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Abstract

Mathematical and computational models can assist in gaining an understanding of cell

behavior at many levels of organization. Here, we review models in the literature that focus

on eukaryotic cell motility at 3 size scales: intracellular signaling that regulates cell shape

and movement, single cell motility, and collective cell behavior from a few cells to tissues.

We survey recent literature to summarize distinct computational methods (phase-field,

polygonal, Cellular Potts, and spherical cells). We discuss models that bridge between lev-

els of organization, and describe levels of detail, both biochemical and geometric, included

in the models. We also highlight links between models and experiments. We find that mod-

els that span the 3 levels are still in the minority.

Author summary

In this review paper, we summarize the literature on computational models for cell motil-

ity, from the biochemical networks that regulate it, to the behavior of 1 and many cells.

We discuss the distinct approaches used at each level, and how models can build bridges

between the different size scales. We find models at many different levels of biological

detail, and discuss their relative contributions to our understanding of single and collec-

tive cell behavior. Finally, we indicate how models have been linked to biological experi-

ments in this field.

Introduction

Over several decades, there has been great progress in our understanding of cell motility. In

the 1980s and 1990s, the basic machinery of eukaryotic cell motion and the role of the actin

cytoskeleton were discovered and refined. Regulation of motility by intracellular signaling net-

works was then deciphered in the late 1990s and through the 2000s. We continue to discover

links between cell signaling and cell shape and function, in both normal and diseased cells.

Recent efforts aim to link single cell behavior to collective behavior of many cells and emergent

dynamics of tissues.
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Though originally descriptive, cell biology has emerged as a quantitative science over the

same time span. Mathematical and computational modeling have become more universally

accepted, more closely integrated with experimental research, and more advanced in terms of

methodology.

Here, we survey the state of the field, emphasizing bridges that span scales: from molecular

signaling to multicellular hierarchies. We focus on the role of modeling and computational

biology. Because the literature is vast and growing exponentially, we limit our review to several

key themes and concentrate on 3 questions:

1. To what extent have models provided a way to bridge between the 3 levels of organization,

from intracellular signaling, to single cell behavior, and to collective cell/tissue behavior?

2. What level of detail is appropriate in a computational or mathematical model? What kinds

of models are suitable for a given situation?

3. What is the relationship between models and experiments in the current literature on the

subject?

At each level, we consider these 3 questions in subsections with headings “Bridging scales,”

“Levels of detail,” and “Links with experiments.” Like any other subdivision, this is to some

extent arbitrary, as literature papers often span such categories.

Many excellent reviews are already available, including [1–4]. Some survey computational

methods and others provide links to experiments. The focus on the above set of 3 questions is,

to our knowledge, unique to the current review.

The paper is organized by size-scale and level of detail. As shown in Fig 1, we start with the

subcellular level of biochemical signaling (left), and move up to single cell behavior (center).

We then link to small cell groups, larger groups, and tissues (right). At each level, we revisit the

3 key themes and select a few representative contributions from the literature to use as

Fig 1. Mathematical models can be used to bridge from intracellular signaling (left), to single cell shape and motility (center),

to cell-cell interactions (right). At the lowest scales, the goal is deciphering the interplay between stimuli to the cell (chemical,

topographic, mechanical, etc.) and intracellular signaling networks that regulate F-actin (branched polymer) and the cytoskeleton

(not drawn to scale). These interactions lead to protrusion or retraction, cell polarization, and shape changes that enable directed

motility and chemotaxis. At a higher level, an aim is to link cell behavior and cell-cell interactions to the outcomes of cell collisions

(e.g., CIL) and to the cohesion of tissues versus EMT, where cells break off. Interconnections exist between all layers, only 2 of

which (white arrows) are shown here. CIL, Contact Inhibition of Locomotion; EMT, Epithelial Mesenchymal Transition.

https://doi.org/10.1371/journal.pcbi.1008411.g001
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examples. A summary “mapping” of the modeling literature into levels of detail and numbers

of cells is provided in Fig 2.

No one review paper can do justice to the entire field. Hence, we point the reader to related

review articles that complement our own. In some cases, they cover similar ground but with

distinct emphases or points of view. In [1], the authors study the issue of cell heterogeneity, its

sources at various size scales, and its role in collective cell migration. They briefly discuss self-

propelled particles (SPP), Cellular Potts Models (CPM), and vertex-based approaches that we

also discuss in this review. They recommend further investigation of mechanical assumptions

in models, and of more realistic tissue size. A thorough review of the biomechanics of collec-

tive cell migration appears in [2], with a primary focus on cancer. In contrast with other

reviews, this paper also provides an excellent summary of experimental methods. Phenomena

discussed include the “unjamming transition” where a cell collective changes from “solid-like”

to “liquid-like” behavior and its connection to the epithelia-mesenchymal transition.

Force balance and energy-based models for single amoeboid and collective mesenchymal

cell migration are compared in [3]. The authors indicate the challenge of converting between

energy-based and force-based modeling platforms, and point to the significance of doing so.

(See [31] for this connection in the CPM). They also describe instances of close experiment-

model integration. Finally, a recent review of multiscale models in [4] has a soft-matter physics

perspective and describes computational methods (CPM, phase-field, active matter, particle

systems, etc.) and their physical basis.

Fig 2. A mapping of computational models according to the number of cells (horizontal axis) and the level of detail for each cell (vertical axis).

Citations of papers in the diagram (starting from the upper left to lower right: [5–30]).

https://doi.org/10.1371/journal.pcbi.1008411.g002
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From cytoskeleton and intracellular signaling to cell shape and

migration

How do chemical and mechanical stimuli, together with intracellular signaling shape the

behavior of single cells? This question is central to the bridge between left and central panels of

Fig 1.

Actin dynamics

We briefly highlight this well-established area to illustrate examples of bridging scales, diverse

levels of detail, and model–experiment synergy [32].

Bridging scales. Actin dynamics is studied at many levels: from association of actin

monomers to form filaments [33], to biophysical force production by F-actin [34], the assem-

bly and branching of F-actin [35], and the resultant shape and motion of cells [36, 37].

An excellent review of actin dynamics models in single cell migration, [38] provides a solid

bridge between molecular scale and cell scale phenomena. The authors explain the main

model formalisms and show how models can be used to understand experimental data. A

review of the link from actin and its properties to cell mechanosensing and behavior is given

in [39]. Reviews of the literature on actin-based cell migration reveal a mature field, where

quantitative methods and theory have ripened in tandem. This synergy has benefited greatly

from biochemical pioneers, such as Tom Pollard (Yale University), who helped to nurture an

appreciation for mathematical and physical modeling in the community.

Levels of detail. The pair of papers [33, 40] aptly illustrates the dichotomy between highly

detailed computational models [40] and more conceptual minimal models [33]. On one hand,

the highly detailed [40] synthesizes a large body of experimental data for actin assembly and

branching, including many actin-related component. At the opposite extreme, the models of

[33], as well as later papers [36, 37] emphasize physical principles, universal properties, and

general insights. In some sense, the overall predictions of both model types can be compared.

The minimal models are more tractable for analysis, parameter sweeps, and overall insights,

but are harder to connect to detailed molecular biology experiments. The complexity of highly

detailed computational models (matching molecular experiments) makes it harder to navigate

their results, which are more like a “1-to-1” map. Such maps may be important for those who

“live in the neighborhood,” but are essentially baffling for newcomers. While distinct, one

could argue that these approaches are complementary, so that overall insights can be obtained

from one, and specific details from the other. The dichotomy between the detailed and the

simplified models will reappear throughout this review, serving as 1 hallmark of distinct views.

Links with experiments. A review of the experiments and theory for actin dynamics in

the motility of keratocytes is provided in [41]. A retrospective that emphasizes the importance

of theory, and case-study where theory has led the way is described in [42]. Notable contribu-

tions linking experiments to theory for cell shape include [36, 37], where shapes of cells are

classified and related to actin branching and treadmilling.

Signaling networks

Fluorescence resonance energy transfer (FRET) microscopy led to breakthroughs in visualiz-

ing the activities of signaling proteins that regulate the cytoskeleton. This has enabled live

imaging of spatiotemporal activity of the Rho family GTPases [43].

The roles of Rho family GTPases (Cdc42, Rac, and Rho) in regulating actin assembly and

myosin contraction are well–known [44, 45]. These switch-like proteins are central regulators

of cell migration, funneling signals from the cell’s environment to downstream components
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that shape its motility. Cdc42 and Rac promote F-actin assembly and cell edge protrusion,

whereas Rho facilitates myosin light chain (MLC) phosphorylation, activating myosin-based

cell contraction. Rho also promotes F-actin through formins and is a Rac antagonist. The

importance of GTPase dynamics in cell motility [46] has also attracted modelers to this arena.

A review of GTPase spatio temporal models can be found in [47]. A classic paper on model-

ing spatio temporal dynamics of signaling in cells (not necessarily GTPases) is [48], a paper

that emphasizes universal principles. We see how commonly shared basic motifs combine to

form complex dynamics [48]. Many lessons learned from this approach can be applied directly

to studying GTPases or other signaling networks. In general, the community stands to benefit

from more expository papers of this type, where the ingredients that combine to set up specific

dynamical signatures are exposed. See also [49] for a popular example of this type, based on

years of experience with models of cell cycle regulatory networks.

