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Abstract

Bistability is a common mechanism to ensure robust and irreversible cell cycle transitions.

Whenever biological parameters or external conditions change such that a threshold is

crossed, the system abruptly switches between different cell cycle states. Experimental

studies have uncovered mechanisms that can make the shape of the bistable response

curve change dynamically in time. Here, we show how such a dynamically changing bistable

switch can provide a cell with better control over the timing of cell cycle transitions. More-

over, cell cycle oscillations built on bistable switches are more robust when the bistability is

modulated in time. Our results are not specific to cell cycle models and may apply to other

bistable systems in which the bistable response curve is time-dependent.

Author summary

Many systems in nature show bistability, which means they can evolve to one of two stable

steady states under exactly the same conditions. Which state they evolve to depends on

where the system comes from. Such bistability underlies the switching behavior that is

essential for cells to progress in the cell division cycle. A quick switch happens when the

cell jumps from one steady state to another steady state. Typical of this switching behavior

is its robustness and irreversibility. In this paper, we expand this viewpoint of the dynam-

ics of the cell cycle by considering bistable switches which themselves are changing in

time. This gives the cell an extra layer of control over transitions both in time and in

space, and can make those transitions more robust. Such dynamically changing bistability

can appear very naturally. We show this in a model of mitotic entry, in which we include a

nuclear and cytoplasmic compartment. The activity of a crucial cell cycle protein follows a

bistable switch in each compartment, but the shape of its response is changing in time as

proteins are imported into and exported from the nucleus.
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1 Introduction

Multistability is one of the clearest manifestations of nature’s nonlinearity. A multistable sys-

tem can, under exactly the same conditions, be in different stable steady states. Consider a ball

moving on a hilly terrain under the influence of gravity, where every valley corresponds to a

stable state for the ball (Fig 1A). When there are multiple valleys, the ball’s initial position

determines where it will end up. These valleys can appear and disappear as the shape of the ter-

rain changes. Another way to look at such a changing terrain is by plotting the steady state

position of the ball (labeled output) as a function of a parameter that determines the shape of

the terrain (labeled input) (Fig 1B). Here, for low input, there is only one steady state (situation

1). By increasing the parameter, a new state appears and the system is said to be bistable (situa-

tion 2). When the input crosses a threshold value, the initial stable valley disappears and the

ball is forced to move to the right valley (situation 3). This transition is discontinuous, fast and

irreversible. In between two stable states, there is an unstable steady state (the maximum in Fig

1A and the dashed line in Fig 1B). The points at which the stable and unstable steady state coa-

lesce define the threshold values. These points are also called saddle-node points in the lan-

guage of bifurcation theory.

This simple mechanical example has equivalents in all sorts of physical and biological sys-

tems, where Newton’s laws of motion and the hilly terrain are replaced by chemical reactions,

predator-prey interactions, heat transport or other mechanisms. In climate and ecology stud-

ies, transitions to a new steady state are often called tipping points [1, 2], and they are of special

interest given current climate change. Bistability is present on all scales, ranging from the

global climate system [2] to a single cell [3]. The genetic system involving the lac operon in an

E. coli cell [4] allows bacteria to switch between using glucose or lactose. Bistability in its actin

dynamics enables a cell to quickly and robustly switch between different migration modes [5].

Besides these in vivo examples, bistable responses have also been observed in purified kinase-

phosphatase systems [6, 7] and are a common objective in the design of synthetic genetic sys-

tems [8]. The concept of bistability and irreversible transitions also plays an important role in

cell differentiation. There, the image of balls rolling down valleys is echoed in Waddington’s

epigenetic landscape [9].

On the molecular level, bistability is generated by the interplay of a large amount of mole-

cules involved in chemical reactions. The conditions under which these reaction networks

generate bistability have been extensively studied. Typically, one needs highly nonlinear

Fig 1. Bistability allows robust switching and is common in the cell cycle. A) A clear example of bistability in a dynamical system occurs when a little

ball moves under the influence of gravity on a hilly terrain. Valleys correspond to stable steady states. These can be created and destroyed under

influence of an external parameter. When a steady state disappears, the ball quickly transitions to another steady state. B) Representation of the ball’s

position as function of a parameter which determines the shape of the terrain in Panel A. When the input increases beyond a threshold, the left

equilibrium position in Panel A disappears and the ball quickly moves to the other stable position. C) In the cell cycle, bistable switches underlie some of

the important transitions and checkpoints.

https://doi.org/10.1371/journal.pcbi.1008231.g001
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(ultrasensitive) responses and positive feedback loops [10, 11]. However, bistability can also be

present in simple systems with a minimal amount of components governed by mass-action

kinetics. Finding the conditions under which such systems generate multistability is one of the

important questions asked in chemical reaction network theory, where mostly algebraic meth-

ods are used to analyze these systems (eg. [12–15]).

To survive and proliferate, a cell has to replicate its DNA and structural components, and

then distribute this material evenly to its daughters. This process is governed by the orderly

progression through different phases of the cell cycle. The eukaryotic cell cycle contains vari-

ous checkpoints and transitions in which bistability plays a role (Fig 1C), and can even be

viewed as a chain of sequentially activated bistable switches [16–19]. These switches provide

robustness and directionality to the cell cycle and ensure the genome’s integrity. Both the

“commitment point”, where a cell becomes committed to enter the cell cycle, and the transi-

tion from G1 to S phase have been associated to underlying bistable switches [20–23]. Later,

after the cell has duplicated its DNA, there is a sudden transition from G2 to mitosis, charac-

terized by the prompt activation of cyclin-dependent kinase 1 (Cdk1). This sudden mitotic

entry has also been shown to be controlled by two bistable switches [24–28]. Further in mito-

sis, the spindle assembly checkpoint (SAC) controls the correct separation of sister chromatids

at the metaphase-anaphase transition [29]. Theoretical models have shown that there are

molecular mechanisms that can lead to bistability underlying this checkpoint [30–32].

The standard view of these cell cycle transitions is that the two states are represented by two

branches of a static bistable response curve. The transition happens when a slowly changing

input reaches a threshold, upon which the system jumps to the other branch of the curve (Fig

1B). Throughout this work we will focus on the bistable switch in mitotic entry, arguably the

cell cycle switch that has been best characterized experimentally and theoretically. Already in

the early 1990s, mathematical models showed how biochemical interactions could lead to cell

cycle oscillations that switched between interphase and mitosis [33, 34], and later predicted

that bistability might be at the basis of the mitotic entry transition [35, 36]. This bistability was

later verified experimentally [24, 25]. Briefly, the biochemical interactions generating the

switch are as follows. The kinase Cdk1 becomes active when bound to a Cyclin B subunit, and

is involved in two feedback loops: Cdk1 activates the phosphatase Cdc25, which removes an

inhibitory phosphorylation on Cdk1, thereby activating it and closing a double positive feed-

back loop. Secondly, Cdk1 inhibits Wee1, a kinase responsible for inhibiting Cdk1 through

phosphorylation. This constitutes a double negative feedback loop. Due to ultrasensitivity in

these feedbacks, a bistable response of Cdk1 activity to Cyclin B concentrations is generated.

The shape of this switch depends, among other factors, on the amounts of Wee1 and Cdc25

present [37] (for more details, see Section 2.1).

In many cell cycle transitions, the response curve is not static, since the parameters which

determine the shape of the switch are changing, either slowly or in a more sudden fashion.

Typically the shape of the bistable response curve depends on the total concentration of pro-

teins implicated in the feedback loops. These concentrations may change, either due to pro-

duction and degradation, or due to relocalization of proteins in space. We can consider the cell

as a set of compartments with slow fluxes between them. If each compartment is well mixed, it

has its own bistable response curve. The shape of this curve depends on the concentrations of

proteins in that compartment, which can change over time as proteins relocalize. Note that

compartmentalization has been studied in the context of bistability already: adding different

compartments can be a mechanism of generating a bistable response, where there is none in a

single well-mixed system [38, 39]. In Section 2.1, we discuss how considering nucleus and

cytoplasm as interacting compartments can alter the bistable switches governing mitotic entry.

