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Abstract

Bacteria use two-component systems (TCSs) to sense environmental conditions and

change gene expression in response to those conditions. To amplify cellular responses,

many bacterial TCSs are under positive feedback control, i.e. increase their expression

when activated. Escherichia coli Mg2+ -sensing TCS, PhoPQ, in addition to the positive

feedback, includes a negative feedback loop via the upregulation of the MgrB protein that

inhibits PhoQ. How the interplay of these feedback loops shapes steady-state and dynam-

ical responses of PhoPQ TCS to change in Mg2+ remains poorly understood. In particular,

how the presence of MgrB feedback affects the robustness of PhoPQ response to overex-

pression of TCS is unclear. It is also unclear why the steady-state response to decreasing

Mg2+ is biphasic, i.e. plateaus over a range of Mg2+ concentrations, and then increases

again at growth-limiting Mg2+. In this study, we use mathematical modeling to identify poten-

tial mechanisms behind these experimentally observed dynamical properties. The results

make experimentally testable predictions for the regime with response robustness and pro-

pose a novel explanation of biphasic response constraining the mechanisms for modulation

of PhoQ activity by Mg2+ and MgrB. Finally, we show how the interplay of positive and nega-

tive feedback loops affects the network’s steady-state sensitivity and response dynamics.

In the absence of MgrB feedback, the model predicts oscillations thereby suggesting a gen-

eral mechanism of oscillatory or pulsatile dynamics in autoregulated TCSs. These results

improve the understanding of TCS signaling and other networks with overlaid positive and

negative feedback.

Author summary

Feedback loops are commonly observed in bacterial gene-regulatory networks to enable

proper dynamical responses to stimuli. Positive feedback loops often amplify the response

to stimulus, whereas negative feedback loops are known to speed-up the response and

increase robustness. Here we demonstrate how combination of positive and negative

feedback in network sensing extracellular ion concentrations affects its steady-state and
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dynamic responses. We utilize published experimental data to calibrate mathematical

models of the gene regulatory network. The resulting model quantitatively matches exper-

imentally observed behavior and can make predictions on the mechanism of negative

feedback control. Our results show the advantages of such a combination of feedback

loops. We also predict the effect of their perturbation on the steady-state and dynamic

responses. This study improves our understanding of how feedback loops shape dynam-

ical properties of signaling networks.

Introduction

Bacteria use two component systems (TCSs) to sense and respond to environmental stimuli [1,

2]. TCSs are also widely used in synthetic biology applications to sense specific stimuli and

control gene expression [3–5]. A TCS consists of a sensor kinase often located on the inner

membrane and a cognate response regulator protein located in the cytoplasm. The sensor

kinase senses environmental stimulus and responds by autophosphorylating at the histidine

residue [6]. Phosphorylated kinase catalyzes a transfer of phosphate to the response regulator.

In the absence of activating conditions, sensor kinases sometimes have phosphatase activity,

i.e. they can dephosphorylate the response regulator. The phosphorylated response regulator is

transcriptionally active, initiating cellular response. As part of cellular response, the response

regulator often activates transcription of genes encoding the two components themselves [7],

creating a positive feedback loop.

The Mg2+ -sensing PhoPQ TCS is found in many bacterial species, such as Salmonella, Yer-
sinia pestis and E. coli [8–14]. The sensor kinase PhoQ responds to low extracytoplasmic Mg2+

levels, acidic pH and antimicrobial peptides. In high Mg2+, the periplasmic sensing domain of

PhoQ is bound to Mg2+ resulting in a conformation of PhoQ that has low autokinase activity

but high phosphatase activity towards phosphorylated PhoP (PhoP-P) [8]. That keeps the

expression of PhoP-P-dependent genes low. In response to Mg2+ limitation, dissociation of

Mg2+ from PhoQ promotes a conformational change that increases the autokinase activity and

suppresses the phosphatase activity [15]. That leads to accumulation of PhoP-P and increase in

the expression of its regulon. PhoP-P regulons vary significantly between different bacterial

species but retain a few common features. First, the PhoPQ TCS upregulates transcription of

its own operon phoPQ. This upregulation leads to a positive feedback in the system. Second,

PhoP activates transcription of a small integral membrane protein, MgrB in E. coli, Klebsiella
pneumoniae, Salmonella, Yersinia pestis that limits kinase activity (Fig 1) [16–20]. These inter-

actions form a negative feedback loop.

How does positive autoregulation of PhoP/PhoQ affect phosphorylation level of PhoP?

Notably, over a range of low Mg2+ concentrations, elimination of autoregulation of PhoPQ

results in no significant difference in the PhoP-P activity measured via transcriptional reporter

of the mgrB promoter [21]. This observation suggests that PhoP-P level is insensitive (robust)

to increase of phoPQ operon production. This robustness was confirmed by monitoring PhoP

activity reporter in a strain with a chemically inducible phoPQ promoter (Fig 1); increasing

PhoPQ expression post wild-type level does not change the reporter level [21]. Previously pub-

lished mathematical models show that this robustness arises due to bifunctionality of the

kinase [21–23]. However, these models may not be directly applicable for E. coli PhoPQ TCS

as they do not account for PhoPQ interactions with MgrB protein. While the exact mechanism

by which MgrB modulates PhoQ activity is unknown, MgrB specifically inhibits kinase activity

through direct interaction [17]. A strain lacking both the mgrB gene and PhoQ-phosphatase
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activity shows higher promoter activity compared to a strain merely lacking the PhoQ-phos-

phatase activity [16]. Since overexpressing PhoQ could in-principle outcompete the inhibitory

effect of MgrB, understanding robustness of PhoP-P to PhoPQ overexpression requires mod-

els that explicitly include negative feedback regulation.

