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Abstract

We show how highly-diverse ecological communities may display persistent abundance

fluctuations, when interacting through resource competition and subjected to migration from

a species pool. These fluctuations appear, robustly and predictably, in certain regimes of

parameter space. Their origin is closely tied to the ratio of realized species diversity to the

number of resources. This ratio is set by competition, through the balance between species

being pushed out and invading. When this ratio is smaller than one, dynamics will reach sta-

ble equilibria. When this ratio is larger than one, the competitive exclusion principle dictates

that fixed-points are either unstable or marginally stable. If they are unstable, the system is

repelled from fixed points, and abundances forever fluctuate. While marginally-stable fixed

points are in principle allowed and predicted by some models, they become structurally

unstable at high diversity. This means that even small changes to the model, such as non-

linearities in how resources combine to generate species’ growth, will result in persistent

abundance fluctuations.

Author summary

Competition over resources is one of the main mechanisms by which species interact. In

recent years, considerable interest has been directed towards species-rich communities

that compete over resources. An important and basic question concerns the dynamics of

such communities: do abundances reach stable equilibria, or continue to fluctuate even

without environmental fluctuations? Much of the work on high-diversity resource-com-

petition models starts from the highly-influential MacArthur model or similar models,

known to always relax to equilibria at long times, seemingly precluding any long-time

non-equilibrium phenomena. And so while long-lived chaos has been demonstrated in

few-species models, the question of persistent dynamics at high-diversity remains open.

We show that high-diversity resource-competition models generically have a regime of

parameters in which abundances do not reach equilibria. The MacArthur model and

related models, which always relax to equilibrium, are in fact structurally unstable in that

regime: when small changes are made to the model, non-equilibrium dynamics appear.

We present a theoretical framework: we identify the relevant model parameters, and

explain when long-time abundance fluctuations appear in a predictable and reproducible
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way. We show that diversity may significantly exceed the bound set by competitive

exclusion.

Introduction

Resource competition is one of the main mechanisms underlying species interactions. Theo-

retical works [1, 2] have demonstrated that communities interacting via resource competition

may exhibit different dynamical behaviors (also observed in nature [3, 4]), including relaxation

to equilibria, limit cycles and chaotic dynamics. In systems consisting of a few species and

resources, the dynamical outcome may depend on all the details describing the interactions in

the community [5]. For systems with higher dimensionality (more species and resources), full

detailed knowledge of the interactions may be difficult to obtain and predictions might seem

hopeless, and potentially sensitive to all unknown details.

In recent years, research on high-dimensional communities has shown that full knowledge

on all the interactions might not always be needed [6–14], and important ecological quantities

such as total biomass and diversity can be predicted from a handful of statistics on the interac-

tion parameters. In the space of these relevant statistics, one can identify different regions

(referred to as “phases”) with qualitatively distinct behaviors, such as relaxation to equilibria

versus chaotic dynamics. Within these phases, the qualitative behavior is robust, i.e. insensitive

to sufficiently small changes in the systems’ interaction coefficients.

In this paper, we consider high-dimensional communities with resource-competition inter-

actions. We show that in an entire region of parameter space, the system fails to reach equilib-

ria and instead abundances fluctuate indefinitely. This might seem surprising, as some

theoretical models are known to always lead to stable equilibria, including classical models by

MacArthur [15, 16]. We argue that when the number of species and resources is large, there

are regions of parameter space where these models are highly sensitive (structurally unstable),

and even very small changes to the model will result in persistent abundance fluctuations.

A key ingredient in our discussion is competitive exclusion, according to which the number

of species that can coexist in a stable equilibrium is smaller or equal to the number of resources

(or more generally, the number of niches). A marginally-stable fixed point, on the border

between stability and instability, can accommodate more species than resources, but it can be

destroyed by small perturbations or changes to the dynamical rules.

The sensitivity of marginally-stable equilibria raises the following question: what then

replaces the marginally stable fixed-point, once it is no longer stable? There are two possible

scenarios: (1) Species will go extinct until an equilibrium with fewer species is reached, which

satisfies the competitive exclusion principle, or (2) The system will not reach any fixed point,

and instead abundances will continue to fluctuate indefinitely. We show that for a community

experiencing migration from a species pool, the fate of fixed points close to marginal stability

is generically number (2) above.

