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Unit, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de

Barcelona, Badalona, Catalonia, Spain, 4 Centro de Investigación Biomédica en Red de Enfermedades

Respiratorias, Madrid, Spain

* s.alonso@upc.edu

Abstract

The appearance and fast spreading of Covid-19 took the international community by sur-

prise. Collaboration between researchers, public health workers, and politicians has been

established to deal with the epidemic. One important contribution from researchers in epide-

miology is the analysis of trends so that both the current state and short-term future trends

can be carefully evaluated. Gompertz model has been shown to correctly describe the

dynamics of cumulative confirmed cases, since it is characterized by a decrease in growth

rate showing the effect of control measures. Thus, it provides a way to systematically quan-

tify the Covid-19 spreading velocity and it allows short-term predictions and longer-term esti-

mations. This model has been employed to fit the cumulative cases of Covid-19 from

several European countries. Results show that there are systematic differences in spread-

ing velocity among countries. The model predictions provide a reliable picture of the short-

term evolution in countries that are in the initial stages of the Covid-19 outbreak, and may

permit researchers to uncover some characteristics of the long-term evolution. These pre-

dictions can also be generalized to calculate short-term hospital and intensive care units

(ICU) requirements.

Author summary

Covid-19 has brought the international scientific community into the eye of a storm. Col-

laboration between researchers, public health workers, and politicians is essential to deal

with this challenge. One of the pieces of the puzzle is analysis of epidemiological trends so

that both the current and immediate future situation can be carefully evaluated. For this

reason we have employed a daily generic growing function to describe the cumulative

cases of Covid-19 in several countries and regions around the world, and particularly the

European countries during the Covid-19 outbreak. Our model is completely empirical,

meaning it relies solely on the daily data update of new cases and does not require

assumptions to make predictions. In this manuscript, we detail the methods employed
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and the degree of confidence we have obtained during this process. We obtain predictions

with a success greater than 90%, which means that around 90% of the value of the reported

cases are inside the prediction intervals. This can be used for other researchers collaborat-

ing with and advising health institutions around the world during the Covid-19 outbreak

or any other epidemic that follows the same pattern. We hope it may help facilitate policy

decisions, the review of in-place confinement measures, and the development of new

protocols.

Introduction

A disease outbreak is always a challenge for public health control systems. When the outbreak

is caused by a new agent able to cause a pandemic, the challenge is even greater and should

involve the whole research community as well. Globalization plays a double role in this con-

text; on the one hand, it increases the risk of the outbreak evolving towards a pandemic, while

on the other, the sharing of data and strategies increases the likelihood of controling it. The

new SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2) has put the interna-

tional community at the brink of a global disaster. National and local governments are work-

ing with public health agencies hand in hand to slow down, and eventually control, the spread

of Covid-19 [1].

Daily availability of data about confirmed cases of Covid-19 in different regions is a unique

opportunity for basic scientists to contribute to its control by carefully analyzing trends. In

particular, mathematical models are widespread, as are consolidated tools to extract valuable

information from the reported data on Covid-19 and help making predictions [2]. Classic SIR

and SEIR models (i.e., compartment models that divide a population into Susceptible,

Exposed, Infectious and Recovered) are being currently employed to evaluate and predict the

spreading of the epidemic episodes [3]. They were employed in the description of the Ebola

epidemic in 1995 [4] and 2014 [5] and in the more recent SARS epidemic of 2003 [6], among

others. After the SARS epidemic in 2003, in order to account for the control efforts of govern-

ments, some modifications were introduced into the SEIR model to evaluate control measures

[7, 8]. Furthermore, the analysis of SEIR models has been used for the modeling of Covid-19’s

spread in China in a effort to fit the characteristic values [9, 10]. However, during the develop-

ment of the epidemic, government measures are the key drivers of the epidemic. The evolution

of the disease is completely different depending on the strength and type of restrictions on

mobility and social life that governments implement. The evolution of the disease in a situation

where there is a total lockdown is very different from a situation where only specific restric-

tions to mobility apply, such as forbidding large gatherings. Similarly, the evolution is different

depending on the nature of the policy initiatives. Closure of schools or bars affects the evolu-

tion differently than closure of nightlife venues. Simple SIR and SEIR models are not designed

to deal with this type of situation where the network of contacts and its changes due to policy

are key. SIR and SEIR models deal properly with epidemics where the key element of the evo-

lution is the the total number of susceptible population. Its reduction, as the epidemic

advances, gives the characteristic peak-like evolution. In the case of Covid-19, the total number

of susceptible is not important because cumulative cases in the countries are far from achieving

herd immunity [11].

