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Abstract

To understand why some hosts get sicker than others from the same type of infection, it is

essential to explain how key processes, such as host responses to infection and parasite

growth, are influenced by various biotic and abiotic factors. In many disease systems, the

initial infection dose impacts host morbidity and mortality. To explore drivers of dose-depen-

dence and individual variation in infection outcomes, we devised a mathematical model of

malaria infection that allowed host and parasite traits to be linear functions (reaction norms)

of the initial dose. We fitted the model, using a hierarchical Bayesian approach, to experi-

mental time-series data of acute Plasmodium chabaudi infection across doses spanning

seven orders of magnitude. We found evidence for both dose-dependent facilitation and

debilitation of host responses. Most importantly, increasing dose reduced the strength of

activation of indiscriminate host clearance of red blood cells while increasing the half-life of

that response, leading to the maximal response at an intermediate dose. We also explored

the causes of diverse infection outcomes across replicate mice receiving the same dose.

Besides random noise in the injected dose, we found variation in peak parasite load was

due to unobserved individual variation in host responses to clear infected cells. Individual

variation in anaemia was likely driven by random variation in parasite burst size, which is

linked to the rate of host cells lost to malaria infection. General host vigour in the absence

of infection was also correlated with host health during malaria infection. Our work demon-

strates that the reaction norm approach provides a useful quantitative framework for exam-

ining the impact of a continuous external factor on within-host infection processes.

Author summary

Infection outcomes are highly variable. Underlying this variation are many sources of het-

erogeneity with known quantitative impacts on outcomes, but elusive causal mechanisms.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008211 October 8, 2020 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kamiya T, Greischar MA, Schneider DS,

Mideo N (2020) Uncovering drivers of dose-

dependence and individual variation in malaria

infection outcomes. PLoS Comput Biol 16(10):

e1008211. https://doi.org/10.1371/journal.

pcbi.1008211

Editor: Benjamin M. Althouse, UNITED STATES

Received: November 5, 2019

Accepted: July 31, 2020

Published: October 8, 2020

Copyright: © 2020 Kamiya et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from Timms et al. 2001 Parasitology and the

associated Dryad entry (http://dx.doi.org/10.5061/

dryad.stqjq2c1k).

Funding: NM was supported by the Natural

Science and Engineering Research Council of

Canada (Discovery Grant). MAG was supported by

University of Toronto Department of Ecology and

Evolutionary Biology Postdoctoral Fellowship

(MAG). TK was supported by Mitacs (Globalink

Research Exchange Award) and IDEAS (RCN

http://orcid.org/0000-0002-9020-6699
http://orcid.org/0000-0002-7521-9344
http://orcid.org/0000-0002-2391-9963
http://orcid.org/0000-0002-8719-3620
https://doi.org/10.1371/journal.pcbi.1008211
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008211&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008211&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008211&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008211&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008211&domain=pdf&date_stamp=2020-10-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008211&domain=pdf&date_stamp=2020-10-08
https://doi.org/10.1371/journal.pcbi.1008211
https://doi.org/10.1371/journal.pcbi.1008211
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.stqjq2c1k
http://dx.doi.org/10.5061/dryad.stqjq2c1k


Focusing on the initial infection dose—which varies and is known to impact the outcome

of infection in many disease systems—we explored how a biotic factor mediates host

responses to infection and parasite growth. We fitted a dynamical model of within-host

malaria infection to rodent experimental data spanning seven orders of magnitude of

doses, using a Bayesian approach. Our results demonstrate that infection dose is a double-

edged sword for the host response: when it is too high, responses can be activated less

strongly; when it is too low, some responses to infection may be short-lived. We also

uncovered sources of individual variation—usually considered experimental noise—that

may represent subtle trait variation among hosts and parasites, and potentially new thera-

peutic targets. Our work highlights the value of combining a dynamical within-host infec-

tion model, with a hierarchical Bayesian approach, to interrogate the causal

underpinnings of experimental observations.

Introduction

Infections produce divergent outcomes. In human malaria, for example, outcomes of infection

with the same parasite, Plasmodium falciparum, range from sub-clinical to fatal [1]. Under-

standing drivers of variation in infection outcomes is central to explaining why some hosts get

sicker than others. Some host and parasite factors underlying this variation have well-under-

stood mechanisms. For example, heterozygosity in the haemoglobin coding gene (i.e., sickle-

cell trait, or HbAS) confers partial protection against falciparum malaria: sickle-cell trait indi-

viduals experience lower parasite load and reduced likelihood of life-threatening cerebral

malaria and severe anaemia [2]. The resistance mechanism of this single locus trait has been

corroborated by four decades of research demonstrating that sickling enhances clearance of

infected red blood cells (iRBCs) by host immune effectors like macrophages [2]. However,

unlike the sickle-cell trait, there are numerous sources of heterogeneity—including in the ini-

tial infection dose, nutrition, coinfection, and other genetic factors—for which quantitative

impacts on outcomes have been observed, but causal mechanisms have remained elusive [3–

6]. To establish a causal link between complex factors and infection outcomes, a key challenge

is to quantify how a factor of interest mediates key host and parasite processes, such as host

responses to infection and parasite growth [7].