Resource competition dynamics in diverse communities have been analyzed in a number of

works employing tools from statistical physics [7, 10, 13, 17]. For a region of model parame-

ters, marginally-stable [10, 18] or close to marginally-stable [7, 13] equilibria are reached. Yet

the models studied all admit a unique equilibrium by construction, either stable or marginally-

stable (in the spirit of works by MacArthur [15, 16]). For example, species’ growth rates are

assumed to be additive in resource availability, which cannot accommodate effects such as

essential resources [19]. A model combining resource-competition with other interactions not

mediated by resources, was studied in [7]. It showed that a unique stable equilibrium cannot
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exist in a certain region of parameter space. We employ a similar setting in one of the models

we use, in order to demonstrate the high sensitivity of equilibria in resource competition near

competitive exclusion, and we also study what replaces that unique equilibrium.

Communities may be driven towards marginal stability by additional factors, such as meta-

bolic trade-offs [20] or evolution, highlighting the importance of studying the generic dynam-

ics in these situations.

An equilibrium phase and a persistent-dynamics phase are known to exist in high-diversity

Lotka-Volterra systems with random interaction strengths [8, 9, 12, 14], which need not derive

from underlying resource competition. The present work finds analogous phases in resource-

competition dynamics, bringing these two families of models closer than previously thought.

The following picture emerges, for how persistent dynamics are generated and maintained.

Interactions create a balance between species being pushed out due to competition, and species

invading when they can, steering the community towards some target species richness. If this

richness is larger than the number of resources, then fixed points generically will be unstable,

and persist abundance fluctuations will ensue, See Fig 1(C). These dynamics are characterized

by species being pushed out by fixed points’ instability, and back when they are able to invade.

This instability is manifested by the spectrum of response to small perturbations around a

putative fixed point at the target species richness, Fig 1(A). Under certain modeling assump-

tions, these fixed points might be marginally stable, but in this case small changes to the model

push the fixed point to become truly unstable, without changing much the target richness set

by the competition, see Fig 1(C). In other words, it is precisely the large number of (nearly-)

marginal directions that allows for such fluctuating dynamics to persist, as shown Fig 1(D).

Marginal, or nearly-marginal eigenvectors around the fixed point become “soft” directions,

namely combined abundance fluctuations of multiple species that are met with little resistance.

This correspondence is further explored in S1 Text (Appendix F).

The paper is structured as follows. Sec. The ground model defines the ground model used

to illustrate the arguments. Sec. Demonstrating the sensitivity looks at the effect of changes to

the model, by adding interactions on top of resource competition. It shows how the dynamics

generated by this model might vary significantly due to even small changes, replacing equilib-

ria by non-equilibrium dynamics. The general mechanism behind this sensitivity is explained

in Sec. Theory for the onset of non-equilibrium dynamics. In Sec. Non-linear resource intake,

the behavior is shown to be sensitive in a second variant of the model in which all interactions

are strictly the result of resource competition, but with non-linear resource intake.

Sec. Species abundance distribution and diversity describes the resulting abundance distri-

butions and community diversity in the dynamically-fluctuating state. The non-equilibrium

coexistence of more species than there are resources or niches, is of great interest in its own

right. It has been suggested to play a part in the resolution of the “paradox of the plankton”

[21]. In Sec. Species abundance distribution and diversity we consider this question directly in

a high-dimensional setting, in light of works on high-dimensional chaos in well-mixed com-

munities [6, 14] and meta-communities [22, 23]. Finally, the Conclusions section concludes

with a discussion, focusing on predictions for experiments and natural communities.

Methods and results

The ground model

To illustrate the ideas we use a well-known model and introduce two variants to that model.

