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Abstract

Genotype imputation estimates the genotypes of unobserved variants using the genotype

data of other observed variants based on a collection of haplotypes for thousands of indi-

viduals, which is known as a haplotype reference panel. In general, more accurate imputa-

tion results were obtained using a larger size of haplotype reference panel. Most of the

existing genotype imputation methods explicitly require the haplotype reference panel in

precise form, but the accessibility of haplotype data is often limited, due to the requirement

of agreements from the donors. Since de-identified information such as summary statistics

or model parameters can be used publicly, imputation methods using de-identified haplo-

type reference information might be useful to enhance the quality of imputation results

under the condition where the access of the haplotype data is limited. In this study, we pro-

posed a novel imputation method that handles the reference panel as its model parame-

ters by using bidirectional recurrent neural network (RNN). The model parameters are

presented in the form of de-identified information from which the restoration of the geno-

type data at the individual-level is almost impossible. We demonstrated that the proposed

method provides comparable imputation accuracy when compared with the existing impu-

tation methods using haplotype datasets from the 1000 Genomes Project (1KGP) and the

Haplotype Reference Consortium. We also considered a scenario where a subset of hap-

lotypes is made available only in de-identified form for the haplotype reference panel. In

the evaluation using the 1KGP dataset under the scenario, the imputation accuracy of the

proposed method is much higher than that of the existing imputation methods. We there-

fore conclude that our RNN-based method is quite promising to further promote the data-

sharing of sensitive genome data under the recent movement for the protection of individu-

als’ privacy.
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Author summary

Genotype imputation estimates the genotypes of unobserved variants using the genotype

data of other observed variants based on a collection of genome data of a large number of

individuals called a reference panel. In general, more accurate imputation results are

obtained using a larger size of the reference panel. Although most of the existing imputa-

tion methods use the reference panel in an explicit form, the accessibility of genome data

is often limited due to the requirement of agreements from the donors. We thus proposed

a new imputation method that handles the reference panel as its model parameters by

using bidirectional recurrent neural network. Since it is almost impossible to restore

genome data at the individual-level from the model parameters, they can be shared pub-

licly as the de-identified information even when the accessibility of the original reference

panel is limited. We demonstrate that the proposed method provides comparable imputa-

tion accuracy with the existing methods. We also considered a scenario where a part of

the genome data is made available only in de-identified form for the reference panel and

have shown that the imputation accuracy of the proposed method is much higher than

that of the existing methods under the scenario.

This is a PLOS Computational Biology Methods paper.

Introduction

The development of high-throughput sequencing technologies enabled the construction of

genotype data with base-level resolution for more than one thousand individuals. The collec-

tion of haplotypes from such large-scale and high-resolution genotype data is known as a hap-

lotype reference panel, and one of the major applications of the haplotype reference panels is

genotype imputation. SNP array technology can acquire the genotype data at a much lower

cost than that required for sequencing, and hence SNP array is considered to be suitable for

studies requiring genotype data of a significantly higher number of individuals, such as

genome-wide association studies (GWAS), trait heritability analysis, and polygenic risk score

estimation. Although genotype data obtained using the SNP array is limited to the designed

markers, genotype data with sequencing-level resolution obtained from genotype imputation

enables the detection of more trait-related variants in GWAS and more accurate estimation of

trait heritability and polygenic risk scores [1–3]. The current imputation methods such as

Impute2 [4], Minimac3 [5], and Beagle5.1 [6] are based on a model introduced by Li and Ste-

phens in which a new haplotype can be represented by applying mutations and recombina-

tions to the haplotypes present in the haplotype reference panel [7]. The imputation methods

based on the Li and Stephens model consider phased genotypes obtained using SNP array or

other genotyping technologies as input genotype data, and estimate the haplotypes that match

with the input genotype data by considering the recombinations of haplotypes present in the

haplotype reference panel. Genotypes of unobserved variants are then obtained from the esti-

mated haplotypes.

Although the imputation methods based on the Li and Stephens model require a haplotype

reference panel as in an explicit form, the accessibility of haplotype data is often limited, due to

the requirement of agreements from the donors for public use. For example, the Northeast
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Asian Reference Database (NARD) has a haplotype reference panel comprised of 1,779 north-

east Asian individuals, but the haplotype panel is not publicly available, and thus can be used

only in the NARD imputation server [8]. Thus, in order to use publicly unavailable haplotypes

for more accurate imputation, we must send the input genotype data to other research insti-

tutes having their own closed haplotype data. However, the input genotype data itself also

often has some limitations for external use due to the informed consent policy. One solution

for this issue is to handle the haplotype information in de-identified form such as summary

statistics or model parameters from which the restoration of genotype data at an individual-

level is almost impossible. E.g., the aggregation of summary statistics has been considered in

GWAS for the calculation of p-values without sharing individual-level genotypes among

cohorts [9]. There also exist correction methods for sample overlap in GWAS without sharing

individual-level genotypes [10–12]. Already, there exists a supervised learning-based imputa-

tion method that imputes genotypes using support vector machine (SVM) trained with the

haplotype reference panel [13]. Although the SVM-based method requires less computational

time and less memory space, its imputation accuracy is not sufficient when compared to

that of the imputation methods based on the Li and Stephens model. Recent development of

deep learning technologies including recurrent neural networks (RNN) provides significant

improvements in various fields such as image classification [14], image detection [15], natural

language understanding [16], and speech and video data recognition [17]; the deep learning

technologies are therefore more promising for devising imputation methods that can handle

the haplotype information as the model parameters.