PLOS COMPUTATIONAL BIOLOGY Dynamic bistable switches

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008231 January 7, 2021 3 / 28

https://doi.org/10.1371/journal.pcbi.1008231


The importance of dynamically changing the bistable response curve has been acknowl-

edged before, mostly in the context of lowering an activation threshold. For example, the

threshold for mitogenic signaling, which defines the commitment point, can be influenced by

DNA damage, cell volume or cell contacts [23, 40]. This provides extra control over the timing

of passing the commitment point. At mitotic entry, Wee1 is known to be quickly degraded

[41, 42], which lowers the threshold for Cdk1 activation [43] and triggers a transition into

mitosis. Moreover, Wee1 is regulated by the 24h circadian clock (see e.g. the review in ref.

[44]), which suggests that changing activation thresholds might be a mechanism by which the

circadian rhythm influences the cell cycle.

Bistability also lies at the heart of an important class of oscillations which appear time and

again in chemical, biological and physical systems. These oscillations are called relaxation

oscillations, and consist of slow progress along the branches of a bistable system, with sudden

jumps between them. Eminent examples of relaxation oscillators are the Van der Pol and Fitz-

Hugh-Nagumo type systems. Whereas they were developed as models of electrical systems,

either engineered, or in neurons, now they are often used as generic oscillating systems which

can exhibit different kinds of dynamics [45].

Nonlinear oscillators generate many periodic phenomena in cell biology, among which cir-

cadian rhythms, metabolic oscillations, and also the early embryonic cell cycle (see the books

[46, 47] and review papers [48, 49] for overviews of biological oscillations). Although bistabil-

ity is not essential to generate oscillations, it has been shown that the addition of positive feed-

back, which can lead to bistability, can endow biological oscillations with a more stable

amplitude [50]. The early embryonic cell cycle—in contrast to the somatic cycle—largely lacks

checkpoint control, gap phases and even growth. The cycle is driven forward as a true oscilla-

tor by periodic production and degradation of proteins.

Here, we investigate how dynamically changing bistable switches affect transitions and

relaxation oscillations. To motivate our studies, we first show how including different cellular

compartments in a model of mitotic entry leads naturally to a situation with bistable switches

that change in time. Next, we explore the concept of dynamically changing switches using a

simple model. After introducing the model, we discuss how a single transition, such as the

crossing of a cell cycle checkpoint, is affected by dynamically changing the activation threshold

and the shape of the response curve. We demonstrate that in a noisy system, a dynamically

changing switch confers robustness to the transition timing if the noise in the slow variable

(the input, as we called it) is negligible compared to the noise in the fast variable (the output).

We also describe a mechanism which may be at play in spatially-extended systems. There, bist-

ability can lead to traveling fronts, whose speed depends on the shape of the bistable response

curve. Front propagation can therefore dynamically change as proteins—which determine the

shape of the response curve—are redistributed in space. We then discuss how such a dynami-

cally changing switch affects relaxation oscillations. We show how the period of these oscilla-

tions is made more robust to noise under similar conditions as for a single transition. A

changing switch also enlarges the parameter region in which oscillations occur. We interpret

our general results in the context of mitotic entry, and in the discussion we consider how

dynamically changing bistability might be used in interpreting other models.

2 Results

2.1 A model for mitotic entry shows how dynamic switches appear in two

cellular compartments

Mitotic entry is triggered by the activation of the kinase Cdk1, which sets into motion many of

the changes a cell undergoes during mitosis. Cdk1 becomes active when bound to a Cyclin B
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subunit. Additionally, Cdk1 activity is controlled by its phosphorylation state, which is regu-

lated by the kinase Wee1 and the phosphatase Cdc25 (Fig 2A). In turn, Cdk1 itself activates

Cdc25 and inactivates Wee1. These feedback loops produce a bistable response of Cdk1 activ-

ity as function of total Cyclin B levels [24, 25]. The different feedback loops have been charac-

terized in detail [51, 52]. Mitotic entry involves many other mechanisms, such as a

phosphatase switch [26, 27] or the regulation of other kinases such as those from the Polo or

Fig 2. A model for mitotic entry shows how dynamic switches appear in two cellular compartments. A) The core protein interaction network

involved in mitotic entry with double positive and double negative feedback loops centered on the Cyclin B-Cdk1 complex. Additional feedbacks act on

the import rates of Cdc25 and Cyclin B-Cdk1. B) Two cellular compartments can exchange proteins through import and export. The total

concentration of Cdc25 in each compartment determines the shape of the bistable response, which changes over time. C) Time series of active Cdk1 in

nucleus and cytoplasm, from a simulation of mitotic entry driven by Cyclin B production in the cytoplasm. The vertical lines correspond to the different

response curves in Panel D. D) Left: initially the activation threshold in the nucleus lies to the far right, due to the dominance of Wee1 over Cdc25 there.

The activation threshold shifts to the left as Cdc25 is imported, which happens faster as Cdk1 activity rises in the cytoplasm. Middle: the activation

threshold for Cdk1 activation is first crossed in the cytoplasm. The sudden jump in Cdk1 activation effects a sudden increase of Cdc25 import into the

nucleus, which in turn quickly lowers the activation threshold there. Right: the decrease of the threshold in the nucleus triggers activation of Cdk1,

leading to additional import of Cyclin B and a high Cdk1 activity. The black dot denotes the position of the system, the black curve corresponds to the

bistable response at the time point corresponding to the dot. The gray lines are snapshots of the bistable response at times leading up to this point,

corresponding to the time points indicated in Panel C. An animation which more clearly illustrates the dynamics can be found in S4 Video.

https://doi.org/10.1371/journal.pcbi.1008231.g002
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Aurora families. An excellent recent review of the mitotic entry transition is given by Crncec

and Hochegger [53].

One particular source of additional regulation is the spatial localization of the different pro-

teins. In mitosis the Cyclin B-Cdk1 complexes accumulate in the nucleus [38, 54]. Cdc25 also

translocates to the nucleus at mitotic entry [55]. Wee1, the kinase inhibiting Cdk1, is mostly

nuclear during interphase [56], possibly to make sure that Cdk1 is not activated too early, i.e.

before DNA replication—which takes place in the nucleus—is complete. Spatial regulation of

other mitotic regulators such as Polo [57] and Greatwall [58, 59] has recently been shown to be

important for correct progress of mitosis as well.

All of these spatial translocations influence the behavior of the system, and here we show that

this can be interpreted in the framework of a bistable switch with dynamically changing shape.

To this end we extend the cell cycle model of Yang and Ferrell [60] to include two different com-

partments: the nucleus and the cytoplasm. In each compartment, Cdk1 activation is governed

by the feedback loops through Wee1 and Cdc25. In addition, proteins can move into and out of

the nucleus. To include spatial feedback, the nuclear import rates may depend on the concentra-

tions of active Cdk1 [38]. In our simplified version, we assume that active cytoplasmic Cdk1

enhances import of Cdc25 and active nuclear Cdk1 enhances import of Cyclin B. These assump-

tions are approximations of the experimentally known feedbacks [38, 55, 57]. We assume that

Wee1 concentrations are higher in the nucleus. If the import and export rates are slow relative

to the activation dynamics of Cdk1, we can consider each compartment to be nearly in steady

state. This steady state, in turn, follows the bistable response curve of Cdk1 as a function of total

Cyclin B. Due to translocation of Cdc25, the shape of these curves varies (Fig 2B). We do not

aim to include all of the complexity of mitotic entry described in the previous paragraph. Rather,

we want to show how including a minimal spatial component using plausible mechanisms leads

to changed mitotic entry dynamics, which can be interpreted using dynamic bistable switches.

More details and the full set of equations used can be found in the Methods section.

Adding these compartments leads to a mitotic entry in different steps (Fig 2C and 2D).