Notably, robustness of PhoP activity to elimination of PhoPQ autoregualtion is no longer

observed in growth-limiting Mg2+ levels (<10−3 mM) [21]. Furthermore, in these conditions,

the PhoP activity greatly exceeds the activity observed over a range of low but not growth-lim-

iting (between 1 and 0.01 mM) Mg2+ concentrations. Notably: PhoP activity is nearly the same

over that range of Mg2+ levels forming a plateau between 1 and 0.01 mM Mg2+ following a

gradual increase from 100 to 1 mM Mg2+. Such a plateau has been observed for multiple pro-

moters with varying affinities to PhoP-P, suggesting this pattern is not a property of one partic-

ular promoter [9]. Interestingly, at 0.01 mM Mg2+ the levels of PhoP-P are such that the

promoters remain far from saturation [9].

Fig 1. PhoPQ two component system senses low Mg2+ concentrations through direct interactions with PhoQ. (A) When activated by low external

Mg2+ PhoQ undergoes autophosphorylation, transfers phosphoryl group to PhoP which activates transcription of downstream genes. PhoP positively

regulates transcription of phoPQ operon, as well as mgrB. MgrB binds PhoQ and suppresses kinase activity. (B) Normalized reporter output from PmgrB
saturates as phoPQ operon transcription is increased. (C) Steady state normalized reporter output (PmgrB) plateaus as Mg2+ decreases, but increases

further at growth limiting conditions (hypothetical normalized reporter output at growth limiting Mg2+, red square). Plot recreated from [21].

https://doi.org/10.1371/journal.pcbi.1008130.g001
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A combination of plateau in promoter activity over a range of low Mg2+ levels with further

increased activity in growth-limiting Mg2+ can be referred to as biphasic dose-response (Fig

1). Miyashiro and Goulian hypothesize that this biphasic dose-response is indicative of Mg2+

binding to PhoQ at multiple sites with different affinities [9]. However, this hypothesis has not

been tested experimentally or theoretically. Alternatively, feedback architecture might shape a

biphasic dose-response. If negative feedback dominates over a range of low Mg2+ concentra-

tions, while positive autoregulation is strongly activated only in growth-limiting Mg2+, we

could perhaps expect steady state PhoP-P to display two phases of activation. Since it is unclear

how overlaid positive and negative feedback loops shape observed dose-response, detailed

mathematical models of PhoPQ TCS can be used to understand steady state PhoP-P as a func-

tion of Mg2+.

In this study, we use mathematical modeling to understand how positive and negative feed-

back loops interact to shape dynamical properties of the PhoPQ TCS in E. coli. First, we iden-

tify conditions under which PhoP-P remains robust to phoPQ overexpression even in presence

of MgrB-mediated negative feedback. Next, we search for mechanisms underlying the biphasic

dose-response. We use published temporal and steady state data for wild type and mutant E.
coli strains to calibrate our models. Finally, we use these calibrated models to understand

advantages of the overlaid positive and negative feedback design of the PhoPQ system. Taken

together, this study shows how mathematical modeling and experimental data can be used

together to understand the relationship between network structure and cellular function in

bacteria.

Results

PhoPQ TCS can show robustness if MgrB is in excess of PhoQ

Structural sources of robustness to variation in species concentrations have been identified

previously for mass-action reaction networks [23, 24]. Two component systems (TCSs) with

bifunctional kinases are known examples of such biochemical networks. The concentration of

phosphorylated response regulator can be robust to changes in total concentrations of sensory

kinase and response regulator proteins [22–24]. To ascertain if the biochemical reaction net-

work of PhoPQ TCS meets the criteria for absolute concentration robustness (ACR) put forth

by Shinar and Feinberg [24], we analyze the reaction network with or without MgrB (S1 Text).

While a reaction network without MgrB did in fact meet the criteria to obtain ACR in the limit

of negligible auto-dephosphorylation, the reaction network of PhoPQ with MgrB network did

not (S1 Text). This analysis suggests that in contrast to a typical TCS featuring a bifunctional

kinase, robustness to total protein concentrations is not theoretically predicted by the structure

of the reaction network. To understand that result we note that ACR occurs due to ability of

PhoQ to control both phosphorylation and dephosphorylation flux to PhoP. Increase in PhoQ

level will increase both fluxes proportionally without affecting PhoP-P. On the other hand,

when MgrB-mediated inhibition of kinase activity is present, increase in PhoQ concentration

disproportionally increases dephosphorylation flux.

To find conditions under which PhoP-P could be robust to total-PhoPQ expression, we

modify the PhoPQ model in ref [21] to explicitly include negative feedback regulation. We

consider a system without positive feedback, i.e. with total-PhoPQ expression controlled inde-

pendent of PhoP-P. To simplify steady state analysis of PhoP-P, we follow the approach used

in ref [21] and break the model into two modules (Fig 2A). For the transcription module the

input is PhoP-P and the output is total-MgrB. We use a standard Hill-function to describe

how transcription rate of mgrB and correspondingly total MgrB concentration depends
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[PhoP-P](Eq 1).

½MgrB�T ¼ ½MgrB�0T 1þ
fB½PhoP-P�

2

K2
B þ ½PhoP-P�

2

 !

ð1Þ

Here ½MgrB�
0

T denotes minimum MgrB concentration at basal expression of mgrB, fB repre-

sents maximal fold upregulation of MgrB while KB denotes half activation concentration of

PhoP-P. The interaction module consists of the cycle of phosphorylation-dephosphorylation

catalyzed by PhoQ and PhoQ-MgrB. For the interaction module the inputs are total-PhoP,

PhoQ and MgrB as well as the stimulus level (i.e. autophosphorylation rate of PhoQ). Steady

state is at the intersection of the two modules (S1 Fig). As in the model in ref [21], we assume

total-PhoP/PhoQ ratio is constant, and this ratio is greater than 1 [25]. To model MgrB

inhibition, we assume that when MgrB binds to PhoQ, its autophosphorylation rate (Fig 2A)

decreases by a factor λ� 1 and phosphatase activity increases by a factor γ� 1 to allow for the

possibility that MgrB might enhance phosphatase activity of PhoQ. The remaining rate con-

stant parameters are assumed same for PhoQ and PhoQ-MgrB states.

With this model we investigate how steady state [PhoP-P] depends on total PhoP, PhoQ

(see S2 Text for full analysis). Basal expression of MgrB (½MgrB�
0

T in Eq 1) is a free parameter.

