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Abstract

Spatial biological networks are abundant on all scales of life, from single cells to ecosys-

tems, and perform various important functions including signal transmission and nutrient

transport. These biological functions depend on the architecture of the network, which

emerges as the result of a dynamic, feedback-driven developmental process. While cell

behavior during growth can be genetically encoded, the resulting network structure depends

on spatial constraints and tissue architecture. Since network growth is often difficult to

observe experimentally, computer simulations can help to understand how local cell behav-

ior determines the resulting network architecture. We present here a computational frame-

work based on directional statistics to model network formation in space and time under

arbitrary spatial constraints. Growth is described as a biased correlated random walk where

direction and branching depend on the local environmental conditions and constraints,

which are presented as 3D multilayer grid. To demonstrate the application of our tool, we

perform growth simulations of a dense network between cells and compare the results to

experimental data from osteocyte networks in bone. Our generic framework might help to

better understand how network patterns depend on spatial constraints, or to identify the bio-

logical cause of deviations from healthy network function.

Author summary

We present a novel modeling approach and computational implementation to better

understand the development of spatial biological networks under the influence of external

signals. Our tool allows us to study the relationship between local biological growth

parameters and the emerging macroscopic network function using simulations. This

computational approach can generate plausible network graphs that take local feedback

into account and provide a basis for comparative studies using graph-based methods.

Introduction

Complex biological networks such as the neural connectome are striking examples of large-

scale functional structures arising from a locally controlled growth process [1, 2]. The resulting
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network architecture is not only genetically determined, but depends on biological and physi-

cal interactions with the microenvironment during the growth process [3, 4]. In this context,

evolution has shaped diverse spatial networks on all length scales, from the cytoskeletal net-

work in cells [5], to multicellular networks such as the vascular system [6] or the osteocyte

lacuno-canalicular network [7], to macroscopic networks of slime molds [8], mycelia [9] and

plants [10]. Sophisticated imaging techniques together with large-scale automated analysis

provide increasingly detailed views of the architecture of biological networks, revealing e.g.

how neurons are wired together in the brain [11]. After extracting the topological connectivity

from such image data, quantitative methods from the physics of complex networks can be

applied to compare different types of networks and to uncover common organizational princi-

ples [12–15]. To understand the functional role of networks in the context of evolution, how-

ever, it is not sufficient to characterize static network structure [1]: we need to be able to infer

the dynamics of the underlying biological growth process that defines this structure.

This poses a major challenge, since the local dynamics of the growth process is in most

cases not experimentally accessible, except for simple model systems. Here, computer simula-

tions provide a solution: they allow to connect the observed patterns to the underlying process

by performing in-silico experiments. Different hypotheses can be tested by systematically vary-

ing the local growth rules in the simulation and analyzing the resulting network patterns. Such

a computational approach also helps to overcome an important limitation of network physics

with respect to spatial networks: the properties of complex networks are often calculated with

respect to canonical random graphs such as the Erdös-Renyi [16] or Watts-Strogatz model

[17]. These models are defined by the topological structure in an adjacency matrix, but usually

neglect spatial constraints [18, 19]. A generic model of network growth under spatial con-

straints would thus address two important problems: enabling a meaningful quantification of

spatial network patterns, and linking the observed patterns to the underlying biological growth

process.

The first computer simulation of spatial network development, published in 1967 [20],

already included the role of active and repulsive cues. Since then, several more advanced

approaches to model spatial network growth have been developed. One type of model imple-

ments network growth by formation of edges between pre-existing nodes in space [21, 22] and

was e.g. used to develop large-scale models of branching neurons [23] or leaf vascular networks

[24]. Another type of approach is based on growth processes emanating from predefined seed

points with branching and merging and has been used to model neural network development

[25, 26], fibrous materials [27] or the development of branching organ structures [28]. Most of

these existing models are targeted towards a specific domain such as neural networks and syn-

apse formation, or include only simplified interactions with the environment. The current

state of modeling spatial network growth was recently summarized in [1], arguing that there is

“a crucial lack of theoretical models”.

The aim of this work is to develop a generic framework for biological network development

in space and time under arbitrary spatial constraints. We propose a probabilistic agent-based

model to describe individual growth processes as biased, correlated random motion with rules

for branching, bifurcation, merging and termination. We apply mathematical concepts from

directional statistics to describe the influence of external cues on the direction of individual

growth processes without restricting the model by making too specific assumptions about

these cues. Structural and geometric factors are obtained directly from real image data rather

than formulated explicitly. The model is implemented as a computational framework that

allows us to perform simulations for diverse types of biological networks on all scales, and to

monitor the evolving spatial structure and connectivity.