Bridging scales. Several papers link the dynamics of GTPases to cytoskeletal assembly

and cell shape. Among these are experimental [50, 51] and computational [5, 52] works. A

review of signaling that organizes the cell front and rear in Dictyostelium discoideum is given

in [53], who also survey models of these as excitable systems. Some of these papers are

described in fuller detail below.

Levels of detail. GTPases act like molecular switches that cycle on and off the cell mem-

brane and interact via crosstalk through effector proteins. A large collection of proteins partici-

pate in GTPase signaling: Guanine nucleotide exchange factors (GEFs) activate and GTPase-

activating proteins (GAPs) inactivate the GTPases with varying degrees of specificity. GTPases

are also sequestered in the cytosol by binding to guanine nucleotide dissociation inhibitors

(GDIs). In some models, notably [54, 55], the details of the binding and mechanisms of activa-

tion–inactivation are lumped into phenomenological terms such as Michaelis–Menten or Hill

functions. In [55], emphasis on cross-talk of Cdc42, Rac, and Rho and on spatial polarization

comes at the expense of the molecular steps themselves (some of which remain unknown). In

[56], more detail on such steps is modeled and eventually reduced to 3 ordinary differential

equations (ODEs) using a quasi-steady-state approach. The authors focus on the role of a

Cdc42-GEF in oscillatory phenotype in neuronal growth cone motility. In contrast, [57] con-

centrate on GDI binding of GTPases in a highly detailed computational model (originally

crafted in BioNetGen and Virtual Cell).

Crosstalk between GTPases is modeled in great detail by [58], who constructed a Boolean

model for epidermal growth factor (EGF) signaling to Rac and Rho. Their model has 38 inter-

mediates and multiple reactions that activate or inhibit components. (See also [59], who com-

bines PhysiCell with MaBoss to allow the modeling of intracellular signaling networks as

Boolean networks). At lower level of detail are Rac-Rho mutually antagonistic models that

leave out the forest of interacting nodes [60].

Simpler models for single GTPase include [61] for cell polarity and [62, 63] for cell shape.

There, assumptions are made to condense underlying complex interactions into simpler

“rules” of behavior. For example, “high GTPase activity leads to outwards protrusion force at

the cell edge” (in the case of Rac) or “contraction” (in the case of Rho) [64, 65]. An advantage

of this simplification is that simple models consisting of few partial differential equations

(PDEs) allow for well-honed methods of applied mathematics, including nonlinear dynamics,

stability theory, asymptotic analysis, and/or bifurcation theory to explore model predictions,

parameter dependence, and regimes of behavior.

Serendipitously, simplified signaling models, like [61], occasionally also expose interesting

mathematical structures to study. A case in point is “wave-pinning” [61, 66]: a wave of GTPase

activity initiated at 1 end of a cell stalls before reaching the opposite end, resulting in robust

“cell polarization.” Simplified models also permit numerical implementation in more complex
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geometries. For example, in [67], a wave-pinning model for a single GTPase in a single 3D cell

is implemented by bulk diffusion methods. The cell does not deform, but the spatial localiza-

tion of the GTPase is quantified in a fully 3D geometry. (See also [68], who considered neutro-

phil fluidization, and [69], who considered polarization in a 3D sphere).

At a gradually increasing scale are models that include not just GTPases (Rac, Rho, and

Cdc42) but also other layers (phosphoinositides, actin, Arp2/3, and myosin) that interact to

regulate cell polarity in response to stimuli [70], or dictate cell shape and directed motility

[5, 52]. In the latter 2 papers, a single moving “keratocyte” is represented using a Cellular Potts

Model (CPM), an energy minimization agent-based platform for computing cell shapes. It is

shown that GTPase signaling can account for cell polarization, reorientation [52], and resolu-

tion of conflicting cues or obstacles [5]. (Compare with [71], who employ phase-field compu-

tational methods toward similar goals).

By way of comparison, in another more detailed approach, in [72], a cell is modeled as hav-

ing a solid boundary that is moved using a Stefan condition. For the chemical signaling, Rho,

Rac, 2 species of GEFs, F-actin, and G-actin are included. The model accounts for the basic

repertoire of neutrophil motility.

All in all, models of GTPase signaling have taught us several valuable lessons, some with

universal ramifications. First, modeling has provided clues to the functional significance of the

seemly strange cycling of GTPases between membrane and cytosol: namely, the separation of

diffusion rates resulting from these distinct compartments could be playing a role in pattern

formation processes, an ingredient enabling GTPase localization or patterning in cells. Second,

the stripped-down models have shown that chemical polarization in a cell need not depend on

crosstalk between multiple types of GTPases—it can be set up by a single member of the fam-

ily, given sufficient positive feedback and some depletion of its cellular pool [61]. Groups are

still occasionally rediscovering on their own, the link between cell size and cell polarization

that was implicit in [66], suggesting the need for more expository reviews of mathematical

results. An important concept introduced in [5], but not yet fully recognized in the commu-

nity, is the synergy between GTPase dynamics and its effect of cell shape and boundary curva-

ture of the cell edge. Simply put, the “motion by curvature” of the chemical system interacts

with boundary conditions to accelerate the dynamics. Altogether, the appreciation of GTPase

signaling has benefited greatly from a host of distinct modeling and mathematical approaches.

Links with experiment. A review of the links between models of cell migration and exper-

imental data (image processing, cell tracking, and feature extraction from 1 cell to many) is

given in [73]. Here we focus more specifically on experiments that highlight intracellular

signaling.

The work by [70] provides data for the reorientation and polarity responses of HeLa cells

from various starting cell states (polar, anti-polar, or nonpolar). The authors showed that an

internal circuit of signaling (Cdc42, Rac, Rho, and phosphoinositides) could account qualita-

tively for the observed responses of these cells in microfluidic channels, with an externally con-

trollable response to Rac. In both this and the follow-up [74], the 1D geometry of the channels

helps to reduce the geometric complexity of cell shape, allowing for a better match to 1D spa-

tial model representations.

How are models for GTPase crosstalk experimentally linked to cell morphology and motil-

ity dynamics? In experimental results of [51], the authors showed that signaling circuit of

mutually antagonistic Rac and Rho could affect not only the dynamics of F-actin, but also

shapes and migration of mesenchymal breast cancer cells. Together with a mathematical

model for the Rac-Rho interactions, they were able to manipulate the Rac-Rho competition,

demonstrate bistable states, and show that manipulating the system by inhibiting PAK (a

kinase that mediates inhibition of Rho by Rac) displayed hysteresis characteristic of bistable
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systems. The significance of this paper is that it demonstrates a direct link between a simple

hypothetical model for the way that Rac and Rho GTPases operate in a cell and the next level

up, that of overall cell morphology.

Sometimes, individual papers provide only part of the story, but taken as a whole, a series of

papers gives a broader view. The sequence of work in [50, 60, 75, 76] explore how Rac-Rho

mutual antagonism is linked to cell morphology. In [75], the authors experimentally manipu-

lated Rac and Rho activities to show spread or contracted cells. Interestingly, they found that

combining constitutively active (CA) Rac and Rho simultaneously results in mixed morpholo-

gies in human glioma cells. The fact that high Rho and high Rac activity produces a mixture of

possible coexisting stable steady state cell shapes was independently predicted in a purely

modeling study by [60]. Related experiments by [50] on cell shapes were also later modeled

and explained in a follow-up paper by [76]. These papers demonstrate that relatively simple

stripped-down depictions of cellular signaling “modules” (such as Rac-Rho) can account for

important and unexpected observations at the level of the cell as a whole.

The paper [77] explores how 3D collagen microtracks and confinement affect cell migra-

tion. The authors find that the degree of cell-extracellular matrix (ECM) interactions are key

determinants of speed, morphology, and cell-generate substrate strains during motility.

In recent times, a clear link has been established between GTPase activity and mechanical

tension experienced by cells. A pioneering experimental paper that showed this 2-way feed-

back is [78]. The effects of forces on the Rho family proteins, including the involvement of

GEFs that activate Rac1, RhoA, or Cdc42 are reviewed in [79]. Some GEFs respond to cyclic

stretch, and others to tensile force or shear stress and substrate stiffness. Rac1 and Cdc42 are

activated by stretching of adhesion bonds [80]. Rho is mainly used in maintenance of focal

adhesions, but it appears to play a prominent role in cell–matrix interactions.

Strain and strain gradients affect cell orientation. Single cell experiments with cyclic stretch

are described in [81]. The authors suggest that the Rho-ROCK pathway that regulates myosin

light-chain activity is responsible for sensing and responding to strain gradients.

Overall, it appears that the link between mechanical stimuli and GTPase signaling is still

young, providing ample opportunities for creative modeling. So far, there is no consensus on

what are the “takeaways” from the models so far. Further, it would appear that this gap should

be filled if we are to successfully bridge between 1 cell and many, since the mechanics of cell

collisions, as well as cell collective migration, entail sensing of both chemical and mechanical

stimuli in the interacting cells.

From single to collective cell behavior

While the meaning of “collective behavior” is intuitively clear, what is less clear is how to spec-

ify the transition between a collection of agents, acting individually, and the collective behavior

of the group (right panel, Fig 3). To some extent, the same issue arises in macroscopic models

for swarming animals or interacting particles. As groups grow and interactions between mem-

bers increase, new distinct properties emerge at the level of the group that were absent at lower

levels of organization. Characterizing, quantifying, and understanding such emergent proper-

ties remains the single most interesting and elusive goal in bridging between single and collec-

tive phenomena.