In this study, we proposed a new imputation method based on bidirectional recurrent neu-

ral network that takes the phased genotypes as input data and returns probabilities of alleles

for the unobserved variants. In the proposed method, the information of the haplotype refer-

ence panel is parameterized as model parameters through the training step, and the haplotype

data itself is not explicitly used for the imputation. We have considered binary vectors that rep-

resent allele patterns of observed variants in the haplotype reference panel, for the input fea-

ture vectors of the bidirectional RNN. We have applied the dimensionality reduction to the

binary vectors using the kernel principal component analysis in order to reduce the length of

the feature vectors and avoid the restoration of the genotype data. For RNN cells, we have con-

sidered long short-term memory (LSTM) [18] and gated recurrent unit (GRU) [19] in the pro-

posed method. We also proposed a hybrid model obtained by combining two bidirectional

RNN models trained for different minor allele frequency (MAF) ranges as well as a new data

augmentation process for more robust and accurate estimation. Since it is difficult to restore

the genotype information at an individual-level from the model parameters, the model param-

eters can be shared for public use even if the haplotype data used for training is not permitted

for public use.

In the performance evaluation based on the comparison with existing imputation methods,

we have used haplotype datasets from the 1000 Genomes Project (1KGP) [20] and the Haplo-

type Reference Consortium (HRC) [21]. Overall, the imputation accuracy of the proposed

model in R2 is comparable with that of existing imputation methods based on the Li and Ste-

phens model in both of the datasets. For low frequency variant sites, the imputation accuracy

of the proposed model in R2 tends to be lower than that of the imputation methods in both of

the datasets. We also have considered a scenario where some haplotypes are made available

only in de-identified form for the haplotype reference panel due to the issue of limited accessi-

bility. Under this scenario, some haplotypes are not made available for the existing imputation

methods based on the Li and Stephens model, while the proposed method and the above-men-

tioned SVM-based imputation method can use all the haplotypes. For the evaluation under the

scenario, where the haplotypes are obtained from the 1KGP dataset, the imputation accuracy
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of the proposed method is higher than that of the existing imputation methods based on the Li

and Stephens model as well as the SVM-based imputation method, at least for variants with

MAF� 0.005. In addition, the imputation accuracy of the proposed method is higher than

that of the SVM-based imputation method in the entire MAF range for all the experiments.

Methods

Let vi and uj be the ith observed variant and jth unobserved variant, respectively. We assume

that the orders of the observed and unobserved variants are respectively sorted with their

genomic positions, and hence p(vi)� p(vj) and p(ui)� p(uj) are satisfied for i< j, where p(�) is

a function that returns the position of the input variant. We use RNN models to capture the

transition of haplotype information on the sorted observed variants to estimate alleles for

unobserved variants. We divide a chromosome to regions according to the numbers of

observed and unobserved variants as shown in Fig 1 due to the restriction of memory usage

for the RNN model. We limit the maximum numbers of observed and unobserved variants in

each region to 100 and 1,000 in our experiment, respectively, and each region is extended up

to the limit in the division process. Each divided region has flanking regions in the upstream

and downstream directions, and only the observed variants are considered in the flanking

regions. The proposed method takes the haplotype comprised of observed variants and

imputes unobserved variants for each region, and imputation results from the divided regions

are concatenated for the final imputation result. In the following subsections, we describe the

model structure of the proposed method for each region, the extraction of input feature vectors

for the model, and details of the procedures for training the model.

Model structure

We assume that both observed and unobserved variants are biallelic; i.e., their alleles are repre-

sented by one and zero. Let m be the number of the observed variants in a divided region. We

also let ml and mr respectively be indices of the left most and right most observed variants in

the region without the left and right flanking regions. We build a bidirectional RNN on the

observed variants for each divided region as shown in Fig 2. A forward RNN is built on

observed variants v1; . . . ; vmr
, and observed variants vmrþ1; . . . ; vm in the right flanking region

Fig 1. An illustration of division of a chromosome to regions according to the numbers of observed and unobserved variants for imputation.

https://doi.org/10.1371/journal.pcbi.1008207.g001
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are not included, since the variants in the right flanking region are not required for imputing

the unobserved variants in the forward direction. A backward RNN is built on observed vari-

ants vml
; . . . ; vm, and similarly to the forward RNN, v1; . . . ; vml � 1 in the left flanking region are

not included. RNN cells for each observed variant of the forward and backward RNNs are

stacked in the proposed model as shown in Fig 3, and LSTM and GRU are considered for