For each value of ½MgrB�
0

T we can solve the two modules for a range of total-PhoP, PhoQ val-

ues. We find that steady state [PhoP-P] is not in general robust (S1 Fig). However, at high

½MgrB�
0

T values, PhoP-P can be robust over a limited range of total-PhoP (Fig 2B).

To understand how steady state PhoP-P can show robustness to only a limited range of total-

PhoP, and only at high ½MgrB�
0

T values, we look at phosphorylation and dephosphorylation

Fig 2. PhoP-P is robust to overexpression of PhoP, PhoQ. A—Modified PhoPQ TCS interaction network shows PhoQ binding MgrB, repressing PhoQ

autophosphorylation (red arrow marks suppressed rate compared to unbound PhoQ autophosphorylation). This forms the interaction module. The interaction

module takes 3 inputs (i) Stimulus (autophosphorylation rate), (ii) Total PhoP (PhoQ is assumed proportional, and 1/40 times PhoP based on actual measurements)

and (iii) Total MgrB. Total protein is represented by subscript T in all figures and text. The system is numerically solved for a steady state concentration of PhoP-P as

a function of varying PhoP, PhoQ total. The interaction module is coupled with a transcription module representing negative feedback with PhoP-P as input and

total MgrB concentration as output. B—The system is solved numerically for steady state concentration of PhoP-P as a function of varying PhoP (and PhoQ) total

(blue). PhoP-P is robust to PhoP/PhoQ concentrations, increasing further when PhoQ concentration is large enough to overcome MgrB negative feedback. Over

most of the range of PhoQ concentrations, MgrB�MgrB-total indicating large stoichiometric excess MgrB (orange line). Robustness breaks when MgrB is no

longer in large excess of PhoQ. Dashed line indicates PhoP concentration estimated from measurements of Ref. [25].

https://doi.org/10.1371/journal.pcbi.1008130.g002
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fluxes of PhoP (S2 Text). Equating phosphorylation and dephosphorylation fluxes, we can

obtain an expression for [PhoP-P] shown in Eq 2

PhoP-P½ � � Cp

1þ l
½MgrB�
KD

� �

1þ g
½MgrB�
KD

� � ð2Þ

In this equation, [PhoP-P] depends on concentration of free MgrB. Since concentration of

free MgrB generally depends on concentration of PhoQ, there is no robustness. However,

when MgrB is in large excess of PhoQ, the function simplifies to Eq 3.

PhoP-P½ � � Cp

1þ l
½MgrB�T

KD

� �

1þ g
½MgrB�T

KD

� � ð3Þ

Here Cp is a combination of parameters as noted previously in refs [21, 22], and KD is the

dissociation constant for [PhoQ-MgrB]. In this expression, [PhoP-P] then depends only on

MgrB-total, which in turn depends on [PhoP-P] (Eq 1). Thus, steady state [PhoP-P] remains

independent of total PhoQ, PhoP. Indeed, output ceases to be robust once [PhoQ]T�

[MgrB]T. This is illustrated by a plot of [MgrB]/[MgrB]T (Fig 2B). Notably, the robustness to

PhoP/PhoQ overexpression can be observed despite variations in λ, KD or the ratio of PhoP:

PhoQ (S2 Fig). Thus our model of PhoPQ-MgrB with negative feedback shows that robust-

ness of [PhoP-P] to changes in total concentrations of PhoP/PhoQ is not due to the cycle of

phosphorylation alone, but can be obtained if MgrB is much more abundant than the kinase

PhoQ.

Models with autophosphorylation suppression by MgrB alone cannot

explain biphasic dose-response

Given that the previous model of autophosphorylation suppression by MgrB can explain

robustness of PhoP-P to total-PhoPQ levels, we explore steady state dose-response behavior

of the model. Specifically, we investigate whether the model can recreate a biphasic dose-

response, i.e. show an intermediate plateau (Fig 1C). To compare with experimental data of ref

[21], we construct a detailed dynamic model with two reporter proteins YFP and CFP [9] (S5

Text). To calibrate the model, we fit simulated values of YFP:CFP to reported values from vari-

ous experiments (Methods). Time-course measurements in wild-type cells switched from high

to low Mg2+ levels (published in [16]) were used to fine tune temporal parameters. The Mg2+

step down experiment was also conducted with several mutant strains. Measurements from

these mutant strains can serve as important biological constraints on the model. Thus, we sim-

ulate YFP:CFP values with in-silico mutants and fit to respective experimental values (Meth-

ods,S3 Fig).

Steady state values of YFP:CFP over a range of Mg2+ concentrations have also been mea-

sured for wild-type cells (published in [21]). We use these measurements to tune steady state

parameters. In addition, we introduce a qualitative condition for greater reporter output at

very high stimulus to recapitulate effects at growth limiting Mg2+ [21]. Normalized experimen-

tal data used, simulation protocols and parameter fitting procedure are described in Methods.

Over multiple parameter fitting attempts, the model could only show graded increase fol-

lowed by a plateau in steady state promoter activity (S4 Fig). Thus, we hypothesize that models

of PhoPQ-MgrB with more complex mechanisms are required to explain biphasic dose-

response.
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Models representing PhoQ with separate kinase and phosphatase

conformations can explain biphasic dose-response

To explain biphasic dose-response, we constructed a model of PhoQ with an explicit Mg2+

sensing mechanism (S5 Text). While understanding of how Mg2+ modulates PhoQ activity is

still incomplete in E. coli, research in Salmonella has suggested that a conformation change

resulting from Mg2+ binding to PhoQ increases phosphatase activity [8]. Based on this finding

we hypothesize two conformations of PhoQ: phosphatase (PhoQ) and kinase (PhoQ�) (Fig

3A). Extracellular Mg2+ binds to PhoQ� and drives a transition to PhoQ thus shutting off

PhoP-P activity. We assume that extracellular Mg2+ concentration does not change over

time and include it in the rate constant of switching from PhoQ� to PhoQ (Fig 3A) i.e.

k� 1 ¼ k0
� 1
½Mg2þ�. For simplicity we assume that only the kinase conformation undergoes

autophosphorylation and phosphotransfer steps, while only phosphatase conformation

dephosphorylates PhoP-P. MgrB can bind both conformations of PhoQ independently, subse-

quently modulating one or more rates.

