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Abstract

There are two distinct classes of cells in the primary visual cortex (V1): simple cells and com-
plex cells. One defining feature of complex cells is their spatial phase invariance; they
respond strongly to oriented grating stimuli with a preferred orientation but with a wide range
of spatial phases. A classical model of complete spatial phase invariance in complex cells is
the energy model, in which the responses are the sum of the squared outputs of two linear
spatially phase-shifted filters. However, recent experimental studies have shown that com-
plex cells have a diverse range of spatial phase invariance and only a subset can be charac-
terized by the energy model. While several models have been proposed to explain how
complex cells could learn to be selective to orientation but invariant to spatial phase, most
existing models overlook many biologically important details. We propose a biologically
plausible model for complex cells that learns to pool inputs from simple cells based on the
presentation of natural scene stimuli. The model is a three-layer network with rate-based
neurons that describes the activities of LGN cells (layer 1), V1 simple cells (layer 2), and V1
complex cells (layer 3). The first two layers implement a recently proposed simple cell model
that is biologically plausible and accounts for many experimental phenomena. The neural
dynamics of the complex cells is modeled as the integration of simple cells inputs along with
response normalization. Connections between LGN and simple cells are learned using Heb-
bian and anti-Hebbian plasticity. Connections between simple and complex cells are learned
using a modified version of the Bienenstock, Cooper, and Munro (BCM) rule. Our results
demonstrate that the learning rule can describe a diversity of complex cells, similar to those
observed experimentally.

Author summary

Many cortical functions originate from the learning ability of the brain. How the proper-
ties of cortical cells are learned is vital for understanding how the brain works. There are
many models that explain how V1 simple cells can be learned. However, how V1 complex
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cells are learned still remains unclear. In this paper, we propose a model of learning in
complex cells based on the Bienenstock, Cooper, and Munro (BCM) rule. We demon-
strate that properties of receptive fields of complex cells can be learned using this biologi-
cally plausible learning rule. Quantitative comparisons between the model and
experimental data are performed. Results show that model complex cells can account for
the diversity of complex cells found in experimental studies. In summary, this study pro-
vides a plausible explanation for how complex cells can be learned using biologically plau-
sible plasticity mechanisms. Our findings help us to better understand biological vision
processing and provide us with insights into the general signal processing principles that
the visual cortex employs to process visual information.

Introduction

About 60 years ago, Hubel and Wiesel identified two types of neurons in the primary visual
cortex (V1) of cat: simple cells and complex cells [1, 2]. They categorized simple cells as neu-
rons that have receptive fields (RFs) with a spatial structure consisting of distinct light (ON)
and dark (OFF) regions. Furthermore, the RFs of simple cells exhibit positive summation
within ON and OFF regions and show antagonism between ON and OFF regions. Addition-
ally, it was possible to predict simple cell responses to novel stimuli via linear integration across
the ON and OFF regions of the RF. Most simple cells respond strongly to oriented edges or
gratings with a preference for a particular orientation (grating stimuli consist of spatially peri-
odic light and dark bands at a given orientation).

In contrast, complex cells exhibit significant nonlinear spatial integration. While they
respond strongly to moving oriented edges, they do not show the other characteristics of sim-
ple cells described above. One important property of complex cells is their spatial phase invari-
ance; i.e., strong responses are evoked by oriented gratings with the preferred orientation, but
for a wide range of spatial phases. This distinguishes them from simple cells, which are selec-
tive to spatial phase. Spatial phase refers to the position of the light and dark bands in the grat-
ing within one periodic cycle. Spatial phase invariance is similar to shift invariance or position
invariance, which means that the response is generally not sensitive to the relative position of
the stimulus within the RF of a complex cell.

Simple cell responses can be described phenomenologically using a linear-nonlinear model
that has three stages [3-5]. First, the input image is linearly filtered by a single spatial filter
whose weights represent the cell’s RF. Second, the output of the first stage, the feature contrast,
is passed through a static nonlinearity (usually one-sided, such as half-wave rectification) to
obtain the spike rate. Third, spike trains are generated via a Poisson process with this instanta-
neous spike rate. This is referred to as the linear-nonlinear-Poisson model [6].

A somewhat similar model with linear-nonlinear processing can be used to describe
responses of complex cells. However, for complex cells, multiple linear spatial filters are typi-
cally required, and the output of each filter is passed through a nonlinear function that is usu-
ally double-sided (e.g., squaring nonlinearity). Following this, the signals are combined across
filter channels by summation and can be passed through a final static nonlinearity to give the
predicted spike rate [4, 5, 7]. One classical phenomenological model for complex cells is the
energy model [4, 8], in which the complex cell responses are the sum of the squared outputs of
two linear spatially-phase-shifted filters, as shown in Fig 1A. For the energy model, the squar-
ing function imparts polarity invariance (non-selective to the polarity of the stimulus), and fil-
ters with different spatial phases generate spatial phase invariance. Although the energy model
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Fig 1. The energy model. Red and blue represent ON and OFF sub-regions of the receptive field of a simple cell,
respectively. (A) The classic energy model of a complex cell. The linear response of the input convolved with the filter
is passed to a two-sided nonlinear function (a power function in this case). The outputs of two nonlinear functions are
then summed to generate the response for the complex cell. (B) The equivalent hierarchical structure of the energy
model of a complex cell. The response of the complex cell sums over the responses of simple cells.

https://doi.org/10.1371/journal.pcbi.1007957.9001

can capture the spatial phase invariance of some complex cells, recent experimental studies
showed that many complex cells in cat visual cortex have spike rates that show large modula-
tions to spatial phase that are not accounted for by the energy model [9-12].

These types of models only describe the responses of neurons to visual stimuli and cannot
explain the biophysical mechanisms of complex cell responses. Several models have also inves-
tigated different network architectures; these can be divided into three categories: hierarchical,
parallel, and recurrent (see [13] for a review). The notion of the hierarchical model was pro-
posed by Hubel and Wiesel [2], where a complex cell pools the activities of simple cells with
the same orientation preference but with different spatial phase preferences so that it is orien-
tation selective but spatially phase invariant. This idea was later supported by an experimental
study [7]. From the perspective of a hierarchical structure, the energy model can be under-
stood as a complex cell having convergent inputs from four simple cells with different spatial
phase preferences. For example, the response of the complex cell is the weighted sum of four
simple cells, as shown in Fig 1B.

The concept of the hierarchical structure has been challenged by parallel and recurrent
models. In the parallel model [14], it is proposed that both simple and complex cells are gener-
ated by separate thalamocortical pathways in parallel. This is supported by the discovery that
some complex cells receive direct input from the thalamus [14]. However, some previous stud-
ies showed that most complex cells do not receive direct input from the thalamus [15-17]. The
idea of the recurrent model is supported by experimental evidence that cortical cells mainly
receive most of their input from other cortical neurons instead of the thalamus [18]. Therefore,
the response of cortical cells should be primarily determined by recurrent cortical inputs [16].
Nevertheless, thalamocortical connections have many features to make them strong although
they only account for a small fraction of excitatory synapses made by cortical cells [13].

