
RESEARCH ARTICLE

A circuit model of auditory cortex

Youngmin ParkID
1, Maria N. GeffenID

1,2*

1 Department of Otorhinolaryngology: HNS, University of Pennsylvania, Philadelphia, Pennsylvania, United

States of America, 2 Department of Neuroscience, Department of Neurology, University of Pennsylvania,

Philadelphia, Pennsylvania, United States of America

* mgeffen@pennmedicine.upenn.edu

Abstract

The mammalian sensory cortex is composed of multiple types of inhibitory and excitatory

neurons, which form sophisticated microcircuits for processing and transmitting sensory

information. Despite rapid progress in understanding the function of distinct neuronal popu-

lations, the parameters of connectivity that are required for the function of these microcir-

cuits remain unknown. Recent studies found that two most common inhibitory interneurons,

parvalbumin- (PV) and somatostatin-(SST) positive interneurons control sound-evoked

responses, temporal adaptation and network dynamics in the auditory cortex (AC). These

studies can inform our understanding of parameters for the connectivity of excitatory-inhibi-

tory cortical circuits. Specifically, we asked whether a common microcircuit can account for

the disparate effects found in studies by different groups. By starting with a cortical rate

model, we find that a simple current-compensating mechanism accounts for the experimen-

tal findings from multiple groups. They key mechanisms are two-fold. First, PVs compensate

for reduced SST activity when thalamic inputs are strong with less compensation when tha-

lamic inputs are weak. Second, SSTs are generally disinhibited by reduced PV activity

regardless of thalamic input strength. These roles are augmented by plastic synapses.

These roles reproduce the differential effects of PVs and SSTs in stimulus-specific adapta-

tion, forward suppression and tuning-curve adaptation, as well as the influence of PVs on

feedforward functional connectivity in the circuit. This circuit exhibits a balance of inhibitory

and excitatory currents that persists on stimulation. This approach brings together multiple

findings from different laboratories and identifies a circuit that can be used in future studies

of upstream and downstream sensory processing.

Author summary

The mammalian auditory cortex is composed of multiple types of inhibitory and excit-

atory neurons, which form sophisticated microcircuits for processing and transmitting

sensory information. Distinct inhibitory neuron subtypes play distinct functions in audi-

tory processing, but it remains unknown what simple set of underlying mechanisms is

responsible for inhibitory cortical function. Here, we built minimal rate and spiking mod-

els and identified a specific set of synaptic mechanisms that could best reproduce the

broad set of experimental results in the auditory cortex. The simplicity of our model
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provides an understanding of inhibitory cortical processing at the circuit level, which

explains results from different laboratories, and provides for a novel computational frame-

work for future studies of cortical function.

Introduction

Detecting sudden changes in the acoustic environment and extracting relevant acoustic fea-

tures from noise are important computations for auditory navigation and scene analysis. The

mammalian auditory cortex (AC) is a key region for processing temporally patterned sounds

[1]. Neurons in AC exhibit adaptation to repeated tones, which may be selective for an over-

represented stimulus, such as in stimulus-specific adaptation, or SSA [1,2]. They furthermore

exhibit forward suppression, in which a preceding stimulus masker tone drives a decrease in

responses to the subsequent target tone [3,4]. How these computations are carried out by corti-

cal circuits has been subject of extensive research.

The AC is composed of tightly coupled networks of excitatory and inhibitory neurons.

Recent studies have identified the differential involvement of two distinct major classes of

inhibitory neurons, parvalbumin-positive (PV) and somatostatin-positive (SST) neurons in

these temporal paradigms. These neurons differ morphologically and physiologically [5,6],

and recent studies found that they play differential functions in auditory processing. Specifi-

cally, SSTs, but not PVs facilitate stimulus-specific adaptation [2]. PVs and SSTs play distinct

roles in adaptation to repeated tones along the frequency response function of the target neu-

ron [7]. SSTs and PVs drive bi-directional effects on forward suppression [8]. In addition, PVs

enhance feedforward connectivity in the auditory cortex [9]. These experimental results can be

used to constrain currents and connections in an idealized auditory cortex model consisting of

PVs, SSTs and Exc. Here, we tested whether these results can be accounted for by the same set

of mechanisms.

In this paper, we build up from a simple dimensionless model consisting of one iso-fre-

quency unit. We transition to a three-unit rate model to understand the mechanisms of inhibi-

tory neural modulation on a gross tonotopy. We then build a detailed spiking model which

incorporates the mechanisms discovered in the rate models. The rate models provide a qualita-

tive intuition of the underlying mechanisms, and the spiking models incorporate these mecha-

nisms in an accessible, open-source codebase for future work. We present the results on

testing the three-unit rate model and the detailed spiking model in four distinct auditory

paradigms.

The model accounted for observed experimental results including the differential role of

SSTs and PVs in SSA [2], forward suppression [8], tuning-curve adaptation [7], and the effects

of PV activation on feedforward functional connectivity [9]. We found that compensating cur-

rents between the two types of inhibitory neurons explain experimental findings of differential

effects of their modulation on excitatory activity. Furthermore, the model is consistent with

existing hypotheses regarding inhibitory and excitatory balance in the cortex. This framework

can be used to build and test hypotheses for similar phenomena in other sensory modalities,

and studies of upstream or downstream auditory processing in AC.

Materials and methods

We first built an augmented version of the Wilson-Cowan model, consisting of one iso-fre-

quency unit of the auditory cortex. The model consisted of one excitatory neural population

and two inhibitory neural subpopulations. Importantly, the single iso-frequency unit model
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served as the template for all other models in this paper. By using the results and parameters

from this model, we extended our results to the substantially more complex three-unit rate

model and three-unit spiking models. We constrained the parameters using experimental data

from the literature.

All code used to generate figures (including model simulations, numerical methods, and

analysis methods) are available on GitHub at https://github.com/geffenlab/park_geffen under

the MIT open source license.

In figures in this manuscript, we use blue or black lines to depict Exc activity in absence of

optogenetic manipulation (called “Control”); magenta for SST activity; cyan solid for PV activ-

ity; orange for Exc activity under SST suppression or activation; green for Exc activity under

PV suppression or activation.

Augmented Wilson-Cowan model

We modeled a single iso-frequency unit as an augmented version of the Wilson-Cowan model

[10] by including an additional inhibitory subtype. We emphasize that we drew much of our

understanding of adaptation throughout this paper using this single iso-frequency unit:

tu
duðtÞ
dt
¼ � uðtÞ þ f weeuðtÞ � weppðtÞ � wessðtÞ þ qgðtÞiðtÞÞ;

�

tp
dpðtÞ
dt
¼ � p tð Þ þ f wpeuðtÞ � wpppðtÞ � wpssðtÞ þ IOpt;PVðtÞ þ qgðtÞiðtÞ

� �
;

ts
dsðtÞ
dt
¼ � s tð Þ þ f wseuðtÞ � wsppðtÞ � wsssðtÞ þ IOpt;SSTðtÞ

� �
; ð1Þ

where u(t), p(t), and s(t) represent the normalized firing rate (scaled from 0 to 1) of the excit-

atory population, PV inhibitory subpopulation, and SST inhibitory subpopulation, respectively

(Fig 1. Note that connection strengths in the rate model are given by wij, and the spiking

model are given by conductances gij, which are distinct from the thalamic depression variable

g(t). We will keep these distinctions consistent throughout the text, so there is no ambiguity).

An important caveat of the rate equations is that the rescaled firing rates are a consequence of

dimensionless equations. All weights, parameters, optogenetic inputs, and thalamic inputs are

also dimensionless in the rate model, with the only exception being time.

The parameters IOpt,PV(t) and IOpt,SST(t) represent the strength of PV and SST activation or

inactivation, respectively, and wij and τi are synaptic weights and time constants, respectively.

All time constants are τu = τp = τs = 10ms, roughly in agreement with known data [2,11]. The

function f is a threshold linear function defined as

f ðxÞ ¼

0 if x � 0

rx if 0 < x � 1=r

1 if x > 1=r

;

8
>><

>>:

ð2Þ

where the function f roughly approximates a sigmoid that converges to zero for small or nega-

tive inputs and saturates to 1 for large inputs. The parameter r = 3 determines the gain of all

firing-rate functions and was chosen roughly to be the same as other modeling studies [2,12].