PLOS COMPUTATIONAL BIOLOGY Biological network growth in complex environments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008003 November 30, 2020 2 / 20

Funding: This publication was supported by the

Open Access Publication Fund of the University of

Wuerzburg.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008003


Results

Growth process

The elementary process of biological network formation is the outgrowth of new edges in

space from existing nodes, such as cells. Each individual growth agent, for example a neuronal

growth cone, randomly explores space and senses soluble signals as well as physical cues and

obstacles. This process can be formulated as a biased correlated random walk [29]: the move-

ment of edges is biased by attractive or repulsive signals and structural cues, and correlated due

to directional persistence of edge growth. Edges turn into trees if branching and/or bifurca-

tions occur, such as in growing neurons, osteocytes or sprouting angiogenesis. Finally, if edges

can join other edges and form new nodes (e.g. synapses), a connected network emerges. The

elements of this discretized, agent-based formalization of spatial network development are

summarized in Fig 1. In the following, we describe our mathematical approach for modeling

the growth process.

In general, such a stochastic motion under the influence of external forces is described by a

partial differential equation (PDE), the Fokker-Planck equation [30] corresponding to the Lan-

gevin equation [31]:

@pð~x; tÞ
dt

¼ � r ~up ~x; tð Þð Þ þ r Drp ~x; tð Þð Þ ð1Þ

Eq 1 is a drift-diffusion equation of motion where the k-dimensional vector~uð~x; tÞ is a

drift, and D the anisotropic and diagonal, k × k- dimensional diffusion tensor. This equation

describes the time development of a probability density function pð~x; tÞ of diffusing particles

under the influence of a drift uð~x; tÞ and diffusion Dð~x; tÞ. If drift and diffusion are both con-

stant in time and space, and if the initial condition pð~x; 0Þ ¼ dð~x � ~x0Þ is the k-dimensional

Fig 1. Discrete local events during spatial network development. Two growth agents (green and blue, e.g. growth

cones, filopodia, cells) start at time ti and randomly explore their environment in a biased correlated random walk. The

environment is represented as a discrete grid (grey lines), while the network grows in continuous space. Blue and green

dots correspond to subsequent positions of the growth cones. Cones can branch off new daughter cones, bifurcate/split

in two new cones, merge with existing edges, or terminate. These events leads to formation of new nodes in the

network, shown as red dots. Over time, the individual processes form a connected network of nodes and edges in

space.

https://doi.org/10.1371/journal.pcbi.1008003.g001
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Dirac delta function, then Eq 1 solves to

p ~x; tð Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4pÞ
k
jDtj

q exp �
1

2

Xk

i¼0

ðxi � x0;i � uitÞ
2

2Dit

 !

ð2Þ

Eq 2 describes the time development of a random movement for constant drift and isotro-

pic diffusion starting at initial position~x0. In a complex environment, however, both drift and

diffusion can depend on time and position, and there is no simple analytic solution for the

time development. In this case, a numerical approach can be taken by sampling individual

movement traces as non-Markovian correlated processes [32]. The drift-diffusion movement

is then discretized into a stepwise process where for each growth step, a new direction is

drawn from a probability density function (PDF). For constant drift and diffusion (Eq 2), the

corresponding PDF, or growth kernel, is a Multivariate Gaussian distribution (MVG) with

mean vector~m ¼ ~ut, covariance S = D t and determinant jDtj ¼
Qk

i¼1
2Dit. In the general

case, assuming that the spatio-temporal change for mð~x; tÞ and Sð~x; tÞ is small between two

consecutive time steps, every discrete growth step has a different time- and position dependent

PDF. The fundamental solutions Eq 2 of the PDE (Eq 1), or Eq 3 for non-diagonal covariance,

can thus be used as random kernels in each step from which the subsequent growth directions

are drawn. Their~m and S can be expanded so that they encode for all spatial signals and con-

straints. A more detailed derivation of this approach starting from Eq 1 is provided as support-

ing information in S1 Text.

Substrate and signaling cues

The individual PDFs that describe all the different internal and external constraints and cues

that act on an edge at position~xp are formulated using the Multivariate Gaussian Distribution

(MGD) as kernel:

MGD ~x;~m;Sð Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ
k
jSj

q exp �
1

2
ð~x � ~mÞTS� 1 ~x � ~mð Þ

� �

ð3Þ

The MGD is a probability density function from which random vectors ~X � Nð~m;SÞ of

dimension k are drawn. Such a vector is shifted by the mean vector~m and anisotropically dis-

tributed. The anisotropic distribution of directions is described by the metric of the k × k
covariance matrix S with determinant |S| and for its eigendecomposition as real symmetric

matrix Sdiag = A−T SA with eigenvectors A ¼ ð~v1 . . .~vkÞ and eigenvalues Sdiag = diag(λ1 < � � �

< λk).
Depending on the edge’s current position~xp, the mean vector~m points to the most likely

direction the edge will be moved in the subsequent step, while the covariance S reflects the

impact of the local structure onto its movement in the complex environment.

Following the mathematical rules for distributions, the PDF of a random vector that is the

sum of independent random vectors is the convolution of the PDFs of the individual random

vectors:

PDFconv ¼ PDF0 � . . . � PDFn� 1 � PDFn ð4Þ

All local, external signals and structural properties that are described by individual PDFs in

the form of a MGD can thus be combined into a single PDF that still has the form of a MGD

[33]. As a result, a new growth direction that includes the contribution of all cues and
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constrains can be drawn from this combined MGD with mean vector

~mconv ¼
Xn

i¼0

~mi ð5Þ

and covariance

Sconv ¼
Xn

i¼0

Si ð6Þ

These parameter pairs ð~mi;SiÞ can represent different external cues, the geometric con-

straints of the substrate, as well as edge-specific properties. In Table 1, we give some examples

for external and internal cues and the structure of the environment that can be represented by

such “Mean Vector—Covariance” pairs.

