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Abstract

Gene expression atlases have transformed our understanding of the development, compo-

sition and function of human tissues. New technologies promise improved cellular or molec-

ular resolution, and have led to the identification of new cell types, or better defined cell

states. But as new technologies emerge, information derived on old platforms becomes

obsolete. We demonstrate that it is possible to combine a large number of different profiling

experiments summarised from dozens of laboratories and representing hundreds of donors,

to create an integrated molecular map of human tissue. As an example, we combine 850

samples from 38 platforms to build an integrated atlas of human blood cells. We achieve

robust and unbiased cell type clustering using a variance partitioning method, selecting

genes with low platform bias relative to biological variation. Other than an initial rescaling, no

other transformation to the primary data is applied through batch correction or renormalisa-

tion. Additional data, including single-cell datasets, can be projected for comparison, classifi-

cation and annotation. The resulting atlas provides a multi-scaled approach to visualise and

analyse the relationships between sets of genes and blood cell lineages, including the matu-

ration and activation of leukocytes in vivo and in vitro.

In allowing for data integration across hundreds of studies, we address a key reproducib-

lity challenge which is faced by any new technology. This allows us to draw on the deep

phenotypes and functional annotations that accompany traditional profiling methods, and

provide important context to the high cellular resolution of single cell profiling. Here, we have

implemented the blood atlas in the open access Stemformatics.org platform, drawing on its

extensive collection of curated transcriptome data. The method is simple, scalable and ame-

nable for rapid deployment in other biological systems or computational workflows.

Author summary

Combining data from many different studies is an attractive way of capturing new aspects

of the biology being studied. Biological variance attributable to cell type, cellular niche,

origin, disease status or environmental stimuli is the basis of most small-n transcriptome
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studies. In aggregation, these promise to capture emergent dimensions of a biology that

is not possible to view from any individual study. However biological signal is easily

swamped by technical artifact, especially when data is generated on platforms with pro-

foundly different data structures. This is the case when comparing microarray data to

RNAseq, or RNAseq to single cell profiling. Consequently, transcriptome atlases are gen-

erally comprised from a small number of donors/conditions surveyed using one technol-

ogy platform.
In this paper we present a simple and scalable data integration method that is platform

agnostic. We provide a proof-of-principle by constructing an atlas of blood cells that com-

bines many data sets measured on different platforms, and that in combination, recapitu-

lates the known blood hierarchy. The atlas provides a reference to compare external

samples to, allowing users to benchmark new derivation or isolation methods. It also pro-

vides a reference point for new data types, such as the classification of single cells. The

approach allows for FAIR data reuse and robust identification of molecular signatures

across multiple studies and experimental conditions.

Introduction

RNA profiling has been a mainstay descriptor of cellular systems for over two decades, but

methods for measuring transcript abundance have changed dramatically over this period. The

field was revolutionised by microarrays, which allowed simultaneous hybridisation and col-

ourmetric read out for a catalogue of known genes [1]. Microarrays were rapidly adopted

because they were a fast, inexpensive and simple way to measure the transcriptional output of

a biological system. However, the need to predefine sequences to be interrogated, and a linear

range constrained by the stoichiometry of probe and target meant that microarray platforms

were rapidly superseded by RNA sequencing (RNAseq) technologies. Now the most prevalent

experimental platform, the range of detected transcripts is determined by the number of tags

counted in a sequencing run and cellular resolution is determined by the complexity of the

profiled population [2, 3]. Increased resolution has escalated rapidly with the advent of single-

cell RNA sequencing (scRNAseq) technologies [4, 5]. Although some platforms are being

refactored and repurposed, such as the reinvention of hybridisation-based platforms for spatial

profiling [6], successive technologies become rapidly redundant, as does the data generated on

them.

There is a need to move past information gathering and to move towards build new knowl-

edge frameworks. Yet technological change drives much recursive data derivation. This repre-

sents a massive intellectual and financial investment by research groups and funders on data

that is not adequately being reused, despite its availability in data repositories [7, 8]. A wealth

of information still resides in data generated on obsolete technologies: these collectively repre-

sent a large back catalogue of carefully phenotyped cells and meticulous experimental systems

that can be viewed one study at a time in platforms such as ArrayExpress [9]. A major barrier

to data reuse is the computational capacity to directly integrate and compare successive tech-

nologies. While the drivers for platforms are increased sensitivity and resolution of systems-

scale measurements, it remains difficult to benchmark the new against the old.

Drawing on curated knowledge commons is particularly important when new platforms,

such as scRNAseq, rely on annotations from post-hoc analysis rather than starting with well

phenotyped cells. The methods that are most commonly used to integrate scRNAseq with dif-

ferent platforms rely on projection or harmonisation of different data types onto a reference
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scRNAseq data set, and are designed to compare data in a pairwise manner, so are not easily

scaled to include many experimental series [10]. In order to take advantage of the back-cata-

logue of phenotype-gene expression data, we need new approaches to combine experimental

series from several different platforms and across multiple studies.