RNN cells. sðf Þi;l and oðf Þi;l in Fig 3 are the state and output vectors of the RNN cell for the lth layer

on observed variant vi in the forward RNN, respectively. The length of sðf Þi;l is the same as the

length of oðf Þi;l for l� 1. We call the length the number of hidden units, and denote it by H. sðf Þi;l
and oðf Þi;l are obtained recursively for i 2 {1, . . ., mr} in the following manner:

sðf Þi;l ¼ Sðf Þl ðs
ðf Þ
i� 1;l; o

ðf Þ
i;l� 1Þ

oðf Þi;l ¼ Oðf Þl ðs
ðf Þ
i� 1;l; o

ðf Þ
i;l� 1Þ;

where Sðf Þl and Oðf Þl are functions that represent the state and output vectors from the RNN cell

of the lth layer, respectively. Sðf Þl and Oðf Þl are parameterized with learnable parameters of the

Fig 2. The overall model structure of the proposed method. The line in the bottom of the figure indicates a genome sequence where observed variants

are in green square and unobserved variants are in white square. Forward and backward RNNs are built on the observed variants. xvi
is the input feature

vector of the forward and backward RNNs for observed variant vi. fi is the vector from the concatenation of the output of the forward RNN for observed

variant vi and the output of the backward RNN for observed variant vi+1. yui is a binary variable indicating the allele for unobserved variant ui.

https://doi.org/10.1371/journal.pcbi.1008207.g002
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Fig 3. The structure of the forward RNN for each observed variant for the case of four stacked RNN cells. xvi
and

xviþ1
are input feature vectors for observed variants vi and vi+1, respectively. sðf Þi;j is the state of the RNN cell of the jth

layer for observed variant vi and used as the input of the state for the RNN cell of the jth layer for observed variant vi+1.

The output of the RNN cell of the top layer, oi,4, is handled as the output of RNN for each observed variant.

https://doi.org/10.1371/journal.pcbi.1008207.g003
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RNN cell, and their actual forms are dependent on the type of the RNN cell such as LSTM and

GRU. Note that the initial state sðf Þ0;l is set to a zero vector of the length of H, and oðf Þi;0 is set to

the input feature vector for the ith observed variant xvi
. We let I be the length of xvi , and hence

the length of oðf Þi;0 is also I. Details of the input feature vectors for the observed variants are

described in the next subsection. For the backward RNN, we use the corresponding notations

to those used in the forward RNN, and obtained

sðbÞi;l ¼ SðbÞl ðs
ðbÞ
iþ1;l; o

ðbÞ
i;l� 1Þ

oðbÞi;l ¼ OðbÞl ðs
ðbÞ
iþ1;l; o

ðbÞ
i;l� 1Þ;

where i 2 {ml, . . ., m}. Note that sðbÞmþ1;l ¼ 0 and oðbÞi;0 ¼ xvi
.

Let fi be a vector given by the concatenation of the output vectors of the forward and back-

ward RNNs as shown in Fig 2:

f i ¼
oðf Þi;L

oðbÞiþ1;L

2

4

3

5;

where L is the number of layers in the model. Let yui be a binary value representing the allele of

unobserved variant ui. The probability of yui ¼ 1 is estimated by the following softmax func-

tion:

exp ðaT
i;1f ~i þ bi;1Þ

P1

j¼0
exp ðaT

i;jf ~i þ bi;jÞ
;

where ai,j and bi,j are learnable parameters, and ~i is the index that satisfies

pðv~iÞ � pðuiÞ < pðv~iþ1Þ; i.e., ~i is the index for the closest observed variant to ui in the

upstream region. For the case of p(ui) < p(v1), which occurs in the left most divided region,

f ~i is given by oðbÞ1;L. Similarly, f ~i is given by oðf Þm;L for the case of p(ui)� p(vm).

For the loss function for training the model parameters, we consider the sum of the

weighted cross entropies over the unobserved variants as follows:

Xn

i¼1

ð2MAFiÞ
g
� yui

exp ðaT
i;1f ~i þ bi;1Þ

P1

j¼0
exp ðaT

i;jf ~i þ bi;jÞ
� ð1 � yuiÞ

exp ðaT
i;0f ~i þ bi;0Þ

P1

j¼0
exp ðaT

i;jf ~i þ bi;jÞ

 !

;

where n is the number of the unobserved variants, MAFi is the minor allele frequency of ui in

the training data, and γ is a hyperparameter to adjust the weights from MAF. The loss function

with γ> 0 gives higher priority to higher MAF variants, while the loss function with γ< 0

gives higher priority to lower MAF variants.

Hybrid model comprised of models trained with different γ. Since the models trained

on loss functions with γ> 0 and γ< 0 respectively give priority to higher and lower MAF vari-

ants, we consider a hybrid model obtained by the combination of the models trained with γ>
0 and γ< 0 for achieving higher accuracy in both high and low MAF variants. We hereafter

call the model trained with γ> 0 “higher MAF model” and that with γ< 0 “lower MAF

model”. For the hybrid model, we consider a 4-length vector gi for each unobserved variant ui
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given by the combination of logits of these two models as follows:

g i ¼

ðaðhÞi;1 Þ
Tf ðhÞ~i þ bðhÞi;1

ðaðhÞi;0 Þ
Tf ðhÞ~i þ bðhÞi;0

ðaðlÞi;1Þ
Tf ðlÞ~i þ bðlÞi;1

ðaðlÞi;0Þ
Tf ðlÞ~i þ bðlÞi;0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

where superscripts (h) and (l) indicate the variables and outputs of the higher and lower MAF

models, respectively, We then estimate the probability of yui ¼ 1 by the following softmax

function for gi:

exp ðcTi;1g i þ di;1Þ
P1

j¼0
exp ðcTi;jg i þ di;jÞ

;

where ci,j and di,j are learnable parameters. After the learning of the parameters of the higher

and lower MAF models, we train ci,j and di,j in the loss function by the sum of the cross entro-

pies as follows:

Xn

i¼1

� yui
exp ðcTi;1g i þ di;1Þ

P1

j¼0
exp ðcTi;jg i þ di;jÞ

� ð1 � yuiÞ
exp ðcTi;0g i þ di;0Þ

P1

j¼0
exp ðcTi;jg i þ di;jÞ

 !