First, Cyclin B accumulates in the cytoplasm. At the start, the threshold for Cdk1 activation is

lower in the cytoplasm than in the nucleus, due to the lower Wee1 concentration there. As a

consequence, Cdk1 activation occurs first in the cytoplasm. This activation triggers the import

of Cdc25 into the nucleus, which lowers the activation threshold there and allows Cdk1 activa-

tion in the nucleus. This triggers a translocation of even more Cyclin B to the nucleus. These

two effects ensure that the activation of Cdk1 in the nucleus is very fast, irreversible, and hap-

pens after cytoplasmic activation of Cdk1. Once Cdk1 is activated in the nucleus, nuclear

import of Cyclin B stays high. Most newly synthesized Cyclin B will be imported in the nucleus,

further raising Cdk1 activity levels. Cdk1 activity in the cytoplasm settles at a nearly constant

value. The animation S4 Video makes the time evolution of the different switches more clear.

The key observation we want to stress with this illustration is that the activation threshold is

different in nucleus and cytoplasm, and importantly, that this threshold is controlled by translo-

cation of Cdc25. By spatially regulating Cdc25, the cell has an additional layer of control over the

timing of Cdk1 activation. The combined feedbacks lead to quick Cdk1 activation in the nucleus,

and an enhanced import rate makes sure that Cdk1 activity in the nucleus increases further.

The translocation of Cdc25 is only one example of a mechanism which might produce

changing bistability. Another candidate where this viewpoint can apply is nuclear envelope

breakdown (NEBD). Cdk1 activation triggers this event [61] which effectively mixes the two

compartments. In turn, the two bistable response curves collapse to a single one. Yet another sit-

uation where changing bistability might be at play is the translocation of other proteins, such as

the kinase Greatwall. This will likely have an effect on the shape of the second bistable switch in

mitosis [26, 27]. The inclusion of these different mechanisms in a larger model of mitotic entry,
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and their interpretation using dynamically varying switches, is an avenue for further study. We

would like to remark that the effect of Greatwall and NEBD on the bistable response curves has

been studied already in the context of mitotic collapse [62].

2.2 A simple model shows that transition timing is more robust and

accurate in a system with a dynamic switch

The results of the previous section show that a dynamically changing switch can appear natu-

rally in a biochemical system. To investigate the consequences of such a changing switch in

more depth, we introduce a simple model. The model describes a protein which can be in an

active or inactive state (Fig 3A). The protein is involved in two feedback loops: it promotes its

own activation and inhibits its inactivation. We model this using the equation

dX
dt
¼ f ðXÞðXT � XÞ � gðXÞX; ð1Þ

where X is the concentration of active protein and XT is the total amount of this protein, XT =

X + Xinactive. The functions f and g are given by

f ðXÞ ¼ aþ b
Xn

Kn þ Xn
;

gðXÞ ¼ a0 þ b0
K 0m

K 0m þ Xm
:

ð2Þ

Fig 3. A simple model of protein activity shows bistability. A) Interaction diagram of a model consisting of single protein

which can be active or inactive. Active protein promotes its own activation and inhibits its inactivation. The basal activation

rate is given by the parameter a. B) Steady state response to total protein XT, for different values of a. C) Steady state response

to basal activation rate a, for different values of total concentration XT. D) Two-parameter bifurcation diagram of the system.

The bistable region is shaded. The vertical orange curve, when followed from bottom to top, corresponds to the orange

response curve in Panel B. The horizontal green curve, followed from left to right, corresponds to the green response curve

in Panel C. Parameter values not mentioned in the plots can be found in Table 1 in the Methods section.

https://doi.org/10.1371/journal.pcbi.1008231.g003
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These Hill functions, which we use to model positive and negative feedback, are typically

the outcome of basic biochemical reactions that generate ultrasensitivity, such as substrate

competition, multisite phosphorylation, or others [63].

The combination of the different feedback loops and the steep response functions is known

to generate bistability [11]. Indeed, this system shows bistable behavior, which can be visual-

ized in different ways (Fig 3B and 3C). The steady state response of the active protein level X
can be bistable as function of the total amount of protein XT (Fig 3B). The shape of this

response curve depends on the value of a, the basal activation rate of the protein. High values

of a correspond to high basal activation of X. This ensures that any protein in the system will

be directly converted into its active form, and X increases nearly linearly with XT. For low val-

ues of a, there is bistability, and the activation threshold becomes higher with decreasing a. As

a consequence, for very low a a large amount of protein needs to be added to the system to ini-

tiate the feedback loops that will lead to a full activation of the protein. If XT is continuously

increased, for example through a constant production of protein in the inactive state, at a cer-

tain moment the threshold will be reached and the system will jump to the active state.

This representation is closely related to the cell cycle control system for mitotic entry,

where the total abundance of Cyclin B (* XT) gradually increases until the threshold for

mitotic entry is reached and Cdk1 (* X) is activated [24, 25, 35]. In this scenario, the basal

activity of the phosphatase Cdc25 plays the role of the parameter a [37, 52].

A different bistable response emerges when plotting X as a function of a, keeping XT fixed

(Fig 3C). The shape of the response curve now depends on the value of XT. For low values of

XT, there is no bistability and the response is approximately hyperbolic. Intermediate levels of

XT lead to a bistable response curve. For high levels of XT, the switch is not only irreversible for

small changes in the input, but even lowering the input to zero is not sufficient to drive the sys-

tem back to its inactive state. This happens because the left threshold occurs at a< 0. Since in

biological systems a corresponds to an activation rate, a positive quantity, this makes it impos-

sible for the system to go back to its inactive state. In such an irreversible switch, the system

can transition from the low to high state, but it cannot go back. Dynamically varying XT would

provide a solution: by controlling the levels of XT, the transition back to the low state can be

made possible. We have previously explored this mechanism in a model of the interaction

between Cdk1 and the protein kinase Aurora B, which plays an important role during chromo-

some segregation in mitosis [64].

The effect of a and XT can be summarized in a two-parameter bifurcation diagram (Fig

3D). A response curve where only one of the two parameters is varied (Fig 3B and 3C) corre-

sponds to a horizontal or vertical cut in this diagram. In the remainder of this work, we will

focus on the situation as in Fig 3B: XT is the main parameter—the input, as we previously

called it—and we will explore the effects of having either a constant value of a or a dynamically

changing a.

In order to study the transition from low to high activity when protein is produced, we

study the following system of equations:

dX
dt

¼ ε� 1ðf ðXÞðXT � XÞ � gðXÞXÞ

dXT

dt
¼ kX;

ð3Þ

where the second equation corresponds to a constant increase in protein abundance XT. The

small parameter ε is added to model timescale separation: the activation-inactivation dynamics

of the protein are much faster than its production. As the total concentration increases, the
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system moves along the bottom branch of the bistable response curve. When the concentration

crosses the activation threshold, the protein is rapidly activated (Fig 4A).

We now set out to investigate how this activation is affected when the shape of the bis-

table switch is changing while XT is increasing. We impose the following functional form on

a (Fig 4B):

a ¼ �a þ Da tanhðkðXT � XcÞÞ: ð4Þ

The value of �a is the value around which a varies symmetrically. By tuning the parameter

Δa we can control the extent of the shape changes: for Δa = 0, the switch does not change and

a ¼ �a is a constant. For Da ¼ �a, a varies between extremes of 0 and 2�a. The parameter κ con-

trols the abruptness with which the bistable shape changes when XT crosses a threshold Xc.
This threshold is chosen to be the midpoint of the folds of bistable switch. For positive values

of Δa, the activation threshold of the switch moves to the left while XT increases. The dynamics

of such a system are illustrated in Fig 4C and in S1 Video.

One striking consequence of the dynamic switch is that the level of X is kept very low until

its activation, whereas if a is not changing, X already increases while the system is approaching

the threshold. Moreover, by lowering the activation threshold while the system is approaching

the transition point, the timing of activation can be controlled more precisely. To illustrate

this, we implement stochastic versions of the model. First, we study a Langevin equation by

adding noise with magnitude σ to the X variable (see Methods for details). In this system, noise

can trigger the system to jump to the high activity state even before the activation threshold is

reached. We simulate the system many times and measure the transition time, defined as the

time the value of X crosses a threshold (Fig 4D). A dynamic switch shows less variation in the

transition time than a static switch (Fig 4E). Increasing the amplitude (higher Δa) and abrupt-

ness (higher κ) of the dynamical shape changes help to further decrease the variation in transi-

tion timing (Fig 4F and 4G).