Combining RNAseq with the microarray is particularly challenging because data are

acquired in a continuous (microarray) or discrete (RNAseq) manner, and the number of genes

captured in a single cell may be orders of magnitude less than that measured in a population.

While it is most common to combine data from the same microarray platform (e.g. [11, 12])

or RNAseq (e.g. [13, 14].) combining different types of platforms is less common (e.g. see also

[15]). Combining microarrays with RNAseq has been previously attempted [16, 17], however,

these methods focus on global normalisation, which has a major impact on stability and scal-

ability when new data is imported. Many normalisation approaches that account for platform

variance require prior identification of sample groups that are expected to harmonise together.

This can introduce class biases, whilst also enforcing such strong transformations to data

structure that meaningful biological signal is removed—these are acknowledged problems

with batch correction methods such as COMBAT ([18]), and RUV-III ([19]). Class imbalance

is typically encountered when attempting to merge a small number of data sets. For example,

when benchmarking a new sample type against an existing exemplar the lack of common or

appropriate reference samples in the comparison, as well as prior designation of sample class

in the normalisation structure can lead to spurious claims of cell-type similarity. This could be

addressed if new data could be compared to a reference atlas series, but no such benchmark

exists.

Here, we use the Stemformatics catalog [20], which has curated hundreds of studies, to

assess the extent that platform impacts on expression variance for each gene. This challenged

our initial assumption that accounting for batch necessitates an adjustment to every gene

expression value. We selected a subset of genes with low attributable platform variance to com-

pile samples from many studies, resulting in a reference atlas that reflects cell properties that

are independent of mode of measurement. By including sufficient representation across differ-

ent cell types we gain insights into the behaviour of related cell types, whilst also providing a

platform for further analysis (e.g. comparisons between disease and normal states, or between

in vitro and in vivo models); and to benchmark new platforms, including scRNAseq.

Materials and methods

In designing this method, the effect of platform is assumed to be systematic variation, and

other batch effects will be averaged out by the multiple datasets covering the biology. We test

these assumptions by leveraging the large collection of data in Stemformatics which samples

different platforms and numerous cell types. The method introduced here assesses each gene

independently to quantify the impact of experimental platform on that gene’s expression

across the whole data series. Genes with low platform effect are selected for subsequent

analyses.

Data curation

All data used to compile the blood atlas was curated for data quality, and for method of cell

isolation and phenotyping. This metadata is captured in the Stemformatics annotation table

(available to download at https://www.stemformatics.org/atlas/blood), and includes tissue

source, antibody profiles where bead or FACs isolation is used, age of donor (fetal, neonatal,

adult). Cells that are profiled directly from tissue are annotated as an in vivo source; mature

cells isolated from blood or bone marrow and cultured for any period of time are labelled ex
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vivo; and cells differentiated in the laboratory from hematopoietic progenitor (typically mobi-

lised peripheral blood, bone marrow or cord blood) or from a pluripotent cell source are

labelled in vitro. This information is available to the viewer in the Stemformatics implementa-

tion of the blood atlas; primary data sources and publications are linked from every data set

page. Supplementary S1 Table summarises the datasets used to construct the atlas, along with

external datasets used to project onto the atlas.

Not all samples were used from each data set to construct the atlas, which excluded cells

from blood pathologies such as leukemic cell types. Note also that in early iterations of the

atlas, T-cell subsets isolated using negative selection alone were found to have a high monocyte

contamination when compared to T-cells isolated using flow cytometry gates, as evaluated by

high expression of myeloid marker gene profiles CD14, CD16 and HLADR. Therefore samples

isolated using negative-selection methods were excluded from the atlas unless further purifica-

tion and phenotyping was provided by the authors.

The standard Stemformatics processing pipelines were implemented, where data was

assessed for linear range/library size, RNA species, and RNA degradation using 5’/3’ signals

where appropriate for the profiling method. Datasets were excluded if they showed evidence of

over-amplification, incomplete data availability in the public databases GEO or ArrayExpress,

incomplete sample metadata or identified sample-swaps, or where experimental design was

confounded. Details of the Stemformatics data curation pipeline are available [20, 21].

Data transformation

Combining datasets measured on microarray platforms and RNAseq presents two main diffi-

culties. Firstly, each platform produces data on a different scale, i.e. they measure abundance

in different units. Secondly, microarrays are composed of gene probes, which are physically

different and may be in principle measure transcripts not represented by alternate array mod-

els. These problems are addressed in two stages presented below, a data transformation stage

and a gene filtering stage.

Only genes measurable in all of the available platforms are used to construct the atlas. In

this instance we start with 13,661 genes. Expression values from RNAseq (RPKM) or microar-

ray are transformed to the same scale. Microarrays have a component of lowly expressed genes

at a non-zero value, whereas lowly expressed genes within RNAseq data can be exactly zero.