There is, however, another approach based on the phenomenological comparison of the

curve of cumulative cases with a typical function for growing processes. Evaluating the curve

during a window of days before a particular day t allows prediction of the future short-time
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behavior tendency at time t + Δt [12]. In fact, the use of a growing function has some impor-

tant advantages. Typically, the first growing function chosen is the Verhulst equation [13]

which is the solution of the logistic population model and its generalization [14, 15], or the

Richards model [16], which has been employed in several epidemics of smallpox, influenza,

and Ebola, among others [14]. Some of these dynamic phenomenological growth models to

study epidemic outbreaks have been compared in the initial phases of the Covid-19 epidemic

for short-term forecasting [17].

A similar growth model is the Gompertz function [18] where the main difference is the

replacement of the saturation of the growing factor, linear for the Verhulst equation and non-

linear for the Richards, and generalized Verhulst model, by an exponential decrease. These

functions are similar and they have been used in the description of epidemics and in particular

for studying different epidemic episodes [19, 20]. While the logistic equation produces a sym-

metric bell-shaped function for new cases, the Gompertz model gives rise to an asymmetric

function with fast growth of new cases combined with a slow decrease, which is closer to the

distribution of new cases observed in different countries during some epidemics. In this manu-

script we demonstrate that the asymmetric nature of the Gompertz model is the proper frame-

work to study epidemics in which control measures are at the heart of the evolution, since it

captures the dynamic nature of the variation due to social distance measures.

Here, we employ the Gompertz growing function to analyze the dynamics of the spreading

of Covid-19 in 28 European countries to make short-time predictions of the new cases for suc-

cessive days. We forecast the dynamics of the pandemic in a similar fashion to the forecasting

done previously with the Verhulst equation and the Richards model for Ebola epidemics [21].

The methodology and the results discussed here were employed for the writing of daily reports

[22] at the very beginning of the epidemics. Later on, similar methodologies were employed to

fit worldwide data [23, 24], and the data in particular countries like Mexico [25] and Brazil

[26], among others. We have also applied similar methodology for the prediction of cases for

hospitals and intensive care units (ICUs).

It is important to note that we forecast the dynamics of the pandemic using a phenomeno-

logical model, obtaining short-term predictions for daily new cases with over 90 percent suc-

cess (see below). These data may be useful for public health policy makers and they are easily

reproducible by scientists all over the world.

Materials and methods

After a short note about data acquisition, we describe the function employed for the fitting of

the data and then describe the evaluation of the errors associated with these calculations.

Data acquisition

All the data employed in this manuscript have been downloaded from public repositories of

the European Centre for Disease Prevention and Control (ECDC). The data contain the daily

list of cumulative cases for all the countries of the world reporting the data and it is a fully

open source [27], originally from [28]. Similar data are supplied by the World Health Organi-

zation (WHO) [29].

Short review of Gompertz equation

We employ the Gompertz model for growing processes to model the cumulative cases of

Covid-19. The equation was originally proposed as a means to explain human mortality curves

[18], and it has been further employed in the description of growth processes, for example,
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bacterial colonies [30] and tumors [31]. The Gompertz equation reads:

NðtÞ ¼ Ke� lnð
K
N0
Þe� at ð1Þ

where the parameter K corresponds to the final number of cases, N0 is the initial number of

cases for the definition of the origin of time, and parameter a is the rate of decrease in the ini-

tially exponential growth; see curves in Fig 1A for different values of a. For the beginning of

the epidemic, corresponding to t! 0, the Eq (1) reduces to an initial exponential growth N ¼
N0em0t with rate μ0 = a ln (K/N0). After time tp the growth flattens asymptotically to the final

value given by the saturation parameter K. To compare with the cumulative cases of Covid-19

we begin to measure above 100 cases (N0 = 100). The exponential rate μ0 provides us with the

relation between the parameters K and a.

In addition, the Gompetz function can be interpreted as the solution for the next couple of

ordinary differential equations:

dN
dt
¼ mN;

dm
dt
¼ � am; ð2Þ

which corresponds, respectively, to an exponential growth with a growing rate μ which expo-

nentially decreases with rate a.