The canonical model is MacArthur’s resource consumer model (MCRM) [15], that will be

referred below as the “ground model”. The variants introduce small changes to its dynamical

evolution.
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The MCRM describes the dynamics of S species abundances Ni(i = 1, ‥, S) competing over

M types of resources Rβ(β = 1, ‥, M). The MCRM system evolves according the following set of

coupled differential equations

dNi
dt ¼ Ni

P
b
cibRb � mi

h i
þ Zi

dRb
dt ¼ Rb Kb � Rb �

P
j cjbNj

h i

8
>><

>>:

; ð1Þ

where ciβ describes the consumption preference of species i for resource β. mi is a minimum

maintenance cost that must be met by species i for it to grow. Kβ is the carrying capacity of

resource β. The first equation includes a migration term ηi from a species pool. It will taken to

be small, allowing species to invade if they have positive growth rates.

Fig 1. Overview of argument. (A) The spectrum of response to perturbations. Fixed points encountered by a high-

diversity resource-competition community may be unstable. (B) Marginally-stable fixed points (or nearly marginal

ones) that appear in certain models, are characterized by a non-negative spectrum. The community can relax to a fixed

point, but the stability of such fixed points is sensitive to modeling assumptions, including additional interactions of

other types, or how growth rates depend on resource availability. (C) In the presence of migration an instability in the

fixed point creates persistent abundance fluctuations, in which species are pushed out due to the instability, but are

later able to invade again. (D) In such a case, the directions corresponding to the nearly marginal eigenvectors become

“soft” directions, showing large fluctuations. For clarity, in (B,C) 30 representative species are plotted.

https://doi.org/10.1371/journal.pcbi.1008189.g001
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Following [15], we consider the case where resources dynamics equilibrate quickly com-

pared to the species dynamics, so that dRβ/dt� 0, and therefore Rβ = Kβ − ∑j cjβNj. Substituting

this into the first equation yields

dNi

dt
¼ Ni

X

b

cibKb � mi �
X

j

aijNj

" #

þ Zi ; ð2Þ

where aij ¼ a
ðrÞ
ij ¼

P
b
cibcjb, and the superscript (r) denotes resource-mediated interactions.

This equation is now in the form of generalized Lotka-Voltera equations.

In going from Eqs (1) to (2) there is a risk, that the dynamics will pass through negative val-

ues of Rβ, which are biologically unrealistic. As shown below, all the phenomenology described

using Eq (2) is also present in a model starting from Eq (1). See discussion in Sec. Theory for

the onset of non-equilibrium dynamics, and S1 Text (Appendix I).

Demonstrating the sensitivity

A key result by MacArthur [15] is that the model in Eq (2) exhibits globally stable dynamics,

reaching a single fixed point independently of the system’s initial conditions. In this section we

show that by a small addition of other interactions on top of the resource competition interac-

tions described above, the system is no longer guaranteed to approach a fixed point. Instead,

for a broad region of control parameters, the species’ abundances fluctuate indefinitely, as

shown in Fig 1(C).

To demonstrate this phenomena we introduce the first variant of the MCRM, which

includes additional “direct” species interactions, a
ðdÞ
ij , so that the total interaction coefficients

read aij ¼ a
ðrÞ
ij þ o � a

ðdÞ
ij , with ω controlling the strength of the perturbation. These direct inter-

actions may come as a result of many mechanisms that lie beyond the unperturbed MCRM.

The important point will be to find when such additional interactions have a significant effect

on the dynamics, even when they are small.

To quantify the size of the perturbation, we use the ratio of the Frobenius norms (sum of

squared interaction coefficients) of the interaction matrices, setting kω � α(d)kF/kα(r)kF = 0.05

throughout. For any given model parameters, ω is chosen to satisfy this condition, allowing for

a comparison between results with different model parameters.

The quantities ciβ, Kβ, mi, a
ðdÞ
ij that define the interactions are drawn at random, representing

a generic diverse community, without any additional structure beyond that already incorpo-

rated into the resource-competition model. The parameters ciβ, mi, Kβ are drawn indepen-

dently for each value, and a
ðdÞ
ij are drawn independently, except possibly a correlation between

a
ðdÞ
ij and a

ðdÞ
ji controlling the symmetry of the direct interactions. All quantities are drawn from

Gaussian distributions, parameterized by their first two moments. The results depend only on

combinations of these first two moments with S, for example, sc ¼
ffiffiffi
S
p

std ðcibÞ and μc = S
mean(ciβ); for sparse networks S is replaced by the number of non-zero links per species. The

definitions of all these control parameters are given in S1 Text (Appendix A).