Thus data structure (discrete vs. continuous) and sensitivity are quite different. Gene expres-

sion for each sample is transformed into rank percentile values—the gene with the highest

expression is assigned a value of 1 and the lowest receives a value of 0. Values in between are

uniformly spaced accorded to the rank of the genes expression. Tied values are given the same

rank, which is average of their would-be ranks if they were not tied. Note that this scheme is

scalable because the inclusion of new samples only requires that they are given the same

ranked transformation, avoiding the need to continually renormalise the entire data series.

The analysis of the influence of the rank transformation on the platform effect can be found in

the S1 Text section 1.3.

Variance modelling and gene selection

Principal component analysis (PCA) is performed to collate samples after the percentile trans-

formation, in order to find reliable global structure [22]. As in Fig 1 middle row, there is a

clear platform effect in the clustering of the samples, which must be suppressed. We estimate

the platform effect on each gene by fitting a univariate linear model with platform as an
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independent variable,

y ¼ Xpbp þ �; � � Nð0; s2
�
Þ

where y is the expression of a single gene across all samples, Xp indicates membership of the

platform with coeffecient βp. The variance attributable to platform is defined as

s2
p ¼ varðXpbpÞ;

and the total variance

s2
Total ¼ s

2
p þ s

2
�
:

Fig 1. The blood atlas is constructed by integrating many independent curated datasets. Top row: the individuals PCAs of a set of

quality-controlled independet datasets. These datasets are measured on a different platforms. Middle row: genes are rank

transformed in order to move the expression distributions from the different platforms onto the same distribution. However, after

running a PCA on the transformed data a platform clustering is still present. Bottom row: genes are univariately assessed for

platform dependence, and filtered in order to keep only genes with a low fraction of the variance dependent upon platform. The

resulting PCA then shows clustering based biological features.

https://doi.org/10.1371/journal.pcbi.1008219.g001
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therefore, the proportion of variance attributable to platform is

s2
p

s2
Total

:

In practice this is implemented this using the variance partitioning package [23], with a sin-

gle fixed effect (platform). This model is a fixed effect analysis of variation (ANOVA).

The distribution of variance attributable to platform is shown in Supplementary S1 Fig.

Approximately 25% of genes examined were seriously impacted by platform, that is more than

half of their variance was attributable to platform. Most genes were not overwhelmed by their

method of measurement. In order to select the genes with minimal dependence upon platform

a threshold of 0.2 of the variance of a gene is required. The PCA was constructed from this

gene subset. The resulting PCA is shown in Fig 2 and effectively removes platform depen-

dence. The process reducing platform dependence when lowering the threshold is outlined in

S1 Text section S1.1 and S2 Fig. All PCA generation was implemented via the python scikit-

learn package [24].

Comparison of filtered and non filtered genes based on variance

partitioning

To assess the effect of gene filtering in our approach, we partitioned the variance of all genes

from the original data set (13661 genes) and calculated the variance explained by the ‘Class’

(sample source, progenitor type or cell type) and Platform using a linear mixed model (LMM)

as follows.

Ranks percentiles were transformed using the probit function to fit the normality assump-

tion of a LMM. For each gene i, i = 1, . . ., 13661, we fitted a linear mixed model of the form

yi ¼ m þ Zð1jClassÞaClass þ Zð1jPlatformÞaPlatform þ ε

with variance components

aClass � Nð0; Is2

classÞ

and

aPlatform � Nð0; Is2
PlatformÞ:

The proportion of variance explained by class effect and platform effect was evaluated with

the variancePartition R package [25] and genes were ordered according to their estimated

class/platform variance ratio
ŝ2
class

ŝ2
Platform

.

Clustering

In order to define regions of cohesive biology and test the stability of the atlas, we applied

K-Means clustering to the principal components, which represent the coordinates of each

sample in the 3D space. It is implemented via the sci-kit learn packages [24]. To provide a

comparison, agglomerative (bottom up hierarchical) clustering is also implemented via the

sci-kit learn package. Euclidean distance and Ward linkage was used in the Agglomerative

algorithm. The two re-sampling schemes used were a jackknife re-sampling (leave-one-data-

set-out), and bootstrap re-sampling performed 500 times.
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Both cluster algorithms require the number of clusters, k, as an input parameter. Multiple

values of k are assessed via a stability analysis based on re-sampling (described in S1 Text sec-

tion S1.2), and the optimal k value was chosen as soon as the stability measure started to

decrease. The stability measured used is the H-index, also outlined in S1 Text section S1.2.

Projection of external data

To project new data sets onto the atlas, we transform the data as previously described into per-

centile values. Only genes selected in the construction of the original atlas are retained. The

original PCA defines the graph coordinates system defined by principal components. Each

Fig 2. The S4M blood atlas. The S4M blood atlas integrates samples from 38 independent datasets. Each point is sample, and there

are 3700 genes used in construction of the PCA. The colour indicates the annotated cell type. Progenitors sit in a region in the corner,

while the the myeloid and lymphocyte arms separate out. The lymphocyte region includes both T and B cells. Dendritic cells sit in the

cloud in the center if derived from an in vivo source, or cord-blood derived DC sit in a group.

https://doi.org/10.1371/journal.pcbi.1008219.g002
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component is defined by a linear combination of genes, with each gene receiving a weight, also

known as it’s loading. Applying these coefficients to new data produces a coordinate in the

PCA space for projection. The PCA and transformation is done with the scikit-learn [24].

