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Abstract

Despite being the focus of a thriving field of research, the biological mechanisms that under-

lie information integration in the brain are not yet fully understood. A theory that has gained

a lot of traction in recent years suggests that multi-scale integration is regulated by a hierar-

chy of mutually interacting neural oscillations. In particular, there is accumulating evidence

that phase-amplitude coupling (PAC), a specific form of cross-frequency interaction, plays a

key role in numerous cognitive processes. Current research in the field is not only hampered

by the absence of a gold standard for PAC analysis, but also by the computational costs of

running exhaustive computations on large and high-dimensional electrophysiological brain

signals. In addition, various signal properties and analyses parameters can lead to spurious

PAC. Here, we present Tensorpac, an open-source Python toolbox dedicated to PAC analy-

sis of neurophysiological data. The advantages of Tensorpac include (1) higher computa-

tional efficiency thanks to software design that combines tensor computations and parallel

computing, (2) the implementation of all most widely used PAC methods in one package,

(3) the statistical analysis of PAC measures, and (4) extended PAC visualization capabili-

ties. Tensorpac is distributed under a BSD-3-Clause license and can be launched on any

operating system (Linux, OSX and Windows). It can be installed directly via pip or down-

loaded from Github (https://github.com/EtienneCmb/tensorpac). By making Tensorpac

available, we aim to enhance the reproducibility and quality of PAC research, and provide

open tools that will accelerate future method development in neuroscience.
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Introduction

The study of electrophysiology is innately challenging due to the immense complexity of oscil-

latory phenomena organized at many distinct spatial and temporal scales. While common

assays for measuring brain function like fMRI are able to considerably reduce the temporal

complexity of functional brain dynamics, scientists interested in electrophysiology must grap-

ple with a dizzying array of plausibly meaningful features in the spectral domain. For decades,

neuroscientists have sought to isolate cognitive and task-related changes in brain oscillations

by examining spectral features such as power, amplitude, and phase across frequencies and

brain regions. However, increasing attention has been given to more complex and dynamic

properties of neural oscillations [1–6]. A prominent example of such dynamic oscillatory phe-

nomena is Cross-Frequency Coupling (CFC) [7] which has been observed both at the phase-

level [8–10], and at the amplitude level [11–13]. A slightly more recent, and arguably less well

characterized phenomenon, Phase-Amplitude Coupling (PAC), provides a metric to identify

and quantify synchronization between the phase of low-frequency oscillations and the ampli-

tude of high-frequency oscillations.

Over the last decade, PAC has been shown to mediate a variety of task-related and cognitive

functions including attention and decision-making [14, 15], learning and memory [16–22],

motor and visuomotor tasks [10, 23–29], as well as mental disorders such as Parkinson disease

and schizophrenia [30–37]. It has been proposed that PAC reflects the regulation of high fre-

quency local computations by a larger network, oscillating at lower frequencies [38]. PAC

might therefore contribute to coordinate neural activity by using a “hold and release” mecha-

nism of gamma oscillations [29].

In order to quantify PAC, a number of methodologies and implementations have been pro-

posed [14, 35, 39–46] and compared [45, 46]. Until now, there is still no gold standard on

which method is the best alternative, even though the Modulation Index [46] is probably the

most widely adopted due to its noise tolerance and amplitude independence. In addition, it

has been shown that PAC can be computed in an event-related manner [47]. Nevertheless,

there is still no consensus on the minimal data length (i.e. the number of cycles) that is

required or the most appropriate filtering methods [48, 49]. It has also recently been shown

that spurious PAC can occur for a variety of reasons that may be difficult to systematically con-

trol [48, 50–52]. Among them we can mention the absence of a clear peak in the power spec-

trum density (PSD) of the phase, the choice of the filter bandwidth or the nonstationarity.

To date, a handful of established brain data analysis toolboxes provide built-in functionali-

ties to compute PAC, these include Matlab-based packages such as Fieldtrip [53], Brainstorm

[54] and EEGLAB [55]. The open-science Python research community has also proposed a

few PAC tools, including pacpy (https://github.com/voytekresearch/pacpy/) or pactools [41],

with the latter supporting MNE-Python inputs [56]. While the available tools are extremely

valuable, and although some of them provide multiple methods for PAC computation, existing

tools do not always include time-resolved PAC measurements and often have limited options

for visualization and statistical assessment. In addition, computational time remains a chal-

lenge that can severely limit PAC analyses at a time when data dimensionality and data-driven

analyses are drastically increasing in neuroscience research.