Typical examples of external cues are drift vector fields and ensembles of signaling mole-

cules. For the case of a constant external vector field, the mean vector points towards the local

field orientation, while its length scales with the field’s strength. Its corresponding covariance

is symmetric, proportional to the unit matrix I, and the entries tend to zero (σ1,. . .,i! 0). The

MGD is then a k-dimensional delta distribution that biases the growing edge in the direction

of the vector field.

Internal signals describe the properties of the growing edge, reflecting its characteristic ran-

dom motion and its stiffness or persistence. The physical interaction with the substrate is

encoded in the structure tensor and the local derivatives (gradients) of the surroundings. The

structure tensor takes the place of the diffusive tensor in the MGD, while the mean vector is

the local gradient~pðx; y; zÞ. This concept, which is widely used in image analysis (e.g.

anisotropic diffusion) [34–36], allows us to include arbitrary structural information by repre-

senting it as an image volume and calculating the corresponding structure tensor.

The combination of the different PDFs through convolution (Eq 4) results in a single MGD

from which the subsequent growth direction is drawn. This combined PDF distributes

Table 1. Mean vector—Covariance pairs.

External Cue ~m S

Drift ~Dð~pðx; y; zÞÞ σx,y,z! 0

Signaling molecules �
Pn

m
ð~psm;i � ~p

s
m;i� 1

Þ

n

Pn
m Sm

Internal Cue ~m S

RW - Random Walk ~0 diagonal, σx,y,z> 0

P - Persistence
Pn

i¼m~pi isotropic, diagonal, σx,y,z> 0

Structural Cue ~m S

Structure tensors ~rpðx; y; zÞ S ¼ aRTSdual
diagR

Sdiag ¼ RSi;jRT

Si;j ¼ dipdjp

i; j 2 ðx; y; zÞ

Table 1: Examples how external, internal and structural cues interact with a growing edge at position~p in 3D. The physical properties are interpreted as multivariate

Gaussian distributions with a mean vector~m and covariance S. All signals are combined into a single PDF by convolution. We distinguish between external signals such

as drift and signaling cues, internal properties of an edge such as its random motion and stiffness, and the structural properties of the surroundings. A more detailed

version is provided in S2 Table.

https://doi.org/10.1371/journal.pcbi.1008003.t001
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random vectors around a mean vector with a length that is the sum of all mean vectors of the

individual signals. The shape of this shifted multivariate normal is expressed by its covariance.

Step length

The Multivariate Gaussian Distribution in Eq 3 covers the fullR3
, but sampling the entire

space to draw the next growth direction would not only be prohibitively slow, but would also

generate unphysical step size distributions. This problem can be solved by integrating over the

radius to generate a sampling of the PDF from a subset of R3
(the unit sphere) while retaining

the full spatial information contained in its covariance and mean. An additional advantage is

that growth direction and step length are separated into two probability distributions which

can then be treated independently.

Distributions on the unit sphere Sk� 1
can be obtained by embedding Sk� 1

inRk
. For a ran-

dom vector~x 2 Rk
, this could be its conditional distribution on k~xk ¼ 1, or its angular projec-

tion~y ¼~x=k~xk. For the family of Fisher-Bingham distributions [37], the Bingham

distribution [38] is the conditional distribution, while the Kent distribution is the projection of

the general Fisher-Bingham distribution [39]. Although these distributions are well studied

and are commonly used for data fitting and directional statistics [40], the Kent distribution is

not suitable for simulations, as it requires a rejection method [41]. Instead, the MGD can be

transformed to spherical coordinates, which allows us to calculate a spherical marginal distri-

bution MGDangular by integrating over the radial component to obtain a projection of the

MGD. Starting from Eq 3, the k-dimensional coordinate basis is transformed to~x ¼ r~y with

r ¼ k~xk,~y ¼~x=k~xk and d~x ¼ rk� 1drd~y. The transformation and integration of Eq 3 results in

the following angular MGD:

MGDangularð~y;~m;ΣÞ ¼
R � 1

0
MGDðr;~y;~m;ΣÞrk� 1dr ð7Þ

Carrying out the integration yields the general angular Gaussian distribution (GAGD),

introduced and explicitly calculated for dimensions k = 1, 2, 3 in [42], which is the angular

marginal distribution to the MGD that projects the directional probability information onto

the Sk� 1
-sphere:

MGDangularð~y;~m;ΣÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ
ðk� 1Þ
jSj

q
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~yTS� 1~y

p

�exp
1

2

ð~yTS� 1~mÞ
2

~yTS� 1~y
� ~mTS� 1~m

� �� �

�Mk� 1

~yTS� 1~m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~yTS� 1~y

p

 !