If genes are missing from the projection data, they are given the lowest rank. These missing

genes often result from slightly different genome annotations: microarrays particularly suffer

from outdated probe annotations resulting in absent or misrepresentation of genes used to

construct the atlas. If a large proportion of genes are missing, this will distort the projection,

thus it is advisable to use caution when applying old or uncommon microarray platforms

built on outdated genome versions. Note that Stemformatics workflows include alignment of

microarray probes to the current genome version for gene annotation purposes.

A vignette is provided on the Stemformatics.org atlas website to assist users to project their

own data to the atlas. This includes a detailed guide of file formats, and some recommenda-

tions for single cell projections.

Single cell RNAseq expression data

Single cell RNAseq expression data was sourced from [26]. A pseudo-bulk aggregation method

was used to aggregate cells belonging to the same cluster, and where the cluster identity was

taken from the original publication [26]. In general, 8-10 cells were pooled per aggregate. We

have previously shown that this number of cells in a 10X experiment allows for reasonable

approximation of the data structure of the atlas data in [27]. Each cluster was randomly

divided into subgroups such that each projected ‘sample’ had the same number of cells within

it, and transcript reads from these cells were pooled to create a single pseudo-bulk sample for

that subgroup. The subgroup has the same identity as the original group, so might be expected

to project into the same region of the atlas. These pseudo-bulk samples were projected onto

the atlas in the same manner as described above.

Implementation and code availability

The Blood atlas and accompanying myeloid subset are available as interactive plots at www.

stemformatics.org/atlas/blood and www.stemformatics.org/atlas/myeloid. These pages contain

a number of features to help users navigate the atlas and perform useful functions:

• Interactive PCA with 3d/2d toggle.

• Colour by sample group, such as progenitor type or cell type.

• Show gene expression profile as a colour gradient.

• View gene expression and colour by sample group side by side.

• Project RNA-Seq dataset hosted at Stemformatics after a search.

• Project one’s own dataset by providing expression and sample files as text files.

• Show and find which samples from which datasets make up the atlas.

• Download relevant data files (rank transformed expression and annotation tables) used by

the atlas.

• Download plot in custom size.

Python code which can be used to manipulate the atlas data, to recreate the PCA for

example, is available at https://bitbucket.org/stemformatics/s4m_pyramid/src/master/scripts/

atlas.py.
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Results

Recursive application and unsupervised K-means clustering upon the

blood data

The method relies on several assumptions: (1) the biology of interest can be represented by

the expression of many genes, (2) across platforms, some genes are measured less consistently

than others, but there is a subset of genes where platform contributes substantially less to gene

expression variability than the biology of interest, and therefore (3) the biology of a cell can be

meaningfully described at several scales by identifying subsets of molecular attributes that are

selected on cross-platform performance.

The method in its simplest implementation is agnostic to the presence of a biological signal

or other confounding technical variables, but these can be subsequently applied to assess the

major sample groupings. Here, 13661 genes common to 5 platforms were filtered for expres-

sion variance across 850 samples taken from 38 blood data sets. 3700 genes with low platform

variance were subsequently used in a PCA to visualise the behaviour of samples relative to the

platform or study that they were sampled from. The outcome of the these steps are shown in

Fig 2, where each point represents one sample and the plots show cohesive grouping of similar

cell types drawn from different platforms and independent studies. Supplementary S3 Fig

shows that most genes retained in the atlas explain a high proportion of variance related to

either sample source, progenitor type or cell type compared to platform.

Fig 3 shows the process of implementing progressively stricter thresholds to generate the

PCA. Beginning with a permissive threshold of 0.8 platform contribution to total variance in

panel A, the separation of platforms in the PCA space is clearly evident. As the threshold is

lowered to 0.6, 0.4 and 0.2 (panels B, C and D), samples from the different platforms mix and

form new clusters. This in turn impacts on the number of genes available to construct the

PCA, illustrated in S1B Fig. A threshold of 0.5 leaves approximately 10000 genes, a threshold

of 0.25 approximately 5000 genes, and when the threshold is as strict as 0.05, only 500 genes

remain.

It is important to note that the figures in S1 Fig are a function of the biology of the samples,

combined with the systematic effect of the platform upon genes. As when generating a regular

PCA, the variance is affected by the sampling of the underlying biology. If that biology is not

well represented, variance modelling will be more difficult. In order to undercover more fine

grain detail it is necessary to refine the set of samples and recursively apply this process.