Here, we present Tensorpac, a cross-platform open-source Python toolbox, distributed

under a BSD-3-Clause license, dedicated to the measurement of phase-amplitude
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relationships. This includes an array of functions to compute PAC and event-related PAC

(ERPAC) alongside innovative features such as the estimation of the preferred-phase with

polar plotting and exhaustive exploratory analysis across the full frequency space. Tensorpac

also ships with additional tools in order to assess the reliability of the estimation such as power

spectral density (PSD), Inter-Trial Coherence (ITC) and statistics. Crucially, what distin-

guishes Tensorpac even more from other available tools, is the combination of parallel com-

puting and tensor-based implementation of the algorithms which drastically reduces

computation time and opens up the possibility to compute PAC on large multidimensional

arrays.

Design, implementation and results

In principle, estimating PAC consists in quantifying the coupling between slow-wave phase

with the amplitude of higher frequency signals. As a bidirectional coupling measure, however,

it is impossible to say whether PAC high-amplitude rhythms are led by slow oscillations or the

contrary. Accordingly, we denote by f1$ f2 the PAC between a phase centered in f1 and the

amplitude centered in f2.

Estimation of a corrected phase-amplitude coupling

Estimating PAC is usually assessed in four steps, illustrated in Fig 1. First, the instantaneous

phases of slower oscillations and amplitudes of faster oscillations are extracted. Second, the

true coupling measure between those phases and amplitudes is computed. Third, a null distri-

bution of surrogate values of the measure in the absence of coupling is estimated. This is usu-

ally assessed by swapping either amplitude or phase time-blocks, cut at a random time-point.

Finally, the true coupling measure is corrected by subtracting the mean and dividing by the

standard deviation of the surrogate null distribution. This step improves the robustness and

the sensibility of the measure.

Generating coupled signals. For the implementation and validation of coupling methods,

we used synthetic signals with controllable coupling frequencies. To this end, we included in

the toolbox two ways to simulate synthetic signals that can be imported from tensorpac.signals:
pac_signals_tort which is a method based on pure sines summation and modulation [46] and

pac_signals_wavelet which extract the phase from a random distribution leading to more com-

plex signals [41]. Both methods, illustrated in Fig 2, provide fine-grained control over the cou-

pling frequency pair of (phase, amplitude), the amount of coupling and noise such as data

length and sampling frequency.

Extracting the instantaneous phase and the amplitude. Since there is no consensus

about whether the Hilbert or wavelet transforms constitutes a gold standard for extracting the

phase and the amplitude, Tensorpac implements both. The Hilbert transform has to be applied

on pre-filtered signals. For filtering, we implemented a Python equivalent to the two-way zero-

phase lag finite impulse response (FIR) Least-Squares filter implemented in the EEGLAB tool-

box [55]. Filter orders are frequency dependent and are defined as a function of the number of

cycles (by default 3 cycles are used for the phase and 6 cycles for the amplitude [57]). The

phase and the amplitude are respectively obtained by taking the angle and the absolute value of

the Hilbert transform applied to the complex analytic filtered signals. Both components can

also be obtained by convolving with a Morlet’s wavelets [58] with a default width of 7, a default

value broadly used in electrophysiological data analyses.

Implemented PAC methodologies. Here, we describe the main PAC estimation methods

currently available in Tensorpac, which include the Mean Vector Length, Modulation Index,

Height-Ratio, normalized direct-PAC, phase-locking value and Gaussian-copula PAC (new
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validated methods will be continually added and documented online). In the following, we

denote by x(t) a time-series of length N, fϕ = [fϕ1, fϕ2] and fA = [fA1, fA2] the frequency bands

respectively for extracting the phase ϕ(t) and the amplitude a(t).
Mean Vector Length: The Mean Vector Length (MVL) was introduced by Canolty et al.

[39] and is defined as the modulus of the average complex vector formed by combining the

phase and amplitude signals:

MVL ¼
1

N
j
XN

k¼1

aðkÞej�ðkÞj ð1Þ

Note that authors also proposed to normalize the MVL by computing surrogates using a

time lag.