In this paper, we investigate how the RFs of complex cells can be learned in such a way that
they explain experimental data for complex cells. We focus on the hierarchical structure
between simple and complex cells. Namely that complex cells pool feedforward input from
simple cells, as supported by experimental results [19]. Here, we address the question of how
complex cells learn which simple cells to pool. Given simple cells with RFs of different orienta-
tion and spatial phase preferences, there are two distinct possible mechanisms of pooling sim-
ple cells to construct complex cells: indiscriminate pooling and selective pooling.

Indiscriminate pooling means pooling randomly from any simple cells in a local region of
the cortical surface. If simple cells with similar orientation but different spatial phases are
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located in a local region via an orientation map, complex cells could be orientation-selective
but spatial-phase-invariant by indiscriminate pooling of these simple cells.

Selective pooling means pooling simple cells according to certain criteria. For example, only
simple cells with RFs of the same orientation but different spatial phase preferences can be
pooled.

The orientation maps necessary to maintain orientation selectivity under indiscriminate
pooling are prevalent among monkey, cat, and ferret V1 [20-22], and some models were
designed to describe complex cells based on the orientation topography of simple cells [23—
25]. However, there are also rodent species, such as mouse and rat, that do not have orienta-
tion maps but still have complex cells in V1 [26, 27]. Therefore, selective pooling seems to be a
more general principle for constructing complex cells by pooling simple cells.

Nevertheless, the question of how synaptic plasticity can selectively pool simple cell inputs
with appropriate weights for cells with different orientation and spatial phase selectivities still
remains. While some studies have addressed this issue [28-31], most existing models overlook
many details of biological reality. Some common problems of current models of complex cells
in this regime are listed as follows.

First, many models assume that the nonlinear function applied to filter outputs is two-
sided, i.e. the function increases away from zero in both the positive and negative directions of
filter output. However, biological simple cells, which form the inputs to the complex cell, have
a one-sided spiking nonlinearity. This artificially builds in polarity invariance to the complex
cell model, and contributes significantly to spatial phase invariance in an artificial way. This
problem exists in the Independent Subspace Analysis (ISA) model designed by Hyvirinen and
Hoyer [28] and the Slow Feature Analysis (SFA) model designed by Berkes and Wiskott [29].
These models do not explain how simple cells with similar orientation tuning, but opposite
polarity selectivity are pooled via the learning process.

Second, the weights connecting simple and complex cells are not learned in some models.
The weights in the ISA model [28] are fixed, with only the weights of the simple cells learned.
The weights in Hosoya and Hyvérinen’s model [30] are computed by strong dimensionality
reduction using Principal Component Analysis (PCA), which does not correspond to a form
of synaptic plasticity.

Third, the learning process of some models incorporates artificial components that do not
have direct biological realization: the SFA model [29] solves an optimization problem and
implies no Hebbian synaptic plasticity and the model designed by Einhéuser et al. [31] only
allows one winner neuron to learn in each iteration. Additionally, for the model of Einhduser
et al. [31], the ratio of simple to complex cells, 60: 4, is inconsistent with the experimental evi-
dence that complex cells are at least as prevalent as simple cells in V1 [32]. Therefore, investi-
gating how complex cell properties can be learned through biologically plausible plasticity
rules is an open, but important, problem for understanding how the brain works.

One candidate mechanism to solve this problem is efficient coding, which can be imple-
mented in a biologically plausible fashion, through Hebbian plasticity, to explain many experi-
mental phenomena of simple cells [33]. Though efficient coding can learn simple cells, we
found that a cascaded stage of efficient coding cannot effectively learn the RF properties of
complex cells from simple cell responses (see Discussion and S2 Appendix for details).

In this paper, we propose a biologically plausible model of complex cells based on the Bien-
enstock, Cooper, and Munro (BCM) synaptic plasticity rule [34, 35] and show that this leads
to a model of complex cells that can pool simple cells with various spatial phase preferences.
The pooled simple cells form the subspace of the complex cell and each pooled simple cell is a
subunit in the subspace. The learned subspace can account for the spatial phase invariance of
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experimentally recorded complex cells. Further analysis of model complex cells demonstrates
that the proposed model can account for the diversity of RF properties of complex cells found
in a recent experimental study [11].

Materials and methods
Structure of the model

The proposed three-layer network of rate-based neurons models the activities of lateral genicu-
late nucleus (LGN) cells (first layer), V1 simple cells (middle layer), and V1 complex cells (top
layer), as shown in Fig 2.

A summary of the parameters of the model that will be used throughout this paper is given
in Table 1.

The bottom two layers implement a two-layer model that is biologically plausible and has
been previously shown to account for many experimental phenomena [33]. This two-layer
model is a variant of sparse coding and incorporates many biological constraints. The dynam-
ics of LGN cells and simple cells are described by the evolution of the membrane potentials, v,
followed by application of a threshold-linear function to give firing rates, r:

Vb o= v xt+ (AT A )
(1)

r" = max(v",0),

V1 complex cells

V1 simple cells

Nh

uTA+

LA

OFF OFF OFF OFF

AON
7'0N l l l l rOFF

XoN f xOFFf

Fig 2. Graphical representation of the model. I is the identity matrix that represents self-excitation. Red and green
arrows represent excitatory and inhibitory connections, respectively. Upward and downward arrows represent
feedforward and feedback pathways. Parameters are defined in Table 1.

https://doi.org/10.1371/journal.pcbi.1007957.9002
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Table 1. Model symbols and parameters.

Description Symbol
Input stimuli to LGN/complex cells x*/ x©
Input stimuli to ON/OFF LGN cells XGn | Xbp
Membrane time constants of LGN/simple cells (both 10 ms) T/ Ts
Membrane potentials of LGN/simple cells v /v
Membrane potentials of ON/OFF LGN cells Von / Vo
Firing rates of LGN/simple/complex cells /S
Firing rates of ON/OFF LGN cells ron / o
Spontaneous firing rate of LGN (0.5 Hz) oL
Leakage voltages of simple cells Vi
Excitatory connection: all LGN cells to simple cells A"
Excitatory connection: ON/OFF LGN cells to simple cells Ab | At
Inhibitory connection: all LGN cells to simple cells A"
Inhibitory connection: ON/OFF LGN cells to simple cells Ay | AGee
Excitatory connection: simple cells to all LGN cells AL
Excitatory connection: simple cells to ON/OFF LGN cells Aé; / A?)F*F
Inhibitory connection: simple cells to all LGN cells A%
Inhibitory connection: simple cells to ON/OFF LGN cells Ag’; / Ag;F
Excitatory connection: simple cells to complex cells AS
Sparsity level (0.1) As

Upper bounds of LGN-simple/simple-complex connection weights (0.3 and 1) a1 max | 32,max
Learning rate of LGN-simple connection weights (3) M
Learning rates of weights and thresholds for complex cells (both 107%) Nal N
Weight regularization constants of LGN-simple/simple-complex connections (10> and 10™%) V1! Va
Parameters of normalization of complex cells (0.01 and 12) alp

https://doi.org/10.1371/journal.pcbi.1007957.t001

and
oS _(vS _ S u+T L u-T 1L
sV = (V* = Vi) + ASY Ton + ASS oy
ut T 1 u-T_L S
+AOFF rOFF + AOFF rOFF + r ’ (2)

r* = max(v’ — A, 0),

éNTv EFFT]T’ L= [VIéNT’ VI(‘)FFT}T’ = [rIéNT7 rléFFT}T’ A" = [Agg Ag}jp]’
AV = [AY AL AYT = (AL AL AYT = [ALL A%, 71 and g are the time constants of
the membranes of LGN cells and simple cells, 1,1, is the background firing rate for LGN cells,
and Ag is the threshold of the rectifying function of firing rates. v; , represents the change of
membrane potential caused by leakage currents. Details of the bottom two layers can be found
in [33].