In many disease systems, the initial infection dose is a key biotic factor that varies widely

across infection events [8, 9]. Experimental infections in diverse systems show that increasing

infection dose negatively impacts host fitness through reduced host vigour, survival and fecun-

dity [10–17], which is likely linked to variation in the within-host parasite dynamics due to

dose-dependence in parasite growth and host immune responses [4, 12, 18–21]. Complex

interactions between immune responses and the initial infection dose have been revealed by

molecular immunology studies of viral and bacterial systems. For example, the expression of

pro-inflammatory cytokines (i.e., signalling molecules) and immune cells, can decrease with

infection dose [22, 23], presumably due to enhanced evasion and escalated damage of host

immune machinery through an increased abundance of reactive oxygen species [24]. Con-

versely, it has been shown that higher doses trigger distinct, and sometimes more robust, acti-

vation of innate and adaptive immune pathways [25–28]. From an applied perspective, a

better understanding of the immunogenic dose-response relationship is pertinent for optimis-

ing vaccine dosing to ensure improved safety and efficacy [21, 29–31]. However, because the

functional output of immune activities (e.g., the rate of immune-mediated iRBC clearance) is
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difficult to measure directly, it remains an open question how the initial infection dose influ-

ences host responses overall.

In malaria infections, the initial density of iRBCs at the start of blood-stage infection likely

ranges in the order of hundreds to over millions [32–36], with greater numbers generally

shown to increase mortality and worsen morbidity [13, 15]. Experimental manipulations of the

initial infection dose, ranging from 100 to 100 million iRBCs, have demonstrated that larger

doses increase the pace of infection with each order of magnitude reducing the time until peak

infection by roughly 24 hours [15] (Fig 1a). Dose also impacts the peak parasite load: mice ini-

tially infected with 100 million parasites harbour roughly 60% more iRBCs at peak compared

to those infected with 100 parasites [15] (Fig 1b). Furthermore, high doses induced more severe

anaemia measured by the minimum red blood cell (RBC) count in mice on average [15] (Fig

1c). Previous mathematical modelling studies interpret these dose-dependent infection out-

comes as a reflection of the underlying dose-dependence in host immune responses [4, 37].

While dose clearly influences malaria infection dynamics, these experimental data also

reveal striking variability within dose treatments [15] (Fig 1), meaning that quantitatively

diverse infection outcomes were observed across individuals receiving the same infection dose.

This is despite the fact that hosts were inbred to homozygosity and parasites were also of single

strain origin in the experiment [15]. Identifying the sources of such individual variation—usu-

ally considered experimental “noise”—may reveal biologically interesting, subtle trait variation

among hosts and/or parasites, and thus new therapeutic targets (e.g., host responses to boost).

In the study of acute malaria infection, mathematical models have been fitted to the time

course of experimental infections in mice to provide a quantitative understanding of para-

site growth, pathogenesis and host responses to infection (e.g., [38–41]; see [42] for a review

of earlier work). Infection triggers a variety of host responses, for example, indiscriminate

clearance of RBCs, targeted clearance of iRBCs [39] and production of new RBCs to com-

pensate for those lost to infection [39, 41]. It is well documented that these responses involve

a complex cascade of interactions across multiple organisational scales from molecules,

cells, and tissues to organ systems [43, 44]. However, it remains a challenge to scale up the

details of finer level processes to an understanding of the net effect of host responses on

Fig 1. Higher initial infection doses increase a) the pace of infection (i.e., time until peak iRBC density), b) peak parasite load measured as the

maximum iRBC count, and c) severity of anaemia during malaria infection measured as the minimum RBC count. There is also considerable variation

in quantitative infection outcomes (i.e., parasite load and anaemia) within infection dose treatments. Data from Timms et al. [15] with 5 to 9 mice

infected with the CW strain of P. chabaudi, at each dose. The crosses indicate data and the white lines and grey bands correspond to the means and 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1008211.g001
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parasite load and host health [45]. Data-driven mathematical modelling allows for the infer-

ence of these net effects, without necessarily requiring a detailed understanding of the

underlying mechanisms.

Here, we fitted a dynamical model of within-host malaria infection to experimental data

spanning seven orders of magnitude of initial doses, using a hierarchical Bayesian approach.

By modelling the influence of dose on model parameters as a reaction norm, which describes

the pattern of phenotypic expression of an organism across an environmental gradient, we

identified drivers of the observed dose-dependent malaria parasite load and severity of

malaria-induced anaemia. By explicitly modelling individual variation as model parameters,

we also examined the origin of quantitatively diverse infection outcomes observed within sin-

gle initial infection dose treatments.

Methods

System and experimental set-up

The rodent malaria system offers unique opportunities to investigate infection ecology, patho-

genesis and host responses [46]. We examined previously published experimental data of

C57BL/6 female mice infected with the CW strain of Plasmodium chabaudi [15]. In this experi-

ment [15], infection was initiated with an intraperitoneal injection of iRBCs at seven different

doses: 102, 103, 104, 105, 106, 107, 108—and considerable variation in quantitative infection out-

comes was observed both among and within dose treatments (Fig 1b & 1c). Details of the

experiment are provided by Timms et al. [15] and data are available on Dryad [47].

Model

Innate host responses to malaria infection. Hosts trigger a variety of responses to resist,

tolerate and/or recover from infections. Here, we focused on two forms of rapid immune

responses (on the order of minutes [48, 49]) that have been identified as the most pertinent to

describing the acute blood-stage malaria infection [38–40].