Unsurprisingly, physicists have grappled with similar questions in inanimate systems. This

goes 2 ways. If we observe the dynamics of the group, can we infer underlying interactions?

This is a top-down approach; see Fig 3. Conversely, given rules followed by individuals, what

can we predict about the structure and dynamics of the group? For example, how do “rules”

for cell–cell interactions such as coattraction, contact inhibition of locomotion (CIL) affect cell
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collectives? In cell biology, we add the question of how rules of behavior of cells are to be asso-

ciated with specific molecular/signaling pathways inside the cells.

From physics, we gain various concepts and techniques such as order parameters, e.g., aver-

age movement direction, normalized separation distances, or migration persistence measures.

Mathematicians have also contributed with useful methods, such as dynamical systems, ODEs,

PDEs, and bifurcation methods. More recently, the use of topological data analysis (TDA)

has also entered the mix, to help address some of these questions. The examples provided by

[82–85] show how TDA can be applied even more effectively than the traditional physics-

based order parameters to compare data and model output. Such novel methods could help

to begin addressing questions where model hypotheses are to be compared with observed

behavior.

Small cell groups

A number of illuminating papers suggest that to understand the dynamics of tissues, we should

start by first understanding 1, 2, or a few interacting cells in small groups [25, 86]. (See top

right panel, Fig 3). Then, the behavior of single cells and the effect of cell–cell interaction can

be explored in detail. Collisions between cell pairs or “cell trains,” contact inhibition of loco-

motion, and similar responses fall into this category, as do “cell swarms.” The migration of

neural crest cells is 1 example of a loose cell swarm, as reviewed in [87]. Adherent cells in tis-

sues (and their cohesion in epithelia) will be discussed in another section.

A number of key questions posed by papers in this area include the following:

1. What mechanism, chemical and/or mechanical, can account for CIL in interacting cell

pairs [7]?

2. How do cells reconcile conflicting cues [74, 87]?

3. Under what conditions would a cell reverse its direction [74]?

Fig 3. Modeling goals can be classified into broad categories that span levels of hierarchy. Some models attempt to

span knowledge of single cell behavior plus interactions to predict emergent multicellular behavior (bottom up, left),

whereas others start with observations of tissue dynamics and seek to infer underlying rules, feedbacks, and cell-cell (c-

c) interactions that lead to those observations (top down, right).

https://doi.org/10.1371/journal.pcbi.1008411.g003
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The study of small numbers of interacting cells provides a useful paradigm for connecting

molecular mechanisms to group behavior, an area that has only recently received the attention

it deserves [86].

Bridging scales. Phase-field methods have been used to model cell shape and motility in 2

spatial dimensions (2D) [71]. The outline of a cell is represented by a level curve of some func-

tion ϕ(x, y, t). For example, in [88], a minimal model for Rac signaling was used to describe

the shape and motility dynamics of a single phase-field cell. The model is then extended to

pairwise and cell–train interactions in a narrow 2D strip. Interestingly, the authors had to

assume an intracellular signaling “inhibitor” that is activated at cell–cell contacts to obtain

appropriate behavior. This is one of the earliest models spanning the three levels of organiza-

tion, from subcellular, to single and multiple cells. The model exploits a reasonably simple

level of detail at each stage to reproduce several behaviors, such as reversals, cells walking-past

one another, cell sticking, and forming a “cell–train.” We feel that this paper provides good

prototype to be emulated by community members: a clear and well-studied intracellular sys-

tem, linked to evolving cell shape, with feedback from cell–cell interactions. The paper leads to

natural follow-up questions, amenable to experimental investigation: what cell components

play the role of the putative “inhibitor”?

Models for neural crest cell (NCC) swarms in vivo and in vitro were proposed in [87, 89,

90], focusing on distinct behaviors of leader and follower cells. (See “Links with experiments”

for a summary). For the same NCC system, the paper [7] developed a multiscale computa-

tional model linking signaling to cell group migration. A Rac-Rho GTPase circuit was repre-

sented by differential equations (ODEs) at nodes on the perimeter of a deforming polygonal

cell. Co-attraction was represented as a non local tendency of cells to cluster, short range con-

tact inhibition by up-regulating Rho at nodes in contact with other cells. Stochastic noise in

Rac activity generated characteristic run lengths and reorientation seen in typical NCCs.

In [7], it was shown that these underlying biochemical systems could account for CIL. This

study can be compared with the GTPase and inhibitor system described above, [91]. Coherent

migration of a group of n cells, each of diameter d, was possible along a confinement corridor

of width on the order of d
ffiffiffi
n
p

. This paper, [7], has a wider corridor and larger numbers of cells

than [88], but confinement serves a similar function of enhancing directed cell movement. In

real embryos, such “corridors” could be defined by permissive and inhibitory regions for NCC

migration, as shown experimentally in developing embryos [92]. As a comparison to the mod-

els of [7, 88], in [93] a “rule-based” approach was applied to the same problem of NCC group

migration, without bridging to the biochemical circuit.

In somewhat related work, [8], 2D cells are described by viscoelastic triangular finite ele-

ments. Cells can adhere to one another using linear springs. At each cell vertex, intracellular

signalling controls cell protrusion and cell–matrix adhesion. The signaling networks consists

of Rac and several other components, including the downstream kinase PAK, the focal adhe-

sion protein Paxillin, the cell adhesion molecule cadherin, and Merlin, a protein implicated in

contact inhibition of cells in a feedback loop with Rac1 and PAK. Key findings of this study

were (1) cells elongate on stiffer substrates; and (2) stiffer substrates allow for better directional

guidance and collective cell migration. Interestingly, the authors state that the principal role of

intracellular signaling is to coordinate cell movement direction over distances of� 500μm.

Levels of detail. There are many “simple” SPP models in the literature on collective cell

behavior, reviewed, for example, in [94, 95]. It is relatively straightforward to create rules that

result in collective behaviors, but harder to do so when more details are included.

In 1 SPP cell model in a 1D spatial domain, [25], CIL and force-induced cell repolarization

result in properties of collective cell behavior. Rules governing pairwise interactions and
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probabilities for CIL are derived from experiments by [96] described in the next section. It

turns out that there is an optimal number of cells in a group for migration persistence. This

paper joins [70, 74, 96] and others in proposing and using simplified 1D geometry to examine

the basics of cell–cell interactions. The synergy between papers [25, 96] is very helpful, and

points to the need for more paired experiment-model studies.

SPP models are easily extended to higher dimensions, and/or more realistic pairwise

forces. For example, [29] considers a cell swarming model in 2D that is closely related to

spherical cell models in [27, 97]. While [29] neglects cell–cell friction, the paper couples the

cells’ compressibility, which plays the role of a local force of repulsion, to adhesion due to

long protrusions such as filopodia that leads to nonlocality.

The highlight of [29] is the inclusion of these non local cell–cell attraction forces. In this

way, the paper makes a seminal link between extended cell–cell interactions and a body of the-

oretical work on non local interactions in swarms or physical particles. The same paper also

features the concept of H-stability (preservation of bounded density as the number of particles

increases). This idea is used to ascertain correct cell spacing in swarming models, facilitating

links to experimental observations. This paper hence imports a panoply of techniques, meth-

ods of analysis, and results, from theoretical work on non local models dating back to the

1990s [98], and inspires new ways of interpreting experiments.

Parallels with macroscopic swarms and flocks are useful, so long as we remember that these

operate in vastly different friction regimes. (Cells experience an overdamped regime, where

inertial forces are negligible). In yet another example of a cell swarming model, the paper [99]

accounts for the development of stripes in zebrafish pigmentation patterns. The model com-

prises 2 cell types, with cell differentiation and death, and successfully reproduces a wide array

of observed wild-type and mutant patterns.

In a different approach at a lower level of detail, [100] describes a group of border cells in

Drosophila as a single sphere to determine the role of cluster size in chemotactic migration

speed. The authors assume a spherical cluster moving by Stokes’ law in a viscous environment.

The migration force is proportional to cell surface receptor occupancy in an exponential gradi-

ent of attractant. The results show good fits to both normal cells and cells that have a deficiency

of receptors. The same biological problem is treated in [101], using a force-based approach for

individual spherical cells (rather than cluster as a whole as in [100]) in 2D, followed by 3D (for

small clusters of up to 8 cells). The computation incorporates cellular adhesion and repulsion,

with some stochastic effects.

At the next level of detail, the shape of interacting cells is explicitly represented. The papers

[91, 102] apply phase-field methods to model cell shapes in 2D with intracellular signaling.

Interestingly, the signaling system is itself “minimal:” The authors assume basic “wave-pin-

ning” GTPase dynamics, as in [61], with additional stochastic elements. The levels of internal

GTPase give rise to either protruding or retracting forces on the cell edge. Then, [91] models

the rotational cell motion when 2 cells interact (compare with [31] who showed a similar

behavior in CPM cells). For coordinated movement, the directions of these gradients need to

be linked. A key finding of [91] was that the emergence of rotational motion is strongly depen-

dent on the type of cell–cell coordination mechanism (which includes the previous “inhibitor”

field and other phenomenological cell polarization mechanisms).

We see gradual ascent in the numbers of cells considered and level of detail. We now find

groups addressing the question “What can cells do well together that they do poorly on their

own?” For example, collective chemotaxis was shown to be better in groups than in single

cells [18, 103, 104]. (See also the related work by [22] for larger cell groups, reviewed in the

next section).
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Overall, our sampling of the literature reveals a paucity of models at the small-cell group

level, relative to subcellular and tissue-scale modeling. We believe that papers such as [29]

open opportunities for swarm-centered modelers to make a contribution to the cellular biol-

ogy realm, by translating numerous results of physics and mathematics, suitably reinterpreted,

to cells. We also contend that understanding the ways that cell interact in small groups is an

important and relatively tractable step to formulating more informed tissue-scale models.