The Langevin equation is an approximation of real biological sources of noise. We also

tested a fully stochastic system, using the Gillespie algorithm [65] with three reactions: activa-

tion, inactivation and production. The noise magnitude σ is replaced here by a system size O,

which correlates with the number of molecules in the system. Details can be found in the

Methods section.

The main difference with the Langevin version is the fact that noise now also appears in

the production, such that XT does not increase smoothly (Fig 4H). In this system, the effect

of the changing switch is still observable, but much smaller (Fig 4I and 4J). We had to take

more samples of the system to observe the decrease in variation. This decreased effect

might be due to the implementation of the changing switch: the value of a depends directly

on the value of XT (Eq 4). If XT is noisy, the switch variation itself is noisy, which mitigates

the stabilizing effect the switch variation had on the transition time in the Langevin version

of the model. Moreover, our measure of the accuracy is the coefficient of variation, defined

as standard deviation divided by the mean. Whereas the standard deviation clearly

decreases for larger switch variations, the mean also goes down, leading to a less clear effect

on the coefficient of variation. S1 Fig shows plots of standard deviation, mean and CV.

Overall, we conclude that a dynamic switch makes transitions more robust in our simple

model if the noise in the slow variable is much smaller than the noise in the fast variable.

An interesting future direction is to study the effect of noise in a more realistic system, in

which the changing switch is not implemented artificially like here, but arises from a bio-

logical mechanism. Perhaps the requirement on the magnitude of the noise can be relaxed

in such a model.
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Fig 4. A dynamically changing bistable switch enhances robustness and accuracy of transitions in time and space. A) When XT increases at a

constant rate (here kX = 0.2), the activity of the protein will increase suddenly at the moment XT crosses the activation threshold of the switch. B)

Function used to make the shape of the switch dependent on the total amount of protein, by coupling a to XT. The switch variation depends on the

value of Δa, which controls the magnitude of possible deviations of a from a mean value �a. The parameter κ controls how abruptly the system switches

between low and high a values. C) Time evolution of a system in which XT increases at a constant rate, and a is coupled to XT. The gray response curves

are snapshots in time. The activation threshold starts out to the far right, and moves left as XT, and with it a, increases. Here

�a ¼ 0:3;Da ¼ 0:2; k ¼ 5; kX ¼ 0:2. D) Evolution of a system in which noise is added to the X variable (Langevin version). The transition time tc is

defined as the time when X crosses a threshold value. Here �a ¼ 0:3;Da ¼ 0;k ¼ 5; kX ¼ 0:2; s ¼ 0:6. E) Histogram of measured transition times for a

static switch (Δa = 0) and a dynamic switch (Δa = 0.3), with �a ¼ 0:3;k ¼ 5; kX ¼ 1;s ¼ 0:6. The spread is lower for the dynamic switch. F) Coefficient

of variation (CV), defined as standard deviation divided by mean, of the transition time, as function of the switch variation Δa. Here

�a ¼ 0:3;k ¼ 5; kX ¼ 1. G) Coefficient of variation as function of κ, which defines the speed by which a changes. Faster changing corresponds to

smaller deviations. Here �a ¼ 0:3;Da ¼ 0:3; kX ¼ 1. H) Time series of a run of the Gillespie algorithm/stochastic simulation algorithm (SSA).

Parameter values are the same as in panel D, but here molecule counts are discrete. We used a system size O = 20. I) Histogram of transition times in

the stochastic simulation algorithm (compare to panel E) withO = 20. The variation is lower for the dynamic switch, but the difference is much smaller

than in the Langevin version. J) Coefficient of variation as function of Δa for the stochastic simulation algorithm (compare to Panel F). K) Velocity of a

bistable front as function of a, for XT = 2. A positive velocity means that the active protein state overtakes the inactive state (the front shown in panel L

moves to the right). At a� 0.15, the front is stationary. L) A bistable front in the presence of an inhomogeneous a profile in space. On the left, a = 0.27,
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Noise is inevitable in biochemical systems, and can be a nuisance or something the cell uses

to its advantage [66]. Here, in the context of the cell cycle, premature activation due to noise is

to be avoided. We conclude that accurate control of the timing of transition can be achieved

by dynamically changing the switch and increasing a as XT approaches the threshold.

2.3 Transitions in space can be controlled by dynamically changing the

bistable switch

When bistable systems are coupled in space in the presence of diffusion, they may produce

traveling fronts. In our model with active and inactive protein, a traveling front can arise when

one region of space has a high X activity and an adjacent region has low activity. The interface

between these regions starts to move, depending on which state is dominant. Such traveling

fronts are omnipresent in biology, where they usually have a signaling or synchronizing func-

tion [45, 67].

The speed and direction of traveling fronts depend on the parameters of the system. Con-

sider for example a traveling front that links regions of high and low activity of the protein X,

with XT = 2 fixed. The direction of the front depends on a: low a corresponds to a dominant

low activity state, high a to a dominant high activity state. The front moves such that the domi-

nant state overtakes the other one (Fig 4K).

Let us assume that the parameters may vary in space, such that the front speed itself varies

in space. Consider a system where a is high in one region, low in another and has a smooth

transition between both regions. In this case, the front would move to the right until it hits the

transition region, where it slows down and comes to a halt (Fig 4L). This phenomenon is called

pinning. Front pinning and localization—possibly due to a spatial inhomogeneity, as here—

occur frequently in physical systems [68]. In biology, front pinning mechanisms have been

studied in the context of cell polarization [69], and in ecosystem transitions [70].

The front comes to a halt due to a spatially heterogeneous profile of a. A pinned front can

then be released by redistributing a, and thus changing the bistable switch and the dominant

state (see S2 Video). Dynamically changing the parameters which affect the shape of the bis-

table response curve can thus provide the cell with extra control over spatial transitions.

Waves of Cdk1 activity spread throughout the cell at mitotic entry, as has been observed in

Xenopus cell-free extracts [71–73] and in the early Drosophila embryo [74, 75]. In the cell, and

in extracts, spatial heterogeneities are present through nuclei, which concentrate certain pro-

teins [72]. In such systems, the effect of dynamic bistability on front dynamics is likely present,

all the more because the spatial heterogeneity drastically changes at nuclear envelope break-

down. In Drosophila, dynamic changes in the bistable switch have been shown to play an

important role in determining the nature of mitotic waves [75].

2.4 A dynamic switch promotes stable oscillations

Fast transitions between states form the basis of relaxation oscillations, such as those observed

in early embryonic cell cycles of Xenopus laevis, where the cell quickly switches between inter-

phase and mitosis. We investigate how such oscillations are affected by a dynamic bistable

switch. We expand our model to obtain oscillations in protein activity and abundance by

which means the front moves to the right. On the far right, a = 0.13 is low, which means that the front moves to the left. The result is that the front is

pinned in the middle where a� 0.15. This pinning can be lifted by a redistribution of a (see S2 Video). Other parameters for all panels can be found in

the Methods section, Table 1. Histograms and coefficients of variations where calculated over 200 simulations for the Langevin version (panels E to G)

and 2000 simulations for the SSA (H to J).

https://doi.org/10.1371/journal.pcbi.1008231.g004
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including production and degradation:

dX
dt

¼ ε� 1ðf ðXÞðXT � XÞ � gðXÞXÞ

dXT

dt
¼ kX � XTX:

ð5Þ

As before, kX is the protein production rate and the dynamics of activation and inactivation

are fast with respect to production and degradation, such that ε is small. We assume that the

active form of X promotes its own degradation through mass-action kinetics (Fig 5A). Note

that we have simplified the set of equations by omitting a term (−X2) from the first equation.

In doing so, we ensure that the bistable response curve we have used before appears as a null-

cline of the system. This simplification does not significantly change the system dynamics if ε
is small (see the Methods section). This system is analogous to the early embryonic cell cycle.