:

Note that the parameters of the higher and lower MAF models are fixed for training ci,j and

di,j.
Residual connections. For deep neural networks, gradients of parameters in backpropa-

gation tend to vanish, and the sufficient training of the parameters fails due to the vanishing of

gradients. In residual connections, only residues are calculated in each layer, and the vanishing

gradient problem is avoided by skipping the main part of the data flow [22]. We thus consider

RNN models with residual connections, which can be obtained by simple changes in the out-

puts of each layer for l> 1 as follows:

oðf Þi;l ¼ Oðf Þl ðs
ðf Þ
iþ1;l; o

ðf Þ
i;l� 1Þ þ oðf Þi;l� 1;

oðbÞi;l ¼ OðbÞl ðs
ðbÞ
iþ1;l; o

ðbÞ
i;l� 1Þ þ oðbÞi;l� 1:

Fig 4 shows the structure of the forward RNN for an observed variant with residual connec-

tions. Since the RNN model with residual connections is empirically not effective for the

higher MAF model, we adopt residual connections only for the lower MAF model.

Self-attention. Attention was proposed to capture long range dependencies that are diffi-

cult to be captured by LSTM or GRU, in sequential data. Attention considers two types of ele-

ments, queries and keys, and generates a feature for each query using the keys. Attention can

be considered among multiple sequences, and attention considered only in a sequence is called

self-attention. In order to capture the long range dependencies, we consider self-attention for

output vectors of our RNN model in a similar manner to a sentence embedding model pro-

posed in [23]. While the sentence embedding model considers self-attention for concatenated

output vectors of the forward and backward RNNs, we consider self-attention for output vec-

tors of the forward and backward RNNs, independently, and additionally use the features

from the self-attention for the forward and backward RNNs to estimate alleles for unobserved

variants. We consider a simplified version of Transformer attention in [24, 25] as the model
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Fig 4. The structure of the forward RNN for each observed variant with residual connections for the case of four

stacked RNN cells. xvi
and xviþ1

are input feature vectors for observed variants vi and vi+1, respectively. sðf Þi;j is the state

of the RNN cell of the jth layer for observed variant vi and used as the input of the state for the RNN cell of the jth layer

for observed variant vi+1. Circles with + represent the addition of tensors for residual connections. The output of the

RNN cell of the top layer, oi,4, is handled as the output of RNN for each observed variant.

https://doi.org/10.1371/journal.pcbi.1008207.g004
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for the self-attention. Details of the proposed model with the self-attention are described in

Section 1 of S1 Text in the supporting information.

Input feature vectors for observed variants in a reference panel

Let B be a binary matrix representing a haplotype reference panel, where the ith row and jth
column element indicates the allele of the ith haplotype in the jth variant. We first consider the

jth column vector of B as a feature vector for an allele indicated by one at the jth variant. For

observed variant v, we denote the feature vector for the allele indicated by one as b1

v . We also

let b0

v be the feature vector for the allele indicated by zero, in which the ith element takes one if

the allele of the ith haplotype is indicated by zero, and zero otherwise. For example, let us con-

sider the following allele pattern for a variant site with alleles ‘A’ and ‘T’ in the haplotype refer-

ence panel:

½A;A;T;A; . . . ;A;A;T;T�:

If ‘A’ and ‘T’ are respectively indicated by one and zero, the corresponding binary represen-

tation is given by

½1; 1; 0; 1; . . . ; 1; 1; 0; 0�;

and feature vectors b1

v and b0

v for allele ‘A’ and ‘T’ are given by [1, 1, 0, 1, . . ., 1, 1, 0, 0] and [0,

0, 1, 0, . . ., 0, 0, 1, 1], respectively. These feature vectors can be interpreted as a binary vector

indicating which haplotype has the input allele for the variant. However, there exist two serious

problems in the feature vectors; the feature vectors explicitly represent the haplotype reference

panel, and the length of the feature vectors is too big as the input of the RNN since the number

of the individuals in the haplotype reference panel is usually more than 1,000.

We thus adopt kernel principal component analysis (PCA) [26] as a dimensionality reduc-

tion technique for the feature vectors in order to resolve these two issues at the same time.

Since the correlation of b0

v and b1

v is minus one, we apply kernel PCA only to the feature vectors

for the alleles indicated by one: b1

v1
; . . . ; b1

vm
, in order to avoid the distortion in PCA results

caused by the highly correlated variables. In order to obtain the dimensionally reduced feature

vector of b0

v , we project b0

v to the space from kernel PCA obtained for b1

v . Given the original

binary feature vector b, the ith element of its dimensionally reduced feature vector is given by

1
ffiffiffiffi
di

p
Xm

j¼1

uðiÞj kðb1

vj
; bÞ �

1

m
kT
j 1þ

Xm

k¼1

kðb1

vk
; bÞ

 !