The first response we modelled was general clearance of RBCs which may involve mecha-

nisms such as retention of RBCs by the spleen and destruction of RBCs by immune effector

cells [50, 51]. Clearing RBCs indiscriminately has been proposed as a host adaptation in the

presence of malaria parasites to directly clear the parasites (i.e., top-down effect) as well as to

limit the resource for the parasite (i.e., bottom-up effect) [52]. The second response we consid-

ered was the induction of innate immunity targeting iRBCs only, which is considered predom-

inantly responsible for controlling the acute phase of malaria infection [43].

We modelled regulation of host responses without delving into fine mechanistic details

(i.e., we avoided mathematical descriptions of cytokine storms and subsequent cascades of

effector responses). In part, this modelling choice was out of necessity because there is no com-

plete map of innate immune responses against malaria [46]. Yet, it was also by design so that

we would gain a functional understanding of host responses with minimal complexity. Biologi-

cally, responses modelled here may reflect the output of an entire module of proteins and sig-

nal transduction pathways that lead to the production of effector cells. Specifically, we used a

single ordinary differential equation (ODE) to describe the change in the functional output of

each response (Fig 2a; yellow and green block, respectively). We assumed that the maximum

possible activity of each response is fixed, at one, and we tracked the dynamics of its propor-

tional activity, Ni, where i indicates the response identity (general RBC clearance, i = 1;
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targeted iRBC clearance i = 2)

dNiðtÞ
dt
¼ ci CiðtÞ 1 � NiðtÞð Þ �

NiðtÞ
�i

: ð1Þ

We defined the activity of N1 and N2 as the proportion of RBCs and iRBCs cleared by

indiscriminate and targeted mechanisms per day, respectively. We assumed that there is no

response output in the absence of infection, i.e., N1(t = 0) = N2(t = 0) = 0, consequently assum-

ing a stable RBC population and that there is no constitutive immune activity.

We modelled the signalling input that activates each response as a function of a within-host

cue, Ci(t) and a constant determining the strength of activation, ψi (Eq 1). Host innate immune

responses against malaria are thought to be triggered by pathogen-associated molecular pat-

terns (PAMPs) such as GPI anchors, haemozoin, parasite DNA and RNA [44, 46]. Assuming

that the abundance of PAMPs reflects that of iRBCs, our model considers the relative density

of iRBCs compared to its observed maximum in any infection across all treatment groups,

as the within-host cue for general RBC clearance and targeted iRBC clearance, i.e., C1ðtÞ ¼
C2ðtÞ ¼

IðtÞ
max I where I(t) and max I are the iRBC density at time t and the maximum observed

iRBC density, respectively. The latter was reported at 2.18 × 106 from this dataset [15]. We

assumed that each response activity decays spontaneously with a half-life of ϕi.
Our two-parameter approach—involving only an activation constant, ψi, and activity half-

life, ϕi—to modelling each host response was inspired by Kochin et al. [38] who used a single

ODE to model innate immunity against malaria parasites governed by density-dependent

Fig 2. a) A dynamical regulation model of host responses against blood-stage malaria. We condensed the complexity

of the vertebrate innate response against malaria into two independent pathways responsible for general RBC clearance

and targeted iRBC clearance (represented by the yellow and green block, respectively). We modelled each pathway

using a single differential equation, the activity of which is denoted Ni where the subscript i indicates the identity of

each response: general RBC clearance, i = 1; and targeted iRBC clearance, i = 2. (The schematic shows the example of

i = 1.) For each response type, the host detects a within-host cue, Ci. The product of the cue and the strength constant,

ψi, activates the response. The activity of a response decays spontaneously with a half-life, ϕi. The output of each host

response feeds back to influence the within-host infection dynamics (indicated by the coloured arrows in panel b). b)

Dynamics of RBCs and blood-stage malaria parasites within the host. Recruitment into and transitions among

components of the asexual cycle are indicated with black arrows. Background mortality for different components is

indicated by grey arrows. General clearance of RBCs and targeted clearance of iRBCs are marked with yellow and

green arrows, respectively. Replenishment of RBCs (erythropoiesis) is indicated in blue.

https://doi.org/10.1371/journal.pcbi.1008211.g002
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response activation and constant decay. However, we interpreted host response activity differ-

ently from their study: i.e., we modelled the proportion of RBCs and iRBCs cleared per day

whereas they modelled the number of immune cells. Our study also extends the approach to

the dynamics of general RBC clearance.

Within-host infection dynamics of blood-stage rodent malaria. We used a system of

ODEs to model the blood-stage asexual cycle of P. chabaudi, tracking the density of uninfected

RBCs (hereafter, uRBCs), R, iRBCs, I, and extracellular parasites called merozoites, M, in a

microlitre of blood (Fig 2b). In this model, we assumed that RBCs are constantly replenished

to maintain a homeostatic equilibrium, thus the daily rate of erythropoiesis in the absence of

infection is defined as Rc μR, where μR is the baseline RBC mortality rate. We estimated Rc at

8.89 × 106 from data [15] as the average RBC density of 10 uninfected mice between Day 7 and

14 during which time the RBC density appears stable. During the acute phase of malaria infec-

tion, the host upregulates erythropoiesis to restore RBCs lost to malaria-induced anaemia [53,

54]. Following a previous study [39], we modelled this upregulation as a product of the devia-

tion from the homeostatic equilibrium, Rc − R(t) where R(t) is the RBC density at time t, and

the proportion of the deviation from the homeostatic equilibrium restored by the host per

day, ρ.