The analytical treatment requires that S is large. Very strong competitive interactions,

which would lead to mutual exclusion between pairs of species, are assumed to be rare in the

community. A significant number of mutually exclusive pairs can lead to a different phenome-

nology [24].

As seen in Fig 1(C), the variant with even these small additional interactions shows persis-

tent abundance fluctuations, even while the ground model reaches equilibrium as it always

does.

PLOS COMPUTATIONAL BIOLOGY Dynamical persistence in high-diversity resource-consumer communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008189 October 12, 2020 5 / 14

https://doi.org/10.1371/journal.pcbi.1008189


In this section we provided a proof-of-principle demonstration of the sensitivity of the equi-

librium to variations in the model dynamics. We now turn to show that this is in fact a robust

and general phenomenon, found in a broad regime of parameters, and explain where it is

expected and why.

Theory for the onset of non-equilibrium dynamics

To understand more generally whether and when the variant of the model will reach a fixed

point or a non-equilibrium state, we assume a fixed point is reached and ask whether it is sta-

ble. The basic idea is that systems are sensitive to perturbations, if the fixed point in the ground

model is close to marginal stability.

Before turning to the present model, we review the results for the random Lotka-Volterra

models, which in the terminology of Sec. Demonstrating the sensitivity have only “direct”

interactions, aij ¼ a
ðdÞ
ij . Their dynamics have been studied recently [8, 9, 12, 14] (see also related

results in other models [6]). A number of sharply delineated regions in parameter space, or

“phases”, have been found. In one phase the system reaches a unique equilibrium. The bound-

ary of this phase is marked by loss of stability of these fixed points. Beyond this boundary (with

a sharp transition at large S) lies another phase, where the dynamics fail to reach a fixed point

and abundances fluctuate indefinitely [14]. In a special case where the interactions are sym-

metric, namely αij = αji, this phase is instead characterized by many possible alternative equi-

libria, all of which are close to marginal stability [12].

The behavior of the model variants defined here (above and in Sec. Non-linear resource

intake below), bears many similarities to that of the random Lotka-Volterra models, see Fig 2.

There is a unique-equilibrium phase, which is delineated by a boundary at which the equilib-

rium loses its stability. Beyond it, we find in simulations that the dynamics never reach a fixed

point, see Fig 2(C). The case of symmetric a
ðdÞ
ij is special and appears to follow the scenario in

[12], see S1 Text (Appendix H). An important difference from random Lotka-Volterra models

is the mechanism by which fixed points lose their stability, which we now discuss.

Fig 2. The model exhibits three phases, i.e. regions with qualitatively distinct behavior. In one, the system converges to a stable fixed point (FP), in

another fixed points of the system are unstable yielding persistent dynamics (PD). In the third phase, unbounded growth (UG), species abundances grow

without bound. ω is adjusted in order to maintain constant perturbation strength of 0.05. (A) Color map of the ratio S�/M, indicating how close the system

is to competitive exclusion S�/M = 1, assuming an equilibrium reached. In the PD phase the calculation of S�/M is no longer valid and S�/M> 1 may be

reached (see later sections). (B) The minimal real part of eigenvalues of the interaction matrix between coexisting species, λmin. Fixed point stability is lost at

λmin = 0, where the solid line separates the FP and PD phases. The increase in S�/M reduces the stability of the equilibria, triggering a transition to persistent

dynamics. (C) Probability of reaching persistent dynamics along a vertical cross section of the diagrams in panels A and B, in simulations with different

pool richness S. The transition between equilibrium and non-equilibrium outcomes becomes sharper as system size increases, and matches the theoretically

predicted transition point between the phases (dashed line).

https://doi.org/10.1371/journal.pcbi.1008189.g002
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We describe a method of calculating the species richness and stability of the fixed points for

the model variant described in Sec. Demonstrating the sensitivity. This method is exact when

the system admits a unique fixed point; the loss of its stability marks the boundary of the

phase. To highlight the relation between marginal stability and sensitivity to perturbations, we

study the spectrum of the interaction matrix, and how it changes for the model variant

described above. A different approach, using Dynamical Mean Field Theory, is possible and

ultimately equivalent, and has been employed on a related model in [7].