The response of the complex cells is simply the linear summation of simple cells to which
they connect, as given by

where x* = [x

l'C = AgTXC, (3)

where Ay is a non-negative matrix that represents excitatory connections between simple and
complex cells and x° is the input to the complex cell.
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The model was simulated in MATLAB (R2020a, USA) and run on the high performance
computing platform Spartan [36]. The code is available at https://github.com/lianyunke/
Learning-Receptive-Field-Properties-of-Complex-Cells-in-V1.

Input

Natural images. For learning simple cells, the data set used in this paper consists of 50
randomly selected 1024 x 1536 pixel images of calibrated natural scenes from van Hateren’s
dataset [37].

Natural video. For natural visual stimuli with temporal information, such as videos, the
content between subsequent frames in a fixed region over a short time period is very similar
except for some translations or shifts in position, as results from the movement of an object or
self movement. Therefore, the temporal information in a natural video is similar to sequences
of translated images, as used to investigate temporal slowness learning [29]. In this paper, we
use a natural video to learn the complex cells. However, similar complex cells can also be
learned using a sequence of natural images (van Hateren’s dataset) with a random spatial jitter
to incorporate temporal information (see S1 Appendix for detail).

After simple cells are learned, a 2-minute natural video of size 1080 x 1920 pixels with
frame rate 24 Hz is used to learn the connection between simple and complex cells. For this
study, the central 800 x 800 pixel region of the video is used (https://youtu.be/K-Vr2bSMU7o,
with permission from the owner). In each iteration of the learning process, N consecutive
frames of the video are used. For the N chosen frames, the bottom two-layer model generates
N sets of simple cell responses. Since the N consecutive frames contain similar features with
spatial shifts or rotations, the neural activities of simple cells in response to the N frames will
also contain spatial phase information. Using the concept of the trace rule, where the response
is determined by the current and past responses [38], the average of N sets of simple cell
responses is then used as the input to the complex cells; i.e., x“ = (r®). In our opinion, simple
cells with similar orientation tuning will have similar average responses to the N video frames,
which helps with translation invariance if a suitable learning rule can pool co-active inputs.

Pre-processing of natural stimuli. The input patches are first whitened to mimic retinal
processing before visual processing. This process involves filtering the input image to model
the response of ganglion cells whose RFs are characterized as divisively normalized difference-
of-Gaussian filters [39, 40]. The whitened pixel intensity (I) at point (x, y) is calculated by

I(x,y) = W (4)

where Iy, I;, and I, are the outputs from three unit-normalized Gaussian filters: center filter
(o), surround filter (g;), and divisive normalization filter (g,), where g, captures the local
adaptation of ganglion cells [41]. Images are convolved with g, g;, and g, to give a 2D retinoto-
pic representation. The standard deviation of the center filters is set to 1 pixel. The standard
deviation of surround filters is chosen to be 1.5 pixels or 1.5 times the center filter standard
deviation, which is consistent with previous measurements [42]. The standard deviation of g,
has the same size as g; [40].

The whitened images are then multiplied with a 2D Gaussian windowing filter with stan-
dard deviations of 3 pixels in both vertical and horizontal directions. The purpose of this step
is to limit the spatial range of synaptic connectivity with LGN and, subsequently, V1 cells, sim-
ilar to the approach used by Linsker [43]. It also puts more emphasis on the central part of the
image patch to cause the learned simple RFs to be more centralized in the 2D image domain.
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This step also assumes that model complex cells pool local simple cells that have RFs in the
same region.

Pre-processed image patches of size M x M are then fed into LGN cells in the first layer. If
the pixel intensity is positive, it is set as the input to the ON LGN cell and the input to the cor-
responding OFF LGN cell is set to zero. If the pixel intensity is negative, the absolute value of
the intensity is set as the input to the OFF LGN cell and the input to the corresponding ON
LGN cell is set to zero.

Learning LGN-simple cell connections

Connections between LGN and simple cells are learned based on Hebbian or anti-Hebbian
plasticity, the changes of synaptic weights depend only on pre- and post-synaptic activities.
The learning rule derives from efficient coding and is similar to [33], given by

AN =, (= )eT) = 9,AY),

A = (= )r") = ,A%), 5
5

AAYT = _,,]1(<(1.L - rb,L)rST> - VlAdHr)a

AAY = _’71(<(rL - rb,L)rST> - VlAd‘i)v

where 7, is the learning rate, (-) is the ensemble-average operation over a batch of image
samples, r' — r, | is the vector of LGN firing rates r" reduced by the spontaneous rate 1,
(- rb_’L)rST is the Hebbian matrix given by the outer product of firing rate vectors r™ — r, 1
and r° for the LGN and simple cells, respectively, and y; is the weight regularization constant
that prevents weights from growing without bound. Note that changes in weight in the feed-
forward direction (LGN to simple cell; superscript u) are positively signed and are thus Heb-
bian, while those in the feedback direction (simple cell to LGN; superscript d) are signed
negative and are thus anti-Hebbian. The excitatory weights, A"* and A%*, are kept non-nega-
tive, while inhibitory weights, A"~ and A%, are kept non-positive during learning. In addi-
tion, the absolute value of each weight is limited to an upper bound, a; .y, that represents the
maximal synaptic efficacy. The only difference between the previous learning rules of simple
cells [33] and this study is that weight normalization is replaced by the combination of self-reg-
ularization terms in Eq 5 and the upper bound of connection weights.

Learning rule for simple-complex cell connections

Connections between simple and complex cells are learned based on the Bienenstock, Cooper,
and Munro rule, a form of Hebbian plasticity where the sign and efficacy change depend not
only on pre- and post-synaptic activities but also on the slowly varying values of the history of
post-synaptic activities [34].

Bienenstock, Cooper, and Munro (BCM) rule. The Bienenstock, Cooper, and Munro
(BCM) rule [34, 35] can learn underlying features from the input through a competitive pro-
cess between synapses of a neuron that arises from the thresholding mechanism that is part of
the BCM learning rule. However, BCM plasticity is designed for single neurons and does not
introduce any competition between network neurons that receive the same visual input. Law
and Cooper applied the BCM plasticity rule to a network using natural images as input stimuli,
and showed that this learning rule can learn RFs like those of simple cells [44]. However, since
the BCM plasticity rule is the same for every neuron in the network, the learned features of the
network tend to be similar [45]. By incorporating response normalization, where the response
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of a cell is normalized by the responses of other cells in the network [46], a “soft” form of com-
petition is introduced to the network. Furthermore, strong experimental evidence has been
found that normalization operates throughout the visual system, from the retina to the visual
cortex (see [47] for a review). By incorporating BCM plasticity and normalization, Willmore
et al. showed that normalized BCM (NBCM) can learn different simple cell-like RFs when the
model is trained on natural images [45]. However, the BCM and NBCM plasticity rules ignore
some biological constraints such as Dale’s Law [48] and non-negative neuronal responses.