Links with experiments. Pairwise interactions of MTLn3 rat breast adenocarcinoma cells

inside microfluidic channels with chemotactic cues were quantified in [74]. These experiments

provide important information for the spatio temporal evolution of GTPase activity during

cell collisions. When cells collided in [74], they either stalled, adhered and moved together, or

exhibited CIL. More recently, [105] studied how mechanics, and cell polarity drive collective

cell migration in larger groups of cells. More experiments of this type would be very important

in laying the groundwork for understanding pairwise cell interactions and in directly inform-

ing the development of models. Such models could then be used to interpret and deepen

experimental observations.

In a similar vein is [96], a study of CIL experiments on micropatterned surfaces, where data

were collected for the probability of cell repolarization after contact with another cell. The

authors also explored persistence of cell trains, bridging from pairs to larger groups. An agent-

based model was then used to predict cell–train outcomes based on the observed repolariza-

tion probabilities.

A model that replicates the experimental setup of [106] appears in [107]. Flat cylindrical

model cells are assumed to align ECM fibers. Primarily a single-cell model, it is also extended

to 2 interacting cells where, interestingly, leader-follower behavior is seen: The leader creates a

“track” of aligned ECM fibers that the second cell can follow.

A number of works shed light on the molecular basis of cell–cell interactions. For instance,

Wnt signaling is a ubiquitous pathway that regulates polarity, migration, and many other cel-

lular processes. Wnt signaling at cell–cell interfaces that locally upregulates Rho is studied in

[108]. Ephrins form cell–cell ligand–receptor bonds that funnel signals to GTPases to control

cell repulsion or attraction. Involvement of Ephrin receptors in CIL [109], effect of tension on

CIL [110, 111], and on the activation of RhoA [112] have been similarly studied.

Experiments on migration of primordial progenitor cells in the developing zebrafish [113]

established the importance of guidance cues such as repulsion due to ephrins. Physical barriers

also guide cell migration and organ placement. Actin was visualized for cells colliding with

barriers expressing ephrin receptors. A particle-based model with an attraction–repulsion Len-

nard-Jones potential was then used to test the effects of reflecting and nonreflecting bound-

aries. (The Lennard-Jones potential is composed of power functions of the form r−12 and r−6

for local repulsion and long-range attraction).

NCCs chemotax toward some cell types in a chase-and-run behavior [114]. For example,

NCCs chase the placode cells, namely cells that are destined to form feathers or teeth or hair

follicles. Before contact, each cell has high Rac at its front. Upon contact, the cell-adhesion pro-

tein N-cadherin, at the cell–cell interface, inhibits Rac in both cells leading to separation and

escape of the placodes. Once the cells separate, chemotaxis is reestablished.

The group of Danuser [115] used high-resolution traction-force microscopy (TFM) to mea-

sure traction forces for a single cell and small groups of 2 to 6 epithelial cells. They then used a

thin-plate finite element model (assuming homogeneous elasticity) to reconstruct forces along

the interfaces between cells in a cluster. It was shown that the forces were correlated with E-

cadherin localization. The authors reduce the cell group to a network representation, with vec-

tors connecting cell centroids.
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A recent paper explores the relationship between initial tissue size and the dynamics of tis-

sue growth [116].

Experiments on the migration of chick neural crest cells in vivo and in vitro are described

by several groups, including that of Kulesa. His experiments have been directly linked to mod-

els previously mentioned [87, 89, 90]. The group has investigated how cells reconcile mixed

chemotactic signals, as in breast cancer cells in [74], and how information is shared between

cells. The differences between leaders and followers is of recent interest in the group.

While papers such as [25, 117] argue eloquently for the need to carry out small-group cell

experiments, we find this, too, to be a missed opportunity. Possibly, the in vitro work that this

entails is viewed as less compelling than in vivo experiments, and so, less persuasive from the

grantsmanship perspective. Hence, there are still relatively few experiments to map out the links

between cell signaling and cell–cell collisions, between events inside the cell and the small-scale

swarms that form. We recommend this area as a promising one for experiment-model synergy.

A related example: Spacing of nuclei

While not directly related to cell migration, we nevertheless decided to briefly highlight the

following example as it illustrates close synergy between model and experiment using modern

methods. In [118], models complement experiments to investigate positioning of nuclei in

Drosophila larvae muscle cells. The authors used data for many hundreds of nuclei and pro-

posed a diverse set of particle-based models. Models were formulated specifically to test dis-

tinct sets of hypotheses for how nuclei interact with microtubules and molecular motors.

Interestingly, machine learning was used for computational filtering, comparing large num-

bers of simulation outcomes to simple summary statistics such as nuclei positions. The filters

are applied in stages, each stage rejecting inappropriate or inaccurate models that are incon-

sistent with the data.

Ideally, this process requires high-throughput screening, mandating both clear-cut sum-

mary statistics, and a large dataset. As noted by [118], the availability of data imposes a limita-

tion on possible model complexity that could be adequately fit. Eventually, the best-fit model

predicts that nuclei push against one another and against cell boundaries by sending out grow-

ing microtubules.

This example suggests a number of important questions for future model-experiment inves-

tigations. (1) How can one ascertain the optimal level of model complexity in the first place?

(2) How do we extract clear identifiable, meaningful summary statistics from a large dataset?

(positions of hundreds of cells) (3) What are optimal methods for massive filtering to obtain

the best model? This example also illustrates a creative use of machine learning as a tool in

understanding and filtering many possible mechanistic explanations. Clearly, this approach

goes beyond the common machine learning application as a “black box” to sort or classify or

learn rote features of cells or images.

Collective cell behavior and tissue dynamics

Even before details of cell–cell signaling were known, theorists were formulating cell-based

computational models for tissue dynamics. Garret Odell and George Oster [119] considered

cell–cell pulling forces, coupled to a bistable stretch-sensing signaling module. They showed

that this mechanism could account for local contractions that folds a tissue in a developmental

process such as gastrulation. Their seminal idea still resonates today [16], now that signaling

components are familiar to us.

Reviews of the recent biological literature on collective cell migration include [120–122].

(See also brief highlights in Table 1). A thought-provoking review of the biology, [86], focuses
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on the role of adhesion mechanics, bridging between force regulation in single cells and in col-

lective cell migration. The paper gives detailed summary of the underlying molecular players,

synthesizing a vast literature on the subject. The mechanical and mechanotransduction players

at the molecular level are then linked to consequent cell-level properties. The paper proposes a

rational program of experiments from 1 to 2 to many cells (see Fig 4 in [86]) to bridge the

scales from single cells to tissues.

Several key questions appear in papers at this level.

Table 1. Experimental summary: CIL, contact inhibition of locomotion; GEF, guanine nucleotide exchange factor;

NCCs, neural crest cells; RDEs, reaction diffusion equations.

Main-Target Main-Finding Ref.

Rac opto-activation Cell migration by photo-activation (HeLa cells) [123]

Cdc42 opto-activation Cdc42 activates Rac at the front, and Rho at the back of the cell (Immune

cells)

[124]

Rho opto-activation Rho at cell’s rear can control directional migration. Rho activity regulates

switch between amoeboid and mesenchymal migration (macrophages)

[125]

Rho-ROCK pathway This pathway senses and responds to strain gradients; cyclic stretching

(single cells)

[81]

Chemotactic response If gradient switches too rapidly, cells get stuck (Dictyostelium) [126]

Cell polarization Comparison of three RDEs, parameter fitting to data [127]

Merlin Merlin is a negative regulator of Rac and may also be regulated by the Rho

pathway

[128]

Merlin Key role in cell polarity, and leadership. Spatio-temporal data (cell

monolayers)

[129]

Signaling at cell-cell

interfaces.

Non-canonical Wnt signaling at cell-cell contacts causes an upregulation of

Rho

[108]

Forces and GTPase activity Cell-cell forces affect Rho activation [112]

Topographic cues Single cells have different organizations on grooved vs flat substrata

(fibroblasts)

[130]

NCCs and placode cells Intricate interplay between chemotaxis, integrins and their effect on

internal GTPase activity

[114]

Ephrins Ephrins in repolarization of cells (zebrafish development) [113]

CIL and Ephrin receptors Ephrin receptors affect CIL [109]

CIL Biphasic relationship between probability of CIL and collective migration [96]

CIL Tension built up during CIL [110,

111]

CIL Spatio-temporal GTPase patterns during cell-cell collisions and CIL events

(microfluidic channels)

[70, 74]

Collective strand formation Interesting difference between polarization of leader and followers [131]

Small groups of epithelial

cells

Forces are correlated with E-cadherin localization [115]

Effect of forces on Rho and

Rac GEFs

Some GEFs respond to cyclic stretch, others to tensile force or shear stress

and substrate stiffness

[79]

Mechanical GTPase

activation

Rac1, Cdc42 activated by stretching adhesion bonds. Rho maintains focal

adhesions

[80]

Epithelia “Push-pull” or “caterpillar” collective motion in narrow grooves, more

complicated movement in wide channels

[132]

Epithelia Sustained oscillations in epithelial sheets [133]

Epithelia Cells crawl in the direction of maximal principal stress. Leaders impose

mechanical cues on followers

[134]

GTPases and GEFs Coordinated waves of motion, cells at front react first (scratch-wound assay

in human bronchial epithelial cells)

[135]

https://doi.org/10.1371/journal.pcbi.1008411.t001
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(Q1) How do internal dynamics of cells influence the emergence of collective behavior? How

do cells share and transfer information between one another? How and to what extent

are mechanical forces transmitted over distance [136]?