Consider fixed points of the dynamics, i.e. abundance vectors ~N for which d~N=dt ¼ 0 in

Eq (2). We are interested in the linear stability of these fixed points under perturbations. Spe-

cifically, we consider a perturbation which modifies the growth rates of the surviving species

(species for which Ni! c> 0, even as the migration ηi! 0+). Eq (2) changes to dNi/dt =

Ni[. . . + ξi] + ηi, where~x is a perturbation, constant in time (press perturbation). The change

in the fixed point abundances of the surviving species, due to a small perturbation and at small

migration ηi! 0+, is given by

@Ni

@xj

�
�
�
�
~x¼0

¼ ða�Þ
� 1

ij :

Here α� is the reduced interaction matrix, comprised only from interactions between surviving

species. This expression diverges when α� becomes singular, i.e. when the minimum of the real

part of the eigenvalues, λmin�min{Re[Λ(α�)]}, touches zero. It signals the loss of stability of

the fixed point. A fixed point is called marginally stable if λmin! 0 when S!1.

While the MCRM only has stable or marginally stable fixed points, i.e. with λmin� 0, in the

model variant λmin can cross zero and become negative. In related models [6, 7, 14] this signals

a transition to a phase with persistent dynamics. We show in simulations that this also happens

here, see below (Fig 2(C)). This result can also be derived more formally, as has been done for

other models [6, 7, 14].

Close to marginality, i.e. when λmin is zero or close to zero, even a small perturbation is able

to push parts of the spectrum to λmin< 0. This is the case for a broad region in parameter

space, as we now show. In Fig 3, we show the spectrum of such an α� matrix close to a marginal

Fig 3. Spectrum of α�, the interaction matrix of persistent species, in the ground model (blue), and the variant

with additional direct interactions (orange). The perturbation spectrum is shown in red, to illustrate its size we

normalize the area under the perturbation spectrum to the size of the relative perturbation strength (0.05). (Inset)

Minimal eigenvalue real part of the reduced interaction matrix α�, when varying σc at fixed μc. Solid line is theoretical

curve. A phase transition occurs when the minimal real part of the eigenvalues crosses λmin = 0, from λmin> 0 at which

fixed points of the dynamical system are stable, to λmin< 0 where all fixed points are unstable and persistent dynamics

ensue. For example, here the transition happens at σc close to 1.

https://doi.org/10.1371/journal.pcbi.1008189.g003
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fixed point. As expected, the marginal case is characterized by non-vanishing density of eigen-

values arbitrarily close to zero. When applying a small random perturbation to the marginal

interaction matrix α�, for example a
ðdÞ
ij described in Sec. Demonstrating the sensitivity, the

spectrum is broadened and may cross zero to give eigenvalues with negative real parts, result-

ing in a dynamically unstable fixed point. The properties of the fixed point depend crucially on

the species richness (the number of species that survive), which is a result of a balance between

competition that pushes species out of the system, and migration which allow them to try and

invade.

The method for calculating the spectrum consists of the following main steps: first, we find

the number S� of coexisting species using the cavity method. This follows similar calculations

in previous works [9, 13], and is detailed in S1 Text (Appendix C). We then calculate λmin, the

minimal real part of the eigenvalues of α�, for a reduced interaction matrix with S� species.

This is done using random matrix theory and detailed in S1 Text (Appendix D).

Following this method, we can predict the dynamical behavior as a function of the model

parameters. We find three phases, shown in Fig 2. In the first, the system converges to a unique

fixed point, independent of the initial conditions, as in Fig 1(B). In the second, the system fails

to reach a fixed point, with abundances fluctuating indefinitely, as in Fig 1(C). In the third

phase the abundances diverge, indicating that the model is no longer adequate in this parame-

ter regime.

Notably, when S�/M� 1 the unperturbed system is close to competitive exclusion and cor-

respondingly close to marginality, and therefore the model variant with the direct interactions

becomes unstable, i.e. λmin< 0. As expected theoretically, the transition between the two

behaviors is sharp when S, M are large, and happens at the theoretically predicted value of the

parameters, see Fig 2(C). In less diverse systems, the transition is more gradual. Thus, our ana-

lytical method allows us to precisely predict the location of the transition between equilibrium

and non-equilibrium phases, which is borne out by simulations.