The Gompertz function shows the cumulative cases. Therefore the temporal derivative of

the cumulative cases is basically the new cases. Performing the temporal derivative we obtain:

Nn ¼
dN
dt
¼ aKe� lnð

K
N0
Þe� at ln

K
N0

� �

e� at
� �

; ð3Þ

the dynamics of which as as function of time are plotted in Fig 1B.

Fixing the total values of cases (K = 104) we can study the effect of a rapid decay of the grow-

ing rate, related to a large value for a with a slower decrease, determined by a low value for a.

Fig 1. Properties of Gompertz function. Evolution of the cumulative cases (A) and new cases (B) keeping K = 104 for

three different values of a. Evolution of cumulative cases (C) and new cases (D) keeping μ0 = 0.92 for three different

values of a.

https://doi.org/10.1371/journal.pcbi.1008431.g001
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See Fig 1A for a visual inspection of the effect of this parameter a. The increase in the parame-

ter a produces a delay in the growing process and delay of the peak, see Fig 1B, where the area

of the curve is constant because of the conservation of the final value K. However, in Fig 1C we

fix the initial exponential growth determined by μ0 and increase the parameter a, which

decreases the final value of total cases. The amplitude of the peak is decreased by the increase

in the rate a when the initial growth is fixed, see Fig 1D.

We see a maximum of new cases in Fig 1, for which the inflection point (tp) can be calcu-

lated:

tp ¼
1

a
ln ln

K
N0

� �� �

¼
1

a
ln

m0

a

� �
; ð4Þ

and we can also estimate the time necessary to arrive at 90% of the total value of cases K:

t90 ¼
� 1

a
ln

� ln 0:9

ln ðK=N0Þ

� �

: ð5Þ

The last two expresions clearly mark the effect of the parameter a. The larger the value of a,

the faster the appearance of the peak and the arrival at 90% of cases, see Fig 1B and 1D.

Evaluation and propagation of errors

The fitting of the Gompertz function to the data is done with a matlab routine using the mini-

mum least squares method [32]. This method allows for evaluation of the set of model parame-

ters that provide the best fit for the Gompertz model to the data. Furthermore, the method also

provides the error associated with the values of the fitting constants. The performance of the

fitting can be evaluated with the statistical parameter R2, available from the procedure of the

calculation of the fitting.

We employ the explicit values of the fitted parameters to make our predictions. The propa-

gation of the uncertainty or error in the calculation of the predictions can be done using the

classical methods of propagation of errors [32]. In short, if we have a quantity U which

depends on two magnitudes U = U(a, b) and these magnitudes have their uncertainties a ± δa
and b ± δb, if we assume the quantities are uncorrelated we can calculate the uncertainty of the

new quantity as:

dU ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@U
@a

� �2

da2 þ
@U
@b

� �2

db2

s

; ð6Þ

expression which is employed for example for the calculation of the time to peak; see Eq (4)

and for the calculation of the time to reach the 90% of the expected value of K. For example,

we calculate the dependence of the error in tp on the parameters a and K, see Eq (4):

dtp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln ln
K
N0

� �� �

a2

0

B
B
@

1

C
C
A

2

da2 þ
K

aln
K
N0

� �

0

B
B
@

1

C
C
A

2

dK2

v
u
u
u
u
u
t

; ð7Þ

a similar calculation can be made for the error of t90, see Eq (5).
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Results

We make some predictions using the Gompertz function to fit the cumulative cases of Covid-

19 in different countries where the epidemic was developed enough in April, 2020. Next, we

show such predictions and the main applications of the Gompertz model for the characteriza-

tion of the epidemic.

Gompertz model fits the number of cases for recovered regions

Gompertz model [33] correctly describes the trend of the cumulative confirmed cases as seen

in Fig 2 where the values of the statistical measure R2 are close to 1. We perform a systematic

analysis of the dynamics of the cumulative cases of Covid-19 in different regions in China

where the spreading of the epidemic finished; see for example the three regions shown in Fig 2

where the Gompertz function has been fitted. Note, however, that the fit in Hubei is divided

into two regions because of a change in the protocol for reporting cases. The new cases are also

fitted with relatively large R2 values; see three panels below in Fig 2, with the function derived

from the Gompertz model; see Eq (3). To fit the Gompertz function to the data we obtain the

values of the fitting parameters a and K, which accompany the corresponding panels in Fig 2.