There, Cdk1 activation brings about its own inactivation by degradation of the Cyclin B sub-

units. This degradation in the cell cycle is mediated by APC/C, an interaction which is not

present in our simple model.

For given functions f and g, this system only oscillates for a specific range of kX. If kX is too

small, the production rate is not high enough to push the system over the activation threshold,

and the system converges to a steady state with low activity. For a high value of kX, degradation

cannot compensate for production even when the protein is mostly active, and the system con-

verges to a steady state with large X. For intermediate values of kX, the system switches between

accumulation and degradation with low and high X respectively. This is illustrated in the

phase plane in Fig 5B. If kX is such that the two nullclines intersect in between the two saddle-

node points, the system converges to a stable limit cycle. This oscillation is marked by a slow

increase along the bottom branch of the bistable curve, a slow decrease along the upper branch,

and fast jumps in between (Fig 5B and 5C).

As before, we now allow the parameter a to depend on the total amount of protein (Eq

(4)). In the previous section we found that, in the presence of noise, transition times show

less variation if the switch dynamically changes. In the case of oscillations with noise (Fig

5D), we find that more accurate transition times are reflected in a more stable period. A

dynamic switch (Δa> 0) shows less variation in the period of the oscillation than a static

switch (Fig 5E). Larger switch changes ensure smaller variation of the period (Fig 5F). The

variation of periods is larger for extreme values of kX, such that the nullclines intersect close

to the saddle-node point. For those values, stochastic activation/inactivation is more likely,

an effect which is mitigated by the dynamically changing switch. Similar results hold for a

system in which the stochasticity is implemented using the Gillespie algorithm, however the

effect is smaller (Fig 5G and S3 Fig). This is similar to what we found for the transition

timing.

Not only the period, but also the amplitude shows less variation. However, the effect is less

clear: dynamically changing the switch a little lowers the amplitude variation, but the effect

does not persist for larger switch variations (S2 Fig).

In Xenopus laevis, early embryonic cycles have a remarkably stable period [76]. Combined

with an initial period difference between different cells in the embryo, this shows as a wave of

cell division. Dynamically changing the bistable switches in the early embryonic cell cycle

would be one way to contribute to this observed stability in cell division period.

Next, we expand the model by including negative values of Δa, which corresponds to an

activation threshold which increases as XT increases. Moreover, we model a biologically
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Fig 5. Dynamic switches promote oscillations. A) Interaction diagram. The active form of protein X promotes its own degradation. B) Phaseplane of

the system given by Eq 5 (static switch). The second nullcline depends on the value of kX. The S-shaped nullcline has the same shape as the bistable

response curve studied in the previous section. The second nullcline is given by X = kX/XT and is shown for kX = 1.1, 1.7 and 2.3. The blue limit cycle

corresponds to kX = 1.7. C) Time series of the oscillatory system with kX = 1.7. D) Time series for the system with noise, σ = 0.6. E) Histogram of the

period for a static (Δa = 0) and dynamic (Δa = 0.3) switch, with �a ¼ 0:3;k ¼ 5;s ¼ 0:6; kX ¼ 1:7. F) Coefficient of variation (standard deviation

divided by mean, CV) of the period in the oscillatory system with noise added to the X-variable. Here κ = 5, σ = 0.6. G) Coefficient of variation for the

stochastic simulation algorithm, with O = 10. H) Period in color, as function of kX and Δa with k ¼ 5; t ¼ 0; �a ¼ 0:3. I) Oscillatory region in the (kX,

Δa)-plane for different values of the delay time τ with k ¼ 5; �a ¼ 0:3. J) Period as function of kX and κ with �a ¼ 0:3;Da ¼ 0:3 and τ = 0.1. K) Fraction

of parameter sets for which the system oscillates for 10000 randomly sampled parameter sets. L) Three different limit cycles of the three equation system

given by Eq 8. The parameter δ defines the timescale on which a changes. See S6 Video for an animation corresponding to this panel. All parameters

not described above can be found in the methods section, Table 1. For the Langevin version, statistics were obtained from runs for a total time of

T = 2000 (Panels E,F). For the SSA version, the total run time was T = 4000 (Panel G).

https://doi.org/10.1371/journal.pcbi.1008231.g005
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plausible phase shift to the relation between XT and a by including a time delay τ:

aðtÞ ¼ aðXTðt � tÞÞ: ð6Þ

As mentioned before, oscillations occur if kX lies in a given interval. This interval becomes

larger if Δa increases, which indicates that larger changes of the bistable curve produce a larger

region of oscillations (Fig 5H). This observation holds both with and without time delay, but

the effect is larger if time delay is included (Fig 5I). The effect of increasing time delay is most

pronounced for low kX. Note that also for Δa< 0, there is an oscillatory region. When Δa< 0,

the switch changes in the opposite direction of the change of XT, i.e. the activation threshold

moves to the right as XT approaches it. For small negative values of Δa, oscillations persist if

the production rate is such that the system approaches the threshold fast enough while it

moves to the right. The reappearance of oscillations for more negative values of Δa is due to

our implementation of the varying switch. These oscillations are qualitatively different: they

are of lower amplitude and have less variation in the switch, see S5 Video.

The speed by which the bistable response curve changes also plays a role: faster, more

abrupt transitions, which correspond to higher κ, promote oscillations (Fig 5J).

As a final demonstration of how dynamically changing switches affect the occurence of

oscillations, we perform a random sampling of 10000 parameter sets. We sample all the param-

eters affecting the Hill functions f and g, the timescale parameter ε, and kX. For each parameter

set we first detected whether the system is bistable, and if so, we simulated the model with Δa =

ia, i = −1, −1/2, 0, 1/2, 1, for κ = 1, 5, 10 and τ = 0, 0.1, 0.2. For each simulation we detect

whether the system oscillates or goes into a steady state. Generally, oscillations are quite rare,

but in all cases, having Δa> 0 increased the probability of obtaining oscillations (Fig 5K and

S4 Fig). Note that oscillations can also exist for Δa< 0. In that case, however, oscillations are

less likely.

To conclude, we have found that making the bistable response curve dynamic instead of

static enhances the accuracy of the oscillation period in noisy systems, and increases the region

in parameter space where oscillations are found. This effect is larger when the shape change lags

the increase of XT. S3 Video shows an oscillation with a dynamically changing bistable switch.

3 Discussion

In this paper, we have described how changing bistability in space and time can affect transi-

tions, oscillations and propagation of fronts. We believe that our results are useful as a point of

view which can be applied to different systems. In this discussion, we elaborate on potential

applications and promising directions for future work.

Our main example has been mitotic entry, and the variables in the simplified model we used

can roughly be mapped to the proteins and interactions involved at that transition. However,

our results are conceptually valid at other biological transitions as well. The behavior we describe

is generic in the sense that the only condition that is required is an increase of the “input” of the

switch in combination with a variable affecting the activation threshold or the general shape of

the switch. Such mechanisms are likely to be found at other cell cycle transitions as well.

The viewpoint of dynamic switches can be used to extend existing cell cycle models and

interpret more complicated models. One direct way to increase the realism of cell cycle models

is by including space. Even though numerous mathematical models of the cell cycle already

exist, few of them include spatial regulation. Models that do include a spatial component often

focus on traveling waves which can play a role in synchronizing large cells, such as Xenopus
[71] or Drosophila embryos [74]. In Xenopus cell-free extracts, nuclei play an essential role as a

pacemaker [72, 73], possibly due to the fact that nuclei locally increase concentrations of key
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regulatory proteins [72]. This can possibly be interpreted as changing bistable response curves

in nucleus and cytoplasm. In Drosophila, changes to the bistable switch have been proposed as

an explanation of changing wavespeeds over different cycles [74], and bistable thresholds play

a crucial role in the so-called sweep waves [75].

New insights are likely to be gained from models that also take into account the heterogene-

ity and spatial structures of a real cell. A first step towards that goal is to consider the compart-

ments of nucleus and cytoplasm. Some cell cycle models have done this already (e.g. [77]) but

we believe that exploring such models, possibly using the interpretation of changing bistability,

provides a fruitful way to extend our knowledge into cell cycle regulation. This is especially the

case since the importance of compartmentalization on dynamics has been seen both experi-

mentally and in modeling studies in a number of different systems.