The loss of stability of putative fixed points results in persistent dynamics where species

invade but are then pushed back out by the instability of fixed points. This is clear in Fig 1(C).

As mentioned before, when going from Eqs (1) to (2), we have replaced the resource values

Rβ with their equilibrium values without making sure that resource values remain positive, Rβ
> 0, as expected for resource abundance. We show in S1 Text (Appendix I) that all the phe-

nomenology described hitherto is also found in a model that starts directly from Eq (1), where

resources are modeled explicitly, and prevented from going negative by migration. The main

difference is that now equilibria loose their stability when S�/M� � 1, where M� is the number

of resources present in the community (that have not gone locally extinct). There we also show

that the phase where abundances diverge can be removed by stronger limitation on growth

rate at high abundances, with little effect on the transition between equilibrium and persistent

dynamics.

Non-linear resource intake

So far, we have discussed the ground model with a small addition of other interactions. This

allows us to identify regions in parameter space where the ground model is sensitive to pertur-

bations. By adding interactions that are not mediated by resource competition, the model vari-

ant can no longer be strictly interpreted as a resource-competition model. Here we consider a

second variant of the ground model, which belongs to the resource-competition class, but with

non-linear resource intake. There are many situations in which growth rates depend on

resource availability in ways that lie outside the linear, additive MCRM model, such as in com-

petition over essential resources [19, 25]. Here the aim is not to study the consequences of a
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specific non-linear mechanism, but rather to demonstrate the sensitivity of the model to such

variations in the dynamical rules.

We find that much like the model variant discussed in previous sections, here too the

dynamics are sensitive to changes to the ground model, with fixed points turning into persis-

tent abundance fluctuations, in much the same parameter regions as found previously.

The second variant to the ground model, Eq (2), is different from the ground model in the

way that different resources translate into the growth rate of the consumer. Whereas in Eq (2)

the growth rate is a linear combination of the resource values Rβ, here we use a non-linear

function. We choose a non-linear consumption function h Rð Þ ¼ 1

w tanh wRð Þ with control

parameter w. With this consumption function, the dynamical equations read:

dNi

dt
¼ Ni

P
b

1

w tanh wcibRb
� �

� mi

h i
þ Zi

Rb ¼ Kb �
P

j cjbNj

8
><

>:
ð3Þ

The parameter w allows us to tune the deviation from the ground model. For small values of w,

h(R)’ R so the non-linear effects become small and the equations reduce to the ground

model, Eq (2). For finite w non-linear effects may be significant. We quantify the

deviation from linearity explored by the dynamics by the relative perturbation strength

r ¼ 1 �
tanhðwcib �RBÞ

wcib �RB

D E

ib
, where h‥iiβ is the average over species and resources, and �Rb denotes

the time average of the resource abundance Rβ (taken over a window of Δt = 1000). We find

that even a rather small value of ρ is sufficient to induce a transition to dynamical persistence,

see Fig 4, where the transition occurs at ρ* 0.06. Again, this demonstrates how the system’s

dynamics may be sensitive to small changes in the equations governing the model, in this case

in a variant that is itself strictly a resource competition model.

Fig 4. The transition between the equilibrium and persistent dynamics phases in a model with non-linear resource intake. (A) As model parameters

are changed (here varying σc) the fraction of systems exhibiting persistent dynamics varies. Communities reaching a fixed-point must satisfy S�/M< 1 due

to competitive exclusion, but in the persistent dynamics regime can sustain more coexisting species, with S�/M> 1. (B) The relative perturbation strength,

ρ, quantifies how much the growth-rate as a function of resource availability deviates from the weighted linear sum (see text for definition). ρ changes as

model parameters are changed, and is measured in simulations. Persistent non-equilibrium dynamics already found for ρ≳ 0.06 marked by dashed vertical

line.

https://doi.org/10.1371/journal.pcbi.1008189.g004
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Species abundance distribution and diversity

Above, we saw how communities near marginal stability are sensitive to small variations in the

dynamical rules, either due to additional interactions, or changes to the functional form of the

interactions. Here we show that these changes can allow the diversity to go well above the

number of resources. This is made possible by the persistent dynamics, which are no longer

bound by the competitive exclusion principle.