Modulation Index: Originally the Kullback-Leibler distance is used in information theory

to measure dissimilarities between two probability distributions. Tort et al. 2010 [46] elegantly

proposed an adaptation for measuring PAC which consists of defining a probability distribu-

tion of amplitudes as a function of phase and then comparing this distribution to a uniform

one. To this end, the phase ϕ(t) is first cut into n slices. For example, if n = 18, the phase is

binned into 18 bins of 20˚ each. Then, the mean of the amplitude a(t) is taken inside each bin

Fig 1. Estimation process of a corrected 10$100hz PAC. For illustration, here simulated raw data contains a coupling between a 10 hz phase and a

100 hz amplitude. First, the raw data is respectively filtered with bandpass filters centered on 100hz and 10hz. Then, the complex analytic form of each

signal is obtained using the Hilbert transform. The phase is extracted from the 10Hz signal (angle of analytic signal) and power from the 100Hz signal

(amplitude of analytic signal). An uncorrected PAC measure is obtained from these two signals. To estimate the null distribution of the measure in the

absence of any genuine coupling, the amplitude signal is split into two blocks at a random time point and the temporal order of those two blocks is

swapped. Then, the PAC is estimated using this swapped version of amplitude and the originally extracted phase. By repeating this process and cutting

at a random point, for example 200 times, we can obtain a distribution of surrogate values for which there is no genuine coupling. Finally, a corrected

PAC estimate is obtained through z-score normalization of the uncorrected PAC using this distribution.

https://doi.org/10.1371/journal.pcbi.1008302.g001
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and is denoted by ha(t)iϕ. Through this binning operation, the phase and the amplitude are

linked and can be said to be coupled. Finally, the probability distribution P is obtained by

dividing the amplitude inside each bin by the sum over the bins:

PðjÞ ¼
hai

�
ðjÞ

Pn
k¼1
hai�ðkÞ

ð2Þ

where 8j 2 ⟦1, n⟧, P(j) represent the normalized amplitude inside a bin. This distribution is

then used to compute PAC using either the modulation index either the heights ratio.

The modulation index (MI) is obtained using Kullback-Leibler distance which measure

how the probability distribution of amplitudes P diverges from a uniform distribution Q:

MI ¼
DKLðP;QÞ

logðnÞ
ð3Þ

Fig 2. Synthetic signals to simulate phase-amplitude coupling. Illustration of synthetic signals that can be generated to simulate phase-amplitude

coupling (left column) and associated comodulogram (right column). A: First row shows an example of a signal that contains a 5$120hz coupling

defined as proposed by Tort et al. [46]. B: Bottom signal also contains a 5$20hz coupling but defined as proposed in Dupré la Tour et al. [41].

https://doi.org/10.1371/journal.pcbi.1008302.g002

PLOS COMPUTATIONAL BIOLOGY Tensorpac: A Python toolbox for phase-amplitude coupling measurement

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008302 October 29, 2020 5 / 18

https://doi.org/10.1371/journal.pcbi.1008302.g002
https://doi.org/10.1371/journal.pcbi.1008302


where

DKLðP;QÞ ¼
Xn

k¼1

PðkÞlogð
PðkÞ
QðkÞ
Þ ð4Þ

Note that for a uniform distribution, 8k 2 ⟦1, n⟧, Q(k) = 1/n and therefore the MI formula

can be written to:

MI ¼ 1þ
1

logðnÞ

Xn

k¼1

PðkÞlogðPðkÞÞ ð5Þ

Heights Ratio: Starting from the same probability density distribution of amplitudes, the

Heights Ratio (HR) [42] is defined by:

MI ¼
hmax � hmin

hmax
ð6Þ

where hmax and hmin are respectively the maximum and the minimum of the distribution.

Normalized direct PAC: The ndPac [59] is similar to the MVL with two exceptions. First,

this method uses a z-scored normalized amplitude and secondly, includes a statistical test. This

test uses a closed-form statistical threshold given by:

xth ¼ 2� N � ðerf � 1ð1 � pÞÞ2 ð7Þ

With p the confidence level, N the number of time points and erf−1 the inverse error function.