Given that N1 and N2 were defined as the proportion of cells cleared by indiscriminate and

targeted mechanisms per day, respectively, it was convenient to convert the proportions into

daily rates at which cells are cleared in the dynamical within-host model. To do this, we equate

Ni ¼ 1 � e� Xi , where X is the daily rate of clearance. Solving for X, we obtained the rate of

general RBC clearance as −ln(1 − N1) and the rate of targeted iRBC clearance as −ln(1 − N2).

Therefore, the sum of the baseline rate, μR and −ln(1 − N1) constitutes the daily mortality rate

of uRBCs. uRBCs then become infected at a rate proportional to the density, M, and invasion

rate, p, of merozoites. Together the dynamics of uRBCs is expressed as:

dRðtÞ
dt

¼ Rc mR þ rðRc � RðtÞÞ � ðmR � lnð1 � N1ÞÞRðtÞ � p RðtÞMðtÞ: ð2Þ

Following merozoite invasion, iRBCs remain subjected to background mortality, μR and

general RBC clearance, −ln(1 − N1). In addition, infected cells are cleared by targeted immu-

nity at a rate −ln(1 − N2): here, we note that estimates of −ln(1 − N2) may be slightly inflated by

iRBCs that commit to sexual reproduction (usually less than 2% of iRBCs [55]) because our

model does not consider Plasmodium sexual reproduction. We modelled the development of

iRBCs using a gamma-chain trick (also known as linear chain trick) [56, 57], which consists of

a series of ODEs:

dI1ðtÞ
dt

¼ p RðtÞMðtÞ � ðmR � lnð1 � N1Þ � lnð1 � N2Þ þ tÞI1ðtÞ ð3Þ

dIiðtÞ
dt

¼ t Ii� 1ðtÞ � ðmR � lnð1 � N1Þ � lnð1 � N2Þ þ tÞIiðtÞ for 2 � i � n ð4Þ

where t ¼ n
a= , and α is the average cell cycle duration, which is 24 hours for P. chabaudi [58].

The number of compartments in the series, n, reflects the assumption about the variance in

the developmental time, which is inversely proportional to n [56]. At one compartment per

cycle (i.e., n = 1, e.g., [59, 60]), the assumption is that the developmental time is exponentially

distributed, with large variance, i.e., α2 [61]. The variance decreases with the number of com-

partments, and the variance tends to disappear as the number of compartments approaches

infinity (i.e., n!1)—a scenario equivalent to discrete-time models (e.g., [62, 63]) and delay-

differential equation models [64] that assume there is no variation in the developmental period

PLOS COMPUTATIONAL BIOLOGY Dose-dependence and individual variation in malaria infection outcomes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008211 October 8, 2020 6 / 20

https://doi.org/10.1371/journal.pcbi.1008211


[56]. It has been shown that models with few compartments tend to estimate greater asexual

multiplication, compared to discrete-time models [61, 65]. With enough compartments (e.g.,

one compartment per hour of parasite development [56]), however, the outcome of a gamma-

chain ODE model converges to the discrete-time model [65]. We arrived at the choice of

n = 12 (one compartment every two hours) for computational efficiency, and because our pre-

liminary analysis showed that the infection dynamics were quantitatively comparable to that

of a 24 compartment model (one compartment per hour).

Finally, the production of merozoites is determined by parasite burst size (i.e., the number

of progeny parasites emerging from an iRBC), β, and the number of bursting cells, τ In(t). Mer-

ozoites are lost as they invade new RBCs and through background mortality, μM. We ignored

immune-mediated clearance of merozoites because its effect on the parasite dynamics is func-

tionally similar to clearing iRBCs and comparatively less important for describing the acute

phase of malaria infection than general RBC clearance or targeted iRBC clearance [4, 39],

dMðtÞ
dt

¼ b t InðtÞ � p RðtÞMðtÞ � mM MðtÞ: ð5Þ

Initial conditions. We set the initial RBC density, R(t = 0), to the values reported per

mouse by Timms et al. [15]. In the experiment [15], malaria infection was initiated with an

intraperitoneal injection to mimic the initial cohort of blood-stage malaria parasites following

release from the liver. Assuming that the initial parasite growth is near-exponential (for the

first three records of iRBCs per mouse), we estimated the initial infection dose per μl of blood

in each mouse as the intercept of a linear regression model with the natural logarithm of

iRBCs as the response and the time since infection as a predictor. At a preliminary phase, we

also estimated the initial infection dose simultaneously with the rest of the model parameters.

Because these two methods for estimating initial dose yielded analogous results (see S1a

Appendix) and the regression method allowed us to estimate one fewer parameter in the main

Bayesian parameter inference procedure (described below), we present results based on the

initial infection dose estimated by the regression method. Finally, we defined the age structure

of the inoculated iRBCs to schedule the bursting of iRBCs in the initial cohort. Assuming that

all inoculated iRBCs commit to producing merozoites (i.e., ignoring the possibility that some

of them produce transmission stages instead), the timing of bursting can be described using a

symmetrical beta distribution [64]. We assumed a moderately synchronised blood-stage cycle

(i.e., with the shape parameter, s = 10). Our preliminary exploration indicated that the daily

RBC and iRBC measurements were insensitive to the s parameter. We discretised the beta dis-

tribution into 12 compartments (for Eqs 3 and 4) by dividing the cumulative density function

into 12 intervals.