The mechanism for MgrB mediated suppression of PhoQ remains unknown. Thus, we

sought to understand which combination of rates of the phosphorylation cycle is likely to be

modulated by MgrB. To this end, we implemented multiple models with MgrB affecting differ-

ent rate constants in each. With each model we simulate a time course of YFP:CFP following

downshifts in Mg2+ for all the pairs of downshifts reported in Salazar et al [16] (S3 Fig). Time

course simulations are performed for wild-type and in-silico mutants (S5 Text). In addition,

we perform steady state dose-response simulations. We then obtain parameters that generate

close fit with experimental data (Methods). We verify the accuracy of these parameters by per-

forming Mg2+ downshift simulations with an in-silico mutant expressing mgrB constitutively,

as well as a PhoQ-phosphatase activity lacking mutant (S5 Fig). If simulations qualitatively

Fig 3. A two-state model of PhoPQ TCS can explain biphasic response. A -Schematic of the two-state model. PhoQ exists in phosphatase (PhoQ) or kinase (PhoQ�)

form, PhoQ� assumed to bind Mg2+ and switch to PhoQ. Concentration of Mg2+ in medium assumed constant, and absorbed into a pseudo-first order kinetic rate, k−1

(blue arrow). MgrB reversibly binds PhoQ/PhoQ�. B—Simulated output (normalized YFP:CFP; Methods) from the ODE model representing schematic in A with two

rate constants suppressed in MgrB bound PhoQ. The pre-factor k0
� 1
ðs� 1mM� 1Þ converts Mg2+ concentration (mM) to rate constant k−1(s−1). The affected rates are

denoted by red arrows: switching rate from phosphatase to kinase (i.e. k1, PhoQ-Mg2+ dissociation), and autophosphorylation. Detailed balance condition is satisfied

by assuming PhoQ-MgrB dissociation is suppressed by the same factor as k1. Simulated steady state output shows biphasic response to increasing signal.

https://doi.org/10.1371/journal.pcbi.1008130.g003
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match experimental data for the two mutant strains, we consider those parameters for further

analysis. In dose-response simulations, we look for a second phase of strong promoter activa-

tion at very low Mg2+ (10−4 mM).

We find the biphasic dose-response pattern (Fig 3B) and closest matches with all experi-

mental data (S6 Fig) in models where MgrB suppresses two rates—(i) autophosphorylation

and (ii) activation (PhoQ! PhoQ� transition; red arrows, Fig 3A). Simulated steady state

reporter output as a function of signal (k−1) shows two distinct ranges of signal where output

increases, separated by a plateau (Fig 3B). Notably, the specific value of the output at growth-

limiting Mg2+ relative to the plateau level does not seem to affect the model’s ability to explain

biphasic dose response (S7 Fig). Furthermore, this model is able to fit time-course data for

wild-type and mutant strains as well (S6 Fig). Interestingly, models with any other combina-

tions of rate constants modulated by MgrB are unable to reproduce this biphasic response to

signal. Thus, our analysis isolates a potential mechanism for MgrB suppressing PhoQ kinase

activity. Taken together, models with an explicit Mg2+ sensing mechanism and where MgrB

modulates PhoQ phosphatase to kinase transition and autophosphorylation rates can explain

the biphasic dose-response.

Additionally, to check the validity of our conclusions regarding the robustness to PhoP/

PhoQ overexpression we repeated the analysis for two-state model. We find that the model

shows a range in which variations in PhoP/PhoQ concentrations do not lead to significant

changes in PhoP-P (S8 Fig). Furthermore, the model is able to fit the experimentally measured

data on the response of PmgrB promoter to overexpression of phoPQ operon under inducer

control reported by Miyashiro and Goulian [21].

Abundance of MgrB, strong suppression and slow transitions between

PhoQ states together can create plateau in signal response

While this model can explain biphasic signal response, the mechanism behind a plateau at

intermediate signal levels is not fully clear. To understand how steady state [PhoP-P] is insen-

sitive to signal (k−1) in our model (Fig 4D), we simplify the model so that analytical solutions

will be possible in different ranges of signal. We note that the biphasic response is not generic

outcome of the structure of the model, but arises in specific parameter ranges. Our goal is to

use analytical approximations to identify the parameter regimes in which biphasic dose-

response is possible. Matching phosphorylation and dephosphorylation fluxes can then pro-

vide expressions for steady state PhoP-P (see S4 Text for complete analysis). Analyzing how

these fluxes change as a function of signal ((Fig 4B and 4C) can clarify the mechanism behind

PhoP-P plateau at k−1 values corresponding to 1-0.01 mM Mg2+ range (Fig 4D).

Phosphorylation and dephosphorylation fluxes depend on the concentrations of the two

catalytic states of PhoQ—kinase and phosphatase—and their MgrB-bound counterparts (Fig

4A). In our model we find that over high to intermediate Mg2+, nearly all PhoQ molecules

exist in MgrB-bound phosphatase state (PhoQ.MgrBph, Fig 4E). We analyze steady state con-

centrations of PhoQ forms at the limit of complete suppression (S4 Text). We consider the

limit in which MgrB binds PhoQ and completely suppresses autophosphorylation (Fig 4A)

and activation rate constant (gray arrows Fig 4A). PhoQ.MgrBph concentration only reduces

by dilution due to growth. In our model we find that over high to intermediate Mg2+, nearly

all PhoQ molecules exist in MgrB-bound phosphatase state (PhoQ.MgrBph, Fig 4E). Therefore,

we neglect contribution of PhoQph to dephosphorylation of PhoP-P. Further, we assume that

all the phosphate that enters the systems through autophosphorylation of PhoQ� transfers to

PhoP (i.e. autodephosphorylation of PhoQ-P is negligible). The net phosphorylation flux of

PhoP, then, is equal to autophosphorylation flux (proportional to PhoQ�). Dephosphorylation

PLOS COMPUTATIONAL BIOLOGY Overlaid positive and negative feedback loops shape dynamical properties of PhoPQ response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008130 January 4, 2021 8 / 18

https://doi.org/10.1371/journal.pcbi.1008130


flux has two portions—phosphatase activity (proportional to [PhoQ.MgrB]), and dilution due

to growth. The steady state [PhoP-P] is found by equating phosphorylation and dephosphory-

lation fluxes (S4 Text).