In order to find this threshold, the amplitude is assumed to be normally distributed (zero

mean and unit variance) and the phase is assumed to be uniformly distributed between −π and

π. To this end, the mean and deviation across time points of the amplitude are used to perform

a z-score normalization in order to approximate the original assumptions. Finally, every value

of coupling exceeding this threshold is considered as reliable, at a given confidence level. Oth-

erwise, if the value of coupling is below this threshold it is set to zero.

Phase-Locking Value: The phase-locking value (PLV) [45, 60] looks only at the phase con-

sistency across trials. The PLV consists of extracting the phase of the amplitude ϕa, subtracting

it from the phase of slower oscillations, projecting the resultant time series into the complex

circle and finally, calculating the mean of the length vector:

PLV ¼
1

N
j
XN

k¼1

ejð�ðkÞ� �aðkÞÞj ð8Þ

Gaussian-Copula PAC: Mutual Information (MI) can be used to quantify pairwise statisti-

cal dependence between many different types of variables on a common and meaningful effect

size scale (bits) [61]. However, MI can be difficult to estimate in practice as it requires sam-

pling the full joint distribution of the two considered variables, each of which can themselves

be multivariate. Gaussian-Copula Mutual Information (GCMI) is a recently proposed semi-

parametric estimation technique [62] which has some advantages for estimating MI from neu-

ral data. GCMI exploits the fact that mutual information is copula entropy: MI does not

depend on the marginal distributions of the variables, but only on the copula function which

describes their dependence. GCMI therefore first transforms the inputs to be standard normal.

This copula-normalisation step involves calculating the inverse standard normal cumulative

density function (CDF) value of the empirical CDF value of each sample, separately for each

input dimension, before using a parametric, bias-corrected, Gaussian MI estimator. This pro-

vides a lower bound estimate of the MI, without making any assumption on the marginal
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distributions of the input variables. GCMI is rank-based, robust and scales well with multidi-

mensional variables as the Gaussian model reduces the curse of dimensionality that faces other

methods such as those involving binning.

In the case of PAC, the phase ϕ(t) and the amplitude a(t) are still extracted using the Hilbert

transform or using wavelets. The rank normalization is first applied on the amplitude a(t). To

preserve the cyclic nature of phase, it is represented as points on the unit circle of the complex

plane, represented as a 2d variable for GCMI. This 2d variable is built by concatenating the

sine and cosine of the phase ϕ(t), [sin(ϕ(t)), cos(ϕ(t))] projecting it into the unit circle (or alter-

natively by normalizing away the amplitude of the complex value). The copula normalization

procedure is then applied to each dimension of this 2d variable. PAC is measured as the GCMI

between the copula-normalized 1d high-frequency amplitude and the 2d representation of

low-frequency phase:

gcPAC ¼ IðaðtÞ; ½sinð�ðtÞÞ; cosð�ðtÞÞ�Þ ð9Þ

Since the gcPAC is rank-based, it is, by construction, invariant to overall amplitude shifts

which means that a power increase does not lead to an increase of coupling. Note that measur-

ing PAC using mutual-information has already been proposed using nearest-neighbour esti-

mators [43]. Similarly to the other measures, Tensorpac provides a tensor-based

implementation of the GCMI computed between two continuous variables.

While there is still no gold standard for choosing the most appropriate PAC method, some

of them are by construction less suitables for measuring genuine coupling. In particular those

for which an increase of power would also lead to an increase of coupling (amplitude depen-

dency). Therefore, we recommend choosing methods like the MI, HR or gcPAC which are all

not affected by the magnitude of amplitude. The main PAC methods implemented in Tensor-

pac are presented in Fig 3.

Statistical analysis of PAC. The absence of PAC in a signal could be related to several

parameters that have been previously described [45]. Each one of the proposed PAC method-

ologies presents some advantages or limitations and may not be appropriate for all types of

analysis. These methods exhibit differences in terms of robustness to noise, as well as modula-

tion width, neither of which are necessarily amplitude independent [46]. In addition, PAC esti-

mations may be biased due to limited amounts of data being available.