þ
1

m2
1TK1

 !

;

where k(�, �) is a positive definite kernel, K is Gram matrix, ki is the ith column vector of K, di
is the ith largest eigenvalue of the centered Gram matrix ~K , and uðiÞj is the jth element of the

corresponding eigenvector of di. The dimensionally reduced feature vector for variant v is

used for xv, the input feature vector for variant v. Details of the derivation for the above equa-

tion are in Section 2 of S1 Text in the supporting information.

Training of the proposed model

We use Adam optimizer [27] to train the parameters of the proposed model. In order to avoid

overfitting of the parameters, we consider averaged cross entropy losses and R2 values in the

validation data as early stopping criteria. Note that R2 values are obtained by the squared corre-

lation of true genotype counts and allele dosages as in [28]. In the practical trials, we find that

the averaged R2 value in the validation data is suitable for lower MAF variants, while the cross
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entropy loss for the validation data is suitable for higher MAF variants. We thus use the cross

entropy loss for the validation data as the early stopping criterion for training the higher MAF

model, and the averaged R2 value in the validation data for the lower MAF model and the

hybrid model in the following results. In the training step, we decrease the learning rate if the

early stopping criterion is not updated in the specified number of iterations, which we call

learning rate updating interval. Training stops if the learning rate gets less than the minimum

learning rate or the iteration count reaches the maximum iteration count. Details of the train-

ing step are as follows:

1. Set iteration count i to 1 and set the best value for the early stopping criterion ĉ to null.

2. Set learning rate lr and learning rate updating interval li to some initial values.

3. If i is larger than the maximum iteration count, finish training.

4. Update the model parameters by Adam optimizer with learning rate lr for randomly

selected mini-batch data.

5. If i is divisible by validation interval vi, compute the following procedures:

1. Calculate the current value for the early stopping criterion c.

2. If ĉ is null or c is better than ĉ, set ĉ to c, save the current parameters, and set the last

parameter saving step is to i.

3. If i − is is larger than learning rate updating interval li:

1. Divide learning rate lr by two.

2. If learning rate lr is less than the minimum learning rate lrmin, finish the training step.

3. Divide learning rate updating interval li by two and round it down to an integer

value.

4. If learning rate updating interval li is less than the minimum learning rate updating

interval limin, set li to limin.

5. Set the last parameter saving step is to i.

6. Restore the parameters to the previously saved parameters.

6. Increment i and go back to Step 2.

Since the local search in less space is expected for the smaller learning rate in the above pro-

cedures, we decrease the learning rate updating interval along with the learning rate. In our

experiments, we set the initial learning rate to 0.0001, the minimum learning rate lrmin to 10−7,

the initial learning rate updating interval to 5,000, the minimum learning rate updating inter-

val limin to 100, validation interval vi to 10, and the maximum iteration count to 100,000. We

use randomly selected 500 haplotypes as the mini-batch data at each iteration.

Existing imputation methods based on the Li and Stephens model are robust for haplotypes

not in the haplotype reference panel because these methods consider mutations and recombi-

nations for the reconstruction of the haplotypes not in the haplotype reference panel. In order

to improve the robustness of the proposed method to haplotypes not in the haplotype refer-

ence panel, we propose a data augmentation process that generates new haplotypes by consid-

ering mutations and recombinations for the haplotypes in the reference panel for the training

data. Fig 5 shows an example of the generation of new haplotypes by the proposed data aug-

mentation process. The proposed data augmentation process applies mutations only for the
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observed variants according to the probability of mutations for a new haplotype in the Li and

Stephens model. The probability of a mutation for each observed variant is given by 2Neμ/

(4Neμ + k), where Ne is the effective population size and μ is the mutation rate. Similarly to the

mutations, recombinations are applied according to the probability of recombinations for a

new haplotype in the Li and Stephens model. The probability of a recombination between two

variant sites is given by 1 − exp(−4Neρdj/k), where ρ is the recombination rate and di is the

genetic distance between the ith and i + 1st variants. In our experiments, we set Ne, μ and ρ to

10,000, 10−8 and 10−8, respectively. Although k should be the number of the haplotypes in the

reference panel, we set k to 25 to obtain the alleviated probabilities of the mutations and

recombinations.