Hierarchical Bayesian inference

Bayesian causal inference is an effective tool to paint a picture of processes that generated data

[67]. We fitted our ODE model describing the dynamics of RBCs (Eq 2) and iRBCs (Eqs 3

and 4) to the corresponding time-series data from 51 mice [15] using a Bayesian statistical

approach. Statistical inference in a Bayesian framework incorporates prior knowledge and

uncertainty about model parameters and updates the belief about them (by computing the pos-

terior probability of parameters) based on observations (through a likelihood function) [68].

Besides its conceptual merits [68, 69], Bayesian inference has a pragmatic appeal for its ability

to estimate parameters in high dimensional spaces, for example, in hierarchical models, which

are used when observations are organised in multiple levels of sampling units [70, 71]. In this
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study, we considered two levels of sampling units: treatments (i.e., infection doses) and sub-

jects (i.e., individual mice).

Dose and individual-specific effects. For the dynamical model (Eqs 1 to 5), we estimated

dose- and individual-specific effects in a set of seven parameters including the response activa-

tion strength of host responses N1 and N2 (ψ1 and ψ2, respectively), half-life of those responses

(ϕ1 and ϕ2, respectively), erythropoiesis upregulation (ρ) and parasite burst size (β). Below, we

collectively refer to the parameter set as θ (θ 3 ψ1, ψ2, ϕ1, ϕ2, ρ, β) and refer to a parameter in

the set using an index, k. The prior distributions for these parameters are provided in Table 1

and further detailed in S1b Appendix.

Instead of modelling each dose treatment as a discrete group (or a character state), we con-

sider the entire range of the initial infection dose as an environmental gradient. In other

words, we modelled each parameter of the dynamical model, θk, as a reaction norm, which

describes the pattern of phenotypic expression of an organism across an environmental gradi-

ent [72, 73]. The simplest and most commonly used reaction norm assumes a linear relation-

ship between the environment and phenotype expression and consists of two components:

the mean intercept, i.e., the phenotype expressed against the “average” environment, and the

slope, i.e., the degree of phenotypic change along with the environment. We estimated the

mean intercept, ŷk (dose was centred so that the intercept is at the middle dose of 105) and the

mean slope of the reaction norms, d̂k.

Within each dose treatment, Timms et al’s dataset [15] contains repeated measures from

replicate mice that showed marked individual variability (Fig 1b & 1c). We sought to identify

Table 1. Descriptions of model parameters and their fixed values, or prior distributions used in Bayesian statistical inference. Estimated parameters are indicated by

an asterisk on the description. We assigned a generic, weakly informative prior, except for erythropoiesis upregulation, ρ, burst size, β, and standard deviations of log10

RBC and iRBC density, σRBC and σiRBC, for which there exist specific prior information from previous studies. Further details of the priors and comparisons with estimated

posterior probability densities, and prior sensitivity analyses are provided in S1b Appendix.

Symbol Description Fixed value or prior distributions [Source]

Host responses

ψi
�Activation strength of Ni expðN ðlnð1Þ þ 5;

ffiffiffi
5
p
Þ

ϕi
�Half-life of Ni expðNðlnð1Þ þ 5;

ffiffiffi
5
p
Þ day

Within-host infection dynamics

Rc RBC density at homeostatic equilibrium 8.89 × 106 per μl [15]

maxI Maximum iRBC density observed in Timms et al. [15] 2.18 × 106 per μl [15]

μR Baseline RBC mortality rate 0.025 per day

ρ �Proportion of deviation from Rc restored per day 0:25� expðN ð0; 0:25ÞÞ [39]

β �Parasite burst size 7� expðN ð0; 0:25ÞÞ [39]

p Merozoite invasion rate 8 × 10−6 per day [39]

α P. chabaudi RBC cycle duration 1 day [58]

n Number of RBC cycle components 12

s Degree of synchronous bursting 10

μM Merozoite mortality rate 48 per day [66]

Reaction norms and individual variation

δp �Dose-dependent reaction norm slope for parameter p N ð0; 2:5Þ

σu,p
�Individual deviation for intercept N ð0; 1Þ

σv,p
�Individual deviation for slope N ð0; 1Þ

Measurement errors

σRBC �Standard deviations for total RBC density N ð5� 105; 5� 105=10Þ [39]

σiRBC �Standard deviations for log10 iRBC count N ð0:13; 0:13=10Þ [39]

https://doi.org/10.1371/journal.pcbi.1008211.t001
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the source of this variability by explicitly modelling individual variation in θk among mice

through partial pooling. This means that a given parameter was considered a sample from a

common population distribution with a mean—in this case the intercept, ŷk, and the slope,

d̂k—and the deviation of the parameter from the mean for each individual, i, which we express

as uk,i and vk,i for the intercept and slope variation, respectively. We assumed that the individ-

ual deviations, uk,i and vk,i, are samples of a normal distribution with standard deviations, σu,k

and σv,k that we estimated from data [74].

Together, dose- and individual-specific parameter, θk,i, is expressed as:

yk;i ¼ ŷk þ uk;i þ ðd̂k þ vk;iÞ � Dosei ð6Þ

where Dosei indicates the dose treatment applied to individual i. Dose was coded as {−3, −2,

−1, 0, 1, 2, 3} such that the intercept was centred at the initial infection dose of 105. As is cus-

tomary in quantitative genetics [72] and hierarchical modelling [75], we modelled a covariance

structure describing the association among parameters in individual deviation following [75].