(Q2) What is the role of the leading front in guiding collective migration? [132]

(Q3) Do actin cables or ECM fibers transmit long-range stresses [2, 131]? Are such mecha-

nisms analogous to the non local sensing mechanisms that play a dominant role in

models of animal swarms?

(Q4) What cellular and tissue-based mechanisms (long- and short-range cues, barriers, cell–

cell adhesion, etc.) are essential for proper formation of organs during development

[113, 137]?

Parallels between the polarization and directed migration of single cells and of a cell collec-

tive is highlighted in many recent works. See, for example, the recent perspective paper, [117],

demonstrating parallels in the GTPase distribution, chemotaxis, and mechanosensing between

the single cell level and tissue level.

As shown in Fig 5, many computational platforms are currently used to simulate multicel-

lular migration. These are reviewed in [4, 95, 138–140]. Rigid or deformable spheres or ellip-

soids (in 3D or 2D, Fig 5A1 and 5B1, respectively), polygonal “vertex-based,” or CPM cell

representations are common. Software platforms such as CHASTE (Oxford University, [141–

143], and Fig 5A2), CompuCell3D (U Indiana, [144], and Fig 5A3 and 5B2), or Morpheus (TU

Dresden, [145]) have made it increasingly easier to simulate complex tissue dynamics without

having to reinvent computational algorithms and graphics.

In our humble opinion, there is a vital need for support and sharing of standardized open-

source software packages, with suitable plug-ins donated by groups utilizing those resources.

First, such tools would save time, person-power, expertise, and expense of individual

“kludges.” It would reduce duplication of effort—how many of us want to reinvent our own

finite-element computations? Even more compellingly, such standardization can bring about

much easier communication and appraisal of published models, and in-depth scrutiny of

exactly what those models include. Having learned the basic steps of Morpheus, one of us

(LEK) has become an enthusiastic user. See, for example, [146], where figures are linked

directly to executable Morpheus .xml model files that produced them.

Bridging scales. Here we concentrate on bridging between models for biochemical signal-

ing and multicellular behavior. In the next section, we will focus on bridges between 1 or a few

cells to larger populations and from simple to more detailed geometry (points, spheres, and

cell shapes) and dimensionality (1D, 2D, and 3D).

The modeling paper by [13] is a vertex-based computation of epithelial dynamics, where

force balance of cell vertices includes an active contractile force on the cell perimeter due to

myosin. ODEs track Rho activation by cell perimeter stretching and downstream myosin acti-

vation (by phosphorylation) at a given vertex. Vertex motion is a result of force balance. Fric-

tion and passive forces are derived from energy penalties for area constraint and from the

energy of adhesion to neighbor edges. This aspect of the paper resembles the energy-based

approach in CPM computations, e.g., in [16]. The authors quantified the effects of cell density

on correlation lengths, and regimes of behavior such as streaming, contractile waves, group

movement, rotation in a circular domain, presence of vortices, and non uniformity of myosin

distribution.

Some similarities are shared by [13, 16]. Both are tissue-based computations, with ODEs

for GTPase biochemistry, an assumption that GTPase leads to cell contraction or expansion,

and feedback from cell tension back to the activation of the GTPase. Both papers find
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fluctuations in cell shape or size from the full feedback between signaling and contractility (Fig

2C in [13], and the comparable Fig 3B in [16]). The signaling biochemistry is assigned to verti-

ces in [13] versus the cell interior in [16]. In [16], a single cell is first linked to a 1D chain of

cells, and then to 2D CPM cells, where waves of cell contraction are observed. The levels of

detail in these 2 papers are comparable, though [13] also includes predictions for myosin,

unlike [16]. See also [147] for a similar approach restricted to 1D cell chains.

In the same general class, the work of [10] links cell contraction (in a vertex-based hexago-

nal cell with 6 spokes) to biochemical details for a circuit of proteins known to regulate myosin

contractility in Drosophila dorsal closure. This model is more detailed on the specific known

interactions of protease-activated receptor (PAR) proteins that form a negative feedback loop

with actomyosin (Baz, Par-6, aPKC), including a set of 9 ODEs for components linked to myo-

sin dynamics along cell edges and spokes. The authors account for several phases in the devel-

opmental process, including oscillations observed in the tissue (using time delays) and the

eventual contraction of the tissue. By way of comparison, [148] has a greater level of detail of

the cell shape, including more viscoelastic spokes and edges, but essentially no biochemical

detail. An example of 3D vertex-based simulations with cell rearrangement and out-of-plane

bending can be found in [149].

Levels of detail. The gene regulatory network involved in Drosophila ventral furrow

formation is modeled at a fine level of molecular detail in [150] using a Boolean modeling

approach. The model encapsulates interactions of transcription factors to explain 3 phenotypic

attractor states, and identify missing and alternative pathways. Spatial distribution of cells and

cell shape dynamics is not considered.

At the opposite extreme, internal cell signaling is omitted in favor of positions and spatio-

temporal dynamics of cells. SPP “agent-based” models with forces of attraction, adhesion, and

repulsion include [29], as reviewed in a previous section. There, nonlocal forces are considered

in groups of hundreds of cells.

Modified agent-based models in [151] can be compared to the cell-pair study in [91]. Addi-

tional assumptions are included in [151], notably Vicsek-type alignment, cell membrane cur-

vature, elasticity, actomyosin cable force, and a tendency to move in the outwards normal

direction. The authors show the dependence of tissue wound-healing velocity on the width of

a confining stripe. On a similar topic, CPM computations are used in [152] to investigate the

effect of adhesive micro patterns on the motion of single cells and collective cell migration.

Similarly, modified Viscek-type models are considered by [25] endowing each cell with a

polarization direction. Various types of cell–cell polarity coordination mechanisms are

considered.

Yet another modification of particle-based models is [153], where a cell is represented by a

spring linking 2 discs, to depict the “cell body” and the “pseudopod.” The model demonstrates

various outcomes of binary collisions in a 2D domain, as well as order–disorder transitions

and velocity waves in large 2D cell groups with and without CIL. This paper explicitly bridges

from 1 to many cells.

At the next level of complexity, we find representations of cells as spheroids or ellipsoids

(Fig 5A1, [27, 154–156]). Drasdo computed a 2D growing monolayer [154], and later extended

it to 3D [27]. Palsson built 3D simulations of deformable off-lattice ellipsoids, with cell divi-

sion, chemotaxis, cell–cell adhesion, and volume exclusion. The platform has been used to

model the dynamics of Dictyostelium aggregation and cyclic AMP (cAMP) signaling [155], as

well as the posterior lateral line primordium, a cluster of about 100 migrating cells in zebrafish

embryos that generate sensory structures on the surface of the fish [14].

Other recent papers add variations on these themes. For example, [157] provides a compu-

tational model for 3D off-lattice spheroid cells, but with greater level of detail for cell–cell and
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cell–matrix adhesion. The model is coarse grained from the biological levels of 106 down to

100 sites per cell. After quantifying the stable distance between cell pairs (for a given set of

forces, intrinsic cell properties, and adhesion sites), the authors go on to show the behavior of

a larger group of cells.

Recently, these approaches have been extended to more finely resolve cell shapes in 3D [9].

Here, each cell is a triangulated 3D object, composed of discrete viscoelastic elements. Simula-

tions track up to a thousand liver cells. While computationally very expensive, these

approaches can provide valuable insights. For example, it is shown that highly deformable cells

move more easily to heal a lesion than stiffer or more rigid cells [9]. They are also useful for

specific systems where it is crucial to capture details accurately, as, for example, in drug design

in silico for liver disease.

In [158, 159], a confluent epithelium in confinement is modeled by vertex-based polygonal

cells, and the type of collective migration (directed flow, vortex chain, or turbulent) is related

to a dimensionless quantity (“cell motility number”) that combines cell motility, cell density,

and size of the confinement pattern.

In the phase-field category, the paper by [22] scales up from small numbers of cells in [91]

to larger populations. Cell collisions are modeled by an energetic penalty for overlapping

phase fields, and cell adhesion is described by a reaction–diffusion equation in [22]. Their

model cells exhibit bistable shapes, (either symmetric or keratocyte-like), and both elastic and

adherent collisions are predicted. Strong adhesion results in bands of dense closely packed

cells that move as a collective. The authors compare their work with that of [160] (see Links

with experiments) where a CPM model is used to describe large confluent cell rotations in a

confined region. As noted by [22], the level of detail in their phase-field description is better

suited for non-confluent cell models, but likely too detailed for confluent layers of cells where

individual cell details average out. In [161], similar methods are extended to a 3D phase field

computation for a single cell interacting with curved or grooved surface. This sequence illus-

trates the trade-off between geometric complexity (1D versus 2D versus 3D) and collective

complexity (1 cell versus few versus many).

Overall, it emerges from many papers that the vertex-based models are good at describing

epithelia, where fragmentation or EMT is absent or not important. Vertex-based models are

not well suited to track cell death or fragmenting clusters, since edges and nodes are shared by

neighboring cells. Breakage of a cell requires that shared edges and nodes be duplicated or

reassigned, an inconvenience. To track tissue fragmentation or loss of cells, center-based mod-

els or CPM platforms have an advantage, since these represent each cell by an individual geo-

metric object or by a set of pixels.