Fig 2. Fitting of Gompertz function to the cumulative confirmed cases of Covid-19 in different countries. Fitting of Gompertz function to the

cumulative confirmed cases of Covid-19 in different countries. (A-C) Evolution of total confirmed cases in different regions of China (blue dots) and

fitted Gompertz function in each region (orange solid line). (D-F) Evolution of new cases in different regions of China (blue bars) and fitted Gompertz

function in each region (orange solid line), with R2 = 0.65, R2 = 0.72 (Hubei), R2 = 0.94 (Guangdong), R2 = 0.94 (Henan). In the case of Hubei (A, D), as

there was a sudden change in reporting criterion there were two fitted Gompertz adjustments: pre-change (pink solid line) and post-change (solid

orange line). The obtained values of parameter a (related with growth rate), K (final number of cases), and mean-squared error (R2) are shown for each

of the fittings. Data were updated on March 5, 2020 from [29].

https://doi.org/10.1371/journal.pcbi.1008431.g002
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Let us focus now on this classification according to control measures. We show in Fig 3 the

values resulting for the fitting of the Gompertz function to the data from several regions in

China. Assuming that the measures of control taken in China were considered very restrictive,

we can assume that the values obtained in these regions, and shown in Fig 3A, are the upper

limit of the parameter for other countries. The actual value obtained is around a = 0.2 days−1.

Furthermore, we can evaluate the value of parameter μ0 for the initial exponential growth of

the different regions; see details in Fig 3B. We obtain similar quantities in all the regions in

China and it provides information about the growing rate of the epidemic in China, the value

of which is, in these cases, similar to the decreasing rate a calculated above.

Short-term predictions obtained from Gompertz model

Although understanding of the epidemic from the final picture of the dynamics is a valuable

result for the treatment of future epidemics, the main goal of the modeling of epidemics is the

actual possibility of prediction of the behavior during the incidence of the epidemic. We have

used the Gompertz model during the epidemic episode of Covid-19 in several countries in

Europe.

First, we evaluated the predictions with the data obtained in the different regions in China

to estimate the error of the fitting procedure of the Gompertz function before saturation of the

number of cases. We began with the first day after 100 cumulative cases of Covid-19 and we

successively fit a Gompertz function to the previous values of cumulative cases to estimate the

values of parameters a and μ which permits estimation of the values for the cases for the next

days. In Fig 4A, 4B and 4C), we show the fitting of the Gompertz function to the values of

cumulative cases at three different times. The fittings of the function at different times differ

with the final values of the total function shown in Fig 2D and 2E and therefore the values of

the three fittings produce different values of parameters a and μ0. However, the evolution of

the values converges to the global fitting of the function to the whole set of data, see Fig 3D, 3E

and 3F.

Fig 3. Values of parameter a and μ0 for the Gompertz function in different regions in China. (A) Value of parameter a obtained from the fitting of

the total confirmed cases. (B) Value of parameter μ0 obtained from the fitting of the total confirmed cases. Error bars parameters with confidence

intervals of level α = 0.01.

https://doi.org/10.1371/journal.pcbi.1008431.g003
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Such large variations on the parameter fittings show clearly that long-time predictions are

complicated. However, we can perform short-time predictions for the number of new cases if

we extrapolate the Gompertz function to the near future with the updated values of a and μ0

for the cumulative cases. We systematically extrapolated the new cases for each temporal data

of the series of cumulative cases of Covid-19 in the different regions in China and obtained a

successful agreement of the predictions with the actual data for the whole series; see below for

more extensive results taking into account a larger number of countries.

Short-term predictions can be applied to ongoing epidemics

The epidemic is still spreading throughout Europe and we have been fitting the Gompertz

function to the total cumulative cases for two months (March and April 2020). Most of the

countries had already arrived at the saturation stage and the fitting of the function allows eval-

uation of the control measures. See the examples in Fig 5, where a Gompertz function satisfac-

torily fits the existing data. Note that Gompertz function is able to fit countries at different

epidemiological phases. We systematically assessed short-time predictions for all European

countries, the United Kingdom, Norway, and Switzerland every day from March 17th [34], as

well as for Spanish and Italian regions [35].