Thus, PhoP-P concentration depends on how [PhoQ�] and [PhoQ.MgrB] change as a

function of k−1. This in turn depends on which fluxes dominate in signal ranges correspond-

ing to high and intermediate Mg2+. We find that at high Mg2+, flux of [PhoQ�] deactivation

(rate k−1) dominates over binding MgrB (rate kb[MgrB]; Fig 4B). In this range [PhoP-P]

depends linearly on signal. An approximate analytical expression over a range of k−1 values

corresponding to high Mg2+ matches simulated [PhoP-P] using parameters from the previ-

ous section (Fig 4D). Thus from high to intermediate Mg2+, the promoter output increases

a few fold (Fig 3B). At intermediate Mg2+, however, flux of PhoQ� binding MgrB is much

greater than deactivation (Fig 4C). In this range, [PhoP-P] depends on [MgrB]T (which in

turn depends on [PhoP-P]) but not signal, Fig 4C). An analytical solution for a single steady

state [PhoP- P]int independent of signal can be found (Fig 4D). Taken together, strong sup-

pression of kinetic rates by excess MgrB and growth dilution shape biphasic dose response of

PhoPQ.

Fig 4. Understanding the biphasic dose-response possible in the two-state model of PhoPQ. A—Reactions in PhoPQ-MgrB network. Dotted squares enclose 4 sub

forms of PhoQ (Qph, Qkin, QBph, QBkin). 4 reactions outside the dotted squares have rates comparable to dilution due to growth. Each sub form dilutes with a rate kpd,
while synthesis is only in the Q� form. B—Most significant fluxes at high Mg2+. Steady state [PhoP-P] is approximated by matching phosphorylation and

dephosphorylation fluxes. Phosphorylation flux is proportional to 1/k−1, while dephosphorylation flux is approximately constant. C- Most significant fluxes at

intermediate Mg2+. Phosphorylation flux is proportional to [B]Total and independent of k−1 while dephosphorylation flux is still approximately constant D- [PhoP-P] as

a function of signal showing plateau at intermediate Mg2+. Blue line indicates simulated [PhoP-P] from the model in the previous section. Red dashed line shows

approximate [PhoP-P] in the high Mg2+ range, and black dashed line shows the approximate plateau value of [PhoP-P] in the intermediate Mg2+ range. E- Fractions of

total Q in the 4 catalytic forms.

https://doi.org/10.1371/journal.pcbi.1008130.g004
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Combination of positive and negative feedback increases range of

sensitivity to signal

What advantages does this unusual combination of positive and negative feedback provide?

We know from experimental observations that negative feedback creates partial adaptation

and faster kinetics, while positive feedback amplifies output and helps cells survive in growth

limiting magnesium. To find out how steady state behavior is shaped by overlapping feedback

loops, we simulated steady state dose-response with only one feedback present at a time.

We find a narrow range of signal sensitivity with negative feedback absent, while a much

wider range without positive feedback (Fig 5A and 5B). Thus, in addition to kinetic advan-

tages, negative feedback keeps the system sensitive to changes in magnesium over a much

wider range of concentrations. However, without positive feedback the maximum output is

much lower than with both feedback loops present, validating experimental observations of

strong stimuli activating positive feedback. Taken together we find that negative feedback

allows the TCS to tune the competing activities of PhoQ with time (to create overshoot dynam-

ics) as well as stimulus (biphasic dose-response).

Negative feedback can suppress oscillations

In addition to increasing range of sensitivity to signal, we unexpectedly find that negative feed-

back through upregulation of mgrB may also prevent oscillations in the network. When inves-

tigating the dynamics of the responses for in silico mutants lacking negative feedback, i.e. with

constitutive mgrB expression(Fig 6A), we discovered limit cycle oscillations are observed at

intermediate signal levels. These oscillations are only seen for low mgrB expression rates, i.e.

with MgrB level comparable to that in unstressed wild-type cells (Fig 6B). Notably, these oscil-

lations are observed for all the parameter sets that fit experimental data and show a biphasic

dose response for wild-type cells (S3 Text). However, the oscillations were absent for the

wild-type dynamics, i.e. when negative feedback is present(Fig 6B, blue line). The result is

Fig 5. Combination of positive and negative feedback increases range of sensitivity to signal. A—steady state response of simulated promoter output (YFP,

normalized to high Mg2+ YFP) for models with no positive feedback (black), no negative feedback (green) and both feedback loops (blue). B- Absolute value of

sensitivity (log derivative of PhoP-P with respect to k−1,

�
�
�
@ðlog½PhoP� P�Þ

@ðlogk� 1Þ

�
�
�) for model with no negative feedback (green) has the shortest range of signal sensitivity, while the

wild-type model displays two phases of high sensitivity to signal.

https://doi.org/10.1371/journal.pcbi.1008130.g005
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unexpected since oscillations require negative feedback and in our case elimination of negative

feedback leads to oscillations.