We included a threshold by subtracting a constant uth from the input, i.e., f(x−uth) for some

input x, where uth is a positive number (typically in the range from 0 to 1). In all rate model

simulations, we chose Exc, PV, and SST thresholds to be uth = 0.7, pth = 1, and sth = 1,
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Fig 1. A. Model of the PV-SST-Exc circuit (spiking model, where connection strengths are given by conductances gij.
Note that the conductances with subscripts gij are distinct from g(t), the adaptation variable for the thalamic input. The

rate model uses connection strengths wij). B. Input and response profiles for the single-unit rate and spiking model to a

100 ms long tone. Top: Gray: thalamic depression variable g. Blue: excitatory (Exc) neuron activity. Cyan: PV. Magenta:
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respectively. The thresholds indicate the minimum activity required for a neural population to

affect postsynaptic neural populations. Because the thresholds are greater than zero, sub-

threshold activity does not affect the dynamics of the network.

The input function i(t) consists of blocks of inputs with stimulus duration and interval

based on the experimental paradigm. We list the stimulus parameters in Table 1, and the stim-

ulus duration and stimulus interval for each paradigm in Table 2. Details of each paradigm are

explained in the text and figures where appropriate. When an auditory input arrives into the

Exc and PV populations, the default temporal profile is taken to have an instantaneous rise

with amplitude q and exponential decay (Fig 1B, bottom red curve) with time constant τq =

10ms, which roughly agrees with known values [13]. The instantaneous rise and exponential

decay were chosen for simplicity. The input i(t) is further modulated by a slow synaptic

depression term g satisfying the standard model of synaptic depression

dgðtÞ
dt
¼
g0 � gðtÞ
td1

�
gðtÞiðtÞ
td2

; ð3Þ

where the time constants are td1
¼ 1500ms for replenishment and td2

¼ 20ms for depletion

(chosen close to reported values [2,11,14,15]). The synaptic depression variable g begins at a

baseline value of g0 = 1 and when i(t)>0, i.e., when an input arrives into the Exc or PV popula-

tions, g(t) decreases on the timescale determined by td2
. Because g(t) multiplies the input i(t) to

u(t) and p(t) in Eq (1), g(t) serves to modulate the strength of auditory inputs to A1. In the

absence of auditory input, g(t) recovers slowly on the order of seconds determined by td1
.

We based the proportional strengths of connections in the single-unit model based on exist-

ing studies on AC [16]. The within-unit connectivity is equivalently represented by the matrix,

W1 ¼

wee wep wes

wpe wpp wps

wse wsp wss

0

B
B
@

1

C
C
A ¼

1:1 2 1

1 2 2

6 0 0

0

B
@

1

C
A: ð4Þ

All synaptic weights wij in the single-unit rate model are constant [17], with synaptic

depression appearing in the feedforward thalamic inputs [18]. The inhibitory synaptic weights

SST. Bottom: Thalamic input (red). C. Responses to stimulus over the first 30 s after sound onset for the different

paradigms modeled in the paper. We used a high and a low inhibition mode of synaptic weights to capture the different

results. For SSA (black) and forward suppression (FWS, gray), the variable�F� is higher than threshold �F�Th, resulting in a

set of low inhibition parameters. Paradigms for tuning-curve adaptation (purple) and PV activation (g) asymptote at

below-threshold levels, resulting in a set of high inhibition parameters. D-G responses of neurons in the spiking model

to a 50ms tone. Top: raster plot; Bottom: Firing rate of Exc (D), PVs (E), SSTs (F), and thalamo-cortical input (G).

https://doi.org/10.1371/journal.pcbi.1008016.g001

Table 1. Parameter values of rate models across paradigms. In the optogenetic parameters, numbers without parentheses show optogenetic strengths for use in model

reproductions and numbers in parentheses show optogenetic strengths for use in model predictions. Positive optogenetic numbers correspond to activation and negative

numbers correspond to inactivation.

Parameter SSA (Simple) SSA FWS TCA PV Act. Notes

q 5 5 1.3 5 5 Fitted, dimensionless, rate

IOpt,PV(t) -2 −4 (0.5) -0.5 (0.25) -0.5 (1.2) 2 (2) Fitted, dimensionless, rate

IOpt,SST(t) -1 -2 (1.2) -0.5 (0.1) -1 (0.1) - Fitted, dimensionless, rate

q 5 5 1.3 5 5 Fitted, dimensionless, spiking

IOpt,PV(t) - -0.2nA 0.1nA 1nA 0.5nA Fitted, dimensionless, spiking

IOpt,SST(t) - -1nA 2nA 1nA - Fitted, dimensionless, spiking

https://doi.org/10.1371/journal.pcbi.1008016.t001
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were roughly chosen to agree with known connection types and connection strengths [16,19],

and the excitatory connections were tuned as free parameters. The constant synapses allowed

us to fully understand the model dynamics before transitioning to the more complex three-

unit model with depressing and facilitating synapses.

Three-unit Rate model

Using the single-unit rate model as a template, we arranged copies into three units with lateral

cortical and thalamic connections (Fig 2A. Lateral inhibitory connections are hidden in Fig 2

for clarity). This arrangement endowed our model with a gross tonotopy, which we used to

explore spectrally and temporally complex auditory inputs. While the three-unit rate model

appears to be substantially more complex, the parameters were strongly constrained by the sin-

gle-unit rate model. In particular, we aimed for each unit of the three-unit model to mimic the

excitatory and inhibitory currents of the single-unit rate model. We found that maintaining

currents explained many of the known optogenetic experiments in the literature. Before turn-

ing to the spiking model, we briefly describe technical details of the parameter values and func-

tions. Each unit behaves according to the equations

tu
duiðtÞ
dt
¼ � uiðtÞ þ f weeuiðtÞ � ðwep � að1 � DiðtÞÞÞpiðtÞ � wessiðtÞ þ J1;iðtÞÞ;

�

tp
dpiðtÞ
dt
¼ � piðtÞ þ f ðwpeuiðtÞ � wpppiðtÞ � wpssiðtÞ þ IOpt;PVðtÞ þ J2;iðtÞÞ;

ts
dsiðtÞ
dt
¼ � siðtÞ þ f ðwseuiðtÞ � wsppiðtÞ � wsssiðtÞ þ IOpt;SSTðtÞ þ J3;iðtÞÞ; ð5Þ

where,

J1;i tð Þ ¼
� FiðtÞs2ðtÞ þ qIiðtÞ þ w�eeu2ðtÞ if i ¼ 1; 3;

� F2 tð Þ s1ðtÞ þ s3ðtÞð Þ þ qI2 tð Þ þ
w�eeðu1ðtÞ þ u3ðtÞÞ

2
if i ¼ 2;

ð6Þ

8
<

:

and

J2;i tð Þ ¼
qIiðtÞ þ w�peu2ðtÞ if i ¼ 1; 3;

qI2 tð Þ þ
w�peðu1ðtÞ þ u3ðtÞÞ

2
if i ¼ 2;

and J3;i tð Þ ¼

w�seu2ðtÞ if i ¼ 1; 3;

w�seðu1ðtÞ þ u3ðtÞÞ
2

if i ¼ 2:

ð7Þ

8
><

>:

8
><

>:

The functions Ii(t) are defined as Ik(t) = gk(t)ik(t)+g2(t)i2(t)α, for k = 1,3, and I2(t) = (g1(t)
i1(t)+g3(t)i3(t))α+g2(t)i2(t). We remark that any lower-case letter i that has a subscript and is a

Table 2. Auditory paradigm parameters. SSA parameters from [2]. Forward suppression (FWS) parameters from

[8,22]. Tuning-curve adaptation (TCA) parameters from [7]. PV activation parameters from [9]. Optogenetic inhibi-

tion was performed 100ms before tone onset and 100ms after tone offset in SSA and FWS. In TCA and PV activation,

optogenetic inhibition was turned on at the beginning of the experiment and sustained through the trial. For optoge-

netic parameters, see Table 2.

SSA FWS TCA PV Act.