The competitive exclusion principle [26] states that for models describing an ecological

community of S species relying on M limiting resources, no stable fixed points with M< S�

exist. Briefly, the core of the argument is that any fixed point with M< S� would imply a

degenerate Jacobian matrix with rank M or less. This kind of fixed point can be marginally sta-

ble, but not stable. The second variant of the model, Eq (3), satisfies the conditions for this

principle to hold, so the diversity of stable equilibria is bound by M.

As an example we look at the second model variant, as defined in Sec. Non-linear resource

intake. Long-time simulations of the persistent dynamics show that the species abundance dis-

tribution converges to a stationary form that can be decomposed into a power law at interme-

diate abundances, and other functions at the highest and lowest abundances, see Fig 5(A):

PðNÞ ¼

PhighðNÞ Nu < N

cN � ðnþ1Þ Z≲N < Nu :

PlowðNÞ N≲ Z

8
>>><

>>>:

ð4Þ

Here Nu is a constant, and c is set by the normalization
R
P(N)dN = 1. From the simulations,

Fig 5. Diversity above competitive exclusion in the non-linear resource competition model, see Sec. Non-linear resource intake. (A)

Abundance distribution for different values of migration. The area to the right of the vertical lines hold exactly M species. The rest of the

distribution, below the line, accounts for species above competitive exclusion. Inset: the total number of coexisting species normalized by

number of resources, with values above one indicate crossing of competitive exclusion. (B) Due to the abundance fluctuations, averaging

abundances over a time window pushes the distribution of abundance upwards due to fluctuations. The cumulative abundance distribution is

shown, defined as FðNÞ ¼ 1

S

P
i1½ �N�

i>N�
: The dashed line is the competitive exclusion bound, M/S. For comparison, the distribution at a fixed

point is given, showing that the number of species at high abundance(N≳ 10−3 does not reach this bound, and the rest of the species are at low

abundances, only supported by migration.

https://doi.org/10.1371/journal.pcbi.1008189.g005
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ν is not far from zero when η! 0 (ν� 0.02 in Fig 5, and similar for other parameter sets, see

S1 Text (Appendix B)).

We first ask about the instantaneous species richness, namely the fraction of species that are

not at the migration floor (say, above 100η). By integrating P(N) in Eq (4) one finds that the

fraction of the species above the migration floor approaches a finite number when η! 0+, for

details see S1 Text (Appendix E). This number can be larger than M, and in fact is so in the

example shown in Fig 5, reaching about 20% above M (see inset in Fig 5(A)). This is also

found in results of many simulations at different parameters, see Fig 4(A). In other words, a

finite fraction of the species coexist above the competitive exclusion limit even when migration

is very small. This is possible since the community is not in a fixed point, and so is not bound

by the competitive exclusion principle.

If the species abundance is measured by integrating over a finite-time window, see Fig 5,

the abundances shift to higher values as the time window grows, indicating that species have

periods of time with high abundance. This leads to a growth in the abundance NCE above

which there are exactly M species with higher abundances.

In [23], chaotic dynamics where studied in Lotka-Volterra equations with random interac-

tions coefficients, and the existence of of time periods with high abundance have been

reported, as well as a power law like in Eq (4) (albeit with a different exponent). The relation of

these results to the present resource-competition model are an interesting question for future

research.

Discussion and conclusions

In this work we have shown how diverse ecological communities with resource-competition

interactions may display non-equilibrium dynamics. This turns out to be closely related to the

ratio of realized species diversity to the number of resources, S�/M. When this number is larger

than one, fixed-points are either unstable or marginally stable, as expected by the competitive

exclusion principle. If they are unstable, the system is pushed away from fixed points, and

abundances forever fluctuate. While marginal-stable fixed points are in principle possible, they

are structurally unstable under variations in the model, such as non-linearities that destabilize

the fixed points.