To understand the mechanism of the oscillations and why elimination of MgrB feedback cre-

ate these we constructed a simplified model of the circuit (see S3 Text for detailed analysis). The

result showed that oscillations arise from autoregulated expression of phoPQ operon, namely

from PhoP-P dependent increase in PhoQ concentration. Indeed, since PhoQ is a bifunctional

enzyme, autoregulation results in simultaneous positive and negative feedback [26, 27]. How-

ever, if PhoQ is first produced in a kinase conformation [16] and slowly switched to a phospha-

tase conformation, there will be a time-delay between the positive and negative component of

the feedback. The fast positive and slow negative feedback leads to oscillations. Given that slow

switching relative to effective MgrB-PhoQ binding rate (kb[MgrB]T� k−1, S4 Text) at interme-

diate Mg2+ is essential for our model to produce a plateau in dose-response, the time-delay and

the resulting oscillations appear to be a robust prediction for constitutive mgrB. However,

increase in MgrB concentration increases the fraction of PhoQ that is MgrB bound, speeding up

PhoQ conversion to phosphatase state and thereby prevents oscillations by reducing the delay in

the negative feedback. This is why oscillations are not observed when MgrB is upregulated by

PhoP-P or when constitutive production of MgrB is too high (Fig 6B). Thus, we find that autore-

gulated PhoPQ TCS may use negative feedback through MgrB in order to avoid sustained oscil-

lations in response to stimulus. Notably the oscillations are not a consequence of any particular

model assumption, but rather seem to stem from a general mechanism that can be applicable to

many autoregulated TCSs (as long as kinase conformation of the sensor is produced first and

then slowly switches to phosphatase conformation). It remains to be seen if this mechanism can

lead to oscillatory or pulsatile response for systems where it is physiologically beneficial.

Discussion

The output of some two-component systems with bifunctional kinases—phosphorylated

response regulator protein—displays robustness to overexpression of the two proteins. Here we

Fig 6. Removing upregulation of mgrB can result in oscillations in the two component system. A—Model schematic of an in silico mutant expressing mgrB
constitutively instead of being expressed from the PhoP-P dependent promoter PmgrB B—Simulations of PhoP-P following a switch from high (50 mM) to intermediate

(1 mM) Mg2+ show oscillations if mgrB is expressed at constant but low levels. Oscillations are absent in wild-type models, as well as models expressing mgrB at a

constant high rate.

https://doi.org/10.1371/journal.pcbi.1008130.g006
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show that this property can extend to PhoPQ TCS which regulates the gene encoding MgrB

that inhibits PhoQ kinase activity resulting in a negative feedback loop. Using models of

PhoPQ TCS we show that PhoP-P can be insensitive to overexpression of PhoPQ if MgrB is

expressed in excess of PhoQ. The PhoPQ TCS steady state response to decreasing Mg2+ concen-

tration displays two distinct phases of activation separated by a plateau. We propose roles for

Mg2+ and MgrB in modulating PhoQ activity such that a model recreates the biphasic nature of

steady state dose-response. We propose that Mg2+ binds to PhoQ and promotes the phospha-

tase conformation. Limitation of Mg2+ then drives a change in conformation of PhoQ to the

kinase form. We also hypothesize that MgrB suppresses the rate of this conformation change

and the autokinase activity of PhoQ. Next, we find approximate analytical solutions for PhoP-P

at different ranges of Mg2+ concentration. In our models we find that strong MgrB-mediated

suppression of rate constants and growth-dilution of proteins are important factors that shape

the biphasic dose-response. Finally, we propose advantages gained by having such an overlaid

feedback structure. Negative feedback limits activation at low but not growth limiting Mg2+ and

shapes a surge in transcription in response to large step downs in Mg2+. Whereas positive feed-

back enables a strong activation of PhoP-P dependent promoters at growth-limiting Mg2+.

With a third component modulating the kinase’s activity, how does a PhoPQ TCS still

obtain robustness to levels of the two components? Our analysis shows a possible condition in

which PhoP-P can be robust to variations in PhoPQ expression. If MgrB is expressed at much

higher levels compared to PhoQ, dependence of PhoP-P on total PhoPQ expression becomes

negligible. This condition for robustness is not implausible within E. coli since PmgrB is one of

the strongest PhoP-activated promoters [16] and is likely stronger than PphoPQ. PhoQ, like

many TCS sensor kinases, is expressed at low concentrations, estimated 50 fold less than

PhoP [21, 25]. In fact, estimates of MgrB and PhoQ concentrations at� 0.5 mM Mg2+ can be

obtained from the database published by Li et al [25]. In rich medium, concentrations of MgrB

and PhoQ are around 1.5 μM and 0.2 μM respectively. The near 7 fold difference is unlikely to

decrease at lower Mg2+ given estimated maximum fold activation of PmgrB is 60 [28], whereas

fold activation of�20 for PphoPQ can be computed from YFP measurements reported by Sala-

zar et al [16]. It is possible that over the range of induction rates (upto 4x wild type) MgrB

remains in excess of PhoQ.

Multiple PhoP-P dependent promoters plateau over a range of 1 to 0.01 mM Mg2+ while

remaining far from saturation [9], only to be stimulated strongly when Mg2+ becomes growth

limiting (< 10−3 mM). How does PhoPQ output plateau at lower stimulus levels, but still main-

tain the ability to respond strongly when needed? Hypotheses of Mg2+ binding PhoQ at multi-

ple sites with differing affinities have been made [9], however our analysis uncovers a potential

mechanism with fewer assumptions. Consistent with our assumptions, studies in Salmonella
strains have suggested that Mg2+ binding PhoQ increases its phosphatase activity. We propose

a model in which Mg2+ directly binds a kinase-conformation of PhoQ and switches it to phos-

phatase-conformation. Our analysis shows that if MgrB strongly suppresses autophosphoryla-

tion, as well as the switch from phosphatase to kinase conformation, dilution due to growth

remains the only way through which PhoQ-MgrB phosphatase complex can decrease. This

can create a regime where both phosphorylation and dephosphorylation of PhoP are indepen-

dent of the signal rate (switching from kinase to phosphatase).