Stimulus duration 100ms 50ms 100ms 50ms

Inter-stimulus interval 300ms 20ms 300ms -

Inter-trial interval - 380ms 2400ms 950ms

Stimuli per trial - 2 8 1

https://doi.org/10.1371/journal.pcbi.1008016.t002
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function of time, e.g., i1(t),i2(t),i3(t), represent thalamic inputs. The time-dependent notation

for these functions will always be distinct from the index i. Note that each set of equations are

almost identical to the single-unit case, but with the addition of lateral terms along with

Fig 2. Input and response profiles of the three-unit model. A: The three-unit rate model of the auditory cortex, with

three preferred frequencies, f1, f�, and f2 (the spiking model follows the same motif). Non-excitatory lateral

connections have been hidden for clarity. B: 50ms auditory inputs are applied at each frequency in sequence. C—E:

Black traces show the excitatory cortical response of the first (u1), second (u2), and third (u3) rate units, respectively.

Gray traces show the slow synaptic depression. F: The traces of the thalamic inputs: f1 (gray), f� (black), and f2 (red).

Each iso-frequency unit contains lateral excitatory connections where the Exc population of a given unit synapses

laterally onto the neighboring Exc, PVs, and SSTs.

https://doi.org/10.1371/journal.pcbi.1008016.g002
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facilitating and depressing terms Fi(t) and Di(t). The lateral terms are between immediate

neighbors and include lateral SST to Exc (facilitating), Exc to Exc, Exc to PV. The facilitating

terms Fi(t) increase from 0 to nonzero values as unit i receives inputs, and the depressing

terms Di(t) decrease from 1 to lower values as unit i receives inputs. Rather than adjusting

weights integrated prior to facilitating synapses, we controlled the strength of facilitation by

changing the time constants in Eq (8).

We chose α = 0.65, i.e., 65% of the thalamic inputs to the left or right units reach the center

unit. Likewise, 65% of thalamic inputs to the center unit reach the left and right units. The

function f is threshold linear (Eq 2). The functions Ik(t) are time-dependent inputs with the

strongest preference for unit k, and the profiles of i1(t), i2(t), and i3(t) are shown in Fig 2F

(these profiles are the same as the profile in the single-unit model, Fig 1B, bottom). Parameters

a, b control the strength of depression and facilitation and are chosen to be a = 0.5, b = 2. The

parameter q controls the strength of all inputs. Each input Ij(t) is modulated by corresponding

depression variables gk(t), where each gk(t) satisfies Eq 3 independently. The parameters τi are

membrane time constants and chosen the same as the single-unit model, τu = τp = τs = 10ms

[2,11]. The parameters wij are within-unit synaptic weights chosen according to Eq 4, while

the parameters w�ij are lateral (between unit) synaptic weights. We chose w�ee = 0.667,

w�pe ¼ 1:25, and w�se ¼ 0:125 to reflect the generally weaker lateral synaptic strengths in audi-

tory cortex relative to the within-unit connections [20].

We added facilitating terms Fi(t) in the Exc to SST synapses, and depressing terms Di(t) in

the PV to Exc synapses [21]. The parameters a and b control the degree of depression and facil-

itation, respectively, where we chose a = 0.5, b = 1 (these values were not taken from the litera-

ture). The depressing parameter a was chosen so that the term (wep−aDi(t)) did not change

sign across experimental paradigms. The facilitating variables Fi(t) satisfy

dFjðtÞ
dt
¼ �

FjðtÞ
tD1

þ
ijðtÞ
tD2

; ð8Þ

where tD1
and tD2

are as in Eq 3. The reuse of the depression time constants tDi
are an inten-

tional and simplifying choice. By using the same time scales, we were able to use the inputs ij(t)
as a proxy for the excitatory activity uj(t) and simulate the facilitation variable in terms of the

depressing synaptic variable as Fj(t) = 1−gj(t). Similarly, the depression variables Di(t) satisfy

dDjðtÞ
dt
¼

1 � DjðtÞ
tD1

�
DjðtÞijðtÞ
tD2

; ð9Þ

and used the thalamic input as a proxy for excitatory activity to simulate the depression vari-

able as Di(t) = gi(t). All depressing and facilitating timescales were chosen close to reported val-

ues [11,14,15].

The activity of the model is shown in Fig 2, in response to three successive auditory stimuli

are applied in order of the frequencies f1, f�, and f2, stimulating the left, center, and right units,

respectively (Fig 2C–2E). The center unit (u2(t)) responded equally well to frequencies f1 and

f2 (Fig 2D), a necessary response for SSA paradigms. For simplicity, activation of an adjacent

unit did not affect the thalamic variable, i.e., g1(t) was left unaffected by i2(t), g2(t) was left unaf-

fected by i1(t) and i3(t), and g3(t) was left unaffected by i2(t). We assumed that the frequency

difference between f1 and f2 was great enough that auditory inputs at f1 (f2) did not affect units

responsive to f2 (f1).

When matching the model outputs to experiments in the literature, we found that there

were seemingly two different parameter sets that explained all phenomena and we were unable
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to tweak the rate model to unify the parameters. We unified the disjoint parameter sets by

incorporating paradigm-dependent baseline states in the three-unit rate model. The model

parameters switch between weak and strong baseline inhibition, where weak inhibition corre-

sponds to high thalamic activity (which corresponds to the parameters in Eq (4)), and strong

inhibition corresponds to relatively low thalamic activity (which corresponds to the parame-

ters in Eq (11)). This idea was implemented using an additional facilitating variable,

d F� ðtÞ
dt
¼ �

�F
2
ðtÞ
tF1

þ
I�ðtÞ
tF2

; ð10Þ

where �IðtÞ represents all thalamic inputs of any frequency, and the parameters are chosen to

be tF1
¼ 1500, and tF2

¼ 100. As we applied auditory inputs from particular experiments into

the model, the function F�ðtÞ grew as a function of the excitatory input function I(t), and even-

tually saturated to different mean values based on the stimulus duration, stimulus interval, and

inter-trial interval. Incidentally, we found that the facilitating variable F�ðtÞ saturated to greater

values for forward suppression and SSA, and saturated to relatively lower values for PV activa-

tion and tuning-curve adaptation. The two putative disjoint parameter sets correspond exactly

to these relatively high and low values of the variable F�ðtÞ. A simulation of Eq 10 is shown in

Fig 1C for the various auditory paradigms, with a horizontal line shown where we chose to sep-

arate the saturation values.

If F�ðtÞ is above the threshold, which we chose to be Fth = 0.22, the system exhibits weak

baseline inhibition, and the synapses take baseline values as shown in Eq 4. On the other hand,

if F�ðtÞ < Fth, the synapses take the strong baseline inhibitory values

W2 ¼

1:1 3 3

1 2 2

6 0 0

0

B
@

1

C
A; ð11Þ

and the SST activity threshold, sth = 1, decreases to sth = 0. In our original model, we chose a

smooth transition between these parameter sets, i.e., wep(t) = 2h(F(t))+3(1−h(F(t))),

wesðtÞ ¼ hð�FðtÞÞ þ 3ð1 � hð�FðtÞÞÞ, and sthðtÞ ¼ 1hð�FðtÞÞ where

h xð Þ ¼
1

1þ expð� rðx � FthÞÞ
; ð12Þ

and r, the gain of the sigmoid h was chosen to be steep, e.g., r = 25. However, for simplicity, we

replaced h with a Heaviside function and assumed that the system already reached either the

weak baseline inhibition W1 (Eq 4), or the strong baseline inhibition W2 (Eq 11) based on the

given experimental paradigm.