At a global level, the PCA shows clear separation of progenitor types, lymphocytes, and

myeloid lineages. The uniformity and stability of these sample groups was confirmed by K-

means cluster analysis (see S2 and S3 Tables). S3 Table shows results of the stability analysis

performed over a range of k for the K-Means and Agglomerative algorithms. The most stable

k, as measured by the median of the H-index of the clusters, is highlighted in yellow. In the top

right hand column of 4 shows the most stable clustering on all of the blood (including myeloid,

lymphocyte and progenitors) is run with k = 6. The annotated cell identities in S2 Table show

that cluster 1, in the bottom corner, contains the progenitors, Cluster 2 captures lymphocytes

and contains the majority of B, T and NK cells. The myeloid lineage is split over a three distinct

clusters: Cluster 4 containing circulating monocytes and granulocytes, Cluster 5 predomi-

nantly cultured monocytes and tissue-resident macrophages, and Cluster 6 containing den-

dritic cells.

The large number of different myeloid cell types drives a resolution favouring these subsets.

It follows that the resolution of biologically interesting subtypes requires representation from

several data sets, and may not resolve if the major biological signal is driven by cell classes that

are disproportionately represented. We address this using recursive application of the method,
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on subsets of samples captured in specific regions of the original graph. This allows for ever

finer detail and identification of nuanced cell phenotypes, with the limiting factor being the

availability of enough data for the biological subset of interest. By using a recursive approach,

we view the atlas as a series of blood hierarchies, starting with the most broad categorisation,

and moving through smaller sample groupings to find more detailed cell types. For example,

in order to resolve the lymphocytes better, the lymphocytes and myeloid arms were isolated

from each other and the technique repeated on each. These separate graphs are shown in Fig 4.

The PCA on the 728 myeloid samples is performed from the clusters containing progenitors,

circulating monocytes and granulocytes, and dendritic cells (and approximately 3600 genes).

We further observed differences between circulating and cultured monocytes, naive or acti-

vated states, and distinctions between primary or in vitro derived cells (Fig 4 Myeloid). In

contrast the PCA on the lymphocytes only include 255 samples from clusters containing lym-

phocytes and progenitors. The lower number of samples makes it more difficult to resolve

structure and results in only approximately 2400 genes being included. Despite the lower num-

ber of samples, Fig 4 Lymphocyte shows evident separation of the T and B Cells along the z-

axis, as their difference is now strong enough to exceed the platform effect in our gene filter

step, however the atlas lacks sufficient samples describing B-cell maturation or identifying phe-

notypically distinct T-cell classes. At each iteration, a robust global clustering is found for that

Fig 3. The PCA coordinates of blood atlas samples after filtering genes with a decreasing platform variance fraction threshold.

In panel A the threshold is 0.8, in B it is 0.6, C it is 0.4, and D is 0.2. As the threshold is lowered, clusters of samples initially separated

by platform, merge and form new clusters independent of platform.

https://doi.org/10.1371/journal.pcbi.1008219.g003
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Fig 4. Repeated application of the gene filtering and PCA upon annotated blood samples. These panels show the results of

repeated application of gene filtering and PCA upon the annotated blood samples in S4M. Each point is a sample, with colour

indicative of annotated cell type (left column), or cluster identity (right column). The top left shows application to all blood samples

as in Fig 2, while the top right shows the robust clusters defined upon these coordinates. The identities of these clusters are in

Supplementary S2 Table. Their highlighted colours are propagated to the middle and bottom panels to display the behaviour of these

clusters subsequent to recursive application. The middle row shows the PCA when variance modelling and filtering is applied only to

the myeloid lineage clusters (2,3,4,5 and 6). The myeloid PCA shows the clusters defining monocyte, macrophages and dendritic

cells separating into distinct regions. The bottom row shows the variance modelling, filtering and PCA upon the lymphoid lineage

clusters (1 and 3). Now the increased resolution splits the lymphocyte cluster, 1, into more detailed subsets containing either T or B

cells.

https://doi.org/10.1371/journal.pcbi.1008219.g004
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scale, and only that scale. By stitching these together, the true multiscale nature of the myeloid

arm of the blood hierarchy emerges, and more molecular detail is revealed. The two examples

provided here can be further explored in the blood atlas (https://www.stemformatics.org/atlas/

blood) and the myeloid subsets in the myeloid atlas (https://www.stemformatics.org/atlas/

myeloid) [27].

Stability

While the biological grouping in the atlas are visually compelling, in order to formally test

the stability of the results we ran two types of clustering algorithm on the merged data—the

K-Means algorithm and the Agglomerative (bottom-up hierarchical) algorithm. For each

approach, we perturbed the underlying data with two re-sampling schemes and measured the

stability of cluster membership using the H-index of the Jaccard similarity coefficient (e.g.

[28]). Both algorithms, K-Means and Agglomerative, require the number of clusters as an

input parameter, and as this number is not known a priori, we test multiple values. The Sup-

plementary S3 and S4 Tables show the results of the jackknife and bootstrap resampling car-

ried out upon clusters found in the respective atlas of each row in Fig 4. These tables list the

median ± the maximum and minimum of the H-Index calculated on all clusters after re-sam-

pling. The results of jackknife and bootstrap resampling are qualitatively very similar.