Compartmentalization in the cell: Experimental and theoretical results

Compartmentalization can increase the complexity and richness of a biochemical system: by

compartmentalizing chemical reactions, cells can locally increase concentrations to speed up

reactions, or inversely keep certain reactions from happening by separating the reactants. The

important additional regulation offered by compartmentalization has become a topic of inter-

est to experimentalists and modelers alike. We give a few examples. In the cell cycle, Santos

et al. [38] showed that spatial feedbacks are present in mitotic entry. This is one of the mecha-

nisms we used in our biological example. Likewise in the cell cycle, Doncic et al. recently

showed that compartmentalization of a bistable switch plays a role in the commitment point,

also referred to as the Start checkpoint in yeast [78]. Nucleocytoplasmic shuttling has been

found to play a key role in generating a switch-like response in the ERK signaling pathway [79,

80]. Another example is given by the circadian clock, whose period is determined by spatio-

temporal regulation of CRY [81]. In addition, nucleocytoplasmic shuttling plays a role in the

interaction between the proteins p53 and Per2. This interaction is involved in the coupling

between the cell cycle and the circadian clock [82]. Finally, adding multiple compartments is

also attempted in synthetic biological systems by introducing artificial membranes [83, 84].

From the mathematical standpoint, figuring out how spatial heterogeneity is best intro-

duced poses an interesting challenge, where simplicity, computational efficiency and realism

have to be weighed against one another. The method we used in the model of mitotic entry

was ODE-based. For each compartment, every chemical species has its own ODE. This

assumes that, inside a compartment, diffusion is fast and the system is well mixed.

Another option is to use fully spatial models consisting of partial differential equations

(PDEs). Here, boundary conditions can be used to model fluxes across membranes between

different compartments (see, e.g. [85, 86]), or the compartments can be introduced by setting

the diffusion of some molecules to zero and initializing them in only one region of space (e.g.

[87]). Yet another type of model is hybrid: some small compartments are considered to be well

mixed, and are modeled by ODEs, whereas transport through the medium between the com-

partments is governed by a PDE (see e.g. [88] for a recent example of such a model in a biolog-

ical system). If compartments are not bound by membranes, but instead generated by phase

separation, modeling may need to take into account the physics of the phase separation pro-

cess, a topic of current interest in cell biology [89].

The role of different timescales

If fluxes between compartments are slow compared to typical activation/inactivation dynam-

ics, the shape of the bistable response curve changes on a slow timescale. This corresponds to

the implementation we used in this paper, where the change of the switch mediated by a
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happens on similar timescales as the change in XT. Our implementation—with the sigmoidal

function a(XT) and the time lag τ—is artificial but suitable for the message we want to convey.

However, a more thorough theoretical study of such simple models could replace the explicit

dependence of a on XT by evolution equations for the dynamics of the switch shape, which can

then be interpreted in the context of multiple-timescale systems. Such an extension of our

model would take the form

dX
dt

¼ ε� 1ðf ðX; aÞðXT � XÞ � gðXÞXÞ

dXT

dt
¼ kX � XXT

da
dt
¼ GðX;XT; aÞ;

ð7Þ

where G describes the dynamics of a. A concrete and simple example of such a model is given by

dX
dt

¼ ε� 1ðf ðX; aÞðXT � XÞ � gðXÞXÞ

dXT

dt
¼ kX � XXT

da
dt
¼ d

� 1
ðHðXTÞ � aÞ;

ð8Þ

where HðXTÞ ¼ �a þ Da tanhðkðXT � XcÞÞ. In this system the variable a relaxes to its value

H(XT), and the scale on which this happens is governed by the parameter δ. For δ! 0, this sys-

tem reduces to our model with two equations, where a follows XT according to the function

H (Eq 4). By modifying the parameter δ, different kinds of dynamics can be obtained. In Fig 5L,

we show some of the resulting limit cycles in the (a, XT) plane and S6 Video shows the effect of

these timescales on the bistable switch.

Rigorous mathematical study of multiple-timescale systems has been done extensively in other

areas, such as mathematical neuroscience [90, 91]. In stochastic models of chemical reactions,

mathematical treatments of multiple-timescale systems are being developed too. There, the focus

is often on ways to reduce the computational cost of a stochastic simulation using the Gillespie

algorithm by separating reactions on different timescales. Developing such algorithms and assess-

ing the conditions under which they provide good approximations has been the subject of many

recent papers (see Refs. [92, 93] and references therein). In the case of our model, an expanded

stochastic version might shed further light on the role of noise in the different variables.

Connecting a more rigorous mathematical analysis of these multiple-timescale systems to

expected biological outcomes in the cell cycle can provide important clues to uncover the

underlying dynamics. Moreover, this may lead to new opportunities for mathematicians and

cell biologists to collaborate.

Finally, a note on how changing bistable switches might be observed experimentally. One

of the outcomes of a mathematical model such as the one we studied here is a time series,

which gives the evolution of concentrations of the main proteins over time. By performing a

more detailed analysis, we can find out which qualitative features are specific to a time series

derived from changing bistability. Next, experiments can be set up to try to detect such fea-

tures. Another approach would be to measure the steady-state response curves to obtain acti-

vation thresholds, and perform this experiment under different experimental conditions.
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4 Conclusion

Bistable switches play a crucial role in the cell cycle, providing a mechanism for quick and irre-

versible transitions. They also lie at the basis of more complex behavior such as spatial front prop-

agation and relaxation oscillations. The classic viewpoint of a static switch and fixed activation

and inactivation thresholds does not take into account that the factors that determine the shape

of the response curve can vary over time. In a biochemical system, these factors are typically pro-

tein concentrations. When those concentrations change, the bistable response curve changes, and

this happens all while the system is proceeding along the branches of the bistable curve.

We showed that such changing bistability can arise naturally in a biological system, using

nucleus and cytoplasm as compartments in a model of mitotic entry. There, spatial transloca-

tion of proteins allows additional control over activation thresholds, which may differ in differ-

ent compartments. Next, we examined the consequences of a dynamically changing switch in a

simple model. We have shown that such a mechanism allows more accurate control of the tran-

sition timing in noisy systems, if the noise in the slow variable is negligible compared to the

noise in the fast variable. Additionally, by controlling protein levels in space, the location and

speed of propagating fronts of activity can be regulated. In oscillatory systems, a changing bis-

table switch increases the robustness of the oscillations to parameter variations. The control of

transition timing and avoiding a premature transition can play a role in cell cycle checkpoints,

whereas more robust oscillations may be important in early embryonic cell cycles which behave

like autonomous oscillators. These advantages suggest that such dynamic regulation may have

evolved as an extra mechanism in the cell’s repertoire to ensure faithful genome replication and

division. Accuracy and robustness are probably not the only advantages of a changing switch.

For example, if there is an energetic cost associated to maintaining a bistable switch at a certain

level, dynamically controlling the shape can be a way to use energy more efficiently. This kind

of temporal compartmentalization is widely seen in biology. Circadian rhythms, for example,

provide a means of compartmentalizing processes to align with external light and temperature

cycles and therefore optimally use energy [94]. This energy-based view of dynamic bistable

switches will perhaps benefit from a thermodynamic description, which takes into account

energy consumption (e.g. [95]).

Mathematical modeling and concepts derived from nonlinear dynamics, such as bistability

and limit cycles, have been very influential on our understanding of many biological phenom-

ena, and will continue to be, as has been recently advocated by Tyson and Novák [96]. In our

discussion we have echoed some of their perspectives. Additionally, in this paper, by adding an

extra layer to the regulation of cell cycle transitions we have attempted to push our dynamical

understanding of this fundamental process a little bit further.

Even though the simple model we studied in this paper was artificial, its main conclusions

will likely hold for more realistic mathematical models. In fact, we suspect that a dynamically

changing bistable switch is already present in many published models, but not recognized or

described as such. Therefore, we propose that the dynamically changing switches we described

can be used as a means to interpret existing models and perhaps inspire new ones.