Generally, these limitations can be taken into account by computing a surrogate null distri-

bution and using this to correct or normalize the PAC measure. To this end, several methods

exist, all based on a common idea: introducing a small change into the data such that the tem-

poral characteristics of the time-series are preserved but the relationship between the phase

and the amplitude is disrupted. Among existing methods, [39] introduced a time lag to the

amplitude, while [46] swap amplitude and phase trials and [57] swap time blocks, cut at a ran-

dom point. The latter method, with only two blocks, has been described as the most conserva-

tive strategy to generate the distribution of PAC that can be observed by chance [48]. Finally,

this null distribution is then used to perform non-parametric inference or to correct the mea-

sure estimated from the data (usually by subtracting the mean and divide by the deviation of

this distribution). An example of a corrected PAC is presented in Fig 4.

Finally, the null distribution can also be used in order to infer the p-value. Indeed, the p-

value is defined as the proportion of surrogates that are exceeded by the true value of coupling.

For a comodulogram that contains several phase and amplitude frequencies, Tensorpac also

includes a correction for multiple-comparisons. By default, it uses the maximum statistics

which provides a threshold that controls family-wise error rate [63, 64]. The procedure
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consists in taking the maximum of the surrogates over all of the computed phases and ampli-

tudes and using this distribution of maxima to infer the p-value.

Event-related phase-amplitude coupling (ERPAC). One issue that has been raised is

that, since PAC is computed across time, non-stationary signals can cause the appearance of

Fig 3. Comparison of the main PAC methods currently implemented in Tensorpac. The comodulograms were computed using the A: MVL, B: MI,

C: HR, D: ndPac, E: PLV and F: gcPAC, from 20 trials of simulated data containing a 10$100hz phase-amplitude coupling. The data is available in

Tensorpac and can be used to validate and benchmark other methods.

https://doi.org/10.1371/journal.pcbi.1008302.g003

Fig 4. Comparison between corrected and uncorrected PAC. A: PAC comodulogram is computed for several (phase, amplitude) pairs. B: For each of

those pairs, we estimate the distribution of surrogates and plot the mean comodulogram of these permutations. Note that both uncorrected and

surrogate PAC comodulograms exhibit a spurious peak in the very low frequency phase. C: The true 10$100hz coupling is finally retrieved by

subtracting the mean of the surrogate distribution (panel B) from the uncorrected PAC (panel A).

https://doi.org/10.1371/journal.pcbi.1008302.g004
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spurious coupling [48]. An illustrative example taken from the same study explains that if

there is an induced phase locking of lower frequencies and simultaneously a high frequency

power increase, a coupling between them is going to be observed. Interestingly, a complemen-

tary approach to the time-averaged PAC has been proposed and consists of computing time-

resolved PAC across trials [47]. Accordingly, the Event-Related PAC (ERPAC) measure is

based on a circular-linear correlation [65] which evaluates the Pearson correlation, across tri-

als, of the amplitude at and with the sine and cosine of the phase ϕt. We denote by c(x, y) the

Pearson correlation between two variables x and y, rsx = c(sin(ϕt), at), rcx = c(cos(ϕt), at) and

rsc = c(sin(ϕt), cos(ϕt)) hence, the circular-linear correlation ρcl is defined as:

rcl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

sx þ r2
cx � 2rsxrcxrsc

1 � r2
sc

s

ð10Þ

In contrast to the original Matlab version [47], we implemented a tensor-based version of

the ERPAC (tensorpac.EventRelatedPac). Similarly to the gcPAC, we also introduce the Gauss-

ian-Copula Event-Related PAC which this time measures the information shared by the phase

and the amplitude across trials, at each time point illustrated in the Fig 5. It is noteworthy that

a measure of event-related PAC has been proposed using a mutual information framework

[43]. In addition, it has also been proposed to compute PAC using the power spectrum on slid-

ing windows [66].

Additional cross-frequency tools

Distribution of amplitudes and preferred phase. The preferred-phase (PP) is defined as

the phase for which the distribution of amplitudes is maximum. This can be used to find out if

amplitudes are aligned at a specific phase angle [28]. To compute the PP (tensorpac.Preferred-
Phase), the probability density distribution of amplitudes is first generated according to a

number of phase slices (just as the modulation index and heights ratio). Then, the phase bin

for which the amplitude is maximum is defined as the preferred phase. Usually, the preferred

Fig 5. Example of event-related phase-amplitude coupling (ERPAC). We first generate 300 one-second trials each containing a 10$100hz coupling.