ð8Þ

The last term Mk� 1

~yTS� 1~mffiffiffiffiffiffiffiffiffiffiffi
~yTS� 1~y
p

� �

of Eq 8 is a function

Mk� 1 að Þ ¼
R1
u¼0

uk� 1
1
ffiffiffiffiffiffi
2p
p exp �

ðu � aÞ2

2

� �

du ð9Þ

For the 3-dimensional case k = 3,~yT ¼ ð sin y cos�; siny sin�; cosyÞ, this results in

M2ðaÞ ¼ ð1þ a
2ÞFðaÞ þ a�ðaÞ
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where ϕ(.) is the standard normal PDF and F(.) the corresponding CDF, the cumulative distri-

bution function. For additional detail, please see S1 Text.

This definition separates the radial distribution from the angular distribution. While we use

a constant step length in our simulations, this separation would also allow for variable step

length PDFs without losing any information of the spatial distribution of external cues with

large mean vectors~m. In Fig 2, we show three distributions on the unit sphere Sk� 1
2 Rk for

three dimensions with different mean vector~m and covariance S as examples for shifted iso-

tropic signals (persistence), highly anisotropic covariances due to spatial constraints such as

edges and walls, and peaked distributions for guidance cues towards specific directions. The

structural information is projected onto the unit sphere while retaining the full information

about S and μ, as shown in Eq 8—e.g., a bimodal MGD still retains a bimodal marginal

MGDangular due to its covariance.

After motivating the mathematical kernel for the growth process and the interaction with

the substrate, we now introduce the rules that enable the growing edges to bifurcate, branch

off daughter processes, to form new connections (e.g. synapses) with other edges, and to be

persistent and locally self-avoiding.

Persistence

During edge outgrowth, the finite bending stiffness of edges causes the growth direction to be

correlated to the previous directions, resulting in persistence of the movement. In absence of a

Fig 2. Probabilistic framework to determine the next growth direction. Probability distributions are modeled as multivariate Gaussian distributions

(MGD), shown in a), with mean and covariance determined from the discrete simulation grid that describes structural and soluble cues. Individual MGDs

are combined by convolution, transformed to spherical coordinates, and projected onto the unit sphere (bottom). Examples shown on the right hand side

include structural guidance along a plane (e.g. a tissue boundary, b), a unidirectional drift towards the viewer (e.g. a growth factor gradient, c), and

persistence due to memory of past growth directions (e.g. bending stiffness, d). The three probability distributions are merged by convolution, restricted by

the aperture of the growth cone, and sampled on the corresponding segment of the sphere (e). The next growth direction is drawn from this combined,

restricted distribution.

https://doi.org/10.1371/journal.pcbi.1008003.g002
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drift vector~m, and since the eigenvectors of the covariance matrix S are independent, the ran-

dom growth process is a Wiener and Markov Process, and still remains a general interpreta-

tion of a Wiener process for k~mk > 0. Persistence of the growth direction is equivalent to

introducing a drift that is the sum of the last t growth directions~mP ¼
Pt

i~mi. This results in an

effective bending stiffness of the growing edges, and its persistence length is expressed by the

Kuhn length [43],

PKuhn;t ¼ lim
dL!1

dL
Xt

j¼iþ1

hcosyi;ji; ð10Þ

where δl is the length between two steps and δlhcosθi,ji is the projected length at i towards j
(Fig 1). This directional correlation does however not imply self-avoidance within the persis-

tence length scale, as there still is a non-zero probability for an edge to loop back and collide

with itself within the persistence length.

Self-avoidance

Local self-avoidance is the phenomenon that growing edges in a biological network, e.g. out-

growing neurites or branching vessels, do not loop back onto themselves [44]. In our growth

model, local self-avoidance is achieved by restricting possible growth directions to a solid

angle O around~mP. The aperture described by O is equivalent to the maximum allowed curva-

ture of a growing edge. This means that the heuristic growth process is no longer a Markov

process [45], as it loses its reversibility, but now becomes self avoiding within the persistence

length. Fig 2 shows the effect of persistence on the angular distribution MGDangular and how

the aperture is restricted by O.

Connectivity

New nodes in a growing network form by branching or bifurcation of growing edges, or when

a growing edge merges with another edge. We distinguish between “branching”, the branch-

ing-off of a new edge from a growing edge where the parent edge maintains its growth direc-

tion, and “bifurcation”, the splitting of a growing edge into two daughter edges growing in two

different directions. Both can occur at every growth step with a probability that depends on

edge properties (e.g. age) as well as external cues. Whenever an edge is within a certain dis-

tance to another edge, it can merge and form a new node, again with a probability that can

depend on edge properties and external signals. Finally, growing edges can terminate and

form an end-node, again with a probability that depends on external signals, such as obstacles

or the density of already existing edges. Fig 1 schematically shows the time development of a

growing network where edges branch several times, merge, and terminate.

