Equateur province in the early 2000s than in Bandundu province and teamed

with active screening this resulted in a more marked decline in both cases and transmission.

As well as interventions, epidemiological factors, including human behaviour, are likely driv-

ing infection differences: the relative risk of high-risk people compared to low-risk appears to

be greater in known persistent regions of Bandundu—including the health zones of Kwa-

mouth, Bolobo, Mushie and Bagata—compared to other provinces.

This finding raises the question of whether current medical-only interventions are suffi-

cient to reduce transmission to the point of interruption before 2030 in all regions, or whether

other approaches may be needed in locations with moderate but less substantial reductions.

Indeed, previous modelling for specific health zones in DRC has suggested intensified inter-

ventions such as targeting high-risk groups in active screening or vector control may be

needed to speed up progress and meet the 2030 goal [13, 15]. A larger challenge is to identify

where this may be needed across the country, and where should be prioritised for bolstered

interventions.

This study is a necessary first step towards providing modelling information which can

assist in the formulation of policy appropriate to the varying needs across the country. We

have followed the five principles set out and recommended for good modelling practise—

known as Policy-Relevant Items for Reporting Models in Epidemiology of Neglected Tropical

Diseases (PRIME-NTD) [43] (see S4 Text). Whilst beyond the scope of the present study, the

fits obtained here may now be used to simulate projections of the disease into the future under

various different interventions. Once forecasts have been made, the results can be used to
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examine minimal strategies to achieve the 2030 elimination of transmission goal and economic

modelling can be used to ascertain location-specific, cost-effective options, refining more gen-

eral health economic analyses presented previously [44].
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