Next, one-second of random noise is appended to these signals. The depicted A: ERPAC and B: gcERPAC represents time-resolved PAC estimation

over the two-second window, computed with a phase between [9, 11] hz and for multiple amplitudes.

https://doi.org/10.1371/journal.pcbi.1008302.g005
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phase is reported using a histogram (see Fig 6A), where a specific phase and a specific ampli-

tude band have been used. Here, we introduce a new plotting method where, still for a single

phase, but now binned amplitudes in consecutive frequency bands can be observed using a

polar representation (Fig 6B). This provides a more fine-grained representation where the pre-

ferred phase can be observed with a wide range of amplitude frequencies. Both methods and

visualizations are available in Tensorpac (tensorpac.PreferredPhase.pacplot and tensorpac.Pre-
ferredPhase.polar).

Phase / amplitude frequency interval optimization. When choosing the parameters to

use in PAC analysis, researchers are often confronted with important decisions related to

parameter selection. Even if the frequency bands for phase and amplitude are chosen based on

a scientific hypothesis or previous reports in the literature, it is often impossible to know what

the optimal frequency intervals are in the data one is analyzing. One might argue that it makes

little sense to compute theta-gamma coupling in canonical frequency bands for example using

4-7 Hz (theta phase) and 30-70 Hz (gamma amplitude) if these bands don’t really capture key

oscillatory modulations in the data at hand. We therefore reasoned that it would be useful to

(a) be able to check for the presence of peaks in the power spectrum to potentially guide the

choice of the bandwidth for filtering [48], and (b) to automatically search for the best fre-

quency intervals in a data-driven manner. Tensorpac provides functionalities that can help

address these issues. First of all, a standard tool to compute the Power Spectrum Density

(PSD) is available and adapted for standard electrophysiological data formats, i.e. datasets

organized as an array with the number of epochs as rows and the number of time points as col-

umns (See example in Fig 7A). This can be used to identify prominent peaks either for the low

or high frequency components. More importantly, in order to address the question of how to

optimize the selection of the starting and ending frequencies for the intervals to use for PAC

Fig 6. Estimation of the preferred phase. Illustrative example of the preferred phase estimation based on 100 trials generated with coupling between

6hz$100hz and where the amplitude is locked to the 6hz phase at 45˚ (π/4). A: The 100 hz amplitude is first binned according to the phase using 18

slices of 20˚ each. The sum of the amplitude inside each slice is plotted as a histogram and the preferred phase is identified as the phase for which the

amplitude is maximum (45˚). B: An alternative polar visualization available in Tensorpac displays the strength across multiple amplitude frequency

bands. Phase is binned as before, but now multiple amplitude signals from different bands are calculated for each phase bin. In these polar plots, the

angle represents the phase of the low-frequency (here 6Hz), and the radial axis represents different frequencies considered for the amplitude signal. The

color depicts the average value of the amplitude of a given frequency inside the corresponding phase bin. The preferred 45˚ phase for the 6hz$100hz

PAC is clear in this representation.

https://doi.org/10.1371/journal.pcbi.1008302.g006
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computation, Tensorpac allows for the possibility of defining triangular vectors and comput-

ing PAC for a range of starting and ending frequencies (PAC(Fmin, Fmax)). In addition, this tri-

angular search can be used to find the best interval for the amplitude or for the phase. The

visualization of the results (tensorpac.Pac.triplot) can be used to determine the hotspots within

a triangular representation of PAC, i.e. determining the Fmin/Fmax combination that corre-

sponds to PAC peak (see Fig 7B): The x-axis determines the starting frequency (Fmin) and the

y-axis the ending frequency (Fmax). The maximum coupling that emerges from this triangular

representation can be taken as an indication for the optimal frequency interval to use [Fmin,

Fmax]. Note here that the standard comodulogram often used in PAC analyses is obtained by

computing PAC in successive (phase, amplitude) pairs of bands with pre-defined bandwidths.

While useful for identifying coupling the comodulogram is not suitable for identifying the

optimal starting and ending frequencies to use. Taken together, the PSD tool and this exhaus-

tive Fmin/Fmax search for best frequency bounds are valuable tools that can guide decisions

regarding parameter selection in PAC analyses.