For the synaptic weights between simple cell i and complex cell j, a; j, the BCM learning rule
updates the weight according to not only pre- and post-synaptic activities, x{" and rf", but also a

learned threshold for complex cell j, 6;

(6)

where 17, and 7y are the learning rates that determine the rates of change of the synaptic weight
and threshold. The original BCM rule allows weight a;; to change signs, which is not biologi-
cally plausible. Modified rules based on BCM are introduced below to incorporate biological
constraints. Note that the original BCM rule is given here for completeness (Eq 6), but only
the modified BCM and NBCM rules, given below, were used in this study.

Modified BCM rule. For the modified BCM rule, the synaptic weight between simple cell
iand complex cell j, a; j, is updated by the learning rule,

(7)

where ¥, is the weight regularization constant. In addition, the connections between simple
and complex cells are excitatory in the model, so a,; is kept non-negative during learning. The
upper bound of the connection weights is explicitly constrained to be a pax.

Note that the modified BCM learning rule (Eq 7) differs from the original BCM learning
rule (Eq 6) in three ways. First, the original BCM rule allows weights to change signs, which
is not permitted in the modified BCM rule. Second, g, is constrained by the maximal weight,
@3, max- Third, the original BCM rule does not have the weight regularization term, —y, a; j; this
term is added to prevent weights from growing without bound and to push unimportant
weights to zero.

Modified NBCM rule. The original NBCM rule proposed by Willmore et al. [45] shows
that this learning rule can learn different RFs for neurons in a network. NBCM incorporates
the response normalization model proposed by Heeger [46]. For the model, the response of
complex cells, 7", is normalized and the normalized response, (), is then used to update the

synaptic weight and threshold, as given by the NBCM learning rule,

c
L
iN i~k
o+ (%)
%
c.C (,C (8)
Aaiﬁj = N.X; rj,N(rj,N - 0,‘)7
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where the sum over k represents all complex cells in the network and a and 3 are constants

C

that determine the strength of the normalized response, r;, compared with response, r].c.

The modified NBCM learning rule introduces more constraints on the weights and is given
by

Aa; =n,(xr(ry —0,) —7.a),

i TiN\jN
AOj = 770((7}%)2 - 0j)7

where ¥, is the weight regularization constant. Additionally, the maximal value of the connec-

tion weights is explicitly constrained to be a; ,.x. As above, the modified NBCM learning rule

(Eq 9) differs from the original NBCM learning rule (Eq 8) in three ways. First, a;; is kept non-
negative during learning. Second, a;; is constrained by the maximal connection weight, @, max.
Third, there is a weight regularization term.

It should be mentioned that the normalization equation in Eq 9 uses the global information
of other neuron activities to calculate normalized responses of the post-synaptic neuron. This
is still consistent with the Hebbian principle of plasticity depending only on pre- and postsyn-
aptic activity as the activity of the postsynaptic neuron is the normalized form of the activity.
Such normalization is consistent with experimental data [47]. Mechanistically, this normaliza-
tion can arise in a biologically plausible fashion through lateral recurrent connections in V1
with physiologically realistic neural dynamics described by a supralinear stabilized network
model [49].

Training

After pre-processing the natural stimuli, input patches of size 16 x 16 (M = 16) are used in our
model, similar to previous studies [33, 50, 51], resulting in 256 ON and 256 OFF LGN cells.
We use 100 simple cells and 100 complex cells in the second and third layers, respectively. The
membrane time constants, 71 and 7s, for LGN and simple cells are both taken to be 10 ms,
which is physiologically plausible [52]. The spontaneous firing rate, 7,1, for LGN cells is cho-
sen to be 0.5 Hz although different values lead to similar results because the spontaneous firing
rates only provide a working point for the dynamical model [33]. The dynamical system of the
model described by Eqs 1-3 is numerically solved using the first-order Euler method. The sys-
tem was evolved for 20 iteration steps with integration time step of 4 ms, for calculating the
responses for both simple and complex cells. This allowed convergence to a numerically stable
solution.

Simple cells. The bottom two layers of the network are trained first on the natural image
data set (van Hateren’s dataset [37]). Since, during the course of training, A" approaches
~A%" and A" approaches ~A%* [33], we simply set A** = ~A%" and A™™ = —~A%* at the
beginning of training. The upper bound of connection weights between LGN and simple cells,
a1,max 18 set to 0.3 so that the excitatory weights cannot exceed 0.3 and inhibitory weights can-
not be less than —0.3. The sparsity level of simple cells, A, is set to 0.1. In addition, the learning
rule (Eq 5) uses a batch that contains 100 randomly selected 16 x 16 image patches that have
no temporal information in each epoch to accelerate the learning process, similar to previous
studies [51, 53]. The weight regularization constant, ;, is a small constant and set to 107 in
this study. The learning rate, 7,, is 3. 10° epochs are used in the training process.
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After the training process for simple cells, the connections between LGN and simple cells,
A" and A%, are fixed. Then the connections between simple cells and complex cells are trained
on the natural video using the learning rules given below.

Applying the modified BCM rule for complex cells. There are 4 x 10° epochs in the
training process because the learning rates for weights and threshold are small, taken to be
1. =107 and ng = 107, respectively. The weight regularization constant, y,, is set to 10™*. The
maximal connection weight, a, max is 1, so the connection strength between simple and com-
plex cells indicates how strongly a simple cell is pooled by a complex cell. The number of video
frames used in each iteration is N = 15. Since the input to the complex cells, x“ = (r®), is very
small by averaging over the N video frames, x° is scaled up by 10 when applying the modified
BCM rule.

Applying the modified NBCM rule for complex cells. The Same parameter values as
above are used for the modified NBCM rule where possible. There are 4 x 10° epochs in the
training process. The learning rates for weights and threshold are 7, = 107> and 775 = 10>,
respectively. The weight regularization constant, y,,, is 107%, and the maximal connection
weight, 4, max 1 1. The number of video frames, N, is taken to be 15. For the parameters in the
divisive normalization in Eq 9, & is a small number that avoids zero division and is set to 0.01.
The normalization gain, f3, is taken to be three different values, 11, 12, and 13, to investigate
the effect of S.

The modified NBCM rule is also applied on natural images (van Hateren’s dataset) with a
random spatial jitter and similar results are obtained (see S1 Appendix for detail).

Measuring spatial phase invariance

Spatial phase invariance, or partial invariance, is one of the most important features of com-
plex cells. Here, sinusoidal gratings with different spatial phases are used as input to the trained
model to examine whether model complex cells are invariant to different spatial phases.