Likelihood. A Bayesian approach requires a likelihood function to assess the probability

of observing the data given model parameters and associated predictions. Our log-likelihood

function assumed that the measurement error for the total density of RBCs (i.e., sum of uRBCs

and iRBCs), and iRBCs is distributed normally and log10-normally, respectively [40, 76]:

lnL ¼
Xnmice

i

Xntime

t

ln
1

sRBC

ffiffiffiffiffiffi
2p
p exp �

ðDRBC
i;t � MRBC

i;t Þ
2

2ðsRBCÞ
2

" #( )(

þ
Xntime

t

ln
1

siRBC

ffiffiffiffiffiffi
2p
p exp �

ðlog
10
ðDiRBC

i;t þ 1Þ � log
10
ðMiRBC

i;t þ 1ÞÞ
2

2ðsiRBCÞ
2

" #( )) ð7Þ

where DRBC
i;t and DiRBC

i;t are the observed count of total RBCs and iRBCs, MRBC
i;t and MiRBC

i;t are the

model predictions of total RBCs and iRBCs for individual i at time t. We estimated standard

deviations, σRBC and σiRBC for the total RBC and iRBC count, respectively, with specific infor-

mative priors based on [76] (Table 1).

Our modelling focused on the first wave of infection before iRBCs recrudesce and adaptive

immunity starts to take effect [39]. Thus, ntime was defined {16, 16, 13, 11, 11, 10, 8} for the

seven dose treatments, respectively, noting that higher doses lead to shorter time series because

of the faster pace of infection (Fig 1a). We further subsetted the dataset by removing instances

of atypical dynamics (S1c Appendix for more details). In total, we fitted data from 51 individ-

ual mice (nmice = 51).

MCMC sampling. Estimating the posterior probability density of parameters of a com-

plex model requires a Markov Chain Monte Carlo (MCMC) sampling algorithm, which can be

computationally intensive for large hierarchical models. Our model was written in Stan 2.18.2

and fitted through the RStan interface [77, 78], which provides an efficient general-purpose

MCMC sampler (No-U-Turn Hamiltonian Monte Carlo) and a Bayesian inference environ-

ment. The model was fitted in parallel in four independent chains, each with 4000 sampled

iterations and 1000 warmup iterations. For diagnostics, we confirmed over 400 effective sam-

ples and ensured convergence of independent chains using the R̂ metric (values below 1.1 are

considered an indication of multi-chain convergence) for all parameters [68, 79]. The com-

puter programmes used in the present study are available in the S1d Appendix.
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Results and discussion

Our fitted model accurately describes the daily time course of RBCs and iRBCs during the

acute phase of malaria infection in mice, initiated at doses spanning seven orders of magni-

tude, from 102 to 108 iRBCs (Fig 3, S1e Appendix). We found evidence for dose-dependence

in key parameters of host responses underlying the dynamics of RBCs and iRBCs. Addition-

ally, even under the highly controlled condition of Timms et al.’s experiment [15]—with the

single strain combination of hosts (C57/BL6) and P. chabaudi parasites (CW)—we identified

individual variation in host and parasite traits that influences the variation in infection out-

comes independent of the dose treatment. Below, we closely examine the sources and impacts

of dose-dependence and individual variation in different parameters of infection and initial

conditions.

Fig 3. The fit of the full model (with parameters defined by Eq 6) to the density of RBCs (orange) and iRBCs (blue) for individual mice inoculated at 102, 103,

104, 105, 106, 107 and 108 infected cells. Each column corresponds to the initial infection dose given at the top. The crosses indicate data and grey bands correspond

to 95% predictive intervals of the full model, incorporating uncertainty in parameter estimation and sampling.

https://doi.org/10.1371/journal.pcbi.1008211.g003
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Dependence on the initial infection dose

We found evidence that increasing dose had two opposing effects on general RBC clearance.

First, increasing dose reduces the activation strength of this response (Fig 4a). The lower peak

responses estimated for high doses (Fig 5a) were attributable to a negative influence of the ini-

tial dose on the response activation strength (Fig 4a), supporting the notion that higher infec-

tion doses enhance the parasites’ ability to evade/suppress host responses and/or damage host

machinery [24]. In contrast, we found that dose facilitates the same response by inducing a

longer action (Fig 4b). The positive relationship between dose and activity half-life of these

responses (Fig 4b) explained the relatively low peak response at low doses (Fig 5a). As a result

of these two opposing effects of dose, the strongest host response in general RBC clearance was

predicted at an intermediate dose, 105 (white squares in Fig 5a). This finding draws a compari-

son to another data-driving modelling work demonstrating that the maximum immune pro-

tection against influenza is generally achieved at an intermediate dose due to an interplay

between innate and adaptive responses [21]. Further studies in other disease systems are

Fig 4. Dose dependence in some parameters of host responses, but not parasite traits. Plotted are the estimated

relationship between the initial infection dose and a) the activation strength (ψ1 and ψ2), b) activity half-life (ϕ1 and ϕ2)

of general RBC clearance (yellow) and targeted iRBC clearance (green), c) erythropoiesis upregulation, ρ, and d)

parasite burst size, β. The line and band indicates the median prediction and 95% predictive intervals, respectively. The

solid line indicates a statistically significant sign of dose-dependence (See S1b Appendix for the prior and posterior

distributions).

https://doi.org/10.1371/journal.pcbi.1008211.g004
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desired to probe the generality of the intermediate peak and understand diverse mechanisms

that may generate this pattern.