5 Methods

5.1 Standard parameter set

In all of our simulations, except for the ones done to obtain Fig 5K, we have used the same val-

ues for the parameters that describe the positive and negative feedback functions f and g (Eq

2), except for the parameter a which, in the case of a dynamic switch, is changing in time.

Table 1 gives a list of these parameters. The parameters used for obtaining the changing switch
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Δa, κ were varied, the values are mentioned in the captions of the relevant figures. The produc-

tion parameter kX varies over simulations and is also mentioned in the captions. The timescale

parameter ε was taken to be 0.05. For simulations with a delay time τ, its value is mentioned in

the caption.

The threshold Xc, which is used in the function that defines how the parameter a varies

with the total concentration XT, is always taken to be the middle of the horizontal coordinates

of the saddle-node points of the static bistable switch.

5.2 Sofware and algorithms

Simulations, data analysis, plotting and animations were all done in Python except for the two-

parameter bifurcation diagram in Figs 3D and 5L, which was created using the interface to

AUTO of the software XPPAUT [97]. The majority of our simulations use ODEs, but some

versions of the model are delay differential equations or stochastic differential equations. To

simulate all of these, we made use of the software packages JITCODE, JITCDDE and JITCSDE

for Python, which implement solvers for ordinary, delay and stochastic differential equations

respectively [98]. For parameter sweeps we used a high-perfomance computing cluster.

To obtain the bistable response curve, we implemented a pseudo-arclength continuation

algorithm directly in Python (see, e.g., [99]). This gave us the flexibility to compute response

curves on the fly, as for the animations.

For the period detection in the oscillatory systems, we start from the time series X(t) and

detect the times tu,i and td,i when X crosses a certain threshold up and a certain threshold

down. The threshold up is the vertical coordinate of the left saddle-node point of the static

switch, the down threshold is the vertical coordinate of the rightmost saddle-node point. Next,

we remove repeated up or down crossings from this list, such that we obtain a list of alternating

up and down crossing times. Finally we compute the period as the differences tu,i+1 − tu,i. In

the noisy system, this gives a set of period Pi on which we can perform statistics. For the deter-

ministic systems this value is constant. This method ensures that we only track oscillations that

go around both branches of the bistable system, i.e. of sufficient amplitude.

To determine the amplitude (S2 Fig), we first smooth the time series using a low-pass But-

terworth filter (using scipy’s function butter and sosfiltfilt) and then detect minima

and maxima. The amplitude is then the difference between a maximum and the following

minimum.

To detect the contours of the oscillatory regions in Fig 5H–5J, we detected all points in the

heatmap where the period goes from zero to positive and then applied smoothing. Note that this

boundary is not strictly the same as the boundary between steady state and oscillations, since we

consider only oscillations of sufficient amplitude, that go around both branches of the switch.

Table 1. Standard parameter values used for the feedback functions.

Parameter Value

b 1

K 1

n 5

a0 0.1

b0 1

K0 1

m 5

ε 0.05

https://doi.org/10.1371/journal.pcbi.1008231.t001
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5.3 Stochastic models

We use two types of stochastic model: one stochastic differential equation model, of Langevin

type, and one fully stochastic model in which we use Gillespie’s algorithm [65] for simulation.

The Langevin equation we use is

dX ¼ ε� 1ðf ðX; aÞðXT � XÞ � gðXÞXÞdt þ sdW

dXT ¼ kXdt:
ð9Þ

We include noise only in the fast variable, which is not a correct representation of

molecular noise, but the simplest way to extend our ODE model to include stochasticity.

We include noise only in the fast variable to simplify the system and only allow transition

through “vertical” deviations from the steady state branch, in line with typical studies on

stochastic switching [100]. Moreover, the ratio of noise magnitude in fast and slow variable

is high when stochastic differential equations are derived from a discrete stochastic model

[101], [93, Sec. 4.1], such that setting the noise on the slow variable to zero is reasonable. To

determine transition times, we detect the timepoint when X crosses a threshold concentra-

tion. This threshold concentration is always the average vertical coordinate of the saddle-

node points of the static bistable switch.

For the fully stochastic model with discrete molecule numbers, let the number of molecules

of the active protein X be called nX, and nY denotes the number of inactive molecules Y. This

means that the total amount of protein is nX + nY. In order to compare the results of the sto-

chastic simulation to the results of the deterministic model, we introduce a system size O and

interpret the variables of Eqs 1, 3 and 5 as concentrations. To transfer the rates and parameters

used in the deterministic system to the stochastic system, we multiply or divide the appropriate

parameters by O: any parameter which would have units of concentration in the deterministic

model is multiplied byO, parameters with unit of 1/concentration are divided by O. See e.g.

Ref. [93] for a thorough explanation of the simulation method and the translation from deter-

ministic rate equations to the corresponding stochastic system.

The possible reactions in the model are given in Table 2. In the simulations used for Fig 4,

i.e. without degradation, reactions 4 and 5 are omitted.

Here f and g are the Hill functions used before, now modified such that the threshold corre-

sponds to a molecule number:

f ðnXÞ ¼ aþ b
nnX

ðOKÞn þ nnX

gðnXÞ ¼ a0 þ b0
ðOK 0Þm

ðOK 0Þm þ nmY
:

Table 2. Reactions in the stochastic model.

Reaction Description Rate

R1 Y! X Activation 1

ε f ðnX ; aÞnY
R2 X! Y Inactivation 1

ε gðnXÞnX
R3 ⌀! Y Production kXO
R4 X + Y!⌀ Degradation of inactive protein nX nY/O

R5 X + X!⌀ Degradation of active protein nX(nX − 1)/O

https://doi.org/10.1371/journal.pcbi.1008231.t002
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As before, for changing switches, a depends on the total amount of protein:

a ¼ �a þ Da tanh
k

O
ðnX þ nY � ðOXcÞÞ

� �
:

All the parameters of the Hill functions as well as the threshold for the changing switch are

the same as those used in the deterministic system (Table 1). We use Gillespie’s direct method

to simulate the system [65].

5.4 Removal of degradation term in the X-equation

In the oscillatory system, X degrades itself, both in active and inactive form. The set of equa-

tions corresponding to this is

dX
dt

¼ ε� 1ðf ðXÞðXT � XÞ � gðXÞXÞ � X2

dXT

dt
¼ kX � XTX:

ð10Þ

We can rewrite this as

dX
dt

¼ ε� 1ðf ðXÞðXT � XÞ � ðgðXÞ þ εXÞXÞ

dXT

dt
¼ kX � XTX;

ð11Þ

and since ε is considered to be small, the shape of the bistable switch induced by these equa-

tions is nearly the same as that induced by the one where ε = 0, which we use.

5.5 Spatial model

For the simulations in space, we use the equations

@X
@t

¼ DX
@

2X
@x2
þ ε� 1ðf ðXÞY � gðXÞXÞ

@Y
@t

¼ DY
@

2Y
@x2
� ε� 1ðf ðXÞY � gðXÞXÞ:

ð12Þ

here, Y is the inactive form of the protein. These equations allow more flexibility in choosing,

for example, different diffusion constants for active and inactive form. We took DX = DY = 5 in

our simulations for Fig 4K and 4L. We simulated these equations using a forward difference in

time and centered difference for the space derivative. We use zero-flux boundary conditions.

For Fig 4K, we detect the front position as function of time and fit a linear function. Initial

conditions are always a step function.