Spatial phase tuning curve. First, an exhaustive search for each model complex cell is
conducted to find the preferred orientation, spatial frequency, and spatial phase of the sinusoi-
dal grating that evokes the maximal response in the following parameter space: orientation is
varied between 0 and 180° with steps of 15°; spatial frequency is varied between 0.05 and 0.4
cycles/pixel with steps of 0.05 cycles/pixel; spatial phase is varied between 0 and 360° with
steps of 10°. Then, a sequence of sinusoidal gratings is generated with the preferred orientation
and spatial frequency and spatial phases spanning 0-360° with a step of 3.6° (100 different spa-
tial phases). This sequence of sinusoidal gratings is similar to the drifting sinusoidal gratings
used in experimental studies. For each complex cell, the sequence of gratings with different
spatial phases is used as the input to the model one after another, while a sequence of responses
for each grating is recorded. Therefore, responses vs. spatial phases can be plotted as the spatial
phase tuning curve for each complex cell. A complex cell that is completely phase-invariant
will have a flat spatial phase tuning curve, while a cell that is phase selective will have a bell-
shaped spatial phase tuning curve.

F,/Fy ratio. Movshon, Thompson, and Tolhurst [3, 7] found that simple and complex
cells have different degrees of response modulation when presented with drifting gratings.
Subsequently, the degree of response modulation is defined by the ratio F;/F, [54], where F; is
the component of the response to the drifting grating at the temporal drifting frequency and
Fy is the DC component of the response; i.e., the mean response over time to the drifting grat-
ing with spontaneous activity subtracted. Cells are identified as complex if F;/F, < 1 and sim-
ple if F;/F, > 1. Using cell activities in response to drifting gratings, the ratio F,/F is used as a
quantitative measure of spatial phase invariance [55]. Since the spatial phase of drifting
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gratings changes linearly with time (the speed of change is determined by the temporal fre-
quency of drifting gratings), sinusoidal gratings with different spatial phases are used to mimic
the drifting gratings in this study.

Measuring orientation tuning

Similar to measuring spatial phase tuning, an exhaustive search for each model complex cell is
first conducted to find the preferred spatial frequency, orientation, and spatial phase of the
sinusoidal gratings that generates maximal complex cell response. Then sinusoidal gratings,
with preferred frequency, all possible phases spanning 0-360° with step size of 3.6°, and all
possible orientations ranging over 0-180° with a step size of 1.8°, are presented to the model
cells. The mean response, 1y, to the gratings with all possible phases for each orientation, ¢y, is
recorded. The orientations, ¢y, range over 0-180° with a step size of 1.8°. Therefore, there are
100 pairs of r, and ¢y that generate the orientation tuning curve for each model complex cell.
This orientation tuning curve is then used to compute the preferred orientation and orienta-
tion bandwidth as given below.

The preferred orientation. The preferred orientation of a complex cell is the orientation
that generates the maximal response. After the orientation tuning curve is obtained, the pre-
ferred orientation is simply the peak orientation of the orientation tuning curve.

Orientation bandwidth. The orientation bandwidth used in this paper is the half-band-
width, which was also used in previous experimental studies [56, 57]. Similar to Ringach et al.
[57], the orientation tuning curve obtained earlier is first smoothed by a Hanning filter with a
half-width of 13.5° at half-height. The half-bandwidth is simply the width at 1//2 height of
the smoothed orientation tuning curve, indicating how broadly the cell is tuned to the pre-
ferred orientation. Cells with orientation bandwidth close to 90° are invariant to orientations.

Analyzing complex cells using Nonlinear Input Model

Recently, Almasi et al. [11] applied the Nonlinear Input Model (NIM) framework to analyze
RF properties of complex cells and found a diverse range of nonlinear response types in cat
V1. Motivated by this study, we employ here the NIM framework to determine the extent to
which theoretically learned model complex cells can account for the diverse response proper-
ties observed in cat V1.

Nonlinear Input Model. The Nonlinear Input Model (NIM) proposed by McFarland
etal. [58] is a general model that assumes minimal but biologically motivated constraints
about the underlying neuronal computation; i.e., filters and nonlinearities. The NIM compo-
nents, when fitted to data, can reveal valuable insights about the mechanism of neural
computation.

The structure of the NIM is depicted in Fig 3 and assumes a hierarchical architecture in
which the spike rate response, 1, is a nonlinear function of the input visual stimulus, s, given as
(58]

r :f<zgk(hk : S)) ) (10)

where hy indicates the k-th spatial RF filter and gi(-) denotes the nonlinear function (termed
input nonlinearity) applied to the filter’s output. The output of each filter is the inner product
of the stimulus and each filter (hy - s). The model sums inputs from K parallel input streams
with arbitrary nonlinearities, which are then passed through a spiking function that gives the
firing rate for the cell. The filters and input nonlinearities are described non-parametrically,
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Fig 3. The structure of Nonlinear Input Model (NIM). The filter and input nonlinearities determine how it responds
to the visual input. The sum of responses of all filters are then passed to a spiking nonlinear function to generate the
response of the model.

https://doi.org/10.1371/journal.pcbi.1007957.9003

while the spiking function is assumed to be a monotone-increasing threshold-like function
with the form described parametrically as

f(x) = olog (1 +exp (";0)) +, (11)

where 0, 6, and 6 are parameters that determine the shape of the function. It should be men-
tioned that, despite the biological motivation of the NIM, the filters do not necessarily corre-
spond to anatomical cells (subunits) pooled by a complex cell, but rather provide a functional
basis that might have possible interpretations. The fitting uses maximum likelihood estimation
of the model parameters, including RF filters, input nonlinearities, and spiking nonlinearity,
given the stimulus and response. Overall, NIM fitting only assumes a hierarchical structure
and a general form of spiking nonlinearity, while all other aspects are estimated from the stim-
ulus (input) and response (output). During the NIM fitting procedure, we assume that the RF
structure of each model complex cell comprises two filters and, accordingly, two correspond-
ing input nonlinearities.

Orientation breadth, spatial frequency breadth, and spatial phase breadth. Conven-
tional measures of the degree of tuning of V1 cells use a set of standard stimuli, such as sinusoi-
dal gratings, to estimate the tuning bandwidths to characteristics such as orientation, spatial
frequency, and spatial phase. In contrast, the characterization used by Almasi et al. [11] esti-
mated the unique set of spatial features to which each cell is sensitive and then estimated the
degree of tuning of that cell to those features alone. This was based on an estimate of the non-
linear response to all of these features, with the cell responding strongly to some and weakly to
others. The set of spatial features to which a cell is sensitive is identified as follows. Each filter
in the NIM corresponds to a spatial feature that is identical in spatial structure to the filter
itself. This is a primary feature of the cell and is the spatial feature that the filter is sensitive to
when that feature appears embedded in a visual stimulus. As the NIM may have multiple fil-
ters, the model cell can be sensitive to multiple spatial features. The set of all features to which
the NIM cell is sensitive is given by the feature subspace spanned by the primary features; it
encompasses all possible linear combinations of the primary features. For a full interpretation
of the NIM, refer to [11].
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Based on the nonlinear response of the cell to its subspace of features, the tuning to the ori-
entation, spatial frequency, and spatial phase of these features are defined as follows. First, the
orientation, spatial frequency, and spatial phase are calculated for all features in the cell’s sub-
space of features. This is obtained from the peak in the amplitude of the two-dimensional Fou-
rier transform of the feature (see [11]). Next, the feature to which the cell is most sensitive is
defined as the feature from the cell’s subspace requiring the least contrast to drive the cell at a
given reference rate. Finally, tuning breadths are calculated. For example, orientation breadth
is defined as the range of orientations of features from the cell’s subspace to which the cell
showed invariant response. This invariance for a given reference rate includes only features
that required less than twice the contrast needed by the cell’s most sensitive feature to attain
that rate. A similar calculation is applied for the spatial frequency and spatial phase tuning
breadths. The maximal values of orientation breadth, spatial frequency breadth, and spatial
phase breadth are considered to be 180°, 0.6 cpd (cycles per degree), and 360°, respectively.
Histograms of these three measures for both model and experimental data, along with the sta-
tistical comparison using Welch’s t-test, are generated to investigate the performance of the
model.