For each paradigm (with paradigm parameters shown in Table 2, we simulated Eq 10 and

found that SSA and forward suppression belonged to the weak inhibitory regime (�FðtÞ inte-

grated to values above threshold Fth), whereas tuning-curve adaptation and PV activation

belonged to the strong inhibition regime (�FðtÞ integrated to values below threshold Fth). All

rate models were simulated using the dynamical systems software XPP [23], called using

PyXPPCALL and visualized using Python [24]. The equations were well-behaved enough that

a very coarse time step of dt = 0.1 was sufficient for our purposes. We used the default integra-

tion method in XPP, the fourth-order Runge-Kutta.
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Goodness of Fit and related metrics

We compared the results obtained with the model as result of optogenetic perturbations to

published data qualitatively, by testing whether the model reproduces the increase/decrease of

activity that was reported. The limit of large numbers yields theoretically tractable equations

such as the Wilson-Cowan models we use in this paper. However, finite size effects may con-

tribute to additional issues that the large-number limit does not address. How do we know

that the observed changes would hold consistently with the inclusion of finite and noisy neural

populations? To address this question, we built a spiking model constrained by the rate models

above. Because the spiking model is derived directly from the simpler rate models, we generally

expect that the spiking models will reproduce the rate models results for sufficiently large neu-

ral populations, however, we are able to establish that the results are consistent in the presence

of noise. Moreover, we built the rate model using Python and brian2, which are both exten-

sively documented and accessible open-source packages. Finally, we include the spiking model

as a means for researchers to directly fit parameters from experimental data if needed. The rate

model provides strong qualitative intuition, but does not explicitly account for single-cell

interactions. Thus, the spiking model provides an additional, detailed framework for others to

modify and extend beyond what the rate model may provide.

Spiking neuron dynamics

We use the single-unit rate model as a template for the spiking model, constraining the param-

eters while preserving the pattern of excitatory and inhibitory currents. All inhibitory neurons

consisted of a single somatic compartment, while the excitatory neurons were modeled as

two-compartment, “ball-and-stick” models. For each excitatory and inhibitory neuron, we

modeled the somatic (ball) compartment as an adaptive exponential integrate-and-fire neuron

[25,26]:

Cm
dVA

i ðtÞ
dt

¼ IAi � gL VA
i ðtÞ � EL

� �
� wA

i tð Þ þ gALD
A
Te

VAi ðtÞ� V
A
T

DA
T ð13Þ

where the transmembrane currents are IAi ðtÞ ¼ IASyn;iðtÞ þ IABaselineðtÞ þ IAThalðtÞ þ IAOptoðtÞ, where

IASyn;iðtÞ ¼ �
X

B

gAB;iðtÞðVA
i ðtÞ � EBÞ; ð14Þ

and the sum ∑B in the synaptic current iterates over the presynaptic neurons, B2{e,p,s}. If the

presynaptic neuron B is excitatory or inhibitory, then EB =0mV or −67mV, respectively. If a

synaptic connection existed from PV to Exc, we included a depression variable, (t), satisfying

Eq 9, with tD1
¼ 1000, and tD2

¼ 250:

IEPV;iðtÞ ¼ � gep;iðtÞðaDðtÞÞðV
E
i ðtÞ � EPVÞ; ð15Þ

where a = 1.7. As in the rate model, the parameter a was chosen such that the sign of IEPV;iðtÞ
did not change. The additional depression term was necessary to incorporate depression

effects that operate well beyond the timescale of inhibitory conductances [15].

We added transmembrane noise in the form of a white noise process with zero mean and a

standard deviation of 20mV to simulate intrinsic and extrinsic current fluctuations. All fixed

parameters for each neuron type are shown in Table 3. The parameters that we varied manu-

ally were entirely contained in the time-dependent functions IAThalðtÞ (thalamic inputs) and
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IAOptoðtÞ (optogenetic parameters). The thalamic input profile, IAThalðtÞ, is determined by

IAThalðtÞ ¼ qIAFastðtÞD
A
SlowðtÞD

A
FastðtÞ; ð16Þ

Where

dDA
SlowðtÞ
dt

¼
1 � DA

SlowðtÞ
tD1

�
DA

SlowðtÞI
AðtÞ

tD2

dDA
FastðtÞ
dt

¼
1 � DA

FastðtÞ � IAðtÞ
tD;Fast

dIAFastðtÞ
dt

¼
� IAFastðtÞ þ IAðtÞ

tI
;

ð17Þ

where τI = 1ms, τD,Fast = 10ms, tD1
¼ 1000ms, and tD2

¼ 250ms. The functions IA(t) (distinct

from IAThalðtÞ) are square wave functions that are active for the duration of the auditory stimu-

lus. Just as in the rate model, the thalamic input function IAThalðtÞ only appears in Exc and PV

neurons. The profile of the thalamic input is shown in Fig 1G. The optogenetic term, IAOptoðtÞ,
only appears in the PV and SST equations.

Following a presynaptic spike from neuron j, the postsynaptic effect on neuron i appears as

an instantaneous spike in the postsynaptic conductance gij(t)!gij(t)+gij,max/nX, where gij,max is

given by Eq 18, and X stands for the presynaptic neuron type (Exc, PV, or SST). The magni-

tude of the conductances were chosen to have the same proportion as reported values [16],

with the same type of connectivity structure as in the rate model.

Gmax ¼

gee;max gep;max ges;;max

gpe;max gpp;max gps;max

gse;max gsp;max gss;max

0

B
B
@

1

C
C
A ¼

20 40 20

2 40 40

120 0 0

0

B
@

1

C
AnS: ð18Þ

In the absence of presynaptic spikes, the conductances gij decay exponentially to zero:

dgijðtÞ
dt
¼ �

gijðtÞ
tij

; ð19Þ

where τij = 1ms for all synapses except for the time constants from excitatory to PVs, τpe =

25ms, and excitatory to SSTs, τse = 15ms [27]. In the spiking model, we switched to the weak

inhibitory regime by decreasing the inhibitory inputs into Exc from gep,max = 40 and ges,max =

20 to gep,max = 38 and ges,max = 19.

Table 3. Parameter values of spiking neurons.

Exc Dend PV SST

Cm (pF) 180 180 80 80

EL (mV) -60 -60 -60 -60

gL (nS) 6.25 6.25 5 5

ΔT (mV) 1 - 0.25 1

VT (mV) -40 - -40 -45

Vreset (mV) -60 - -60 -60

gsd (nS) 18.75 18.75 - -

Ibaseline (nA) 0.35 - 0.05 0.025

https://doi.org/10.1371/journal.pcbi.1008016.t003
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For excitatory neurons (A = e), the transmembrane currents are

IAi ðtÞ ¼ IASyn;iðtÞ þ IAðtÞ þ IDend;iðtÞ, where

IDend;i tð Þ ¼ �
gsd;iðtÞð1þ bFðtÞÞðVEðtÞ � VD;iðtÞÞ

1 � k
: ð20Þ

The term F(t) is a dimensionless slow timescale facilitation variable that depends on the tha-

lamic drive, and satisfies Eq 8 (just as in depression, the additional slow timescale allows the

model to operate on multiple timescales [15]). The parameter b = 3 modulates the facilitation

strength, and tF1
¼ 1000, and tF2

¼ 250. For simplicity, we allowed Fi(t) to vary continuously

over time. The variable w represents spike-frequency adaptation and obeys

tw
dwEðtÞ
dt

¼ a VEðtÞ � ELð Þ � wE tð Þ: ð21Þ

The dynamics of the dendritic (stick) compartment obey

Cm
dVDðtÞ
dt

¼ � gL VDðtÞ � ELð Þ �
gsdðtÞðVDðtÞ � VEÞ

k
� ges tð Þ VDðtÞ � EIð Þ; ð22Þ

where the parameter κ = 0.3 is the ratio of somatic to total surface area [26].

For PV and SST interneurons, the equations are the same as Exc except that there is no den-

dritic component. Parameters differ marginally between PV and SST neurons (see Table 3).

SSTs, unlike PVs, have no incoming synaptic connections from the thalamus and only receive

excitatory inputs from Exc. PVs and SSTs include the optogenetic stimulus term IAOptoðtÞ, and

as mentioned above, only Exc and PVs contain the thalamic input term IAThalðtÞ. These connec-

tions reflect the choices made in the rate model.

Three-unit Spiking model

We introduced the gross tonotopy into the spiking model by copying the single unit spiking

model into three units with lateral excitatory connections (Fig 2A). As in the 3-unit rate

model, the thalamic inputs of the 3-unit spiking model have weaker lateral connections. For

tone responses at frequency f1 and f2, the center unit receives an input of amplitude propor-

tional to 0.85 that of the left and right units, respectively.

The spiking model contains 1600 Exc, 200 PVs, and 200 SSTs. For connection probabilities

within units, we chose E E connections to have probability pEE = 0.1 and all other probabili-

ties to be the same, pEE = pES = pPE = pPP = pPS = pSE = 0.6. For lateral connection probabilities,

we chose p = 0.1.