Continuum models are also commonly used at the level of tissue dynamics. Here, the cell

identity is omitted altogether, in favor of cell densities, local flows, and material properties.

Analogies are made with fluids, viscoelastic material, elastic sheets, or foams. Advantages

include the ability to harness traditional methods of physics, mathematics, and fluid or engi-

neering computational software. Examples of this approach are numerous, and we mention

only a few.

One example of this class, [162], is a 3D physical description of an epithelial sheet. The

authors show bistability in cell aspect ratio, bending and buckling instabilities of epithelia, and

transitions that lead to formation of epithelial tubes and spheres. Experimentally testable scal-

ing laws are given for such morphogenetic transitions. While there is no subcellular molecular

detail, the connection between local cell shape and epithelial behavior is an important

contribution.

In [163], the tissue is modeled as an active continuous medium, with a Maxwell viscoelastic

constitutive law. A reaction–diffusion-transport equation accounts for actomyosin, whose

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008411 December 10, 2020 16 / 34

https://doi.org/10.1371/journal.pcbi.1008411


contractility is coupled to cell motion and polarity. The authors explore predicted motion of

tissue in confined regions, closure of wound gaps, and the relationship between traction forces

and sizes of cohesive cell clusters. Mechanical waves, as well as tissue rigidity cycles, are

observed, where fast fluidization is followed by a gradual period of stiffening.

The continuum model in [164] treats a tissue as a compressible fluid and includes both cell

division and death in a type of Stefan free boundary problem. The authors show that behavior

of the tissue in wound closure and in colony expansion depends on 3 parameters: 2 physical

constants and the proliferation rate. They argue that all these can be estimated from limited

experimental data, with examples calculated for IEC-6, a rat cancer cell line and MDCK cells, a

canine kidney cell line. As the authors point out, continuum models are appropriate, provided

the size of the tissue or the characteristic length of the wound is sufficiently large relative to the

size of individual cells.

In some cases, an approach that combines features of both continuum and discrete cell

identity is implemented. One example is [165]. Here, a 1D cell monolayer consists of a long

contractile element with myosin creating a strain rate resulting in length changes. This element

is flanked by cells in front and rear. Binding and unbinding of adhesion sites are also included.

The model tissue exhibits durotaxis, movement directed up a stiffness gradient, under appro-

priate conditions on the myosin and adhesion parameters. The authors use this model to con-

clude that a monolayer is more effective at durotaxis than single cells.

Other examples of hybrid treatments of particle-based and continuum approaches include

[166, 167]. These papers tackle the important question of how to derive appropriate contin-

uum models from underlying SPP models. This kind of work and, in particular, expository

papers that summarize the conclusions in ways that biological modelers can understand, could

help link work in the literature that is currently underappreciated or not understood.

A recent work, [168], describes fingering at the front of an epithelial sheet using several of

the above approaches. Cells are represented by pairs of points, as in [153], and also by Voronoi

polygons for computations corresponding to experiments in [131]. The authors develop an

active fluid model for the epithelium. Using these combined approaches, they demonstrate

that stable fingering of the tissue edge requires leader cells. They characterize the wavenumber

of the fingering instabilities (distance between stable fingers) using stability analysis of the con-

tinuum PDE model.

In summary, while the literature on tissue-scale collective migration is rapidly growing, it is

still in stages of infancy as far as coherence, coordination, and clear direction are concerned.

We see many exploratory steps in many individualistic directions. The list of core questions

and the discovery of unifying principles is beyond the horizon, providing ample challenges for

the community. We can draw an analogy between the current state of the art and the behavior

of a growing but uncoordinated population of cells. There is no emerging unified front. Each

is exploring independently and occasionally aggregating with a few others, but the global orga-

nizing principles are yet to emerge.

Links with experiments. The links between molecular players such as Rho family

GTPases and epithelial morphogenesis have been known for some time. (Experimental litera-

ture reviewed in [169]). The role of Rho GTPases in the leader-follower identities and in

front–rear tissue polarity is reviewed in [170].

Over the years, investigators have been asking how external constraints, geometry, strain

fields, gradients, and other factors affect collective behavior. How does collective cell migration

emerge from transfer of mechanical information between cells? For a cell to be a “leader,”

should it be more sensitive to stimulation than other cells? Should it have elevated or more

responsive GTPase activity, for example?
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These and similar questions are posed in the experimental work of [134]. Here, the authors

investigate the roles of the GTPases RhoA and RhoC and their GEFs in collective cell migra-

tion. It is found that cells tend to crawl in the direction of maximal principal stress, a process

called plithotaxis. In their scratch-wound assay of MDCK and human bronchial epithelial

cells, wounding leads to coordinated waves of motion, with cells at the front edge reacting

first, followed by those successively further back. The authors speculate that mechanical cues

are induced by leader cells on followers behind then by normal strain, and alongside them by

shear strain to coordinate motion.

In [134], the relationship of tissue speed to distance from the leading edge is quantified

using particle image velocimetry. The authors employ shRNA to knock down GTPase Cdc42

or Rac1 and many of their GEFs (screening some 81 GEFs in total). They find that the speed

and directionality of the cells drop everywhere. When RhoA is depleted, there is a reduction in

the spatial gradient of cell speed. They suggest that the molecular mechanism may include sig-

naling downstream of cadherin, as well as Merlin-Rac1 signaling.

The experiments in [129] elucidate the effect of pulling stress on Rac and Rho GTPases.

The authors investigated which properties of underlying molecular machinery allow for cou-

pling between mechanical forces and correlated cell motion. The correlation length scale of

collective force transmission was determined experimentally in [171]. Observed behavior was

then modeled using a thin elastic sheet of height h with some elasticity and isotropic contrac-

tion stress. The authors investigate the emergence of leader cells and found a typical length

scale of about 170 μm.

A number of experimental studies have explored how epithelia behave in grooves [130,

132], various topographic surfaces, or confined settings [105], including arrays of posts [172],

arrays of grooves [173], or adhesive [160] surfaces. In [132], the width of grooves and adhesive

strips is varied to investigate how these affect collective migration of an epithelial sheet of

MDCK cells. The authors map out the force and velocity fields in each case. Their narrowest

grooves are 20 μm wide, so cells are in a single file, and the authors observe “push-pull” or “cat-

erpillar” type motion, resembling the relaxation–contraction cycles in the model by [16].

Larger tissue widths exhibit vortices of cell motion. The authors deduce that the constraints of

the geometry influence cell rearrangement, as well as junctional forces between cells. (Com-

pare with [133], who observed sustained oscillations in epithelial sheets).

Micropillar arrays form the playing field in [172] to observe collective migration and EMT

in mammary epithelia and breast cancer cell lines. Dispersal of single, highly motile mesenchy-

mal cells from a spreading epithelial front was shown to agree quantitatively with a minimal

physical model of binary mixture solidification. While such a model lacks cell detail, it has sev-

eral advantages, including simplicity, basic summary statistics for comparison with experi-

ments, and availability of an analytic solution. Methods from physics can be used to inform

the link between the material properties and the overall macroscopic behavior.

Both single fibroblasts and epithelial monolayers were studied in [130], showing that cells

tend to be more organized on grooved versus flat substrata. Mechanical exclusion interactions,

rather than strength of junctions between cells, affect the distance over which the topographic

guidance signal propagates between cells. The same paper proposes a CPM computational

model to describe the observations. In the CPM model, following the the style of [15], each cell

is assigned a phenomenological “polarity” vector that both guides and is affected by cell dis-

placement. Aside from the customary Hamiltonian area constraint and cell–cell adhesion

energy, there is also a term for a phenomenological motile force, implemented as a “migration

energy” (dot product of the polarity vector and the cell centroid position). The authors investi-

gate how this motile force affects spatial correlation of the velocity. They observe emergence of

streaming patterns. The authors also describe the influence of “leader cells,” whose polarity
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vector is set to an external cue. Leaders are embedded in the tissue interior, and they coordi-

nating neighbors over some “interaction distance.”

In a similar style of experiment-model study, MDCK cells are seeded on a circular adhesive

domain in [160]. Once a critical density is attained, the confluent culture collectively rotates.

The same behavior is then captured in a CPM computational model that includes a motile

force and a polarity term that is reinforced by cell displacement, with some persistence time.

The authors show that rotation takes place when the size of the circular domain is on the order

of the correlation length of cells. That correlation length, in turn, depends on the cell—cell

adhesion energy, the motile force magnitude, and the polarity persistence time. Note the com-

parison with the purely computational paper by [22] using phase-field methods, where cell col-

lisions, rather than adhesive confluent cells, are the subject of focus. It is also interesting to

compare the CPM model in [160] with the vertex-based treatment of a similar situation in

[158].

A recent paper, [105], demonstrates the fact that single cell properties affect much of the

collective behavior of a cell population. In this ground breaking work, the authors link single

cell Rac1 polarity to the emergent rotations of confluent cells (from few to many) confined to a

ring or closed curve. A simple mechanical model captures the balance of directed motility

and contact forces to demonstrate the principles at work. This paper spans subcellular to

multicellular scales and provides a great example of elegant experiments to be emulated by

others.