Comparison with random Lotka-Volterra models

This picture bridges a gap to the behavior of high-dimensional models where interactions are

sampled at random without a specified mechanism. In the notation of Sec. Demonstrating the

sensitivity, this corresponds to having aij ¼ a
ðdÞ
ij only. These models show a phase with persis-

tent dynamics [6–9, 12, 14], in contrast to resource-competition which have thus far only

shown relaxation to equilibrium in highly diverse communities [10, 13]. We find that the

generic phase-diagram is in fact much more similar, with a transition to non-equilibrium

dynamics when the variability in interaction strengths is high enough (compare, for example,

Fig 2 with the phase diagram in [9]).

One difference is that here, the symmetry of the interactions can be very high and still lead

to non-equilibrium dynamics. For example, in the model with added direct interactions (Sec.

Demonstrating the sensitivity), the total interactions are very close to symmetric, with corr(αij,
αji) = 0.997. In random Lotka-Volterra models, dynamics at a comparable level of symmetry

would typically relax to equilibria. This highlights the importance of certain structures in the

interaction network on dynamics.
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Predictions

How can the behavior presented in this work be identified in natural or experimental commu-

nities? The dynamical outcome will depend on the following considerations:

• Is the community isolated; under migration from a regional species pool; or part of a meta-

community?

• The ratio of realized species diversity to the number of resources (S�/M).

• Is the realized diversity S� high enough for high-diversity effects to show?

Consider first a single well-mixed system with continuous migration from a species pool,

which was the focus of previous sections. In such a setting, dynamics either a relax to single

uninvadable equilibria or reach persistent fluctuations. Which of these two possibilities is real-

ized depends on the system parameters: the realized species diversity (S�) is set by the balance

between extinctions due to competition and species able to invade. If fixed points at this diver-

sity are unstable, persistent fluctuations will result—this is the Persistent Dynamics phase in

Fig 2. As shown in Fig 2, it is attained when there is sufficient variability in the interactions,

mediated for example by a broad distribution of consumption preferences (high σc).
We turn to a single well-mixed community that is isolated (no migration, ηi = 0). Here spe-

cies may go extinct due to large abundance fluctuations, without being able to invade again.

Extinctions may then lead to equilibria even when non-equilibrium dynamics are expected

with migration, see S1 Text (Appendix G). The difference is that these equilibria can be

invaded by species from the species pool. Importantly, in these conditions all fixed points are

invadable, as uninvadable ones would translate to equilibria in the presence of migration. If

there are now isolated migration events from the species pool that are well-separated in time

(for example, at low migration rates, or in experiments where species are re-introduced) the

equilibria will be punctuated by migration events that change the community composition

[27].

An explicit spatial dimension, such as a meta-community in which several well-mixed sys-

tems are coupled by migration, again changes the phenomenology. A meta-community can

exhibit persistent fluctuations, even if it is isolated from any outside species pool, thus allowing

species to go extinct within it. Still, the remaining species might continue to fluctuate for

extremely long times without inducing extinctions. This has been shown recently for many-

species meta-communities with random Lotka-Volterra interactions in [22, 23]. An example

simulation, provided as a proof-of-principle, is given in S1 Text (Appendix G). The conditions

for non-equilibrium dynamics to persist depend on additional parameters including the

migration rates and the number of communities in the meta-community. A fuller account of

this effect is an interesting direction for future research.

Finally, we note that the non-equilibrium dynamics discussed in this work apply to com-

munities with many species and resources or niches. Simulations indicate that dynamical fluc-

tuations appear when there are tens of species in the community or more; communities with

fewer species may instead relax to equilibria.

We have looked at interactions without any structure beyond resource competition, such as

different functional groups or higher trophic levels. More complex interaction networks may

possibly be approached by combining “fully random” interactions used here, in a modular

fashion [11]; the implications to dynamics are an interesting subject for future research.

High-dimensional ecological dynamics are, in some respects, qualitatively different from

their low-dimensional counterparts. Here we classified possible scenarios for the dynamics of

resource-competition communities, and provided predictions for each scenario. We hope it
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may help in guiding future theoretical works, observations and experiments on high-diversity

communities.

Supporting information

S1 Text. Appendices: Details of models, simulations and theory.

(PDF)
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