As a side note, the choice of the filter bandwidth for the phase and amplitude is still debated.

While some previous studies recommended filtering the amplitude with a bandwidth twice as

large as the one used for phase (2:1 ratio) [48], a recent study suggests that a 1:1 ratio might be

better as this could prevent smearing [67].

Statistical test of stationarity. As mentioned earlier, stationary signals are a prerequisite

for calculating phase-amplitude coupling. Tensorpac includes a function (tensorpac.stats.test_-

stationarity) to perform an Augmented Dickey-Fuller test (ADF) [68]] to test the stationarity

of time-series. The null hypothesis of the ADF test is that there is a unit root in the time-series.

Said differently, H0 represents a non-stationary signal. Tensorpac uses the Statsmodels Python

package [69] and returns a dataframe that contains, for each epoch, the p-values, a boolean if

H0 has been accepted or rejected, the statistical test and critical values at 0.05 and 0.01.

Fig 7. Investigation of the presence of a phase peak and data-driven exploration of the optimal bandwidth. In this example, we first generated a

6$70hz phase-amplitude coupling. A: The PSD retrieves the presence of the phase peak around 6hz. B: For a fixed phase filtered in [5, 7] hz, we search

for the optimal amplitude band, defined as the bandwidth for which the PAC is maximum. The triangular freq-freq representation depicts coupling

strength across many possible combinations of amplitude frequency bounds, where the x-axis corresponds to the starting frequency and the y-axis to

the ending frequency. Here, the PAC is maximum for an amplitude range of [61, 79] hz.

https://doi.org/10.1371/journal.pcbi.1008302.g007
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Tensor-based implementation

Traditionally, phase-amplitude coupling measures are implemented in a vector fashion where

only a single time-series is processed at a time. This is the most straightforward implementa-

tion and the easiest to read, however computing PAC on relatively large datasets can be dra-

matically slow, especially when the number of dimensions increases (i.e the number of trials,

phases and amplitudes). In Tensorpac, all of the implemented PAC methods have been

adapted in order to support multidimensional computations and thereby decrease computing

time. This was made possible by using the NumPy function einsum which uses the Einstein

summation convention in order to perform linear algebraic array operations. In order to illus-

trate the gains in terms of computing time, we compared the vector-based and the tensor-

based implementations on simulated data (100 trials and 3000 time points). We then com-

puted a comodulogram with 26 phases and 24 amplitudes. Fig 8 presents the comparison of

computing time per method (Fig 8A) and the ratio (Fig 8B). The tensor-based implementation

is between 6 times to more than 12 times faster than the vector-based one depending on the

PAC method that is used. This gain in terms of computation time would be obviously even

larger when considering an increasing number of phases and amplitudes or if the permuta-

tions for assessing statistics have to be measured.

The case of spurious cross-frequency coupling

Previous research has established that non-oscillations, non-stationary signals and sharp wave-

forms (e.g the mu rhythm in sensorimotor areas) can all produce spurious PAC even in the

absence of true phase-amplitude coupling [48, 52, 70, 71]. While considering non-oscillations

is an important aspect of brain data analysis [50, 72], the fact that it can also produce non-exis-

tent couplings is problematic for future work on cross-frequency coupling. Most of the

Fig 8. Computation time of the vector and tensor-based implementations. We first generate a relatively small dataset composed of 100 trials of 3000

time points each. We then evaluated the comodulogram by extracting 26 phases and 24 amplitudes. The comodulogram is then either computed using

one-dimensional time-series (vector-based) or directly using multidimensional arrays (tensor-based). Computing time is compared as a function of

PAC method (A) or as a ratio where the computing time using tensors is divided by the one using vectors (B).

https://doi.org/10.1371/journal.pcbi.1008302.g008
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standard PAC methods rely on an instantaneous estimation of the phase and amplitude using

Hilbert transform or Morlet wavelets. However, both approaches can introduce spurious PAC

from sharp waveform features. A few methods, not based on instantaneous estimations of

phase and amplitude, have been introduced to tackle the issue of spurious PAC. These include

for example auto-regressive models [41] and bispectral approaches [73]. The default instanta-

neous signal decompositions in phase and amplitude included in Tensorpac at the time of

publication do not solve the ongoing debate on spurious versus genuine PAC, nevertheless the

package provides a robust and convenient framework for the incorporation of additional PAC

methods which may be developed to address this issue in the future.