Results

We present results based on the modified Bienstock, Cooper, and Munro (BCM) and modified
Normalized BCM (NBCM) rules. The modified BCM rule learns complex cells that are highly
repetitive, while the modified NBCM rule learns different complex cells that are consistent
with experimental data.

Complex cells based on the modified BCM rule

The model can learn orientation-selective and spatial phase invariant complex cell
responses. One example of model complex cells, C18, is displayed in Fig 4 to illustrate that
the model with the modified BCM rule can learn spatial phase invariance as well as orientation
selectivity.

In order to show which simple cells provide substantial input to each complex cell, only
simple cells with connection weights larger than 0.4 are displayed (the maximal value of the
weight is 1). These are referred to as the substantial simple cell inputs. After learning, most
connection weights are approaching to either 0 or 1. For these simple cells, the synaptic field
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Fig 4. Complex cell C18 trained using the modified BCM rule with N = 15. (A) Each block is a 16 x 16 synaptic field
(defined in Eq 12). Values in each block are normalized to the range [-1 1] when plotting the figure. (B) Orientation
tuning curves. (C) Spatial phase tuning curves. Solid lines are for simple cells in the subspace. The dotted line is for
complex cell C18. S represents simple cell and the following number is the index of the simple cell.

https://doi.org/10.1371/journal.pcbi.1007957.9004
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(Sp) [33] is used to visualize the weights between LGN cells and V1 simple cells (Fig 4A), and is
defined as

S = (ASx + Aoy) — (AGe: + Adk)- (12)

These synaptic fields exhibited similarly oriented bands of excitatory ON (red) and OFF
(blue) inputs to each other indicating similar orientation tuning of the inputs. This is quanti-
fied in Fig 4, which show that, for each complex cell, the substantial simple cell inputs have
similar preferred orientations but widely different spatial phase tuning (colored lines). This
makes the model cells largely invariant to spatial phase but still selective to orientation (black
dotted lines). The spatial phase invariance is quantified by the small values of the F,/Fj ratio
obtained for these examples. A cell that is completely phase-invariant will have F,/F, = 0, while
a cell that is selective to a small range of spatial phases will have the F;/Fj ratio close to 2.
Smaller values of Fy/F, indicate greater spatial phase invariance.

Model complex cells are similar. While model cells under learning with the modified
BCM rule are invariant to spatial phase but selective to orientation, we find that the population
of cells are not diverse in their tuning. Instead, they have similar tuning properties because
they pool substantial inputs from the same simple cells.

The scatter plot of simple-complex cell connections is shown in Fig 5A, where each dot
indicates that the connection weight between the simple and complex cell has a substantial
weight (>0.4). As seen in Fig 5A, complex cells have substantial connections with the same
simple cells, so dots in the scatter plot form vertical lines. However, most simple cells have no
substantial connection with any complex cell (90/100), apparent from the complete lack of
dots in many columns. Another scatter plot of F,/F, vs. preferred orientation is displayed in
the right column of Fig 5A, which shows that model complex cells are clustered in a limited
region of this space of tuning properties.

The results presented above indicate that the learned model lacks diversity though different
model cells are initialized differently, which reflects the lack of competition in the network
based on the modified BCM rule.

Similar to the BCM rule, the modified BCM rule does not introduce any competition
between cells, so the learned cells exhibit similar tuning properties, as discussed by Willmore
et al. [45]. Therefore, we introduce soft competition using the modified NBCM to learn differ-
ent tuning properties for model complex cells.

Complex cells based on the modified NBCM learning rule

A diverse range of tuning properties of complex cells across the population are
learned. The NBCM rule adds divisive normalization of responses to the BCM rule [46].

This re-scales the neuronal responses based on responses of other units in the model, so a
form of soft competition between cells is introduced to the model and leads to the model learn-
ing different cells.

In comparison with model complex cells learned by the modified BCM rule, the modified
NBCM rule forces the model to learn different complex cells with different orientations such
that there is little overlap or repetition in substantial simple cell inputs across the complex cell
population. The scatter plots of simple-complex cell connections with different values of nor-
malization gain, f3, are given in the left column of Fig 5B-5D, which shows that simple-com-
plex connections are considerably more diverse than those given by the modified BCM
learning rule (Fig 5A). Dots in the figure appear more randomly assigned to complex cells, and
there is much less evidence of vertical lines, such as those that appear in Fig 5A. Furthermore,
the scatter plots of F;/F, vs. preferred orientation (right column of Fig 5B-5D) cover a much
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Fig 5. Scatter plots that investigate the diversity of learned complex cells. Left: scatter plot of simple-complex cell
connections for the model. The dots in each row represent the indices of simple cells that have substantial weights
(>0.4) with the complex cell indicated by an index on y-axis. Right: scatter plot of F;/Fj vs. preferred orientation for all
model complex cells. (A) Modified BCM rule. (B)-(D) Modified NBCM rule with =11 (B), 8= 12 (C), and S = 13
(D).

https://doi.org/10.1371/journal.pcbi.1007957.9005
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wider range compared with Fig 5A. They include all orientations (0 to 180°) and a range of
spatial phase tuning from complete invariance (F;/F close to 0) to moderate tuning (F;/F,
between 0 and 1). This indicates that the tuning properties are more diverse than those
obtained with the modified BCM rule.

Normalization introduces smooth competition required to learn different complex
cells. The competition between neurons is important for the network to learn diverse proper-
ties. Results presented above indicate that the competition introduced by the normalization in
the NBCM rule promotes the diversity of tuning across the population of complex cells. How-
ever, based on the hierarchical assumption of the model, the competition introduced by effi-
cient coding is too strong to produce RF properties of complex cells (see Discussion and S2
Appendix). This is also consistent with the result that the normalization gain, f, determines
the level of competition.

Fig 5 shows that the modified NBCM rule can learn different complex cells that have small
F,/F, ratio and different preferred orientation tuning. Moreover, simple-complex connections
become sparser as the normalization gain, f3, increases.