Typically, the evolution of confirmed cases shows a biphasic behavior: an initial lag phase

where no significant increase in the incidence is observed, which would correspond to the

period where most of the cases are imported, followed by a subsequent phase where growth is

evident, which would be a reflection of triggering local transmission. Gompertz model is fitted

Fig 4. Dynamical fitting of Gompertz function and parameters evolution. (A-C) Gompertz fitting for China at three different time points, 7

February, 20 February and 14 March. Number of cumulative cases (blue dots) shown together with the function fitted (black dash line). (D-F) Dynamic

calculation of parameters μ0, a, and K in dark blue; light blue mark error bars parameters with confidence intervals of level α = 0.01.

https://doi.org/10.1371/journal.pcbi.1008431.g004
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to the later phase, i.e., it is applied from the moment when a clear increase in confirmed cases

is observed, typically above 100 cases to avoid the evaluation of the beginning of the epidemic

dominated by the importing of cases from other zones.

As an example of these predictions, we refer the reader to Table 1. The cases correspond to

the evolution of the values of the cumulative cases up to April 29, 2020. We show the predic-

tions for some countries in Europe of the algorithm based on the Gompertz function, for the

next 1, 3, and 5 days. The rate of success in this example is representative for the algorithm; see

following section.

We fit the function over time to be able to predict the evolution of the cumulative cases to

generate some useful information which may help political institutions to adopt appropriate

control measures; see supplementary S1 Fig for approximations of a selection of countries in

Europe. Such curves are based on the calculation of the values of a; see supplementary S2 Fig,

and K, see supplementary S3 Fig, in the selection of countries.

Evaluation of the errors in the short-term predictions obtained with the

Gompertz model

To evaluate the quality of the predictions we systematically ran the prediction routines along

the past, for all the days of the spreading of Covid-19 in all countries with more than 1000

cases as of April 11, 2020. We compared the prediction with the actual number of cases to give

rise to two different indexes: first, the average relative error of the prediction with the real

Fig 5. Fitting of Gompertz function to cumulative cases in some countries in Europe. Evolution of total confirmed cases in different regions (blue

dots) and fitted Gompertz function in each region (orange dashed line). Red points show predictions for next 5 days and error bars marks their

confidence interval levels α = 0.01. Data were updated on April 9, 2020 from [29]. (A) Spain (B) Italy (C) Germany (D) France (E) United Kingdom,

and (F) Belgium.

https://doi.org/10.1371/journal.pcbi.1008431.g005
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quantity, and, second, the determination of whether the real quantity was within the error of

the prediction. These two indexes allow us to calibrate the error bars of the model since we can

calculate the percentage of success.

To construct the predictions we used all the data available from the day where cumulative

cases crossed the threshold value of 100 cases. However, the successive changes in the control

measures could affect the parametrization of the curves. We improved the predictions

employing only the last 15 values of the data, after the start of local transmission in the

epidemics.

In Fig 6 we show the relative error of the predictions with respect to real data. First, we

obtain relative errors for the prediction for the next day of around 2%. The error increases for

the predictions for the next days up to the average error of around 5% for the fifth day; see Fig

6A.

The predictions are obtained with a certain error due to uncertainty in the estimation of the

parameters of the Gompertz function. Therefore, we evaluated, in Fig 6B, the probability of the

actual value being within the prediction intervals around the predicted value. The probability

for the first day is around 90% of confidence while this probability decreases for the next days

to around 60% for the fifth day; see Fig 6B. We certainly were successful in predictions at

short-times of the cumulative cases and therefore the new cases, and, as expected, the accuracy

of the predictions decayed over time.

Table 1. Short-term predictions on April 29, 2020 with Gompertz model. Countries were sorted by number of reported cases. The top 10 countries in terms of cases

cases were chosen from among the UE+EFTA+UK. Predictions are the number of cases at April 30, May 2, and May 4, respectively; lower and upper bounds can be seen

inside brackets. In bold reported cases that were inside prediction intervals. K is the predicted final number of cases.

Countries Cases April 30 May 2

Prediction Reported Prediction Reported

Spain 213942 215365 [213942-220067] 215183 217465 [213942-222263] 217804

Italy 201505 203403 [201505-206418] 203591 206856 [203761-209951] 207428

United Kingdom 161145 165268 [162977-167560] 165221 172953 [170582 -175324] 177454