Following the peak infection day, malaria parasites find themselves in a hostile within-host

environment as over 70% of the iRBC population per day is cleared by host immunity target-

ing iRBCs (Fig 5b). Combining targeted and indiscriminate responses, up to 80% of iRBCs

were cleared per day by the host one to three days after the peak of infection (Fig 5a). The acti-

vation of targeted iRBC clearance was estimated to be independent of the initial infection dose

(Fig 4a) while we found that the half-life of this response decreased with infection dose (Fig

4b). This result is consistent with the faster waning of parasite clearance with dose observed by

Metcalf et al. [37] who speculate mechanisms including enhanced antigen escape, reduced

immune memory due to low RBC availability, depleted immune effectors and downregulation

by the host or parasites. Without this dose-dependent effect, our sensitivity analysis demon-

strated that the peak targeted iRBC clearance would occur at high doses, where higher iRBC

density triggers an elevated response (S1f Appendix).

To assess the relative importance of dose-dependence in the host responses, we examined

the sensitivity of the model fit to whether host response parameters were dose-dependent (by

setting yk;i ¼ ŷk þ uk;i, where k = {ψ1, ϕ1}, k = {ψ2, ϕ2}, for the two responses, respectively). We

found that the dynamics of RBCs were most sensitive to dose-dependence in general RBC

clearance: goodness of model fit declined by 2.6-fold and 3.4-fold, respectively, when dose-

dependence in activation strength or activity half-life was ignored (Fig 6). Interestingly, even

though the targeted response clears more iRBCs than the general response (Fig 5a & 5b), we

found that iRBC dynamics were also overwhelmingly more sensitive to dose-dependence in

general RBC clearance (Fig 6): goodness of model fit declined by 3.6-fold and 7-fold, respec-

tively, when dose-dependence in either activation strength or activity half-life (Fig 6) was

ignored. While the mechanism through which the host clears RBCs indiscriminately remains

an open question, the functional importance of general clearance of RBCs is apparent from

our work here and the work of others [41]. Furthermore, the distinct patterns of dose-depen-

dence we found (Fig 4a & 4b) suggest that there is separate host machinery for specifically

clearing iRBCs and clearing RBCs indiscriminately.

Previously, dose-dependence in infection dynamics has been attributed to ineffective clear-

ance of iRBCs at high doses due to handling time in innate immune effectors targeting iRBCs

[37]. Our findings offer an alternative explanation that dose promotes some aspects of some

response while debilitating others. Of largest effects, we found that dose increases the half-life,

Fig 5. Host responses against malaria depend on the initial infection dose. Shown are the median predicted host responses (colour) as a function of time centred

around the dose-dependent day of peak infection (x-axis) and the initial infection dose (y-axis) for a) general RBC clearance (i.e., proportion of RBCs,

indiscriminately of their infection status, cleared by the host per day), b) targeted iRBC clearance (i.e., proportion of iRBCs cleared by the host per day), c) the total

iRBC clearance (the sum of a and b). The grey region indicates that the model was not fitted for the day because either data do not exist or the day is beyond the first

wave of infection.

https://doi.org/10.1371/journal.pcbi.1008211.g005
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but reduces activation strength, of general RBC clearance (Figs 4 & 6). This finding likely

reflects complex mechanisms through which the initial infection dose impacts different aspects

of host response machinery [24–28, 80]. Regardless of the mode of defence involved (i.e., indis-

criminate or targeted iRBC clearance) and mechanisms (i.e., handling time, damage to host

machinery, or immune evasion), the two distinct modelling frameworks demonstrate that

malaria parasites are at an advantage at high initial infection dose due to less efficient host

responses to clear iRBCs. We did not find significant evidence that upregulation in erythropoi-

esis or parasite burst size depends on the initial iRBC density (Fig 4c & 4d). Therefore, our

findings suggest that dose-dependent variation in infection dynamics observed across initial

infection dose treatments in Timms et al. [15] was driven by the interaction between the initial

infection dose and host responses, but not plasticity in malaria parasites injected at different

doses as predicted by Mideo et al. [76].

Individual variation

We explicitly modelled individual variation in each fitted parameter among the inbred mice

using hyperparameters, σu,k and σv,k. These sources of variation—analogous to subject-level

random effects in regression analyses—capture unobserved heterogeneity among individuals

in a sample, independent of the experimental manipulation in the initial infection dose. We

found evidence of individual variation in every host and parasite parameter of the model

describing malaria infection ecology (Fig 7a; S1b Appendix). There was no evidence of moder-

ate or stronger correlation (r> 0.3) among individual variation in parameter values (S1g

Appendix), suggesting that there are no clear trade-offs nor facilitation among different arms

of host responses.