The spiking model was constructed using Brian2 [28].

Results

Differential effects of interneuron suppression in stimulus-specific

adaptation

Almost all neurons (95%) in AC exhibit stimulus-specific adaptation, a phenomenon in which

neurons reduce their response selectively to the inputs that is presented frequently in the stim-

ulus (standard tone), while preserving the initial strong response to the less frequent input

(deviant, or oddball tone) [1]. Previous studies found that following a presentation of the devi-

ant tone, the excitatory neurons adapt over successive presentations of the standard [1,29].

Similar adaptation was observed in the songbird [30,31]. This phenomenon was largely attrib-

uted to feedforward thalamo-cortical depressing synapses [17,32], but such models could not
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account for the full range of the effects that were observed [12]. A recent study found that

inhibitory neurons exhibit differential control over SSA [2]. Suppressing SSTs resulted in dis-

inhibition of the excitatory neurons, such that disinhibition increased with successive presen-

tations of the standard tone, but not the deviant. By contrast, PV inhibition drove equal

amount of disinhibition of excitatory neurons in response to both the deviant and the stan-

dard. These results suggest that SST inhibition controls adaptation level of excitatory neurons.

In order to understand the roles of inhibitory interneurons in modulating SSA responses,

we tested whether the single-unit model could reproduce the differential effects of suppressing

PVs and SSTs in temporal adaptation. This paradigm involved the application of 8 successive

tones to the single iso-frequency circuit with constant synapses and depressing thalamic inputs

(Fig 3, Eq 1). We then tuned the parameters of the model in order to achieve the qualitative

results for SSA [2]. We simulated optogenetic suppression of inhibitory neurons by defining

the functions IOpt,PV(t) and IOpt,SST(t) to turn on 100ms before tone onset and turn off 100ms

after tone onset, thereby inhibiting the activity of PV or SST neurons as performed in the

experimental paradigms. The degree of PV and SST inhibition was chosen as a free parameter,

and in the case of this single-unit rate model, had the dimensionless values of IOpt,PV(t) = −2

during PV suppression and IOpt,SST(t) = −1 during SST suppression. Through this suppression

Fig 3. The effect of optogenetic manipulations on adaptation to repeated tones. A. Stimulus of repeated tones, with or without concurrent laser stimulation. B. Left

column: Circuit diagram specifying the inactivation of populations. Top row: no stimulation. Responses of Exc (blue), PV (cyan) and SST (magenta) populations to the

first (middle column) and last (right column) tones. Middle row: responses during PV suppression. Green: Responses of Exc under PV suppression, gray: responses of

Exc in the control condition. Bottom row: responses during SST suppression. Orange: Responses of Exc under SST suppression, gray: responses of Exc in the control

condition. C. Top: Mean response of the excitatory population to the repeated tones. Bottom: difference in excitatory responses with and without stimulation. No

stimulation (blue), PV suppression (green); SST suppression (orange).

https://doi.org/10.1371/journal.pcbi.1008016.g003
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of inhibition, we sought to reproduce the constant disinhibition from PV inactivation, and

increasing disinhibition from SST inactivation. Once the model reproduced this qualitative

result, we discovered that the key mechanisms involve the temporal structure of the responses:

PVs exhibit a temporally fast tone-evoked response and peak earlier than Exc and SSTs, while

SSTs exhibit a temporally delayed and broad tone-evoked response (Fig 1B, Fig 3B top left

plot), which both agreed with earlier studies [2]. The SST delay is not hard-coded, but the

result of SSTs receiving indirect thalamic excitation through the Exc population [16].

The simplicity of the model allowed us to understand the mechanism underlying these

changes. One important observation is the faster temporal activation of PVs relative to SSTs.

With this property, excitatory activity is immediately affected by changes to PV activity and

less by changes to SST activity. With PV suppression (Fig 3C middle row), PVs are reduced in

activity, leading to greater Exc activity. The SSTs were indeed disinhibited due to a lack of inhi-

bition from PVs and the greater Exc activity, but the inhibition from SST to Exc was not strong

enough to compensate for changes in PV activity. Thus, the Exc population received an overall

decrease in inhibitory current across all successive tones, resulting in constant disinhibition

prior to and following adaptation (Fig 3D green). This result suggests that the temporally faster

PV inhibition of Exc neurons is necessary for modulating excitatory activity, and only a few

milliseconds of earlier PV activity results in a substantially stronger inhibitory effect relative to

SSTs.

With SST inactivation, Exc activity at the first tone was virtually unaffected because the

reduced SST activity resulted in PV disinhibition, and the increased PV activity resulted in no

net change to the total inhibitory current entering the Exc population (Fig 3C, bottom left). PVs

compensated for the reduced SST activity. Following adaptation, the overall reduced excitatory

activity in both thalamus and Exc resulted in reduced PV activity and a net loss of inhibitory

current in Exc. The Exc population was therefore disinhibited at the last tone (Fig 3C, bottom

right). Combined, these effects drove an increase in disinhibition over successive tones (Fig 3D,

orange). These simple mechanisms of disinhibition and compensation can therefore explain the

complementary roles of inhibitory interneurons in shaping cortical activity.

To understand the model dynamics in the presence of inputs at multiple frequencies in the

oddball paradigm, we extended the model to a rate and spiking model with three iso-frequency

units, in which each microcircuit received inputs of specific preferred frequencies. The three-

unit circuitry was based on the single-unit model and the free parameters tuned to reproduce

the inhibitory and excitatory currents. For example, an auditory input to the left unit caused

lateral excitatory and inhibitory currents to enter the center unit. These currents to the center

unit were designed to be similar to the currents entering the single-unit in response to auditory

stimuli. We performed the same procedure for auditory inputs to the right unit: lateral excit-

atory and inhibitory currents from the right were designed to enter the center unit in a manner

similar to the single-unit case. Using this procedure, we extended the differential SST and PV

inhibition in the single-unit model to work in the case of a tonotopy without the need for

exhaustive parameter fitting.

The oddball stimulus activated the neighboring units to the center one, whose activity we

measured (Stimulus described in Table 2, Fig 4A). We observe thalamic depression in the thal-

amus which decreases responses to the repeated activation from one unit, and large responses

to the unrepeated tone. We simulated PV and SST suppression with the functions IOpt,PV(t)
and IOpt,SST(t). These functions were turned on 100ms before tone onset and turned off 100ms

after tone onset. In the rate model, the inhibition was dimensionless and free parameters cho-

sen to be IOpt,PV(t) = −4 during PV inhibition and IOpt,SST(t) = −2 during SST inhibition. In

the spiking model, we chose IOpt,PV(t) = −0.2nA during PV inhibition and IOpt,SST(t) = −1nA

during SST inhibition (Fig 4B–4G).
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In the rate and spiking model, the firing rates increased uniformly across all post-deviant

tones (Fig 4D and 4E). In the rate and spiking model, the firing rates exhibited an increase in

disinhibition as a function of post-deviant tone number ((Fig 4F and 4G). Both results agree

with existing results in SSA [2]. In order to establish the robustness of these results, we varied

several parameters and measured the Common-contrast SSA Index (CSI) [12],

CSI ¼
dðf1Þ þ dðf2Þ � sðf1Þ � sðf2Þ
dðf1Þ þ dðf2Þ þ sðf1Þ þ sðf2Þ

; ð23Þ

where d(fi) is the deviant rate response and s(fi)) is the standard rate response to frequency fi.
For full adaptation, when the standard responses are 0, CSI = 1, indicating a high degree of

SSA. If the standard responses are equal to the deviant responses, then CSI = 0, indicating a

low degree of SSA.