Implementation

We next describe the computational implementation of the theoretical framework for spatial

network growth described in the previous sections. Key input parameters for the simulation

are the spatial environment and the seed points (e.g. cells) that define from where the first

edges start to grow. The spatial environment is provided in the form of 3D image volumes that

contain information about the physical structure of the growth environment (e.g. tissue struc-

ture), as well as about signals that influence the growth process (e.g. growth factors). This grid-

based representation of the environment in an otherwise continuous model, as illustrated in

Fig 1, makes it possible to study network growth in real tissue environments as measured e.g.

with confocal or light sheet microscopy without explicitly stating their geometry by including
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them as scalar data on a 3D grid or “image” layer. Besides these image data and the seed loca-

tions and directions, the simulation requires a number of model parameters such as step

length, aperture and degree of persistence as input, listed in Table 2. The aperture is the open-

ing angle of the “field of view” of the growth cone. Smaller values limit the possible directions

it can turn to, resulting in self-avoidance as described e.g. for neurons [44]. The angles for

branching and bifurcations depend on the underlying biological mechanism, with large angles

e.g. for vessel sprouting [46] or small angles for actin-crosslinker mediated branching of cell

processes [47]. The corresponding probabilities for branching and bifurcation describe how

likely these processes occur in a growing edge, which in biological systems can be both intrinsi-

cally determined (e.g. typical rates in osteocyte processes [14]) or externally controlled as in

neurite outgrowth [2]. The parameter “memory” sets the number of previous steps that con-

tribute to the next growth direction and determines the persistence of the direction. Biologi-

cally, persistent motion can arise either from physical constraints (e.g. persistence length of

microtubules) or from the intrinsic persistence of the biological process, e.g. in cell migration.

All parameters are set at the beginning of the simulation but can change for each growth cone

as a function of time or external signals to capture the corresponding biological mechanism in

the simulation.

The PDFs for the growth processes are derived from the image volumes by calculating gra-

dients and the structure tensor (Fig 3). These image volumes can contain multiple channels to

describe not only structure, but also scalar and vector fields to describe forces or signaling par-

ticles. The spatial growth environment can also be dynamic, either via external time-depen-

dent changes or via changes introduced by the growing network itself. Notably, it is by this

reciprocal feedback between the growing network and its spatial environment that the network

architecture turns into an emergent property that cannot be encoded in the growth rules

alone.

The growing edges are implemented as instances of a growth cone class with the properties

listed in Table 3. These include both internal parameters as well as functions that define how

external cues are translated into growth directions. All object instances work on internal mem-

ories, are able to create new objects, and can inherit their parameters. The workflow and inter-

action of the different memories are summarized in Fig 4.

Prior to deciding on the growth direction according to Eq 8 angular, the cone checks if

there is a merge, branch, bifurcation or termination event. For merging, the cone at position

~pc performs a collision detection with all edges En of an ensemble n 2 OE that are within its

search field of radius Rc. OE includes all edges of a cluster specified through its members that

can interact during t growth steps. A new node is created at the ith positions~pi;j of the jth edge

Table 2. Simulation parameters.

Parameter Typical Value Biological Meaning

Aperture O = 25 deg Growth cone mobility, self avoidance

Step size l 2 R, l* f(μ, σ) Growth cone velocity

Splitting angle θbran = 75 deg, θbif = 75 deg Angle at which cones bifurcate or new branches form

Search field 3x3x3 cube Range of interactions with the environment

Probabilities pbran, pbif = 2%, pterm, preac = 0.1% Probability to branch/bifurcate/terminate/reactivate

Memory m = 5 Directional persistence of growth cone movement

Seed parameters X, Y, Z, ϕ, θ Seed positions and directions of growth processes

Table 2: List of parameters of the implementation with typical values, and their meaning in a biological context.

https://doi.org/10.1371/journal.pcbi.1008003.t002
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Fig 3. Mapping the complex growth environment onto a multilayer simulation grid. Structural and soluble cues and other signals are provided as 3D

image volumes of real or simulated data (left). The six components of the structure tensor define the guidance cues from the substrate structure, whereas

the three gradients of the images of soluble cues, e.g. growth factor concentrations, define the resulting directional bias. The feature sizes σi used for the

filters determine the resolution of the cues. Other signals can be integrated by computing the corresponding features (filters) that define the resulting

growth cue. The image features containing the different cues are Gaussian smoothed and interpolated onto the final simulation grid. The growth simulation

uses continuous coordinates on a discrete grid.

https://doi.org/10.1371/journal.pcbi.1008003.g003

Table 3. Global parameters, attributes and actions of model agents.