Germany 157641 158753 [157641-160596] 159119 160718 [158837-162598] 161703

France 126835 127941 [126835-130010] 128442 129882 [127761-132004] 130185

Belgium 49227 49698 [49227-51501] 49741 50616 [49227-52459] 50565

Netherlands 38416 38889 [38416-41086] 38802 39462 [38416-41696] 39791

Switzerland 29181 29279 [29181-29545] 29324 29433 [29181-29703] 29622

Portugal 24324 24654 [24324-25941] 24692 25113 [24324-26427] 25351

Ireland 19877 20253 [19877-21523] 20253 20791 [19877-22087] 20833

Countries Cases May 4 Parameter K

Prediction Reported

Spain 213942 219240 [214283-224197] 219205 239508

Italy 201505 209946 [206707-213185] 210717 232434

United Kingdom 161145 180122 [177596-182648] 186599 318644

Germany 157641 162370 [160428-164311] 163175 194071

France 126835 131599 [129385-133812] 131287 163290

Belgium 49227 51399 [49488-53309] 50990 67095

Netherlands 38416 39918 [38416-42206] 40571 52600

Switzerland 29181 29554 [29278-29830] 29822 32352

Portugal 24324 25497 [24324-26855] 25524 28376

Ireland 19877 21232 [19896-22569] 21506 39108

https://doi.org/10.1371/journal.pcbi.1008431.t001
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Short-term prediction error is corrected with filters

For the predictions made in the previous section on a given day, we used the reported data

from 15 days before in order to fit the parameters of the Gompertz function, giving the same

weight to all 15 days. From the methodological point of view we improved our predictions

using filters to give more relevance to the last data points. We were able to give more weight to

the last days and compare with the prediction considering all data points with the same stand-

ing. This may be especially useful to rapidly capture changes in trends, as for instance those

that we found around the peak of new cases.

We tried several options and concluded that three different filters must be analyzed. We

proceeded to show how they behave using the data sets for different countries available. The

first filter consists of linear increase in weight between the first and the fifteenth day, the sec-

ond one a parabolic growth of the weight, and, finally, the third one gives more relevance to

only the last three days (a hundred times larger than the other twelve days). By comparison

with the equal weight and the other three filters, we obtained a filter which minimizes the rela-

tive error; see the comparison in Fig 7A.

Although comparison among the four procedures, see Fig 7, shows relatively small differ-

ences, this statistical study shows performs better with the last filter, which gives greater weight

to the last three values of the data. The performance of such filter is particularly better when

the epidemic approaches the values of the peak of new cases.

The average of the relative error decreases with the asymmetry of the type of filter we

employ; see Fig 7A. The filter with greatest weights in the last three events presents a better

performance in comparison with the other three filters employed. It is important to note that

we also checked other filters with greater weight in the last single event and the last two events,

and the results were less accurate.

We obtain similar results if we evaluate the probability of success of the predictions of each

filter; see Fig 7B. Light bars in such a figure show success using the error bars obtained from

the mean square method adapted to each of the filters. Note that the error bars, or confidence

intervals, of each method may be different and therefore this may affect the likelihood of suc-

cess because it produces larger confidence intervals. To systematically compare the four meth-

ods we employed the confidence interval of the original method with the mean values

Fig 6. Error of the predictions done by the dynamical fitting of Gompertz function. (A) Relative error between the predictions of the confirmed case

for the next five days, in comparison with the actual confirmed cases in several countries. (B) Probability of obtaining the actual real value within the

interval of confidance inside the error bars for the next five days. Errors computed with retrospective using all countries with over 1000 cases on April 9,

2020 using ECDC reported cases [28].

https://doi.org/10.1371/journal.pcbi.1008431.g006
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obtained in the other filters. Note that with such definition, the dark and light bars for the first

method overlap. We also observed better performance in increasing the asymmetry of the filter

and as in the previous comparison, the method focused on the last three values maximized the

probability of success.

Discussion

Finally, we discuss the possibility of longer-term estimations with the Gompertz function, and

offer our main conclusions.

Long-term estimations can be obtained from Gompertz model

We are assuming simple premises and they permit us to expand the short-term predictions

shown above and calculate longer-term predictions greater than five days, explicitly the values

of K, tp and 90%K. Long-term estimations are possible during a certain outbreak wave. Second

Fig 7. Error of the predictions with different type of filters. (A) Relative error between the predictions of the confirmed case for the next five days, in

comparison with the actual confirmed cases for four different types of filters: constant 15 values (red), linear increase (orange), parabolic increase

(green), and a filter with three largest last values (blue). (B) Probability of obtaining the actual real value within the interval of confidance inside the

error bars for the next five days using the same four filters. Light bars to the probability of being found within the confidence interval using each filter

confidance interval;, dark bars show probability of being within the confidence interval using first filter confidance interval to be able to compare

among the different filters. Although different filters have different confidence intervalsizes, they have the same significance level of α = 0.01.

https://doi.org/10.1371/journal.pcbi.1008431.g007
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waves may completely change the dynamics and the values of final incidence. Such new epi-

demic focuses are not considered in the model, we may treat them as an independent epidemic

for which the numbers probably have to be reset.