Our clustering defines biological groups by assigning class membership to samples based

on their proximity in PCA coordinates. This is our preferred measure of structure because

the principal components can (and may be expected to) change under random re-sampling.

Groupings of samples ought to be preserved, regardless of coordinate system, if indeed the bio-

logical signal is stable and the relative proximities are conserved. If the clustering structure is

genuine, stability can be expected up until the point where too many clusters are demanded,

after which clusters will be artificially grouped and unstable. We can also expect that the differ-

ent algorithms should produce similar results if our atlas is stable.

In S3 Table top row, algorithms with cluster numbers up to 6 performed the best. For the

both the K-Means and Agglomerative algorithms, the median values in this range are about

�0.9. This indicates that when re-sampling, the overall structure of the atlas is well preserved.

Results for re-sampling the myeloid and lymphoid arms are shown in the middle and bottom

rows of S3 Table. The myeloid atlas is stable up until having approximately 5 clusters, at which

point they have a high median H-indices of�0.9. The lymphocyte atlas is most stable with 4

clusters, but only has median H-index of 0.79 (K-Means) and 0.75 (Agglomerative), and is less

stable than other graphs for all of the cluster numbers. This reflects the relatively smaller repre-

sentation of lymphocyte samples within our data.

We also evaluated the variation of the set of selected genes under re-sampling for the atlas

containing all of the blood. Over the 500 bootstrapped iterations the median percentage of

genes in common with the true data is 93%, with a minimum of 86% and maximum of %96.

For the leave-one-out re-samplings the median similarity is 97%, with a maximum of 99% and

minimum of 88%. These indicate the set of genes used to generate the Atlas is also stable to

perturbations.

External data can be projected onto the atlas

Allowing researchers to compare cell types is an important use-case for any robust transcrip-

tional atlas which serves as a reference. This could be to validate or benchmark samples against

the reference, to hypothesise about new cell types, or to find key regulators of differentiation.

We have taken a simple approach of linearly projecting new data points onto the PCA space of

the Blood Atlas for this type of comparison—as we allow users of the website to project their
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own data this way, a simple approach that users can easily understand is advantageous. We

tested projections with a range of different datasets and data types that contain blood samples,

to see if they produced expected results. The projections with bulk RNAseq datasets were

highly reproducible for both myeloid and lymphocyte arms (Fig 5, [29]). For scRNA-Seq,

simply projecting individual cells did not work very well, due to the fundamental difference

in the distribution of values in the scRNAseq data compared to platforms. However, we have

found that aggregating the samples to simulate pseudo-bulk samples did work well, as shown

by Fig 5, [26]. To help users with aggregation and projections in general, there is a vignette

which is accessible from the web page. This includes a step-by-step description of the process

with examples, including how to decide on parameters of aggregation for scRNAseq data

projections.

For samples which are transcriptionally very different to blood cells, such as mesenchymal

stromal cells, fibroblasts or neurons, projected coordinates are in the central region of the PCA

(S4 Fig). This region corresponds to coordinates where samples sit far away from all regions of

the PCA. The web page contains some information about projections for the users, including a

caution about interpreting a projection in this region, as well as information about the formats

of files to use.

Discussion

Gene filtering is an alternative to supervised normalisation

Transcriptional profiling was once a discovery platform used to find new molecules in well-

established experimental systems [30]. It is also commonly used to assess cell composition of

tissues, or benchmark new cell models by virtue of shared molecular patterns [31]. Typically,

researchers will “borrow” samples from other data sets, for example to benchmark or compare

to their own experimental system to a previously published standard. Potential biases are

introduced by the choice of reference, and this is further compounded by batch correction

methods that require the analyst to make prior assumptions about the appropriate categorisa-

tion of samples. Methods that require prior determination of biological class force analysts to

Fig 5. New and independent samples may be projected onto the Blood Atlas. The projection of blood data from two external datasets, Haemosphere

(https://www.haemosphere.org/) and van Galen scRNA-Seq [26]. The location of the projected data is consistent with the Blood Atlas.

https://doi.org/10.1371/journal.pcbi.1008219.g005

PLOS COMPUTATIONAL BIOLOGY The Stemformatics Blood Atlas

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008219 September 28, 2020 13 / 21

https://www.haemosphere.org/
https://doi.org/10.1371/journal.pcbi.1008219.g005
https://doi.org/10.1371/journal.pcbi.1008219


make a call about which variables are most important to promote or subtract, or how many

biological classes are expected in the merged group. This may be desirable under some circum-

stances, but arguably less desirable when large data series are compiled, particularly if the nor-

malisation approach inadvertently suppresses important variation across that data series. The

addition of new data may require renormalisation of the entire series, limiting the number of

comparisons. Without a standardised resource each study’s comparator is different to the

next, yet such approaches are expected to test the reproduciblity of individual studies. Here we

show that the projection of new data onto a reference transcriptome atlas offers a straight for-

ward solution.