We performed a parameter sweep with four key parameters of circuit connectivity ((Fig 5):

(1) recurrent excitation (wee, (Fig 5A, 5B, 5E and 5F), a key parameter considered in many

studies [12], especially those related to inhibitory stabilized networks (ISNs) [11,26]; (2) time-

scale of thalamic depression (td1
, Fig 5C, 5D, 5G and 5H) whose reported values vary over a

large range, from 0.8s to 3s [2,12]; (3) the strength of PV activation or inactivation (Fig 5A, 5C,

5E and 5G); and (4) the strength of SST activation or inactivation (Fig 5B, 5D, 5F and 5H). In

all cases, inactivating SSTs reduced the CSI relative to PV inactivation, reflecting the increasing

disinhibition over post-deviant tones. The x-axis of each plot corresponds to the strength of

the optogenetic laser. Negative values correspond to a decrease in inhibitory activity, and posi-

tive values correspond to an increase in inhibitory activity. These effects may be more clearly

seen in the model equations (Eqs 1, 5 and 13), where we add the terms IOpt,PV(t) and IOpt,

SST(t).
This analysis reveals robustness in parameter ranges for given optogenetic modulation

strengths. The CSI in the control case (white circle) changed little when the parameters wee

and td1
were varied for a given optogenetic strength. In other words, for a fixed value on the x-

axis, changing positions in the vertical direction on each plot did not change the CSI index sig-

nificantly for a nontrivial range of parameter values. This observation suggests that the cortical

model can operate in a broad parameter regime, and precise parameter values may not be

important for normal function. In extreme cases, decreasing recurrent excitation removed the

decrease in CSI following SST inactivation (Fig 5B), suggesting that sufficient recurrent excita-

tion is an important factor in generating responses in the SSA paradigm. Second, while

increasing optogenetic inhibition had little effect on the CSI, increasing optogenetic activation

showed an increase in CSI in all cases (CSI = 0.35 for PV activation and CSI = 0.31 for SST

activation). Therefore, we predicted that optogenetic activation of PVs and SSTs will generally

improve context-dependent cortical responses.

Like the rate model, the spiking model exhibited little sensitivity to changes in wee and td1
.

However, the spiking model showed almost no dependence on recurrent excitation wee in the

Fig 4. Summary of SSA in the rate and spiking model. A: Oddball stimulus consisted of two tones: standard tones (gray) appear with 90% probability, whereas

deviant tones (red) appear with 10% probability. B, C: Average response of the excitatory population to the deviant (red outline) and subsequent standards (gray

outline) without stimulation; with PV suppression (green) and with SST suppression (orange). B. Rate model. C. Spiking model. D. Additive change in response of

excitatory population due to PV suppression in the rate and spiking models to the deviant (red outline) and standards (gray outline). Left: from published data.

Center: rate model. Right: Spiking model. E. Additive change in response of excitatory population due to SST suppression in the rate and spiking models to the

deviant (red outline) and standards (gray outline). Left: from published data. Center: rate model. Right: Spiking model. F. Predictions for the responses to the oddball

stimulus with and without interneuron activation in the rate model. Left: Mean responses of the excitatory population to the deviant and subsequent standards (red/

gray outline: no activation; green: PV activation; orange: SST activation). Middle: Change in excitatory neuron responses due to PV activation, Right: Identical plot as

the middle panel, but for SST activation. PV activation resulted in a near-uniform decrease in FRs, whereas SST resulted in an increase in adaptation.

https://doi.org/10.1371/journal.pcbi.1008016.g004
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case of SST inactivation (Fig 5E). This effect is likely due to the differences in connectivity

between the rate and spiking models. In the rate model, lateral connections depend entirely on

excitatory activity, thus SSA results in the rate model are more sensitive to changes in recurrent

excitation. In the spiking model, recurrent excitation plays a less important role because the

lateral connection probabilities are low (p = 0.1), whereas the connection probabilities within

units are high (p = 0.6).

The three-unit model was developed to reproduce the compensating mechanisms of the

single-unit model: PV suppression results in constant disinhibition for repeated tones, and

SST suppression results in a compensating effect from PVs before adaptation that weakens as

adaptation strengthens. These differential roles explain experimental data in the SSA paradigm

to a remarkable degree. We then asked whether this simple mechanism is sufficient to repro-

duce additional optogenetic experiments. For the remainder of the paper, we use the three-

unit rate model with no parameter modifications except for the changes in the inhibition

modes and the auditory inputs that depend on the experimental paradigm (Table 2, Fig 1C,

and Eq 10).

Differential effects of inhibitory neuron manipulation on cortical forward

suppression

Context dependence of auditory responses has been revealed on many time scales. In a well-

studies phenomenon termed “forward suppression”, the responses of AC neurons to a tone

are suppressed if the tone is preceded by another tone, but the level of suppression depends on

the frequency difference between the two tones (Fig 6). In the experiment, the first tone, called

the masker, varies in frequency between trials, while the second tone, called the probe, remains

fixed at the preferred frequency of the neuron. This phenomenon was explained by feedfor-

ward depression, but the inhibitory neurons were recently shown to also control forward sup-

pression [8]. PV inactivation (orange) concurrent with the auditory stimulus resulted in a

selective increase in forward suppression at the preferred frequency relative to the control case

(blue), whereas SST inactivation (green) reduced forward suppression at the preferred fre-

quency relative to the control case (blue) (Fig 4B second row) [8].

We used the same parameters for connectivity within the circuit as with SSA to reproduce

the experimental findings, with only slight changes to the input strength (q = 1.3). The stimuli

used in the forward suppression paradigm place the baseline state in the strong inhibitory

regime (Fig 1C). Both the rate (Fig 6A middle, 6B middle) and spiking models (Fig 6B bottom

6B bottom) yielded the existence of experimentally observed differential effects for PV (Fig

6A) and SST inactivation (Fig 6B): PV inactivation drove a selective decrease in responses

whereas SST inactivation drove a suppression of excitatory neuronal responses. We do not

expect the scales between the rate and spiking models to match precisely, and we only sought

to match the existence of the differential phenomena. Functions IOpt,PV(t) and IOpt,SST(t) were

turned on for the duration of the simulation to match the experimental protocol. In the rate

model, the inhibition was dimensionless and free parameters chosen to be IOpt,PV(t) = −4 dur-

ing PV inhibition, IOpt,PV(t) = 0.5 during PV activation, IOpt,SST(t) = −2 during SST inhibition,

and IOpt,SST(t) = 1.2 during SST activation. In the spiking model, we chose IOpt,PV(t) = −0.2nA

Fig 5. Predicted effects of the key parameters on SSA index (CSI) for the rate model (A-D) and spiking model (E-H). Control parameters are denoted by white

circles, PV and SST inactivation parameters are denoted by white triangles, and PV and SST activation parameters are denoted by white squares. The control

parameter values, IOpt,PV = IOpt,SST = 0, are denoted by white circles. A, E: PV optogenetic parameter vs recurrent excitation (wee). B, F: SST optogenetic parameter vs

recurrent excitation. C, G: PV optogenetic parameter vs thalamic depression time constant td1
. D, H: SST optogenetic parameter vs thalamic depression time

constant. White regions in all subfigures denote areas where the firing rate (FR) of the standard tone is too low (FR<0.1), or where the excitatory response saturates,

making CSI measurements impossible.

https://doi.org/10.1371/journal.pcbi.1008016.g005
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during PV suppression, IOpt,PV(t) = during PV activation, IOpt,SST(t) = −1nA during SST inhi-

bition, and IOpt,SST(t) = −1nA during SST activation.

At first glance, this result seems paradoxical given that PV suppression generally results in

excitatory disinhibition as shown in the adaptation and SSA results (Figs 3 and 4), but the

underlying mechanism is straightforward to understand. Following PV suppression, excitatory

activity is indeed disinhibited, but the firing rate function of the excitatory population satu-

rates. This behavior means that higher activity neurons are generally disinhibited less strongly

than lower activity neurons. Thus, upon receiving the second tone, the input received by the

excitatory population is weaker due to thalamic depression, but the disinhibition is greater rel-

ative to the disinhibition in the first tone. This phenomenon also requires a special property in

the thalamic depression variable g(t), namely that it cannot depress too quickly during the first

time or else the excitation in the second tone will be too weak, and although it recovers slowly,

it recovers enough such that the input from the second tone is still somewhat strong. In the

case of SST suppression, PVs compensate for the loss of inhibition in the first tone, but lose the

ability for compensation in the second tone, so Exc are able to respond more strongly relative

to the control case. Thus, forward suppression is weakened.