Results and discussion

Evaluation with 1KGP dataset

We use phased genotype data of 2,504 individuals for chromosome 22 from the phase 3 dataset

of 1KGP [20]. We randomly select 100 individuals for test data and evaluated the imputation

performance for the test data by using the phased genotype data of the remaining 2,404 indi-

viduals as the haplotype reference panel. In the test data, we extract genotype data for designed

markers in SNP array and impute genotypes for the variants from the extracted genotype data

by using the haplotype reference panel. We randomly select haplotypes for 100 individuals

from the haplotype reference panel for validation data. We first examine the imputation accu-

racy of the proposed method for the following the number of layers L, the number of hidden

units H, and RNN cell types:

Fig 5. An illustration of the proposed data augmentation process, where new haplotypes are generated by applying mutations

and recombinations for the haplotypes in the reference panel. Alleles surrounded by bold lines are those for the observed variants,

and the mutations are applied only for the observed variants. Alleles in red are those mutated by the data augmentation process.

https://doi.org/10.1371/journal.pcbi.1008207.g005

PLOS COMPUTATIONAL BIOLOGY A genotype imputation method with RNN for de-identified haplotype reference information

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008207 October 1, 2020 12 / 21

https://doi.org/10.1371/journal.pcbi.1008207.g005
https://doi.org/10.1371/journal.pcbi.1008207


• RNN cell type: LSTM or GRU

• The number of layers L: 2 or 4

• The number of hidden units H: 20 or 40

The proposed method is implemented in Python 3, and TensorFlow (https://www.

tensorflow.org/) is used for the implementation of RNN. Our implementation for the imputa-

tion with trained model parameters can be downloaded from a GitHub repository (https://

github.com/kanamekojima/rnnimp). We extract genotypes for the designed markers in Infi-

nium Omni2.5-8 BeadChip, which we hereafter call Omni2.5, in the test data. The number

of the designed markers of Omni2.5 in chromosome 22 of the haplotype reference panel is

31,325, and 1,078,043 variants in the haplotype reference panel are not in the designed markers

of Omni2.5 and used for the evaluation of imputation accuracy. It should be noted that we fil-

ter out the variants with MAF < 0.005 for imputation because the rare variants are not usually

used for downstream analyses such as GWAS and high computation cost is required for

imputing all the variant in the proposed method. As a positive definite kernel for feature

extraction, we use the following homogeneous dot-product kernel [29]:

kðbi; bjÞ ¼ kbik kbjk exp
bi

kbik
;
bj

kbjk

* +

� 1

 !

;

where ||�|| indicates the L2 norm of the input vector and h�, �i indicates the inner product of

the two input vectors. For the loss function of the proposed method, γ is set to 0.75. We com-

pare averaged R2 values in the validation data for the cases of using input feature vectors with

the top 5, 10, and 20 principal component scores as shown in Table 1. In the comparison,

the proposed model with GRU, 4 layers, and 40 hidden units is used, and the average R2 value

for the case of the top 10 principal component scores is higher than that of the other cases

although the length of input feature vectors I is not sensitive to the imputation accuracy. Based

on the comparison, we use the top 10 principal component scores for the input feature vector

in the following experiments. Table 2 shows the averaged R2 value in the validation data for

each setting. Fig 6a shows the comparison of R2 values for the settings with minimum or maxi-

mum averaged R2 value for LSTM and GRU. The proposed model with GRU, 4 layers, and 40

Table 1. Averaged R2 values in the validation data for the input feature vectors with size of 5, 10, and 20.

Size of Input Feature Vector 5 10 20

R2 0.8707 0.8708 0.8705

https://doi.org/10.1371/journal.pcbi.1008207.t001

Table 2. Averaged R2 values in the validation data for several settings.

RNN cell No. of Layers No. of Hidden Units R2

LSTM 2 20 0.8671

2 40 0.8701

4 20 0.8667

4 40 0.8690

GRU 2 20 0.8673

2 40 0.8702

4 20 0.8674

4 40 0.8708

https://doi.org/10.1371/journal.pcbi.1008207.t002
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hidden units gives the highest averaged R2 value in the validation data among the settings, and

the comparison of averaged R2 values in the validation data is consistent with the results in the

test data. In order to see the effectiveness of the hybrid model in the proposed method, we

compare the R2 values in the results of hybrid model, higher MAF model, and lower MAF

Fig 6. (a) Comparison of R2 values for the proposed method with several settings. (b) Comparison of R2 values for the proposed method with hybrid

model, higher MAF model, and lower MAF model with the setting of GRU, 4 layers, and 40 hidden units. (c) Comparison of R2 values for the proposed

method with and without residual connection (RC), data augmentation (DA), and self-attention (SA), where “Basic hybrid model” is the hybrid model

without RC, DA, and SA.

https://doi.org/10.1371/journal.pcbi.1008207.g006
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model. From the comparison of the R2 values in Fig 6b, the hybrid model is comparable with

the higher MAF model in higher MAF range. In the low MAF range, the hybrid model is com-

parable with the lower MAF model and better than the model for higher MAF variants. Hence,

the hybrid model is effective over the entire MAF range compared with the higher and lower

MAF models. We also compare the proposed method with and without use of residual connec-

tions, self-attention, and the proposed data augmentation process in Fig 6c. The residual con-

nections give a small improvement on the R2 values in the low MAF range, and the proposed

data augmentation process gives a significant improvement on the R2 values in the entire MAF

range. Although the self-attention also gives a small improvement on the R2 values, the pro-

posed model with the self-attention requires approximately 10% more computational time as

shown in Table A of S1 Text in the supporting information. Since the long-range dependencies

captured by the self-attention seems to have a limited effect for imputation, we employ the pro-

posed method without the self-attention in the following evaluations.