Modeling recruited signaling networks and multiscale behavior in

collective cell systems

At present, there are still relatively few models that bridge from detailed underlying molecular

mechanisms through individual cell motility, all the way to tissue dynamics and collective cell

migration, though the number of such papers is growing. There are 2 major issues that hamper

such efforts. First, it is unclear how to deal with the problem of combinatorial complexity in

trying to understand numerous players and interactions at each level. Decisions made at 1

stage affect other stages, and exploring a multiplicity of assumptions is a challenge (but see

[118]). Second, complexity of the resulting models makes it challenging to determine the

range of possible behavior, let alone make sense of overall principles and key components.

Few papers specifically address the signaling modules that get recruited in collective migra-

tion, beyond those that serve single cells migrating on their own. Here, we refer to signaling

that is triggered by cell contact or junctions, and that specifically affects the way that cells then

interact. Downstream responses might include changes in cell adhesion, migratory potential,

permissive or inhibitory control of cell division or apoptosis, or relative sizes, polarity, or other

aspects of cells. Input from the environment in the form of mechanical tension or topography

can influence these signaling networks, promoting or inhibiting EMT. Examples of this sort

include some of the following.

The role of Merlin is highlighted in [129]. Merlin, a negative regulator of Rac [128], is a

member of the Ezrin-radixin-Moesin (ERM) family. When Merlin is bound to tight junctions

between cells, it inhibits Rac1, but when it is in the cytoplasm, it releases that inhibition. At the

same time, low Rac1 activity leads Merlin to become stabilized at tight junctions [129]. Hence,

Merlin and Rac1 compete in a mutually inhibitory circuit, and a balance between mechanical

and chemical factors controls Merlin activity and localization. The balance, in turn, regulates

cell states that favor (high Rac, low Merlin) or inhibit (high Merlin, low Rac) protrusion of

cells at the front. Spatial separation of Rac and Merlin activities can result in front–rear polari-

zation in collectively motile cells.
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Mechanical cues and ECM topography appear to influence the adhesion and migration of

cells in an epithelial sheet. The signaling of YAP-Merlin-Trio (YAP, Yes-associated protein) in

regulation of Rac and the expression of E-cadherin were investigated in [173] on nanostruc-

ture ridge arrays that mimic ECM. A minimal model for 2 signaling modules was proposed to

account for the transition of YAP activity with distance from the front edge of the sheet. These

examples of how cell–cell interactions depend on and influence both intracellular Rac gradi-

ents and adhesion motivate future modeling efforts at the multiscale level.

An intriguing stepping stone on the route to the challenging eventual targets are engineered

tissues studied in synthetic biology. Since these are designed with known components, they

allow for more direct development of models based on underlying mechanisms. We mention

and example of this sort in what follows.

An interesting question is whether and how lessons from 1 level can be simplified into rules

for components at the next level and how to best include the additional signaling pathways

that get recruited at distinct levels of organization.

Here, we mention a few representative examples but recognize that others may exist of

which we are as yet unaware.

Bridging scales

In many respects, we are currently seeing first steps in models that bridge several layers of

organization. Examples of this type can be found in the work of Marzban and colleagues [6,

175]. Their model combines several modules: cell polarization as in [5], a viscoelastic cytoskel-

eton, stress fiber structure, cell motility as in [176], and cell–substrate interaction. The authors

first model the polarization, motility, and durotaxis in single cells, and then combine these

with a cell–cell interaction module to simulate the rotation of tens of cells in a confining 2D

annulus. The paper demonstrates a creative combination of a number of known cell represen-

tations to bridge from subcellular properties to those of the collective.

In [12], the authors study tumor spheroid growth under high mechanical compression.

Their model represents cells as 3D spheres. Commonly used cell contact models (e.g., the

Hertz model) do not take such large volume compression into account. The required correc-

tions to the contact models were calibrated using a high-resolution mechanical models of cells

[9]. We expect that similar approaches will in the future improve the accuracy of coarse-

grained tissue level simulations.

The intersection of cellular and developmental biology has provided additional important

examples of computational models that span multiple scales. Some examples predate recent

efforts by 2 decades, notably computational studies of cellular slime mold, D. discoideum mor-

phogenesis, and signaling in [177, 178]. Other examples such as [179] are purely theoretical,

aimed at exploring how random gene circuits linked to cell adhesion, cell division, and some

overall measure of “fitness” evolve into a zoological garden of multicellular structures. See also

[180] for a recent work along a similar “EvoDevo” evolutionary developmental biology line.

Levels of detail

By using very simple representations of subcellular events, [26] bridge from 1 cell to hundred(s)

using CPM computations. The authors assumed an elementary process that mimics, but does

not explicitly depict, the effect of actin on persistence of motion. Local protrusion is self-

reinforcing, and decays on some time scale. First showing how 2 simple computational

parameters tune the cell shape from keratocyte-like to amoeboid, they then simulate the col-

lective migration of a monolayer. The abbreviated level of intracellular detail permits efficient

computations. Note the comparison with [6], where more costly FEM computations and
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greater detail makes for greater computational cost and smaller number of cells that can be

readily simulated. Software packages as in [181] may eventually make it more realistic to

incorporate intracellular detail into multiscale models.

Links with experiments

In creating synthetic gene networks that regulate the adhesion protein E-cadherin in real cells,

Toda and colleagues [182] succeeded to design multicellular clusters that self-organize into

distinct layers. The expression of E-cadherin genes was placed downstream of cell-surface

notch receptors. Notch ligands on some cells activated notch receptors on neighbors, and in

this way, cell–cell interactions both influenced, and were influenced by intracellular signaling.

The experiments were later linked to computational models in [146, 183]. When details of the

relatively “simple” genetic circuits are known, as in such synthetic biology experiments, mod-

elers can bootstrap signaling models to learn how spatial influences and cell–cell interactions

shape the emergent tissue structures.

In [184], we find a link between intracellular signaling and tissue morphogenesis. The

authors show that the mutual antagonism of Rac and Rho can affect the invagination and

bending of epithelial that form a lens pit in the eye development in a mouse. Rho apparently

controls the apical constriction of cells via myosin, and Rac the elongation of those cells via F-

actin assembly, hence accounting for the conical angle formed by each cell and the overall cur-

vature of the tissue.

Overall, more experimental papers that probe the circuits that get recruited in the collective

cell migration are needed. The papers [129, 173] on the Merlin-Rac loop and on the link to

YAP and E-cadherin [173] should be followed up with more detailed computational modeling

and future rounds of experiments.

Discussion

In this paper, we described a small selection of modeling works on cell migration that bridge

from intracellular, to cellular and multicellular scales, as shown in Fig 3. Many other excellent

papers have been omitted due to space limitations. That said, even from the fraction surveyed,

we find that a variety of computational and analytic methods are used at various scales. Table 2

organizes modeling papers by their subject and methodological approaches, Table 1 classifies a

few experimental papers by their biological targets, and Fig 4 summarizes the ranges of rele-

vance of both computational and experimental methods. Our review has focused on the topic

of single and collective cell migration and its regulation. Likely motivated by development of

disease therapies and NIH funding, or drug targets and support from pharmaceutical compa-

nies, the more medically oriented subjects such as cancer, liver toxicity, or lung morphogene-

sis, have fostered many generations of computational models. By comparison, the level of

basic scientific computational research on multiscale cell biology modeling is still emerging.

We have seen that some computational techniques that work well at the single-cell level,

become too costly or excessive at the tissue level. (See also review of computational models in

[4, 38, 95, 140, 143] and [185] for cancer). We also encountered topics where diverse computa-

tional techniques lead to similar predictions. (See Fig 5, and [143] for comparisons). We still

find instances where 1 or another group claims that their computational method of choice

outperforms others or has fewer unrealistic features. In many cases, such claims are, at best,

unfortunate and overlook essential shared attributes. In other cases, they skip over relative

advantages versus disadvantages of the distinct schemes. We believe that the field needs

more rational comparisons of how custom-build computations perform against a host of

“benchmark” test problems, as for example, shown in [143], and/or deeper comparative analysis
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of cell-surface mechanics models that demonstrate equivalence of distinct approaches, as in

[186].

While more journals now require that simulation codes be made publicly available, in prac-

tice, this is only a half measure. Many researchers, and most biologists do not have the software

packages or expertise to read, execute, and run codes in different formats. We recommend

that, moving forward, the community should invest more directly in standardizing open-

source software, with several specific aims: (1) ease of operation, user friendliness, and rapid

learning curve; (2) basic built-in code for most major computations, including reaction–diffu-

sion solvers, particle position and collision solvers, cell shape and cell–cell adhesion, intra and

intercellular signaling, and so on; (3) ease of sharing “code,” as, for example, in the simple

small Morpheus xml files—these preserve exact details of each simulation run; and (4) ease of

Table 2. Summary of the modeling papers. Papers classified by 3 levels of organization: S, SCB, and CCB or tissue behavior. SPP models represent the cell shape statistically;

common cell shape choices are spherical, ellipsoidal, or cylindrical cells. Models are categorized into: (1) CPM; (2) phase-field models; (3) vertex models; (4) particle models;

(5) continuum models. CPM and phase-field models resolve cell shape well. c-c, cell-cell; CCB, collective cell behavior; CPM, Cellular Potts Models; expts., experiments;

FEM, finite element methods; ODE, ordinary differential equations; RDE, reaction diffusion equation; S, signaling; SCB, single cell behavior; SPP, self-propelled particles.

Bridging scales Levels of detail Refs. Experimental links

S Boolean signaling network [150] Motivated by expts.