Finally, what are the advantages of encoding a negative feedback to limit activation of an

autoregulated two-component system? PhoPQ two-component system is widely conserved

across bacterial species including pathogenic bacteria such as Yersinia pestis, Klebsiella pneu-
moniae and Salmonella typhimurium [10, 14, 18–20]. PhoP-P regulons in these species also

encode MgrB homologs that limit PhoQ activity [18]. Interestingly, mutation or otherwise

inactivation of the mgrB gene was found to be the source of colistin resistance in Klebsiella
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pneumoniae [19]. Conserved structure of the network suggests that the structure provides

some fitness advantages in Mg2+ limitation by controlling level of activation of PhoP-P regu-

lon. In E. coli positive autoregulation of the PhoPQ TCS helps cells survive in growth-limiting

Mg2+. On the other hand, negative feedback creates a transcription surge in response to a step

down in Mg2+ concentration. Negative feedback also facilitates a faster response compared to

a mutant strain expressing mgrB constitutively at levels such that steady state response of the

two strains is comparable [16]. Other negative feedback designs can also provide some of the

same benefits. Phosphate sensing PhoBR TCS in E. coli speeds response by encoding a negative

feedback. In contrast with PhoPQ, PhoB-P does not upregulate a protein that suppresses

kinase activity. Instead, PhoB-P represses the autoregulated phoBR promoter at high concen-

trations of PhoB-P [29]. This design can overcome the costs of positive autoregulation; how-

ever, this design does not create a transcription surge.

In Salmonella, benefits of a surge in transcription can be obtained independent of negative

feedback through an MgrB-like protein post-translationally suppressing kinase activity [11,

26]. Models of the Salmonella PhoPQ TCS reveal how positive autoregulation and the phos-

phatase activity of PhoQ together create an initial surge and a later decrease in expression of

genes in PhoP-P regulon. Interestingly, models are consistent with the observed loss of surge

in transcription if phoPQ is expressed constitutively. In contrast, transcription surge is present

with either constitutive or autoregulated phoPQ expression in E. coli [16]. The surge and subse-

quent decrease in transcription is lost in strains lacking mgrB, suggesting different mechanisms

drive transcription surges in E. coli and Salmonella.

Post-translational negative feedback also helps maintain sensitivity of PhoQ over a wider

range of stimulus levels. The E. coli PhoBR TCS does not show adaptation in response to a

downshift in phosphate. The advantage of overlaid autorepression and positive autoregulation

in PhoBR TCS is that it allows for selecting a stronger autoregulated promoter without sacrific-

ing speed [29, 30], but limits maximum activation. For two TCSs that sense low level of two

nutrients, what selection pressure could have led to evolution of these structurally similar but

functionally different negative feedback loops remains unknown. Taken together, these find-

ings show how interplay of positive and negative feedback can shape dynamical properties of

the PhoPQ two-component system.

Using our models of PhoPQ TCS that can explain experimental observations, we can make

some testable predictions. First, if the experiment measuring TCS output as a function of inde-

pendent induction of phoPQ operon (Fig 1B) is conducted using a strain expressing mgrB con-

stitutively, we predict that robustness should not be observed (S8 Fig). This lack of robustness

of PhoP-P output to PhoPQ overexpression could become more apparent if mgrB is expressed

at low levels. Second, with the same strain expressing mgrB constitutively, we find that oscilla-

tions are possible in the output when cells are switched from high to intermediate Mg2+, eg. 50

! 1mM (S3 Text). Oscillations are not predicted if the cells are switched to low Mg2+, i.e.

0.01mM or if mgrB is expressed at high levels (comparable to expression levels of wild-type

cells at 0.01 mM Mg2+, S6 Fig). Moreover, we observe these oscillations with in silico mutants

of wild-type models that show a biphasic dose-response. The predictions of oscillation are rela-

tively robust and no oscillations are observed with models that fit temporal data well but fail to

display biphasic dose-response. These predictions must be tested in the future.

Notably, the uncovered oscillation mechanism is quite generic. It requires transcriptionally

autoregulated TCSs with sensory kinase in two conformations, one kinase-dominant another

phosphatase dominant. If both kinase and phosphatase states of the sensor kinase (SK) are

increased proportionally with the increase in total-SK, the steady state RR-P is independent of

total-SK, as has been seen in multiple experimental and theoretical works [22–24]. In other

words, positive feedback (increase in kinase form of SK) exactly balances out a negative
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feedback (increase in phosphatase form). While the above argument may hold true about steady

state RR-P, positive and negative feedback may have different timescales. If sensory kinase in

produced in the kinase-dominant conformation and then slowly switches to phosphatase-dom-

inant one, sustained or damped oscillations are possible. Most natural TCSs are autoregulated

and often activated by a ligand that drives a conformational change in sensory kinase [31, 32].

Therefore this oscillatory or pulsatile response dynamics may be observed in the systems where

it is of physiological benefit and could be used in synthetic biology applications.

Methods

Model and simulations

Two mathematical models were developed to examine the dynamical properties of PhoPQ

TCS. The first model considers a single bifunctional form of the kinase PhoQ, whereas the sec-

ond model considers two separate conformations (kinase and phosphatase). A set of ordinary

differential equations (ODEs) describes the rate of change of all protein and mRNA species (S5

Text). The phosphorylation and dephosphorylation cycle reactions follow previous models by

Goulian and collaborators [21]. Gene transcription regulation is modeled by phenomenologi-

cal models of (Hill-function) dependence on [PhoP-P].

All models used (S5 Text) were simulated to follow experimental protocol as closely as pos-

sible. For time course, signal parameter (depending on model) was set to 1mM to compute an

initial steady state vector of all state variables using ode15s in MATLAB. Using this as initial

condition, signal was set at a pre stress value (50mM or 2mM) and integrated for 3.5 hrs. Then

the signal was set to a post-stress value (0.01mM, 2mM or 10mM) and integrated for 2 hrs, at

the same time points as the data. For steady state data, signal was set to the respective value

and integrated to steady state.