To understand the functional importance of individual variation in estimated model

parameters, as well as random variation in the reported initial RBC density, host weight, and

initial infection dose, we computed the correlation coefficient, r, between individual variation

and two key infection outcomes: parasite load (maximum iRBC density) and anaemia severity

(minimum RBC density). We identified two individual-level correlates of the maximum iRBC

density (Fig 7b). First, we found that better suppression of the peak parasite load was associ-

ated with mice that activated the response to clear iRBCs more strongly than average through

a targeted mechanism (Fig 7b). While it is not clear what underlies this within-strain variation,

our finding, nonetheless, demonstrates the functional importance of non-genetic

Fig 6. RBC and iRBC dynamics are most sensitive to dose-dependence in general RBC clearance. Plotted is the

sensitivity of RBC and iRBC dynamics to dose-dependence of a) activation strength and b) activity half-life in general

RBC clearance and targeted iRBC clearance (green), calculated as the sum of absolute standardised residuals (see S1e

Appendix for details) relative to the full model (with parameters defined by Eq 6).

https://doi.org/10.1371/journal.pcbi.1008211.g006

PLOS COMPUTATIONAL BIOLOGY Dose-dependence and individual variation in malaria infection outcomes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008211 October 8, 2020 13 / 20

https://doi.org/10.1371/journal.pcbi.1008211.g006
https://doi.org/10.1371/journal.pcbi.1008211


heterogeneity in immune responses, drawing parallels to invertebrate systems in which intrin-

sic within-clone variation (e.g., differences in sizes at birth and molecular mechanisms of

immune responses) are thought to impact susceptibility to infection [81–83]. With the rodent

malaria system, it may be possible to identify the mechanistic causal agents, for example, by

characterising within-strain variation in immune effector expression prior to and throughout

the course of infection. We also found that variation in the initial infection dose within dose

treatments correlated positively with the peak parasite load (Fig 7b). In the context of Timms

et al.’s [15] experiments, variation in the initial infection dose may be attributable, for example,

to random experimental variability in sampling by a syringe and in the parasites’ ability to

reach blood vessels following intraperitoneal injection. While neither of these sources of ran-

dom variation are relevant outside the lab, the observation that higher doses—both among

and within dose treatments—increase parasite burden [15] (Figs 1 & 7b) highlights the need to

better understand any causes of variation in pre-blood-stage parasite densities in natural

malaria infections, both within and among Plasmodium species [58]. One such source of varia-

tion is pre-blood-stage host immunity that develops in response to exposure to the parasite

stage injected by mosquitoes (sporozoites) and has been shown effective in reducing the num-

ber of liver-stage parasites from which blood-stage merozoites originate [84].

There were also three significant individual-level correlates of anaemia severity (Fig 7b).

First, we found a significant negative effect of burst size meaning that infections initiated with

a parasite population that happens to proliferate and exhaust RBCs faster than average caused

more severe anaemia (Fig 7b). In addition, mice that were heavier or had more RBCs before

infection suffered less severe anaemia (Fig 7), suggesting that general host vigour in the

absence of infection is an indicator of host health under malaria infection. Because these mea-

surements of host vigour did not correlate with the peak parasite load, host vigour can be inter-

preted as an indicator of tolerance (i.e., a host’s ability to minimise anaemia), rather than a

resistance (i.e., a host’s ability to minimise parasite burden) mechanism [85].

Fig 7. Individual variation in parameters of host responses and parasite growth impacts quantitative infection outcomes. a) Coefficient of

variation among individuals in specific model parameters and initial conditions. Variation in the dose-independent (intercept) term, σu,k and

dose-dependent (slope) term σv,k. is indicated in black and grey, respectively. b) Correlation coefficients between individual-level estimates of

parameters or initial conditions, and the infection outcome measured as the maximum and minimum densities of iRBCs (blue) and RBCs

(red), respectively. The error bars indicate the 95% confidence interval. Statistical significance is indicated when the confidence interval does

not intersect 0 (dashed line).

https://doi.org/10.1371/journal.pcbi.1008211.g007
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In general, we found that the magnitude of individual variation, estimated here as the coef-

ficient of variation, did not coincide with whether or not a particular trait impacted an infec-

tion outcome. For example, we estimated large individual-level variation in the half-life of host

response for targeted clearance of iRBCs (Fig 7a), yet infection outcomes were insensitive to

this variation (Fig 7b). Conversely, we detected a small coefficient of variation in burst size

(Fig 7a), but this small variation showed a marked impact on the severity of anaemia (Fig 7b).

The misalignment between the magnitude and impact of individual variation poses a challenge

from a clinical perspective because it is not clear whether those parameters can be estimated

with sufficient precision from patient data. Finally, despite the fact that the dynamics of RBCs

and iRBCs are ecologically coupled (i.e., malaria parasites are consumers of RBCs), we found

that the impact of individual variation on anaemia severity was not coupled to that of parasite

load. These findings indicate that resistance and tolerance are likely uncorrelated at the indi-

vidual level in the rodent malaria system.

Conclusion

We examined drivers of dose-dependent malaria parasite load and the severity of malaria-

induced anaemia. We also shed light on the role of unobserved heterogeneity in producing

diverse infection outcomes, identifying sources of subtle variation beneath an experimental

treatment. More often than not, infection experiments are structured in multiple levels of

sampling units (e.g., host, parasite genotypes, presence of coinfection, and drug treatments)

with many replicates within treatment groups. Observations from such experiments contain

multiple sources of variation whose effects on infection outcomes are difficult to disentangle

directly. Our study demonstrates that the combination of dynamical within-host model and a

Bayesian approach is a powerful tool for causal inference of infection outcome variation.
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