SCB 3D phase-field model [161] Motivated by expts.

SCB 3D triangulated cells [9] Links to liver regeneration expts.

CCB SPP, pairwise forces, cell types [29] Pure theory, applied to expt’l design.

CCB SPP, Spherical cells, 2D, 3D; adhesion, repulsion, random forces [101] Compared to live images.

CCB SPP, 2D swarm, cell types, differentiation [99] Compared to fish skin patterns.

CCB vertex-based, 3D [149] Integrated expt.-model

CCB polygonal cells, 2D, 3D, viscoelastic elements [148] Motivated by expts.

CCB Cells as pairs of spheres [153, 168] Motivated by [131].

CCB CPM with cell polarity [15, 130] Motivated by expts.

CCB 3D vertex based model, epithelia [162] Proposes new expts.

CCB Spherical cluster; Langevin eqn. [100] Integrated expt.-model

CCB Continuum compressible fluid tissue [164] Reproduces expts.

SCB, CCB Spherical cells, detailed adhesion dynamics [157] Motivated by expts.

SCB, CCB SPP, disk shaped cells, ECM, Cell–ECM interaction [107] Reproduces expts. of [106].

S, CCB SPP with alignment rules [151] Reproduces expts.

S, CCB Spherical cells, internal details [27, 154] Reproduces expts.

S, CCB Ellipsoidal cells [14, 155, 156] Motivated by expts.

S, CCB Vertex based [158, 159] Motivated by expts.

S, CCB Vertex-based; sub-cellular components [13] Motivated by expts.

S, CCB Vertex-based, intracellular signaling [10] Motivated by expts.

S, CCB FEM, 1D approximation of 3D [165] Motivated by expts.

S, CCB Cell agents, repolarize after collisions [96] Integrated expt.-model.

S, CCB SPP, leaders, followers, filopodia, chemical gradients [87, 89, 90] Integrated expt.-model.

S, CCB SPP cells, polarity vectors, c-c coordination [18, 103] –

S, CCB FEM cells, signaling at cell edge, adhesion [8] Wound-healing, compared to expts.

S, CCB Active media, RDEs, actomyosin, cell motion [163] –

S, SCB, CCB 1D or 2D cells, ODE signaling networks [16, 147] Theoretical study.

S, SCB, CCB SPP, 1D, rules for polarity coordination [25] Motivated by expts.

S, SCB, CCB deforming polygon cells, signaling at nodes [7] Motivated by expts.

S, SCB, CCB CPM, minimal intracellular signaling [31] Real cell traction forces [174].

S, SCB, CCB Phase-field method, minimal intracellular signaling [22, 71, 88, 91, 102] Collision assays of [160].

https://doi.org/10.1371/journal.pcbi.1008411.t002
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development of new plug-ins to allow the capabilities to expand with the needs of the commu-

nity. We recommend that groups invest resources in helping to develop such shared platforms

and that funding bodies (NIH, NSF, and NSERC) make it a priority to support such develop-

ments. Certainly, at initial stages, this development requires teams of computational experts

who can establish solid, robust platforms, and create training manuals or instructional videos

to recruit new users. Morpheus, a software system developed at the Technische Universität

Dresden, is 1 example along these lines, but others are needed.

Returning to questions posed in the Introduction, we can draw a few general conclusions.

Bridging scales

Building from the bottom up, models that include detailed molecular interaction or gene net-

works (such as the Boolean models in [58, 150]) encode many details and occasionally reveal

attractors or identify missing components [150]. They are harder to understand on their own.

Detailed models such as [40] benefit from insights of preceding more basic models [33]. At

lower levels of detail but still arguably “bottom up” are studies that show how certain proper-

ties of molecular components and interactions result in specific cell behavior such as polariza-

tion [5, 52, 54, 55]. Other work starts from observed cell dynamics to infer the likely signaling

pathways at play [64, 70, 74] or likely underlying mechanisms [36, 118], that we could denote

“top down.” The latter, [118], also demonstrates the idea that it is preferable to weed through

and discuss many models, particularly some that fail, with reasons for that failure, not merely

aiming for a single optimal model. This kind of process helps to build a greater intuitive under-

standing of the specific key mechanisms required to explain observed phenotypes.

We recommend that modelers avoid publishing large-scale models as a “fait accompli,” so

as to “be the first to accurately simulate” some entire comprehensive behavior of choice.

Instead, we suggest that modelers should provide due description of the steps taken in develop-

ing such models, with all informative failures and successes. This would help the community

to assimilate the insights that resulted from an entire program of research.

Fig 4. A summary of common modeling (top, red box) and experimental (bottom, green box) methods used to

study cell behaviors from single cells to cell groups and up to tissues (left to right in increasing number of cells

and increasing cell-cell adhesion).

https://doi.org/10.1371/journal.pcbi.1008411.g004
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In a related, but separate vein, the field is in need of rational consensus and standard prac-

tices for stepping between size scales and levels of organization. To draw a common analogy,

our ability to easily use and appreciate global geography as well as local structure has been

transformed by the way that Google maps seamlessly allows us to zoom down to street-level

views and back out to the globe as a whole. The algorithms that reveal or blur over specific

details as we step up or down were logically constructed for easy navigation and optimal view-

ing of many levels of complexity. Nothing like this currently exists in the realm of cell biology.

The fact that structures and interactions change on a rapid timescale make this a tough issue,

to be sure, but one deserving more attention.

Associating rule of behavior with a specific hierarchy is possible once we have sufficient

familiarity with the biology and predictions of basic models. This can help to bridge hierar-

chies and avoid the fog of complexity. Mathematical methods such as dynamical systems,

PDEs, and bifurcation analysis can help to find and account for emergent properties and uni-

versal principles in such basic models [48]. This is one of the strengths of the mathematical

tools. A weakness is that these methods currently work well for small systems of differential

equations, but not for large and complex systems.

Once we understand the repertoire of a single cell, we can move up to 2, 3, or many cells.

Experimental observations of small cell groups provide good opportunities for understanding

how to bridge from single to collective behavior. Modeling can then also explore the advan-

tages of group migration, chemotaxis [18, 103], durotaxis [165], etc., in larger groups. For a

large enough number of cells, condensing the details into simpler rules becomes expedient.

For example, while polarity is represented by PDEs and patterns inside a single cell, it can then

Fig 5. Cell sorting (left) and wound-healing (right) captured by several distinct computational methods. (A1) Cells

represented by deformable ellipsoids in 3D. Simulations by Hildur Knutsdottir based on code originally created by Eirikur

Palsson (A2) Vertex-based simulations using CHASTE open source platform, run by Dhananjay Bhaskar. (A3) CompuCell3D

cell-sorting simulations run by Dhananjay Bhaskar. In (A1–A3), there are 2 cell types with differing adhesion strengths to self and

other cell type. (B1) and (B2) show deformable ellipsoids and CPM scratch wound models with 2 cell types. Cells with weaker

adhesion (red) tend to segregate to the edge of the monolayer, acting as leader cells, and causing fingering of the front. (Compare

with [168]). Papers that compare distinct computational platforms include [143].

https://doi.org/10.1371/journal.pcbi.1008411.g005
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be simplified, depicted by a direction vector [15, 25] in place of a full internal gradient of Rho

or Rac for multiple cells.

Level of detail

The current computing power at our disposal allows increasingly detailed models to be con-

structed, with tens or even hundreds of components, and many more parameters. The tempta-

tion to create such a model and to present it as a mechanistic representation of real cells is hard

to resist. Yet, before going down this very intricate route, important questions should be con-

sidered: What do we expect to learn? Might we have left out something important? Have we

included superfluous detail that obscures the basic structure? Are we certain that our parame-

ter regime faithfully corresponds with true rates and quantities? As previously noted, even

though we can construct highly complex models, our comprehension of that detail is limited.

In general, best practices seem to invoke back and forth attempts to include important

aspects, simplify to understand, throw out secondary factors, and go back to including detail.

Simplifications lead to insights and rigorous analytic results but leave large gaps to real biology.

However, returning to detailed versions of a model once the major insights are at hand (or

vice versa) is helpful. While [52] explains polarization in a motile cell, for example, [61]

extracts some of the key properties and interactions that guarantee that it could work in a

mathematically tractable mini-model.

Furthermore, “toy models” consisting of small sets of ODEs or PDEs can help to formulate

universal principles that work across many biological examples and many scales. Here, we can

mention the concepts that mutual inhibition or positive feedback, which result in bistability

and hysteresis. Simple “modules” consisting of specific types of interacting components,

whether molecules, cells, or animals have prototypical behaviors as switches, oscillators, or

other dynamics, and, with molecular diffusion or random motion, engender patterns or waves

[48, 49].

Model-experiment links

Biology is an experimental science at its core, and models that illuminate its mysteries must

eventually meet and concur with biological evidence. Modern methods such as machine learn-

ing can help match a vast dataset with the best candidate model(s) as shown elegantly by [118].

At the same time, modelers, physicists, and biophysicists can make real contributions by using

their craft and theories to unlock important facts that are not at all apparent otherwise [42].

Several of our examples demonstrate that some experimental papers have explicitly

addressed signaling pathways that mediate cell–cell communication in collective cell behavior.

As pointed out eloquently by a reviewer of this paper, “experiments can only tell [us . . . what

are] upstream and downstream regulators. We need mathematical models to incorporate this

information with the intracellular networks to form a signaling network on a multicellular

level to study how a group of cells processes signals collaboratively.”
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