We select Impute2 and Minimac3 as the representatives of existing imputation methods

based on the Li and Stephens model, and compare the imputation performance of the pro-

posed method and these methods. We set -k and k_hap options of Impute2 to the size of the

haplotype reference panel to maximize the imputation accuracy. In addition to these two

methods, we employ ADDIT-M as a supervised learning-based imputation method, in which

genotype information is encoded to model parameters similarly to the proposed method.

ADDIT-M estimates alleles of unobserved variants from alleles of observed variants using

SVM trained with the haplotype reference panel. In the original Python implementation of

ADDIT-M in the GitHub repository (https://github.com/NDBL/ADDIT), a regularization

parameter, C, and a RBF kernel parameter, gamma, for SVM in scikit-learn, a Python machine

learning library, are set to 0.001 and 0.8, respectively. Since ADDIT-M with SVM using the

above hyperparameters always gives worse results than ADDIT-M with SVM using the default

hyperparameters in scikit-learn in our experiments, we only consider ADDIT-M with SVM

using the default hyperparameters in the following evaluation. The comparison of the imputa-

tion accuracy of ADDIT-M with the different SVM hyperparameters is summarized in Section

3 of S1 Text in the supporting information. For the proposed method, we use hybrid model

with the setting of GRU, 4 layers, 40 hidden units, residual connections, and data augmenta-

tion. Fig 7a shows the comparison of the R2 values, and Fig 7b shows the comparison of the R2

values in linear MAF scale and with zoom into higher R2 value. We again note that R2 values

are obtained by the squared correlation of true genotype counts and allele dosages as in [28].

Overall, the imputation accuracy of the proposed method is comparable with Impute2 and

Minimac3 and better than that of ADDIT-M. Especially for the variants with MAF > 0.3, the

proposed method is slightly better than Impute2. For the variants with MAF< 0.01, the R2 val-

ues of the proposed method are slightly lower than those of Impute2 and Minimac3 and better

than those of ADDIT-M. While the Li and Stephens model considers a genealogy of haplo-

types in the background in an approximate manner, the proposed method does not consider

such a genetic background knowledge explicitly. The imputation accuracy of the proposed

method thus tends to be lower than that of genotype imputation methods based on Li and Ste-

phens model for low frequency variants such as the variants with MAF < 0.01.

We summarize the running time of the proposed method and the existing methods for

imputation in Table 3. We measured the running time for imputation on Intel Xeon Silver

4116 CPU (2.10GHz) in a single process. In addition to imputation, the proposed method

and ADDIT-M require the running time for training the model parameters. The proposed

method, for instance, took a few days for training in a massively parallel computing system,

and ADDIT-M took five hours in a single process, respectively. Since the trained model

parameters can be used repeatedly for imputation on different datasets, we exclude the
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running time for training from the results in Table 3. Minimac3 also requires preprocessing

for converting the haplotype reference panel in M3VCF format, which took one and a half

hours in our experiment. Since the M3VCF format data also can be used repeatedly for impu-

tation similarly to the model parameters for the proposed method and ADDIT-M, we exclude

the running time for the preprocessing from the results in Table 3. Although the proposed

method requires approximately two times as much running time as Impute2 for the imputa-

tion, the running time is still feasible for practical use. Since the running time of the proposed

method is highly dependent on TensorFlow, the reduction of running time is expected along

with the development of TensorFlow.

We consider the case where the haplotypes of some individuals are not publicly available

in an explicit form, but can be available in de-identified form; i.e., the haplotypes of the indi-

viduals cannot be used for Impute2 and Minimac3, but can be used for training the model

parameters of the proposed method and ADDIT-M. In order to evaluate the imputation per-

formance for the case, we randomly select 100 EAS individuals of 504 EAS individuals for

the EAS test data, and prepare two types of haplotype reference panels: one is comprised

of the remaining 2,404 individuals, and the other is comprised of 2,000 individuals and

Fig 7. (a) Comparison of R2 values for the proposed method, ADDIT-M, Impute2, and Minimac3 for the 1KGP dataset. (b) Comparison of R2 values

for the proposed method, ADDIT-M, Impute2, and Minimac3 in linear MAF scale and with zoom into higher R2 value for the 1KGP dataset.

https://doi.org/10.1371/journal.pcbi.1008207.g007

Table 3. Running time of the proposed method, ADDIT-M, Impute2, and Minimac3 for imputation using the

1KGP and HRC datasets.

Method Running Time for 1KGP dataset Running Time for HRC dataset

Proposed 25,119 [s] 19,438 [s]

ADDIT-M 842 [s] 1,566 [s]

Impute2 13,998 [s] 72,310 [s]

Minimac3 491 [s] 924 [s]

https://doi.org/10.1371/journal.pcbi.1008207.t003
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contains no EAS individuals. We use the former haplotype reference panel for training the

proposed model and ADDIT-M, and use the latter haplotype reference panel for the imputa-

tion with Impute2 and Minimac3. In the evaluation, we consider Omni2.5 as the SNP array

in the test data. For the proposed method, we also use hybrid model with the setting of GRU,

4 layers, 40 hidden units, residual connections, and data augmentation. Fig 8 shows the com-

parison of the R2 values for the test data in scaled MAF ranges. At least for the variants with

MAF� 0.005, the imputation accuracy of the proposed model is better than that of Impute2,

Minimac3, and ADDIT-M in R2.