Global parameter Type Description

Instances i = 10 Number of global updates

Steps s = 25 Number of growth steps between updates

MGD Switches Boolean Presence of different interactions

Agent property Type Description

Positions [[x, y, z]i, ‥, [x, y, z]n] History of all positions

Spherical angles [[ϕ, θ]i, ‥, [ϕ, θ]n] History of all directions

First and last node list[str] Initial node and node of last merge/branch/bifurcation

Current state str ‘growing’, ‘merged’, ‘terminated’ or ‘out of bounds’

Action Details

Growth Construct MGDangð~m;SÞ, draw next direction

Branch Create new daughter cone at an angle, inherit from mother cone

Bifurcate/Split Create two new identical cones at an angle, delete old cone

Merge Merge current with nearby edge, create new node

Terminate/Reactivate Inactivate/reactivate cone, set status to ‘terminated’ or ‘growing’

Table 3: Internal attributes of nodes and edges, data types, and description.

https://doi.org/10.1371/journal.pcbi.1008003.t003
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j 2 OE that fulfils the condition to be in shortest distance to the cone position.

minj~pc � ~pi;jj
2
� ð2RcÞ

2
: ð11Þ

The cone terminates afterwards and the memory attributes of all participating objects are

updated. Branching and bifurcation are executed via object functions. The events occur ran-

domly with their respective probability. This probability and the parameters for branching

angle and direction as well as the bifurcation plane are coupled to the external parameters of

the spatial environment. The same type of coupling is implemented for termination and reacti-

vation processes. If an agent branches or bifurcates, a new node is created at the splitting posi-

tion. In the case of branching, a new cone object emerges from the new edge, and the mother

branch updates its memory. For bifurcation, the old cone terminates, and two or more new

cone objects are created and grow in new directions with an oblique angle to each other.

As the framework relies heavily on the communication of all objects, an efficient paralleliza-

tion strategy is important. Already existing edges are not only stored in the graph dictionary,

but also generate an imprint in an additional layer of the simulation grid. During growth, each

process checks for the presence of existing edges by generating a view in this grid. If there is an

edge in the vicinity, it can be looked up in the dictionary using its identifier from the simula-

tion grid. To additionally reduce the number of collision calculations between actively moving

cones, a Voronoi tessellation is performed for all growing edges to cluster neighbouring cones

within a Delaunay distance ld. Only those agents that are able to interact during the following

ld-steps have to communicate during these steps, while all clusters are independent from each

Fig 4. Diagram of the simulation. Starting conditions are provided as image volumes and as list of initial positions and directions. During each time step,

the steps in the grey box are performed in parallel for each cone. The four elementary event types during network growth occur with their respective

probabilities (A), depending on the local environment. Afterwards, the next position of each cone is determined from the spherical probability distribution

computed from the local environment (B). Finally, the computation grid (left) and network dictionary (right), which are kept in shared memory, are

updated by each parallel process, such that they can provide up-to-date conditions for all cones in the subsequent step. Finally, the network graph is

constructed, its topological properties computed, and the network is visualized. These analysis steps can also be performed periodically during the

simulation to monitor network development on-the-fly.

https://doi.org/10.1371/journal.pcbi.1008003.g004

PLOS COMPUTATIONAL BIOLOGY Biological network growth in complex environments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008003 November 30, 2020 11 / 20

https://doi.org/10.1371/journal.pcbi.1008003.g004
https://doi.org/10.1371/journal.pcbi.1008003


other and can be updated in parallel. The clustering step is repeated after ld steps. In Fig 5, a

2-dimensional clustering is shown as an example. All agents with overlapping blue circles can

interact and are part of the same cluster.

Applications

We used our model to simulate the development of a multicellular biological network in a tis-

sue with different degrees of anisotropy. This scenario is representative for a variety of biologi-

cal systems where the final network architecture depends on the interplay of genetically

encoded cell behaviour and the complex structured tissue environment. Examples include the

osteocyte lacuno-canalicular system in bone [48], the development and regeneration of neuro-

nal networks [2], or the reticular cell network in lymph nodes [15]. To show how our frame-

work can be used to study the relationship between local growth rules, tissue structure, and

global emergent network architecture, we performed growth simulations for different ranges

of branching probability and angle, growth cone aperture, directional memory, as well as for

different degrees of tissue anisotropy. To account for the stochastic nature of the growth pro-

cess, we created a sample of ten random networks with identical starting parameters and calcu-

lated mean values. We then quantified the influence of the varying parameters on the resulting

node number and average node degree, clustering coefficient, average shortest path length,

edge density, as well as three types of node centralities. Closely spaced nodes are combined

into a single node to enable comparison with experimentally obtained imaging data with finite

spatial resolution [14]. Examples of the resulting networks and parameter relationships are

shown in Fig 6, while the results of the sensitivity analysis of global network topology on the

growth parameters are shown in Table 4. As can be seen in Fig 6A, the average node degree of

the network gradually increases during the development of the network. A giant component

emerges as all cells become connected to each other, indicating a critical point after around 30

steps. With increasing branching probability, the network becomes more dense, with higher

mean degree and clustering coefficient and reduced average shortest path length (Fig 6B).