The right column of Fig 5B-5D indicates that more complex cells have smaller F,/F, ratio
when S is small. This observation is supported by the histogram of F,/F, shown in Fig 6, which
shows that the distribution of F,/F, skews towards zero when f decreases, indicating greater
spatial phase invariance. The histogram of model complex cells with B = 12 (Fig 6C) has a close
resemblance to experimental data (Fig 6A).

Furthermore, we also investigate the diversity of how tightly or broadly cells are tuned to
orientation in the population of model complex cells. This is assessed by measuring orientation
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Fig 6. Histograms of F,/F, for models based on the modified NBCM rule. (A) Experimental complex cells [57].

Model complex cells learned with (B) =11, (C) =12, and (D) 8= 13.

https://doi.org/10.1371/journal.pcbi.1007957.9006
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https://doi.org/10.1371/journal.pcbi.1007957.g007

tuning bandwidth of responses to drifting gratings (see for detail). Fig 7 shows the histogram
of half-bandwidth for experimental and model data (only data points with F,/F, < =1 are
included). The histograms in Fig 7 show that the distribution of orientation bandwidth skews
towards smaller values as f3 increases. Model complex cells have a similar proportion of cells
with wide orientation bandwidth (>60°), but models with different values of N change the
proportion of cells with small orientation bandwidth. The histogram of model complex cells
with = 12 (Fig 7C) matches with the experimental data better than other values of 5. How-
ever, experimental data has a relatively smooth transition from low orientation bandwidth to
high orientation bandwidth, while model data has less variability in the region from 40° to 60°.
The discrepancies between experimental and model data are reviewed in Complex cells based
on the modified NBCM learning rule.

Combining Figs 5-7, we conclude that the normalization gain, §, determines the level of
competition between model complex cells. As B decreases, there is less competition and each
complex cell pools more simple cells, which leads to a larger spatial phase invariance (smaller
F,/F, ratio) and wider orientation tuning (larger orientation bandwidth). Therefore, smooth
competition that promotes diversity but preserves some invariance is crucial to the learned RF
properties of complex cells.

Given the better match to experimental data (Figs 6C and 7C), the data set for = 12 with
the modified NBCM learning rule is used for further analysis in the following section.

Examples of model complex cells. Some examples of complex cells are provided to dem-
onstrate the diversity of model complex cells and the resemblance to experimental complex
cells.
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Fig 8. Examples of model complex cells based on the modified NBCM rule. Left: each block is a 16 x 16 synaptic
field (defined in Eq 12) for simple cells in the subspace and values in each block are normalized to the range [-1 1]
when plotting the figure. Middle: orientation tuning curve. Right: spatial phase tuning curves. Solid lines are for simple
cells in the subspace. Dotted line is for complex cell. S represents simple cell and the following number is the index of
the simple cell. (A) Complex cell that is invariant to all spatial phases. (B) Complex cell that shows invariance to
perturbations in orientation. (C) Complex cell that is invariant to orientation but not spatial phase.

https://doi.org/10.1371/journal.pcbi.1007957.g008

A complex cell that is invariant to all spatial phases: Fig 8A shows a model complex cell
(C33) that shows a high degree of invariance across all spatial phases, as its response shows
limited modulation with spatial phase. Complex cell C33 has substantial simple cell inputs
with similar but not identical orientations and spatial phase tuning curves covering all
phases. This leads to spatial phase invariance for the model complex cell with a very small
F1/Fy = 0.086. The model complex cell is highly selective to a particular orientation, as seen
in the orientation tuning curve. Qualitatively similar cells are observed in cat primary visual
cortex [11].

A complex cell that shows invariance to perturbations in orientation: Fig 8B shows a model
complex cell (C13) that has two major orientations in the subspace: one vertical and another
oblique. As a result, the orientation tuning curve has a wider bandwidth compared with

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007957 March 2, 2021 19/27


https://doi.org/10.1371/journal.pcbi.1007957.g008
https://doi.org/10.1371/journal.pcbi.1007957

PLOS COMPUTATIONAL BIOLOGY

Learning complex cells in V1

complex cell C33 in Fig 8A. Complex cell C13 is invariant to a limited range of spatial phase
because the spatial phase tuning curves of simple cells in the subspace only cover a subset of
360°. Qualitatively similar cells are observed in cat primary visual cortex [11].

A complex cell that is invariant to orientation but not spatial phase: Fig 8C shows an model
complex cell (C50) that is invariant to orientation but not to spatial phase. Simple cells in the
subspace have various orientations including vertical, oblique, and non-oriented simple cells.
Qualitatively similar cells are observed in cat primary visual cortex [11].

Population statistics compared with experimental data. The example model cells
described above suggest that there is a diversity of tuning for orientation and spatial phase in
the model population. This is consistent with a recent study that characterized nonlinear RF
models in a population of cat V1 neurons, and also found a diversity of tuning properties [11].
To quantitatively compare our results for the learned model with these experimental results,
population statistics are analyzed using the three measures of tuning used in the experimental
study (summarized in Materials and methods): orientation breadth, spatial frequency breadth,
and spatial phase breadth. Comparisons between model and experimental data [11] are shown

in Fig 9.
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Fig 9. Comparison between experimental data [11] (left) and model data trained using the modified NBCM rule (middle). Right: histograms,
where filled points indicate differences that are significant (p-value<0.05; Welch’s t-test). (A) Orientation breadth (°). (B) Spatial frequency breadth
(cycles per degree). (C) Spatial phase breadth (°).

https://doi.org/10.1371/journal.pchi.1007957.g009
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Fig 9A shows that most cells for both model and experimental data are highly tuned to ori-
entation (orientation breadth <45°), but experimental complex cells have a somewhat broader
distribution of orientation breaths than the model complex cells. In general, the overlap
between the histograms of model and experimental data accounts for 88.7% of the histograms
spanned by both model and experimental data.

Fig 9B shows that model data has similar range of tuning to spatial frequency as experimen-
tal data. The spatial frequency breadth of the model displayed in the figure is scaled to match
the experimental data. It is important to mention that the spatial frequency of the model
depends on the assumption of how large the visual field the input image represents. Therefore,
different sizes of the visual field will scale the spatial frequency. In general, the overlap between
the histograms of model and experimental data accounts for 93.6% of the histograms spanned
by both model and experimental data.

Fig 9C shows that both model and experimental data cover a wide range of spatial phase
tuning, except that the model data has more complex cells with spatial phase breadth around
150°. In general, the overlap between the histograms of model and experimental data accounts
for 60.4% of the histograms spanned by both model and experimental data.

Overall, the model can account for the diversity of complex cells found in the experimental
study of Almasi et al. [11]. Despite some discrepancies in the histograms of these three mea-
sures of tuning, the model can capture the trends of the distributions.

Discussion
Natural video vs. jittered natural images

Complex cells are trained on the natural video in this paper and jittered natural images in S1
Appendix. The spatio-temporal information contained in consecutive frames of either a natu-
ral video or jittered patches of a natural image allows the model to learn complex cells that
match experimental data well. Consecutive frames of a video contain visual information in this
moving world, while jittered images generate visual inputs that are similar to eye saccades.