Fig 8. Comparison of R2 values for the proposed method, ADDIT-M, Impute2, and Minimac3 for EAS individuals.

https://doi.org/10.1371/journal.pcbi.1008207.g008
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Evaluation with HRC haplotype dataset

HRC is a consortium for haplotypes from more than 20 cohort studies, and the number of the

total haplotypes in HRC is currently 64,976. In addition to the collection of the haplotypes,

HRC provides imputation servers in which imputation results based on its haplotype dataset

can be obtained by uploading genotype datasets. In order to examine the performance of the

proposed method for datasets larger than the dataset from 1KGP, we evaluate the proposed

method using a haplotype dataset from HRC which is available at European Genome-phe-

nome Archive (https://www.ebi.ac.uk/ega/studies/EGAS00001001710). The dataset is a subset

of the HRC Release 1.1 and comprised of 54,330 haplotypes (27,165 individuals). Similarly to

the evaluation with the 1KGP dataset, we randomly select 100 individuals for test data, and

evaluate the imputation performance for the test data by using the phased genotype data of the

remaining individuals as the haplotype reference panel. We randomly select haplotypes for

500 individuals from the haplotype reference panel for validation data. The number of the

designed markers of Omni2.5 in chromosome22 of the haplotype reference panel is 31,441,

and 493,103 variants in the haplotype reference panel are not in the designed markers of

Omni2.5 and used for the evaluation of imputation accuracy. Fig 9a shows the comparison of

the R2 values of the proposed method, Impute2, Minimac3, and ADDIT-M, and Fig 9b shows

the comparison of the R2 values in linear MAF scale and with zoom into higher R2 value. Over-

all, the imputation accuracy of the proposed method is comparable with that of Impute2 and

Minimac3. For variants with MAF < 0.01, R2 values of the proposed method is slightly lower

than those of Impute2 and Minimac3 and higher than that of ADDIT-M similarly to the

results for the 1KGP dataset.

We summarize the running time of the proposed method and the existing methods for

imputation in Table 3. Similarly to the case of the 1KGP dataset, we measured the running

time for imputation on Intel Xeon Silver 4116 CPU (2.10GHz) in a single process. For training

Fig 9. (a) Comparison of the R2 values of the proposed method, ADDIT-M, Impute2, and Minimac3 for the HRC dataset. (b) Comparison of the R2

values of the proposed method, ADDIT-M, Impute2, and Minimac3 in linear MAF scale and with zoom into higher R2 value for the HRC dataset.

https://doi.org/10.1371/journal.pcbi.1008207.g009
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the model parameters or preprocessing for the conversion to M3VCF format, the proposed

method, ADDIT-M, and Minimac3 took a few days in a massively parallel computing system,

six and a half days in a single process, and 5.8 hours in a single process, respectively. Since the

trained model parameters and the M3VCF format data can be used repeatedly for imputation

on different datasets, the running time for training and preprocessing is excluded from the

results in Table 3. While the size of the haplotype reference panel influences the training time

of the proposed method and ADDIT-M as well as the running time of Impute2 and Minimac3,

the size does not influence the running time of the proposed method and ADDIT-M for impu-

tation. The proposed method thus takes less running time than Impute2 for imputation in

contrast to the 1KGP dataset although the running time of proposed method is still more than

that of Minimac3. Since the HRC dataset contains less variant sites than the 1KGP dataset, the

running time of the proposed method for the HRC dataset is less than that for the 1KGP data-

set for imputation.

Conclusion

In this study, we proposed a genotype imputation method for de-identified haplotype refer-

ence information by using the bidirectional RNN. Since the proposed method de-identifies the

information of the haplotype reference panel by parameterizing it as its model parameters in

the training step, the trained model parameters can be used publicly even when the original

haplotype reference panel is not accessible publicly. In addition to the simple bidirectional

RNN model, we considered the hybrid model, which is comprised of two types of models: one

for higher MAF variants and the other for lower MAF variants. We also proposed a data aug-

mentation process considering the mutations and recombinations, for more robust and accu-

rate estimation.

Evaluation using the 1KGP dataset confirmed the effectiveness of the hybrid model by com-

paring it with the models for higher and lower variants. We also confirmed the effectiveness of

the residual connections and the proposed data augmentation process.

While the proposed method handles the haplotype reference information in a de-identified

form, we demonstrated that the proposed method could successfully provide accurate imputa-

tion results comparable with the results of existing imputation methods based on the Li and

Stephens model, from the evaluation using the 1KGP and HRC datasets. We also compared

the proposed method with an existing SVM-based imputation method, which can handle the

haplotype reference panel in de-identified form as well, and confirmed the effectiveness of the

proposed method as the imputation method for de-identified haplotype reference information.

In order to show the reward of handling the de-identified haplotype reference information, we

considered a scenario where some haplotypes were made available only in de-identified form

for the haplotype reference panel. Under this scenario using the 1KGP dataset, the imputation

accuracy of the proposed method was much higher than that of the existing methods in which

some haplotype were not made available for the haplotype reference panel due to the accessi-

bility limitation. Our RNN-based method is therefore considered to be quite promising to pro-

mote the data-sharing of sensitive genome data under the recent movement for the protection

of individuals’ privacy.
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