Experimental data

Experimental data was obtained from refs [16, 21]. Time course of YFP:CFP read out from

plates following a switch from 50mM to 0.01mM Mg2+ published in ref [16] was used to fine

tune temporal parameters. YFP was either expressed from the PhoP-P dependent mgrB pro-

moter or phoPQ promoter. Time course data for the following strains was used as constraint

on parameters: wild-type (PmgrB, PphoPQ), mgrB deletion (PmgrB, PphoPQ), autoregulation dele-

tion, autoregulation+mgrB double deletion. In addition, wild-type time-course data collected

from PmgrB promoter for cells switched from 50mM to 10mM, 50mM to 2 mM and 2mM to

0.01 mM was also used. The value of YFP:CFP at t = 0 for wild type cells switched from 50mM

to 0.01mM with YFP expressed from mgrB promoter was used to normalize all time-course

data. Steady state YFP:CFP data with YFP expressed from PmgrB for a range of Mg2+ concentra-

tions (30mM to 0.03mM) published in ref [21] was used to fine tune steady state parameters.

This steady state data was normalized to YFP:CFP at 30mM. All experimental data used for fit-

ting is shown in S3 Fig.

Error calculation

Time course. If (ti, yi) is the experimental normalized YFP:CFP data for a given strain and

(ti, yi) represents simulated normalized YFP:CFP, then the squared residual error for time

course is calculated as

Et ¼ Siðyi � ŷiÞ
2
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Similar residual errors for all strains are then added together to give a total time course

residual error Et.
Steady state signal response. Steady state simulated YFP:CFP at each signal level is nor-

malized to the simulated value at 30mM ðx̂s
jÞ and compared against the experimental value

ðxsjÞ leading to the residual error

Es ¼ Siðx̂s
i � xsiÞ

2

In addition, steady state YFP:CFP is simulated at very high signal (equivalent of 10−4mM).

If this value is not > 6 × [YFP:CFP(0.03mM)], then an error penalty of 25 (comparable to the

maximum squared residual at 0.03 mM) is added to Es.

Parameter fitting

Parameters were fit to minimize the above squared residual error (Es + Et) using particle

swarm optimization in MATLAB. Each particle swarm optimization run resulted in one

parameter set. The best fitting parameter sets were used for further analysis.

Supporting information

S1 Fig. Steady state simulations of one-state PhoQ model of PhoPQ TCS. Steady state

[PhoP-P] as a function of total PhoP, PhoQ at various ½MgrB�0T levels (all concentrations in

units of (μM). As ½MgrB�0T increases, a range of total-PhoP,PhoQ appears where PhoP-P is

robust (B) Each point in (A) is an intersection of transcription and interaction modules (Fig

2A, main text). Red curve shows solution to the interaction module. At fixed total PhoP,PhoQ,

total-MgrB is increased and steady state [PhoP-P] is computed. Black curve represents the sat-

urating dependence of MgrB-total on [PhoP-P]. The dotted line is the analytical solution

obtained by solving Eqs 1 and 2 in main text.

(PDF)

S2 Fig. Robustness in one-state PhoPQ model insensitive to modest parameter variations.

(A,B) Phenomenon of robustness to PhoPQ variation is observed in the one-state PhoPQ

model over varying λ, KD values or over varying ratio of PhoP:PhoQ. (C) Variations in PhoP:

PhoQ ratio also do not change the conclusions of biphasic steady-state response of the two-

state model.

(PDF)

S3 Fig. Experimental data used for parameter fitting. YFP:CFP ratio (normalized to the

ratio at 50mM) extracted from [16] and [21]. This normalized data set was used to fit temporal

and steady state parameters for all models described in this paper. Data was extracted using

image analysis in MATLAB (except bottom right panel, which was read out manually from ref

[21]). All data except constitutive mgrB (top right panel) was used to fit models.

(PDF)

S4 Fig. Best fit simulations of dynamical model 1. Simulations from a representative param-

eter set showing best quantitative fit for the simple PhoPQ model. Simulation of an in-silico

mutant expressing mgrB constitutively (top right, solid line) at 10x basal transcription rate of

mgrB in wild-type. This simulation in addition to PhoQ phosphatase-lacking mutant was used

to verify whether a parameter set was accurate.

(PDF)
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S5 Fig. Verifying accuracy of dynamical model 2 by simulating in-silico mutant of PhoQ

lacking phosphatase activity. With parameters that generate the fit in S6 Fig, we simulate the

Mg2+ step-down with an in-silico mutant of PhoQ lacking phosphatase activity single mutant

(light green, solid line) or double mutant with mgrB-deletion (dark green, solid line). These

simulations show a qualitative match with the experimental data (dashed lines).

(PDF)

S6 Fig. Best fit simulations of dynamical model 2. Simulations from a representative param-

eter set showing best quantitative fit for the two-state PhoPQ model.

(PDF)

S7 Fig. Biphasic dose-response of two-state model is not sensitive to ratio of maximum

output to plateau output. Simulations from a representative parameter set showing best

quantitative fit for the two-state PhoPQ model with lower maximum output relative to plateau

level.

(PDF)

S8 Fig. Response of two-state model to overexpression of PhoPQ. (A) Blue line shows sim-

ulated steady state expression from the PmgrB promoter at 1mM Mg2+ from an in silico
mutant with PphoPQ promoter under inducible control (instead of autoregulated). PhoPQ

TCS model also predicts that PhoP-P output will not be robust to overexpression of PhoP

and PhoQ if mgrB is expressed constitutively instead of under PhoP-P control (red line). Pro-

moter expression is shown as YFP:CFP normalized to steady state WT YFP:CFP ratio at the

same Mg2+. The x-axis shows total [PhoP] from the in silico mutant simulation normalized

to WT total [PhoP]. The axes are recreated from Fig 4C in [21], and blue triangles represent

data from the same figure. (B) Over a larger range of total-PhoP, the two-state model also

shows a range of PhoP expression in which PhoP-P does not vary significantly similar to

one-state model.

(PDF)

S1 Text. Analyzing PhoPQ-MgrB reaction network for absolute concentration robustness.

(PDF)

S2 Text. Steady state PhoP-P for one-state PhoPQ-MgrB model.

(PDF)

S3 Text. Model predictions and analysis of oscillations.

(PDF)

S4 Text. A framework to examine steady state signal response for two-state model of

PhoPQ-MgrB.

(PDF)

S5 Text. PhoPQ TCS models: Reactions, ODEs and Parameters.

(PDF)
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