Next, we tested the effects of activating PVs or SSTs (as could be done with ChR2 experi-

mentally) on model responses. The model predicted that both PV and SST activation will

result in an increase of forward suppression across preferred and sideband frequencies (Fig 6D

and 6E).

Differential adaptation to repeated tones along the frequency response

function

Neurons in A1 adapt to repeated tones [2]. This adaptation is proportional to the strength of

their tone-evoked responses: it is stronger in the center of the frequency response function,

and weaker for the sidebands [7]. A recent study found that PVs and SSTs exert a differential

effect on this form of adaptation: Suppressing PVs drives disinhibition selective to the side-

bands in the adapted state, whereas suppressing SSTs drives disinhibition both in the center

and at the sidebands of the frequency response function of excitatory neurons [7]. To under-

stand how inhibitory neurons affect adaptation across different frequency-tuned inputs, we

presented a sequence of 8 tones at each frequency to generate adapting tuning curves (Fig 7A),

and repeated this stimulus with PV and SST suppression for the model circuit. We found that

this auditory paradigm resulted in a below-threshold integration of �F, so the system switched

to a state of strong baseline inhibition (and importantly, the model did not respond in pre-

cisely the same way as in SSA and forward suppression).

Our model reproduced the differential experimental effects of PV and SST suppression (Fig

7). In the rate model before adaptation, PV and SST inactivation resulted in sideband disinhi-

bition with little to no disinhibition at the preferred frequency (Fig 7D and 7J eft). After adap-

tation, PV inactivation resulted in sideband disinhibition and no preferred frequency

disinhibition (Fig 7D right), whereas SST inactivation resulted in disinhibition across all side-

band and preferred frequencies (Fig 7J right). The spiking model closely mirrored these results

Fig 6. Forward suppression in the rate and spiking model. A. The stimulus consisted of pairs of tones activating

either neighboring or the same iso-frequency units. The laser was presented continuously throughout stimulation

trials. B,C,D, E: Responses of excitatory neurons to the probe tone as a function of the frequency of the masker. Blue:

control. B, C: Top row: Schematic of results from Phillips et al., 2017. Middle row: Results from the rate model. Bottom

row: Results from the spiking model. B: Results of PV suppression (green). C: Results of SST suppression (orange). D,

E: Rate model prediction for forward suppression during PV and SST activation. PV and SST activation resulted in

enhanced forward suppression. D: Results from PV activation. E. Results from SST activation.

https://doi.org/10.1371/journal.pcbi.1008016.g006

PLOS COMPUTATIONAL BIOLOGY A circuit model of auditory cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008016 July 27, 2020 20 / 29

https://doi.org/10.1371/journal.pcbi.1008016.g006
https://doi.org/10.1371/journal.pcbi.1008016


PLOS COMPUTATIONAL BIOLOGY A circuit model of auditory cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008016 July 27, 2020 21 / 29

https://doi.org/10.1371/journal.pcbi.1008016


(Fig 7F and 7L). The ratio of excitatory responses between light off and light on trials summa-

rize the degree of sideband and preferred frequency disinhibition (Fig 7E, 7G, 7K and 7M).

The mechanisms behind these results involve synaptic facilitation and depression and the

compensating mechanism discussed in the earlier sections for SSA and adaptation. In the case

of PV suppression, SSTs were the only interneurons capable of contributing to Exc inhibition,

so only Exc-SST interactions drove the observed effects. In particular, lateral SST to Exc synap-

ses suppressed the center unit over each tone, and facilitation allowed this suppression to per-

sist throughout adaptation. Note that this preferred-frequency effect was not observed in SSA

because we never directly stimulated the center unit. Next, in the case of SST suppression, the

increasing disinhibition with adaptation at the preferred frequency was a consequence of the

same compensating mechanism as in SSA. The tuning curves shown in Fig 7B and 7H are rep-

resentative cartoons of the changes in the tuning curves observed quantitatively [7], but we

aimed to reproduce the light-on and light-off curves (Fig 7C and 7I) using our model. The

comparison of the model tuning curves to the cartoons from the experiments appear to be sig-

nificantly different at the sidebands, but in fact our model outputs closely match the desired

lines in Fig 7C and 7I.

Turning to predictions, we found that before adaptation, PV activation resulted in a slight

decrease at the preferred frequency, whereas SST inactivation reduced overall firing rates

across all frequencies (Fig 7N and 7O). After adaptation, PV and SST activation resulted in a

subtractive effect. General optogenetic activation and inactivation of PVs and SSTs modulated

tuning-curves in combinations of additive, subtractive, multiplicative, and divisive effects [3].

Our model reproduced one of the key results in these studies as well, since PV and SST inacti-

vation were found to have additive and divisive effects on the frequency response functions of

excitatory neurons (Fig 7E, 7G, 7K, 7M, 7O and 7Q).

Similar to SSA, the functions IOpt,PV(t) and IOpt,SST(t) were turned on 100ms before tone

onset and turned off 100ms after tone onset. In the rate model, the inhibition was dimension-

less and free parameters chosen to be IOpt,PV(t) = −0.5 during PV inhibition, IOpt,PV(t) = 1.2

during PV activation, IOpt,SST(t) = −1 during SST inhibition, and IOpt,SST(t) = 0.1 during SST

activation. In the spiking model, we chose IOpt,PV(t) = −1nA during PV inhibition and IOpt,

SST(t) = −1nA during SST inhibition.

PVs enhance feedforward functional connectivity

Cortical neurons in AC receive inputs from the thalamic auditory nuclei. As the result, neuro-

nal responses in the cortex are correlated with neuronal firing in the thalamus. These interac-

tions can be captured using an Ising model to measure the connection from the thalamus to

the cortex. When PVs were activated, the functional coupling between cortical and thalamic

responses [9] became stronger. The specific mechanism underlying this change is unknown.

Using the three-unit model, we identified a candidate mechanism for the enhanced tha-

lamo-cortical correlation following PV activation. We assumed that the feedforward functional

connection from the thalamus to the cortex is the same as the anatomical connection, so

Fig 7. Adaptation to repeated tones along the frequency response function. A. The stimulus consisted of a sequence of repeated tones, presented

to each iso-frequency unit. On stimulation trials, the laser overlapped with the sound stimulus. B, D, F, H, J, L, N, P: The responses of excitatory units

to the first (left) and last tone (right) as a function of the distance in frequency between the unit and the stimulus without (blue) and with (green: PV

suppression; orange: SST suppression) stimulation. C, E, G, I, K, M, O, Q: The response of excitatory neurons to tone 1 (left) and tone 8 (right) on

light on and light off trials. The control lines have unit slope because light on and light off in an experimental condition yields no changes to the

firing rate. Thicker lines in Fig 7E, 7G, 7K and 7M represent the peak excitatory responses from the first and last simulations taken directly from the

simulations, whereas thinner lines are linear extrapolations to assist the visual comparison to the control line (blue). B,C. Experimental results, PV

suppression. D,E: Rate Model, PV suppression. F,G. Spiking model, PV suppression. H,I. Experimental results, SST suppression. J,K. Rate model,

SST suppression. L,M. Spiking model, SST suppression. N,O. Rate model, PV activation. P,Q. Rate model, SST activation.

https://doi.org/10.1371/journal.pcbi.1008016.g007
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thalamic inputs directly modulated cortical responses in our model. Following an increase in

inhibition, cortical responses became sharper, thus aligning more closely with thalamic inputs

and improving feedforward functional connectivity (Fig 8).

PV activation (green) in the rate model resulted in an increase in the Pearson correlation

between the control (blue) and thalamic inputs (red), from 0.77 and 0.83 (Fig 8B). Thus,

whereas inhibitory activation decreased the overall firing rate, the response became more syn-

chronized to the thalamic inputs, resulting in an increase in feedforward functional connectiv-

ity. In the spiking model, PV activation resulted in a delayed response of excitatory activity,

but we were interested in tested whether PV-activated Exc response profile resembled the tha-

lamic activity more than the control Exc response. To make this comparison, we shifted the

PV trace so that the onset of PV-activated Exc activity (green) coincided with the onset of the

control curve (blue) (Fig 8C. An equivalent approach would be to measure the peak value of

the cross-correlation between excitatory and thalamic activity without shifting the data in

time). We observed an increase in the Pearson correlation from 0.87 in the control Exc activity

to 0.95 in the PV-activated Exc activity, thus demonstrating a sharpening of excitatory

Fig 8. Activation of PVs enhanced feedforward connectivity in the model. A. Stimulus was a single tone accompanied by a laser on

stimulation trials presented at 0.1 s. B. Top: Cortical excitatory population responses to tones without (blue) and with PV stimulation

(green) in the rate model. Bottom: Thalamic input (red). C. Top: Cortical excitatory population responses to tones without (blue) and

with PV stimulation (green) in the spiking model. D: Rate model prediction for effects of PV inactivation.

https://doi.org/10.1371/journal.pcbi.1008016.g008
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responses, and an increase in feedforward functional connectivity. As in the previous para-

digms, we only aimed to show the existence of changes without requiring the magnitude of

change to match the experimental data.