In the example described here, the blood cell hierarchy, we demonstrate that when combin-

ing a large number of microarray and RNAseq data sets, a basic transformation and gene filter

step is all that is required to extract prominent biological features. Supervised batch normalisa-

tion methods are very useful when applied to samples with well described properties, and

when the split between sample class and technical batch is well balanced. Too often, however,

batch and biology is confounded (reviewed in [32]). Supervised normalisation seeks to rescue

as many expression points (genes or probes) as possible, so applies a weighted adjustment

across the entire gene set. Here we demonstrate that across dozens of data sets, representing

hundreds of samples, the variability in gene expression attributable to platform profoundly

impacts some, but not all genes. Therefore a weighted adjustment of expression where little

prior batch effect is present has the potential to obscure genuine biology. Our approach does

not seek to retain all expression measurements but rather constructs the atlas graph only with

those expression values that escape a strong batch influence. This is achieved by taking many

independent data sets, with minimal processing, to allow the dominant technical, experimental

or biological trends to emerge from the combined data series. The resulting blood atlas

demonstrably groups cells with common phenotypic attributes in an unbiased manner, and at

several scales of resolution of cell type. Minimal processing also easily lends itself to an unsu-

pervised method, which helps prevent over-fitting of sample classes or the biases associated

with a restricted reference set.

An alternative method that is gaining attention in the integration of single cell datasets is

canonical correlation analysis (CCA) [33]. This method similarly uses a reduced feature selec-

tion approach, using only those variables (e.g. genes) that share a linear correlation structure

across several data sets, to combine pairs of different experiments into an integrated series.

CCA works best when there are a large number of data points in common between the samples

to be combined. In contrast, we are combining many datasets of small sample size, such that

any pair of individual datasets may lack overlapping cell classes, and in practise often are

focused on one particular cell type, such as the humanised mouse models assessing tissue resi-

dency of dendritic cells [34] or an in-depth exploration of natural killer cell progenitors in fetal

and adult tissues [35]. The correlation between genes and cell types is subsequently explored

using PCA.

The question of what is an appropriate normalisation must be assessed in light of the analy-

sis question to be conducted. While there is clearly no ‘one-size-fits-all’ approach, we acknowl-

edge that there are some limitations to our approach. Simplifying data on a ranked scale

removes information about the scale of difference between two points. Consequently some

information on gene-gene correlations is lost, although we do allow genes with the same value

to keep the same rank. It is apparent from Supplementary Method S1.3 that when combining

data from platforms with different expression distributions, the benefits of performing the

rank percentile transform outweighs the cons. By applying a gene filtering method, some bio-

logically relevant genes will be removed from the analysis, and this may make it harder for a

user to assess sample classes using a marker-based approach. By selecting genes with a low
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fraction of variance due to platform, we may we may lose resolution between some biological

classes (insofar as variance indicates biological informativeness).

Nevertheless we see in Fig 2 that enough information remains in order to extract a good

deal of biological structure, and to find meaningful genes that are driving sample clustering.

We also acknowledge that using PCA to review sample behaviour does not allow for examina-

tion of non linear relationships between genes or samples. The advantages of rescaling and

recursive filtering are clearly demonstrated here, and the resulting expression matrix would be

suitable for other graphing or clustering approaches.

Recursive application to reveal fine-grained or coarse-grained atlas

resolution

Blood is arguably the most accessible, and therefore the most comprehensively studied human

tissue. The earliest attempts at finding unbiased molecular markers for different cell types

came from the “Cluster of Differentiation” (CD) leukocyte markers [36]. In a community

effort analogous to the atlas activities today, discovery of CD markers required over 50 labora-

tories undertaking an antibody screen against panels of blood cells without knowing what the

antigen expressed by the cell is, nor what it does—the markers were adopted if they were able

to reliably partition different cell types. CD markers are still used today—for example CD14

is a classical marker of monocytes and macrophages [37]; CD4 and CD8 [38, 39] have been

adopted into the naming convention of T-cell subsets. Nevertheless, very few of these markers

are restricted to one cell type [40], and more typically combinations of markers are required to

categorise leukocytes.

Several atlas approaches were proposed to identify molecular markers of blood cell sub-

types—these include the microarray profiles in Haematlas from the Bloodomics consortium

[41] and Haemopedia which compares RNAseq profiles between mouse and man [29]. While

useful, most focus on profiling a small number of cell types in a large number of donors (e.g.

QTL studies of monocyte gene expression) or a large number of well characterised cell types in

a small number of donors [11, 42]. However direct comparison between these projects is very

difficult because of discrepancies in the way data is captured, and this is the problem addressed

by the integrated atlas approach proposed here.

When considering what are the prominent biological features of any collection of data it is

important to remember that ‘prominent’ is relative. The difference between lymphocytes and

myeloid cells may be prominent when looking at blood cells only, but when compared to stem

or stromal cells, it could be reasonably said that lymphoid and myeloid cells look very similar.