Average node betweenness and information centrality decrease while harmonic centrality

increases with higher branching rate. All three centralities approach the experimentally mea-

sured values in osteocyte networks [49]. We also find that stronger tissue anisotropy leads to a

lower number of nodes but increasing clustering coefficient and average shortest path length,

Fig 5. Clustering and performance. In (a), a 2-dimensional illustration of the clustering scheme to reduce the number of collision detections is shown for

illustration. Blue dots correspond to active growth processes, and only processes with overlapping light-blue circles can interact. A Voronoi tessellation of

the simulation volume is performed for all growing edges to cluster all neighbouring cones within a Delaunay distance ld. Only agents that can interact

during the following ld-steps have to communicate during these steps, while all clusters are independent from each other and can be updated in parallel. In

(b) and (c), the scaling of the simulation time with the number of growth cones and worker processes is shown.

https://doi.org/10.1371/journal.pcbi.1008003.g005
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while the average node degree remains unchanged (Fig 6C). These observations suggest that

the ability of growing osteocyte processes to branch at a sufficiently high rate together with a

sufficient degree of tissue organization are important parameters for the formation of viable

osteocyte networks in bone. This example outlines the possibility for more systematic studies,

e.g. to identify the underlying molecular and cellular parameters for observed changes in

Fig 6. Example simulations of multicellular network growth. a) Cells (blue) emanate growth processes that form a dense, interconnected

network of active (green) and terminated (red) edges. Node degree goes up (top) and a giant component emerges that connects all cells

(bottom), as evident in the connectivity graphs (red/black). b) Higher branching probability leads to increasing clustering coefficient and

shorter average paths. Node betweenness and harmonic centrality approach experimental values of osteocyte networks in bone (blue). c)

Stronger tissue anisotropy leads to smaller networks with increased clustering coefficient and shortest path length, and decreased information

centrality, approaching experimental values (blue).

https://doi.org/10.1371/journal.pcbi.1008003.g006

PLOS COMPUTATIONAL BIOLOGY Biological network growth in complex environments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008003 November 30, 2020 13 / 20

https://doi.org/10.1371/journal.pcbi.1008003.g006
https://doi.org/10.1371/journal.pcbi.1008003


network architecture in different biological systems. A similar comparison could be performed

for any other 3D biological network for which such quantitative data are available. By modify-

ing the provided code used to generate Fig 6 and Table 4, these examples can easily be adapted

to other biological systems.

Discussion

We developed a novel agent-based framework to simulate the growth of networks in three-

dimensional space. The outgrowth of individual processes follows a 3D random walk with

memory (correlation) and directional bias due to interactions with the environment. This

framework can be used to simulate the growth of biological networks on all scales from single

cells to ecosystems, or of generic network development through interaction of autonomous

agents with each other and with external physical and chemical cues. During simulation, the

network is directly converted into a graph using the networkx library [50], which provides

access to many quantitative and comparative measures of network topology.

The first agent-based computer simulation of 2D spatial network growth, published in 1967

[20], already used a similar approach as our model: edges grow and branch according to rules,

respond to attractive and repulsive cues, and follow density gradients. The next growth direc-

tion is randomly assigned based on sampling the space around the growth tip. Inspired by

plant growth, this model can generate a variety of tree-like networks—a remarkable achieve-

ment given the limitations of computer simulations more than 50 years ago. While the field of

complex networks flourished decades later, relatively little work was done on spatial network

growth [1, 19]. In 2009, two new computational frameworks for neuronal network growth

were published, CX3D [25] and NETMORPH [26]. Both use biologically realistic growing and

branching rules and are openly available. In both models, synapse formation only takes place

after the growth phase. CX3D offers a more physically realistic treatment of mechanical forces

compared to our model, but lacks the flexibility of grid-based external structural cues. Two

other neuron growth models [23, 51] efficiently generate neuron tree morphologies and space-

filling networks, but without biologically realistic growth mechanisms and synapse formation.

Taylor-King et al. [52] use an elegant mean field approach for network growth based on local

state degree distributions. Whenever it is biologically plausible to analytically formulate local

rules, such an approach can accurately reproduce global properties. In their model for vessel

tree development, Perfahl et al. [53] include physical interactions with the environment and

between edges to study the role of mechanical forces for vessel development. In their “Unifying

theory of branching morphogenesis”, Hannezo et al. [28] present a stochastic model for epithe-

lial duct development based on branching and annihilating random walks. Although interac-

tions are limited to explicitly defined chemical gradients and anisotropy, this model can

Table 4. Sensitivity analysis.

Parameter N hki hcci ASP d hCBi hCIi hCHi

Directional Memory % - & & & & % %

Growth Cone Aperture - - % - % % & &

Branching Probability % % % & & & & %

Branching Angle - % % - - % - &

Tissue Anisotropy & - % % % % & &

Table 4: Sensitivity analysis of global network topology on local growth parameters and the anisotropy of the tissue environment. Columns from left to right: Number of

nodes, average node degree, average clustering coefficient, average shortest path length, edge density, node betweenness, information and harmonic centrality.

https://doi.org/10.1371/journal.pcbi.1008003.t004
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reproduce experimental tree topologies for a variety of organs. We summarized this compari-

son of our model with prior work in S1 Table. To our knowledge, our work presents the first

framework for network growth that includes a biologically motivated local growth process as

well as arbitrary interactions with an external environment, and is fully available as computa-

tional implementation.