The use of a phenomenological function facilitates the projection to the future of the trend

in comparison with other methods which evaluate in the vicinity of the last day. Although the

only relatively reliable predictions in such a complicated problem are short-term predictions,

we can however address relevant questions like the final value of total cases of parameter K,

predictions of the peak or maximum of new cases, or the time needed to arrive at 90% of the

total cases. To obtain such long-term estimations we employ the whole data set for each coun-

try to unveil the trend of the whole dynamics.

We calculate daily the parameter values of the fitting function described above and the evo-

lution of the parameter K for different countries together with two characteristic times of the

epidemic. See two examples, Spain and Italy, in Fig 8, for the value of K, tp, and 90%K. For

other countries in Europe see, respectively, supplementary S3 Fig, supplementary S4 Fig, and

supplementary S5 Fig. The estimations begin with large uncertainty; however, the values con-

verge on the actual value systematically for the three calculations. The confidence interval also

reduces with time, although there are systematic fonts of errors not addressed by the interval.

The main differences between Spain and Italy in Fig 8 are the large errorbars for Spain at the

beginning of the evolution, because of the delay in the epidemic phase of both countries on

Fig 8. Evolution of the long-term estimations. (A) and (D) Evolution of the prediction of final total number of cases, K; (B) and (E) evolution of

prediction of the time for the peak of maximum new cases prediction, see Eq (6) and (C) and (F) evolution of the arrival to 90% of total cases between

March 14, 2020 and May 2, 2020 in Spain and Italy, respectively.

https://doi.org/10.1371/journal.pcbi.1008431.g008
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March 9th, when the graphic begins. While in Italy the epidemic was fully developed, in Spain

the epidemic was at the initial phase with an exponential growth.

Using the method described above we can compare the three predictions shown in Fig 8 for

all the countries in Europe for a particular date; see this comparison in Fig 9. For the two tem-

poral comparisons note that actually the dates for the peak for some countries had already

been passed at the time when the evaluation was made. However, it is actually not always clear

when the actual moment a country is passing the peak is. Furthermore, for the comparison

among the different countries in Europe with very different demographics, we used the inci-

dence of the epidemic, evaluated as the number of cases per 105 inhabitants. In this graphic we

compare with the actual phase of the epidemic at May 2, 2020 in each country [22]. While

some of the countries are close to the final number of cases, there are some countries still at

the initial phase of the epidemic with very large growth, which predicts large incidence rates.

This is the case with the United Kingdom.

Note that we have to approach the previous estimations reticently, because they are only

approximations assuming some simple premises. Therefore, we consider such estimations as

objects for discussion rather than as results of the model.

Fig 9. Comparison of long-term estimations among European Countries. (A) Time for the peak prediction (red) and the time to arrive at 90% of

total cases (in green) predictions obtained from the last evaluation of the Gompertz function (April 12, 2020) to the evolution of the cumulative cases.

Countries are sorted from top to bottom using time-to–peak-time prediction. (B) Final incidence (total cases per 105 inhabitants) prediction (blue

squares) obtained from the last evaluation of the Gompertz function (April 12, 2020) to the evolution of the cumulative cases (blue line); see procedure

in Fig 8. Error bars correspond to the error obtained from the fit and the corresponding error propagation. Countries are sorted from top to bottom in

terms of actual incidence.

https://doi.org/10.1371/journal.pcbi.1008431.g009
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Outlook and conclusions

We fitted the Gompertz function to the cumulative cases in different regions and countries to

be able to infer, from the fitted parameters of the model, relevant quantities for the under-

standing of the epidemics. On the one hand, we obtained reliable short-time predictions for

the new cases during the subsequent days. These predictions are robust and the percentage of

success is around 90% for the next day. but in addition, the fitting provides some long-term

quantities, for example, estimations of the total number of cases or the timing of the peak of

new cases.

As an empirical function, Gompertz does not depend on previous knowledge of the system.