The recursive approach is crucial to our analysis—at each level, the dominant global structure

is retrieved and used to inform the next iteration, thus avoiding to impose global axis on all

cells which may not reflect small scale structure. Therefore, the recursive approach is an intui-

tive way to map the cell landscape.

That this multi-scaled nature of a biological system can be captured recursively provides us

with new opportunities to review phenotypes that might be expected to deviate from a refer-

ence atlas. Examples of future atlases might include disease states that fundamentally alter cell

state, or experimental manipulation that creates new cell types. For these applications we rec-

ommend a multi-tiered approach, first projecting the new cell types to the current reference

atlas to assess similarity to the groups included in the reference, then recompiling the atlas

with the disease samples included to allow for additional biological variance specific to the

disease to be captured in the new atlas. A leukemia atlas, for example, would comprise both

healthy and leukemic cell types. An inflammatory atlas would include naive and activated cell
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types, and so on. The critical consideration here is adequate replication across data sets of the

sample categories that are included in any rederived atlas.

This highlights a second important limitation to our approach: the necessity for large

amounts of diverse data, covering different cell types and experimental platforms. Subsam-

pling regions of the atlas and applying a new round of gene filtering is a recursive approach

that allows users to scale between global (all samples) or local cell comparisons. This extracts

the most dominant structure at each resolution level, however with fewer samples we also

approach the limits of our technique, and the results may become less robust. This can be

observed in the lymphocyte arm of the atlas, which in the current iteration are represented by

only a few data sets (Fig 2). The resolution of these cells is adequate at lineage level (B-cells vs

T-cells) but with only 255 samples, it does not resolve subtypes of T Cells, such as CD4 or

CD8. In contrast, resolution between different myeloid subsets is very high, and the emergent

properties of the myeloid atlas highlight the impact of experimental handling or derivation

method on the type of macrophage or DC studied.

Data projections and integration of single cell platforms

Given the advent and popularity now of single cell sequencing, future iterations will see the

inclusion of single cell data. Deeper molecular characterisation of individual cells could be

expected to better resolve functionally discrete populations, as well as provide new candidate

markers for prospective cell isolation and characterisation. With the blood atlas method, we

aim to provide a reference benchmark that evaluates past transcriptomic data through a novel

and relatively simple integration approach, and use this for comparisons to new data types,

including scRNAseq of blood cells from different tissues. In the current iteration, we show the

usefulness of projection of scRNA data onto the atlas, particularly for identification of blood

cell types and annotation of scRNAseq clusters.

While we use the graph space obtained by the combined atlas series to project new data

into the predefined state space, it’s important to note that we are not using this to ‘tune’ new

data sets into this space. Other graph smoothing methods have been described [10, 43], and

particularly applied to the integration of single cell batches, where ‘harmonisation’ of the com-

bined data is achieved by iterative weighting of gene expression in the introduced samples.

Here, data set projections are used first to the reproduciblity of cell groups and group annota-

tions using external, independent data. Secondly, projections of single cell expression data into

prior annotated groups is used to lift atlas annotations over to the single cell experiment.

Projection strategies may provide additional benefits. Since we rank transform each sample

before projection, each sample is treated independently to assess its similarity to the atlas cell

types. Hence insights can be gained from data sets where batch effects are already confounding

interpretation of data in the original experimental series—for example, where each sample

class is obtained in a separate technical batch. In this instance, projection of each set of samples

onto a reference atlas allows for examination of the experimental groups against an unbiased

set of relevant cell classes. Projections may also inform trajectory analyses for scRNAseq data-

sets, without having to derive these trajectories de novo. For example, plotting single cell

clusters from a differentiation series onto the blood atlas will allow better identification of hae-

matopoietic cell lineages, or even suggest new pathways of differentiation, especially in cases

where scRNAseq data come from cell types with low coverage within the Blood Atlas.

Conclusion

A shift from data collection on successive technologies, to integrated analyses across series of

data offers an opportunity to view biological collections across a hierarchy of perspectives and
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information. In the example given here, we recapitulate the haemopoietic systems by combin-

ing 38 datasets, each describing detailed aspect of one part of that system in a small number of

donors. The result is a multi-scaled tool to visualise and analyse the transcriptional relation-

ships in the blood cell lineage. This allows users to rapidly review gene expression across a

large number of samples to find reproducible markers of cell type, and new markers correlated

to derivation method, culture condition, or extrinsic signals.

Recursive application of the method was demonstrated by the general categorisation seen

in whole blood to the identification of specific myeloid cell types and activation states in the

accompanying myeloid atlas. The projection of additional data onto the atlas, provides a tool

for researchers to compare their own data to a robust reference collection. Projection of single

cell data provides definitive annotations of blood cell clusters without prior assignment of

marker genes in the scRNA-seq data.

The method is simple and scalable, so providing anyone with the means to curate their own

reference atlas to address additional biological systems. Implementation of the blood and mye-

loid atlases provides a simple web-based tool in the Stemformatics platform.
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