The modified BCM rule vs. the modified NBCM rule

Both the modified BCM and modified NBCM plasticity rules can learn the input weights of
model complex cells that result in spatial phase invariance and orientation selectivity. How-
ever, the complex cells that learned using the modified BCM rule were highly similar to each
other in their tuning properties, while complex cells that learned with the modified NBCM
rule exhibited a wide diversity of tuning to orientation and spatial phase. The similarities
between the distributions of tuning properties in experimental and model data learned by the
modified NBCM rule suggest that this rule can explain complex cell properties well and that
complex cells can be learned in a biologically plausible neural network model.

Response normalization

Response normalization was implemented in the modified NBCM model as a form of divisive
gain modulation dependent on the activity of all other neurons in the network. It plays an
important role in the model, enabling it to learn complex cells with different tuning because it
introduces competition between cells that discourages cells from responding concurrently.
Without normalization, model complex cells tend to have similar tuning and lack the diversity
seen in experimental data. Normalization of responses in Eq 9 was first proposed by Heeger
[46] and is suggested to be a canonical neural computation, for which there is strong evidence
[47]. While the explicitly divisive form of response normalization proposed by Heeger is
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difficult to justify biophysically at the level of a single neuron, Rubin et al. [49] suggested that
normalization can be implemented in the cortex using a stabilized supralinear network that
employs recurrent connections. The results presented in this study indicate that the model can
learn complex cells using a hierarchical structure, but this does not rule out the importance of
the recurrent structure because recurrent connections might be important to implement nor-
malization in the neural circuits.

For the normalization in our model (Eq 9), a is a small positive constant in the denomina-
tor that avoids zero division in normalization. If a is large compared with (r“)?, the normali-
zation is simply a constant scaling of the neural response. Therefore, we choose a small value,
a = 0.01. Other small values of @, such as 107>, will generate similar results (see an example in
S1 Fig). The value of 8 controls the magnitude of responses following the normalization.
When f3is large, learned complex cells pool fewer simple cell inputs and thus are less invariant
to spatial phase. In other words, 5 controls the level of competition between cells and large val-
ues lead to stronger competition such that learned cells are more distinctly tuned. The interac-
tion between normalization and the learning rule of the model could potentially account for
more experimental data with different values of the parameters.

Discrepancies between model and experimental data

The model proposed in this paper can pool simple cell inputs into the subspace of complex
cells. However, although the main features of the model agree qualitatively with the experi-
mental data, some discrepancies between the model and experimental data exist and remain to
be explored.

The model can account for the diversity of tuning properties of complex cells in the cat
visual cortex reported by Almasi et al. [11], but there are some differences in the distributions
of the population statistics. In addition, the experimental data of Ringach et al. [57] shows
greater diversity in orientation bandwidths than the model data. This may be because the
model cells are only a subset of cortical cells. Alternatively, we cannot exclude the possibility
that choices of free parameters in our model might lead to results with a greater range of orien-
tation bandwidths. Another reason for differences in orientation bandwidths between the
model and experimental data may be related to the visual stimuli and the temporal dynamics
of the neural system. In the experimental study that measured orientation selectivity in
macaque V1 [57], drifting sinusoidal gratings were used as the visual stimuli, which engage the
temporal dynamics of the cells. However, when calculating the spatial phase tuning properties
of model cells, steady-state responses to each spatial phase of the drifting gratings were used.
In addition, the current model does not incorporate the temporal dynamics of cells. The inves-
tigation of a model that incorporates temporal dynamics is left for future research.

A recent model based on predictive coding

Franciosini et al. [59] recently presented modeling work of complex cells based on predictive
coding. The difference from the model proposed here is that their model used symmetric con-
nections between simple cell inputs and simple cells, and between complex cell inputs and
complex cells. Furthermore, there are two stages of pooling between simple cell responses and
the complex cell inputs: spatial max-pooling with kernel size 2 x 2 and group-pooling between
neighbouring groups. After learning the connections between simple cell inputs and simple
cells, and between complex cell inputs and complex cells, their model can learn a topographical
map of simple cells such that model complex cells pool local simple cell receptive fields that are
similar in tuning to orientation but variable in tuning to spatial phase to achieve spatial phase
invariance. This is a plausible mechanism in animals, such as felines and primates, that have
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such topographic orientation maps, but does not apply to animals that lack these maps in
visual cortex, such as rodents and lagomorphs. The learning of complex cells depend on the
pooling mechanism, but how the pooling stages in their model are implemented in a biologi-
cally plausible way is not clear. Another limitation of the model is that the learning rule is not
local and the presumed symmetric connections are not biologically realistic.

Efficient coding

The principle of efficient coding and its associated learning rule helps the model units learn
teatures, which also makes them highly selective to their preferred features. The competition
brought about by efficient coding is indispensable for achieving selectivity and diversity of
responses, either through feedback [33, 60] or lateral connections [50, 61]. However, the com-
petition might also be very strong, as can be seen from Fig 11 of Olshausen and Field [53],
where the feedforward response is much stronger than the response in the efficient coding
model.

Based on our assumption of a hierarchical structure, we conducted extensive investigation
to understand if efficient coding, implemented as a sparse coding model, can learn the correct
simple cell inputs to complex cells by finding an efficient representation of natural stimuli with
temporal information. We found that model complex cells can learn to pool simple cell inputs
with a wide range of spatial phase selectivities. However, the strong competition between com-
plex cells introduced by efficient coding to make responses sparse suppresses responses of
model complex cells to all but a small set of spatial phases. As such, they behave like simple
cells that are very selective to spatial phase (see S2 Appendix for details).

However, the BCM-based models proposed in this paper can learn receptive field properties
of complex cells. The modified BCM rule can learn useful representations and the response
normalization introduces competition to the network. In terms of competition, response nor-
malization is much softer than efficient coding because efficient coding pushes the activity of
many cells to zero while normalization only adjusts the levels of activities. Therefore, the soft
competition introduced by response normalization helps the model learn different complex
cells while still allowing broad tuning to simple cell inputs with different spatial phase
selectivities.

Limitations and future work

The learning model of complex cells proposed here can explain the emergence of receptive
field properties of experimentally recorded complex cells. However, some limitations remain
in the current model and can be improved further. First, the training processes of simple and
complex cells are separate; i.e., simple cells are trained first and then complex cells. Second, the
complex model has no temporal dynamics (although the simple cell model does). Finally,
response normalization in this paper does not have an explicit biologically plausible imple-
mentation. For future work, a more unified model with temporal dynamics and normalization
can be incorporated into the model to account for complex cell responses, which may poten-
tially reduce the discrepancies between model and experimental data as well.

Supporting information

S1 Appendix. Complex cells can also be learned using jittered images. This document gives
details on learning complex cells using jittered natural images instead of a natural video.
(PDF)
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S$2 Appendix. Can complex cells be learned by efficient coding?. This document gives details
on investigating efficient coding for learning complex cells.
(PDF)

S1 Fig. Scatter plots that display the diversity of learned complex cells based on the modi-
fied NBCM with & = 107> while other parameters are the same as Fig 5C.
(TIF)
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