5.6 Sampling of parameters

Sampling of the parameter sets in Fig 5K was done as follows: each parameter was sampled

uniformly and independently from a given interval. For ε we sampled the logarithm. S2 Table

shows the intervals and whether the parameter was sampled logarithmically or not. The system

was simulated with sampled parameters for a total time of T = 200. We considered a set of

parameters as oscillatory if the period is larger than 0.01.
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5.7 Full set of equations for the biological example

Here we give the details of the equations used to simulate mitotic entry as described in Section

2.1. We keep track of three different variables: total Cyclin B-Cdk1 complexes ([Cyc]), active

Cyclin B-Cdk1 complexes ([Cdk1]) and Cdc25 levels ([Cdc25]). The model equations are

based on the equations used by Yang and Ferrell [60]. Note that Cdc25 is a scaled variable: the

value 1 would correspond to the level assumed by Yang and Ferrell. Each variable has a nuclear

and cytoplasmic version which is denoted by subscript n or c. Cyclin B is constantly produced

at a rate ks and binds immediately to Cdk1 to create active Cdk1-Cyclin B complexes, hence

the same production term ks in the equations for [Cyc] and [Cdk1]. We assume that produc-

tion only happens in the cytoplasm. The activation rate of Cdk1 depends on Cdc25 levels and

activity. The level is controlled by the variable [Cdc25], the activity is a function of Cdk1, since

Cdk1 is an activator of Cdc25. The inactivation rate of Cdk1 depends on Wee1 levels and activ-

ity. We assume that total Wee1 levels are constant, but this level is higher in the nucleus than

in the cytoplasm. In the simulation used in Fig 2, we used [Wee1]n = 1.3 and [Wee1]c = 1. This

variable is also scaled, [Wee1] = 1 corresponding to the model used by Yang and Ferrell. As

initial conditions for Cdc25, we use [Cdc25]n = 1, [Cdc25]c = 2.

Cyclin B-Cdk1 complexes and Cdc25 can be imported and exported from the nucleus with

certain import and export rates. We use the convention that the subscript n or c for the rate

denotes the compartment towards which the protein is moved. To account for the observation

that both Cyclin B-Cdk1 and Cdc25 import is increased at mitotic entry, we introduce the

functions ICyc and ICdc, which modify the import rates of Cyclin B-Cdk1 and Cdc25 respec-

tively. We use

ICycð½Cdk1�nÞ ¼ 0:1þ
1

30
½Cdk1�n ð13Þ

ICdcð½Cdk1�cÞ ¼ 1þ
1

60
½Cdk1�c: ð14Þ

The equations are

d½Cyc�n
dt

¼ kn;CycICycð½Cdk1�nÞ½Cyc�c � kc;Cyc½Cyc�n ð15Þ

d½Cyc�c
dt

¼ � kn;CycICycð½Cdk1�nÞ½Cyc�c þ kc;Cyc½Cyc�n þ ks ð16Þ

d½Cdk1�n
dt

¼ kn;CycICycð½Cdk1�nÞ½Cdk1�c � kc;Cyc½Cdk1�n ð17Þ

þ½Cdc25�n aCdc25 þ bCdc25
½Cdk1�mCdc25

n

KmCdc25
Cdc25 þ ½Cdk1�

mCdc25
n

� �

ð½Cyc�n � ½Cdk1�nÞ ð18Þ

� ½Wee1�n aWee1 þ bWee1
KmWee1

Wee1

KmWee1
Wee1 þ ½Cdk1�

mWee1
n

� �

½Cdk1�n ð19Þ

d½Cdk1�c
dt

¼ � kn;CycICycð½Cdk1�nÞ½Cdk1�c þ kc;Cyc½Cdk1�n þ ks ð20Þ
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þ½Cdc25�c aCdc25 þ bCdc25
½Cdk1�mCdc25

c

KmCdc25
Cdc25 þ ½Cdk1�

mCdc25
c

� �

ð½Cyc�c � ½Cdk1�cÞ ð21Þ

� ½Wee1�c aWee1 þ bWee1
KmWee1

Wee1

KmWee1
Wee1 þ ½Cdk1�

mWee1
c

� �

½Cdk1�c ð22Þ

d½Cdc25�n
dt

¼ kn;Cdc25ICdcð½Cdk1�cÞ½Cdc25�c � kc;Cdc25½Cdc25�n ð23Þ

d½Cdc25�c
dt

¼ � kn;Cdc25ICdcð½Cdk1�cÞ½Cdc25�c þ kc;Cdc25½Cdc25�n ð24Þ

The parameters can be found in S1 Table and are mostly taken from [60]. The import rates

and the functions that influence those rates were chosen to obtain a good example of the mech-

anism we propose.

Supporting information

S1 Fig. Transition timing: Standard deviation, mean and coefficient of variation for the

stochastic simulation algorithm.

(PDF)

S2 Fig. Standard deviation, mean and coefficient of variation of the amplitude of oscilla-

tions, Langevin equation. Here σ = 0.6, κ = 5.

(PDF)

S3 Fig. Standard deviation, mean and coefficient of variation of the period for different

system sizes O.

(PDF)

S4 Fig. Results of the random parameter sampling for different values of τ and κ.

(PDF)

S1 Table. Parameter values used for the model of mitotic entry. All parameters except for

the import and export rates and ks were taken from [60].

(PDF)

S2 Table. Range from which parameters are sampled. For ε, we sampled the logarithm: we

sampled a number γ between ln(0,01) and ln(1) uniformly and then took ε = eγ.
(PDF)

S1 Video. Transition with a changing switch. This animation corresponds to Fig 4C. The

protein is produced at a constant rate, while the activation threshold is moving to the left due

to an increase in a. The effect is a fast transition, and X activity stays low until the transition.

(MP4)

S2 Video. Moving front with redistribution of a. This animation illustrates the blocking of

the front due to a heterogeneity in a, and the release of the front due to redistribution of a (Fig

4K and 4L). The a profile we use is a smooth hyperbolic tangent function of x. The high value

of a is 0.27, the low value is 0.13. The front gets stuck at the transition to low a, where a� 0.15.

At time t = 25, we effect a smooth transition to the flipped a-profile which releases the front,

after which it continues moving to the right.

(MP4)
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S3 Video. Oscillation with a changing switch. This animation illustrates a system with pro-

duction and degradation. We took kX = 1.7, �a ¼ 0:3, Δa = 0.2, κ = 5, τ = 0. The bistable switch

is changing while the system oscillates.

(MP4)

S4 Video. Mitotic entry with two compartments. This animation corresponds to Fig 2 in the

main text. At first, Cyclin B accumulates in the cytoplasm. The activation threshold for Cdk1 is

lower there, so Cdk1 activity jumps to the upper branch first in the cytoplasm. This triggers

nuclear import of Cdc25, which lowers the threshold in the nucleus. Following this, Cdk1

activity in the nucleus jumps up, which triggers an increased import of Cyclin B. Cdk1 activity

in the nucleus keeps increasing while in the cytoplasm it settles to a constant value.

(MP4)

S5 Video. Oscillations for negative Δa. This animation shows what the oscillations for nega-

tive Δa look like which appear in Fig 5H. The animation shows oscillations in the phaseplane

for different Δa with kX = 1.5 and τ = 0. On the left, small amplitude oscillations exist for very

negative Δa, as a consequence of our implementation of the varying switch. Second plot: no

oscillations exist here, the activation threshold moves to the right and the system is stuck on

the lower branch. Third plot: small negative Δa: large amplitude oscillations exist: even though

the activation threshold moves to the right, the system manages to cross it. Rightmost plot:

positive Δa, large amplitude oscillations in which the activation threshold moves to the left as

the system approaches it. In the phase planes, the grey response curve corresponds to the value

of �a, around which the switch varies. As can be seen, in the leftmost plot the switch does not

actually vary around this curve, but stays on the left of it.

(MP4)

S6 Video. Oscillations in a three equation model with different timescales. This animation

corresponds to Fig 5L. We show the evolution of the system given by Eq 8, with three different

values of δ. For δ = 0.01, a relaxes very quickly to the value given by H(XT), which produces

the curve traced out in the (a, XT) plane. This situation is very close to the two-equation system

we use in the rest of the paper. For δ = 1, a relaxes more slowly to H(XT). The limit cycle traced

out in the (a, XT) plane is more open, and the oscillation does not follow the bistable switch

very closely. Finally for δ = 10, the dynamics of a are so slow that it stays nearly constant,

because the oscillations of XT are “averaged out”. This corresponds to a nearly vertical projec-

tion of the limit cycle in the (a, XT)-plane.

(MP4)
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