More generally, when using Hilbert or wavelets, several guidelines and precautions have

been proposed in order to limit spurious PAC and control the accuracy of an estimation [48].

First, a visual inspection of the time-series could be performed in order to exclude non-station-

ary signals. In addition, a clear peak at the phase frequency should be visible in the PSD to war-

rant further exploration of PAC (this can be examined in Tensorpac using tensorpac.utils.
PSD). Still, the Fourier transform decomposes a signal in a sum of sines and cosines which

means that it can only partially capture non-oscillatory features [70, 72]. Instead, one might

consider using a matching pursuit algorithm or an empirical mode decomposition since both

do not make the assumption of a sinusoidal basis [72]. In addition to these two alternatives, a

method based on cycle-by-cycle analysis has recently been proposed in order to extract tempo-

ral features [72]. In principle, if a peak in the PSD is observed at the frequency of the phase, the

width of this peak should be used to then extract the instantaneous phase. When filtering the

amplitude, the width of the frequency band should be large enough to contain the side bands

of the lower frequency band. In practice, it means that if the band used for low frequency

phase is [8, 10]Hz, the bandwidth of the amplitude should be at least 20Hz. The presence of

coupling can also be further explored by binning the amplitude according to phase slices (ten-
sorpac.utils.BinAmplitude). In absence of coupling the distribution should be uniform while in

presence of coupling, this distribution of amplitude should be closer to a normal distribution.

Tensorpac also includes the possibility to realign time-frequency representations based on a

phase peak (tensorpac.utils.PeakLockedTF). If a coupling exists, a rhythmic pattern of higher

frequency (e.g. gamma) amplitude bursts should be observed.

Documentation and API provision

Tensorpac is a Python 3 package and is distributed under a BSD-3-Clause license. This pack-

age relies on NumPy [74], SciPy [75], Joblib for parallel computing and Matplotlib for plotting.

In addition, Pandas [76] and Statsmodels [69] are required if the stationarity test is to be per-

formed. We also provide full documentation for the package (https://etiennecmb.github.io/

tensorpac) which is automatically built using sphinx. This documentation also explains how to

install Tensorpac. An API tab is accessible from this documentation and describes the most

up-to-date implemented functions and descriptions (using NumPy doc convention). It also

features a gallery of examples, built with sphinx-gallery, which demonstrate the use of Tensor-

pac’s main classes and functions and a step-by-step tutorial based on real intracranial EEG

data recorded during a center-out motor task [23]. For beginners or non-python users that

want to cross the open-source bridge, we added a public Gitter chat for answering questions.

Finally, the code follows PEP8 and Flake8 guidelines for code readability. We also added a

suite of unit-tests (smoke tests and functionnal tests) that are systematically launched on Linux

and Windows systems. Finally, Tensorpac functionalities can easily be combined with other

open-source brain data analysis and visualization tools developed by our group including vis-

brain [77, 78] and Neuropycon [79].
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Availability and future directions

This paper introduces the workflow and functionalities of Tensorpac, a free and open-source

Python toolbox with a tensor-based implementation of both time-averaged and trial-averaged

phase-amplitude coupling measures. In addition to those most frequently used methods we

also presented some unique features such as the preferred phase or an exhaustive research of

frequency bounds. As spurious coupling can be observed in many scenarios, we also provide

additional tools and statistics to control both the reliability of an estimation. The latest version

of Tensorpac is hosted on Github (https://github.com/EtienneCmb/tensorpac) but can also be

installed via the pip command from a regular terminal. Tensorpac comes with an online docu-

mentation that describes installation options, also for contributors, the functionalities and

illustrative examples. We plan to continue adding new methods to the Tensorpac toolbox and

we encourage collaborative development and contributions from the community. In particu-

lar, we welcome contributions of new methods of PAC estimation but also tools that can help

control the reliability of PAC metrics and reduce spurious detections.
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33. López-Azcárate J, Tainta M, Rodrı́guez-Oroz MC, Valencia M, González R, Guridi J, et al. Coupling
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