It is especially useful in situations where there is no deep knowledge of the internal structure of

the epidemics and when key properties of the epidemics are not known. It is precisely the lack

of knowledge regarding the different pathways of contagion or its dependence on social mea-

sure that makes the fitting of a quantitative predictable model impossible. Complex models

with a lot of parameters to fit are, in this type of epidemic, exercises in exploring possible sce-

narios, but never real quantitative tools. No model can predict the reaction of the population

to a particular measure, nor even properly assess the parameters of mobility when even basic

immunity questions remain unsolved. This is what makes our results about the large degree of

confidence in terms of short-term predictions of the evolution of the Covid-19 epidemics so

important. Our work has important ramifications since it can predict, and at the same time

assess, changes in the dynamics of the pandemic. The prediction procedure adapts to changes

in any of the structural properties of the system. Changes in the diagnostic testing needed to

detect a case, in social measures, or in the way of counting cases just introduce variation in the

model that fades away as the new properties emerge again. We have clearly shown in this

paper that this changing structure is properly captured with the decreasing nature of the

growth given by parameters μ0 and a, and the final number of cases K. The highly complex

and unknown nature of key elements of the epidemics does not prevent our predicting its evo-

lution in the short-term and to assess the control, or lack thereof, of the epidemics’ spread.

We may conclude that the methodology here presented can be further employed for the

evaluation of the epidemic and the control measures in the next countries to which it spreads

in its initial stage. We obtain predictions with a success greater than 90%, which means that

around 90% of the reported cases are within the prediction intervals.

We are planning to further collaborate with health institutions in Africa and America to

advise them with the predictions of the model for the evolution of the Covid-19 epidemic in

these countries. In such collaboration, the continuous interplay between predictions and

results during spreading will lead us to a rethinking of the assumptions of our model. We hope

to further improve the predictions by the introduction of changes, if needed. Further work can

be done to improve the prediction process. The results of the fitting might be better if country-

wide data is disaggregated for more homogeneous subnational regions. Data shows that in

some countries the appearance of different focuses produces the formation of different epi-

demics which under the conditions of strong restriction of movement can give rise to indepen-

dent dynamics within the country. It is more reliable to work with information at the regional

level although the number of cases is lower and the fluctuations stronger. We have observed

good statistical behavior and predictions in the secondary outbreak in several Catalan cities

[36] with a total population of around half a million or more. We expect that models applied

to regions of this size could be useful to predict more aggregated scales. However, the main

limitation of the regional approach up to now has been the lack of detailed data and/or the dif-

ference in the protocols and definitions used by local authorities. As the pandemic advanced

more reliable data at the regional level was available; see for example [37].
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Finally, we would like to note that the use a generic function is an empirical tool to treat

future local and global epidemics, as has been begun recently with other growth functions like

the Verhust and Richards models [17]. We plan to continuously update the approach

employed here to adapt to any special particularity of any new epidemics. Presently, the same

data are applied to guide public policy in hospital administrations giving assessment to

regional governments regarding the short-term evolution of health needs.

In order to take adequate and precise control measures political leaders need up-to-date

information on the epidemics and a clear representation of the phase of the epidemics among

several countries or in a particular country of different regions. We have found our short-time

predictions to be a highly valuable information tool for policymakers, since they it can help

guide their short-term planning decisions.

Supporting information

S1 Fig. Cases in different European countries. The total cases together with the new daily

cases with the corresponding fitings obtained from the Gompertz model are shown for a selec-

tion of European countries.

(TIF)

S2 Fig. Evolution of the fitting of parameter a. The dynamics of the fitting of parameter a
obtained from fitting from the Gompertz model are shown for a selection of European coun-

tries.

(TIF)

S3 Fig. Evolution of the fitting of parameter K. The dynamics of the fitting of parameter K
obtained from fitting from the Gompertz model are shown for a selection of European coun-

tries.

(TIF)

S4 Fig. Evolution of the fitting of parameter tp. The dynamics of the fitting of parameter tp
obtained from fitting from the Gompertz model are shown for a selection of European coun-

tries.

(TIF)

S5 Fig. Evolution of the fitting of parameter 90%K. The dynamics of the fitting of the param-

eter 90%K obtained from fitting from the Gompertz model are shown for a selection of Euro-

pean countries.

(TIF)
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34. Prats C, Alonso S, López-Codina D, CatalàM, Analysis and prediction of COVID-19 for EU-EFTA-UK

and other countries. 1. Universitat Politècnica de Catalunya; April 22 2020.; 2020. Available from:

https://upcommons.upc.edu/handle/2117/186486.
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