These results provide for a simple plausible mechanism for enhanced feedforward func-

tional connectivity: as inhibition reduces the overall cortical inputs, cortical responses better

synchronize to thalamic inputs, resulting in stronger correlated activity. We remark that the

classic approach to the problem of establishing proper functional connectivity relies on sophis-

ticated models such as Ising models [33], expectation-maximization [34], and subspace identi-

fication [35], because direct calculations of correlations can lead to false positives when the

anatomical connections are not known [9]. Our model has explicit anatomical connections,

which eliminates the problem of false-positive correlations. Thus, in this case, the use of the

correlation serves as a reliable proxy for the Ising model.

Balanced networks

Multiple studies postulated that excitatory and inhibitory currents are matched in cortical cir-

cuits, contributing to stability of circuit function [36,37]. Therefore, we tested whether our

model operated as a balanced network. To make this measurement, we took ratios of inhibi-

tory and excitatory currents during suprathreshold activity, because our model ignores virtu-

ally all subthreshold activity. Interestingly, with no tuning, our models showed evidence of

operating as a balanced network: as we varied the input strength to the rate and spiking models

(Fig 9C and 9F), the ratio of excitatory to inhibitory inputs to the excitatory population (Fig 9B

and 9E) remained constant. The rate model had an excitatory/inhibitory ratio of 0.37 (Fig 9B),

and the spiking model had an excitatory/inhibitory ratio of 2.5 (Fig 9E). These results suggest

that excitatory-inhibitory balance a robust, emergent feature of cortical networks. The large

differences in scales are to be expected when comparing a dimensional and dimensionless

model.

Discussion

A wealth of recent studies provide evidence for distinct function of different types of cortical

inhibitory neurons in temporal processing of auditory information. The studies demonstrate

that different types of inhibitory neurons, SSTs and PVs, play a differential role in auditory

processing, controlling adaptation at different time scales and contexts, and changes to feed-

forward functional connectivity. Our goal was to integrate the results of these studies to under-

stand whether the observed effects were due to a small set of mechanisms.

We built an idealized rate and spiking model that reproduced multiple key results from

studies that tested the function of specific inhibitory opsins in specific cells in the auditory cor-

tex. In addition to including different baseline states that modulate the strength of PV-to-Exc

and SST-to-Exc synapses, the key mechanisms underlying our models included the fast tempo-

ral activation of PVs, the delayed, broad temporal activation of SSTs, the ability for PVs to

compensate for weakened SST activity, and dynamic synapses including SST-to-Exc facilita-

tion. These interactions accounted for the differential modulation of cortical responses by

interneuron subtypes and suggests that a simplified set of mechanisms can support experimen-

tal results.

To reproduce the differential function of SSTs and PVs in stimulus-specific adaptation, we

built a model loosely based on multiple existing models for SSA and multiple configurations of

spiking neuron populations, consisting of inhibitory and excitatory neurons. Previously, a

two-layer rate model with synaptic depression was proposed to establish the relationship

between the cortical response and the parameters in SSA experiments, such as stimulus

PLOS COMPUTATIONAL BIOLOGY A circuit model of auditory cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008016 July 27, 2020 24 / 29

https://doi.org/10.1371/journal.pcbi.1008016


PLOS COMPUTATIONAL BIOLOGY A circuit model of auditory cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008016 July 27, 2020 25 / 29

https://doi.org/10.1371/journal.pcbi.1008016


frequency differences, probability of deviation, and tone presentation rate. Yarden et al. (2017)

successfully used a multi-unit rate model arranged in a coarse tonotopy consisting of inhibi-

tory and excitatory populations to reproduce general deviance detection, but model has not

yet been adapted to explain differential interneuron modulation. Another existing model of

SSA including differential inhibitory modulation demonstrating similar differential inhibitory

effects as in our SSA result (Fig 4), but did not include a tonotopy [2]. These models only

included one type of inhibitory neuron type or did not include tonotopy, and therefore could

not account for the observed differential effects of suppression of SSTs and PVs on SSA across

multiple frequencies. In the present study, we developed a simple rate and spiking model that

accounted for multiple inhibitory cell types and which faithfully reproduced the differential

effects of SST and PV inactivation in SSA (Fig 4). In addition, a parameter sweep revealed that

both the rate and spiking models were robust to large changes in key parameters commonly

explored in the literature, suggesting that SSA is a robust phenomenon [12].

Existing models that reproduce the enhanced forward suppression from PV inactivation

and the reduced forward suppression from SST inactivation (Fig 6) include multiple layers

that require both depression and facilitation [8], or rely on depressing recurrent excitation and

do not distinguish between inhibitory subtypes [4]. We incorporated depression and facilita-

tion in the model synapses and reproduced the former results with only a single layer, suggest-

ing a surprisingly simple mechanism supporting forward suppression. Furthermore, the

models in the present study reproduced tuning-curve adaptation effects previously observed

experimentally but not computationally: SSTs exhibited strong preferred-frequency disinhibi-

tion following adaptation, while PV disinhibition is independent of the degree of adaptation

(Fig 7) [7]. These results suggest that the underlying mechanism(s) of the model, namely the

PV/SST compensation effect, combined with the facilitating SST-to-Exc synapse, may serve as

a general mechanism of adaptation. In addition, our models reproduced changes in feedfor-

ward functional connectivity (Fig 8). By increasing PV activity in the models, excitatory activ-

ity decreased but became more time-locked to thalamic inputs. This effect agreed with

observations in the cortex, where PV activation resulted in enhanced feedforward functional

connectivity [9]. The effects of inhibition on sharpening cortical responses have been well-

established, thus our models serve as plausible mechanisms for this change [38–40]. Finally,

our models were shown to operate as a balanced network, where inhibitory and excitatory cur-

rents entering neural populations were shown to maintain a consistent ratio across input

strengths, suggesting a generality to the theory of balanced networks.

One drawback of the model is that it does not feature population spikes, which explain

many fundamental cortical responses in AC [38]. In future work, we will seek to reconcile the

differences between our models and the population spike model of SSA [4]. Establishing the

importance of depression and facilitation in different synapses and extending our model to

include population spikes warrants further study.

Although we do not explore simultaneous auditory stimuli in this study, it is worth men-

tioning the response properties of the network due to recent interest in supralinear network

models (Rubin et al. 2016). Throughout this paper, neurons operate in a linear manner when

above threshold: neurons add inputs linearly, until the maximum rate is reached in the rate

models, or until the refractory period saturates spiking rates in the spiking model. The models

do not use sub-threshold responses to modulate population activity.

Fig 9. Excitatory-inhibitory balance in the rate and spiking models A. Plot of incoming excitatory and inhibitory currents into the Exc population

as a function of different input strengths (C). Darker currents correspond to stronger inputs B. A best-fit line (dashed) accurately captures the ratio

of excitatory and inhibitory responses, implying excitatory-inhibitory balance. Equivalent results for the spiking model are shown in panels D, E,

and F.

https://doi.org/10.1371/journal.pcbi.1008016.g009
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Multiple studies from different laboratories revealed the differential effect of distinct inhibi-

tory neurons in auditory processing. We show that a minimalistic model, built on simple

mechanisms, is capable of reproducing disparate results in the literature. As inhibitory neu-

rons form similar circuits throughout the mammalian cortex, this model can be readily

adapted to test their function and generate predictions (with adjustments for local changes in

connectivity) in different sensory modalities.
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