We did not include energy consumption in our model in order to keep it as generic as pos-

sible. Depending on the type of network, different mechanisms of energy sources, energy dis-

tribution and consumption are possible. As an example, energy could either be “harvested”

from the environment by the growing processes, or distributed throughout the network from

cell bodies. Other existing models either omit energy consumption as well, or contain only spe-

cific energy-related mechanisms such as competition between growth cones [26] or diffusion

of proteins from the soma [25].

One class of biological networks where the interaction and feedback between invidiual

growth cones and the microenvironment during growth determines the resulting network

architecture are multicellular networks, such as neuronal networks in the brain or the osteo-

cyte network in bone. In bone, different degrees of tissue organization and the presence of sol-

uble cues determines the connectivity and arrangement of the resulting network. With the

framework presented here, the question can be investigated how local cellular response and

resulting network topology depend on each other by conducting virtual experiments with

varying parameters, which would not be possible in real experiments. The resulting theoretical

understanding can then inform the design of guiding structures (scaffolds) to facilitate optimal

network development in regenerating bone by providing the relevant physical and chemical

signals [54].

The growth of vascular and neuronal cell networks during embryonal development is

another example where soluble cues, the geometry of the environment, and the interaction

between nearby cells all play an important role [55]. Recent improvements of lightsheet imag-

ing technology now allow to visualize the entire growth process with high spatial and temporal

resolution [56]. Our framework predicts not only the outcome, but also the dynamics of this

process, which makes it possible to test specific hypotheses about the biological mechanisms

that locally control this growth process. In the future, this might contribute to solving the ques-

tion to what degree functional network architecture is encoded in the genome, or how the

interactions and mechanochemical feedback loops between cells and the environment during

growth determine the resulting tissue organization. Another interesting example is the role of

curvature for tissue growth and organization [57]. With our framework, it will be possible to

systematically vary the curvature of growth surfaces for networks while including other rele-

vant biological and physical signals in the same simulation framework.

A very interesting related field is the exploratory growth of plants guided by pairwise inter-

actions, tropic reponses to signals (e.g. light), and nastic (e.g. helical) movements. Recently, a

computational model was introduced to model the dynamics of such sensory-growth systems

[58, 59], taking into account the mechanical properties of the growing system. Such a frame-

work offers interesting opportunities not only to understand biological control principles, but

also for designing self-growing artificial systems. It would be interesting to see how this

approach can be extended towards the development of functional network architectures.

While we developed our framework with network growth in mind, it can also be turned

around and used to find and trace network structures in noisy image volumes by treating

them as guiding signals for growth. Many approaches exist to trace filaments [60, 61], but they

often have difficulties with branching structures. By simulating multiple growth processes

either directly on image data or e.g. on probability maps predicted by convolutional neural

networks, our framework might be able to find also highly branching and irregular structures.
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Network growth as defined here is a parallel process by definition and thus can be com-

puted in a distributed manner. We describe an efficient strategy for parallelization while taking

into account the interaction between neighbouring growth cones. Future improvements could

make use of the massively parallel processing power of graphical processing units.

Conclusion

We developed a probabilistic agent-based model to describe individual growth processes as

biased, correlated random motion with rules for branching, bifurcation, merging and termina-

tion. Using directional statistics, the influence of external cues on the growth process could be

obtained directly from real image data. Our tool allows us to study the relationship between

biological growth parameters and macroscopic function, and can generate plausible network

graphs that take local feedback into account as basis for comparative studies using graph-based

methods. Our approach is not limited to a specific type of network, includes a thorough treat-

ment of probabilities, and can easily include arbitrary external constraints. We implemented

our model in python and make it freely available as a computational framework, that allows

other researchers to perform simulations for diverse types of biological networks on all scales.

Methods

All edges and nodes are instances of their respective classes, with the attributes shown in

Table 3. The framework was implemented in Python 3 using numpy [62, 63]. The network is

directly converted into a networkx graph for further processing and analysis. On a 8-core Intel

Xeon 6134 3.2 GHz machine with 64 GB RAM, running a network simulation with 100 growth

cones in a 256x256x256 tissue volume for 50 steps takes 60 seconds. The scaling of the simula-

tion time with the number of growth cones and worker processes is shown in Fig 5. Source

code, documentation and example configurations of our computational model are available at

https://github.com/CIA-CCTB/pythrahyper_net.
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du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]. American Journal of Physics.

1997 Nov; 65(11):1079–1081. Available from: https://aapt.scitation.org/doi/10.1119/1.18725.

32. Patlak CS. Random walk with persistence and external bias. The bulletin of mathematical biophysics.

1953 Sep; 15(3):311–338. Available from: https://doi.org/10.1007/BF02476407.

33. Boas ML, Romain JE. Mathematical Methods in the Physical Sciences. Physics Today. 2009 Jan; 20

(6):81. Publisher: American Institute of PhysicsAIP. Available from: https://physicstoday.scitation.org/

doi/abs/10.1063/1.3034374.

34. Koenderink JJ. The structure of images. Biological Cybernetics. 1984 Aug; 50(5):363–370. Available

from: https://doi.org/10.1007/BF00336961.PMID: 6477978
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