
RESEARCH ARTICLE

PhANNs, a fast and accurate tool and web

server to classify phage structural proteins

Vito Adrian CantuID
1,2, Peter Salamon2,3, Victor SeguritanID

1¤a, Jackson Redfield4¤b,

David Salamon3, Robert A. EdwardsID
1,2,4¤c, Anca M. SegallID

1,2,4*

1 Computational Science Research Center, San Diego State University, San Diego, United States of

America, 2 Viral Information Institute, San Diego State University, San Diego, United States of America,

3 Department of Mathematics and Statistics, San Diego State University, San Diego, United States of

America, 4 Department of Biology, San Diego State University, San Diego, United States of America

¤a Current address: Experian, Costa Mesa, CA, United States of America

¤b Current address: Inova Diagnostics, San Diego, CA, United States of America

¤c Current address: College of Science and Engineering, Flinders University, South Australia

* asegall@sdsu.edu

Abstract

For any given bacteriophage genome or phage-derived sequences in metagenomic data

sets, we are unable to assign a function to 50–90% of genes, or more. Structural protein-

encoding genes constitute a large fraction of the average phage genome and are among the

most divergent and difficult-to-identify genes using homology-based methods. To under-

stand the functions encoded by phages, their contributions to their environments, and to

help gauge their utility as potential phage therapy agents, we have developed a new

approach to classify phage ORFs into ten major classes of structural proteins or into an

“other” category. The resulting tool is named PhANNs (Phage Artificial Neural Networks).

We built a database of 538,213 manually curated phage protein sequences that we split into

eleven subsets (10 for cross-validation, one for testing) using a novel clustering method that

ensures there are no homologous proteins between sets yet maintains the maximum

sequence diversity for training. An Artificial Neural Network ensemble trained on features

extracted from those sets reached a test F1-score of 0.875 and test accuracy of 86.2%.

PhANNs can rapidly classify proteins into one of the ten structural classes or, if not predicted

to fall in one of the ten classes, as “other,” providing a new approach for functional annota-

tion of phage proteins. PhANNs is open source and can be run from our web server or

installed locally.

Author summary

Bacteriophages (phages, viruses that infect bacteria) are the most abundant biological

entity on Earth. They outnumber bacteria by a factor of ten. As phages are very different

from each other and from bacteria, and we have relatively few phage genes in our database

compared to bacterial genes, we are unable to assign function to 50–90% of phage genes.

In this work, we developed PhANNs, a machine learning tool that can classify a phage
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gene as one of ten structural roles, or “other”. This approach does not require a similar

gene to be known.

This is a PLOS Computational Biology Software paper.

Introduction

Bacteriophages (phages) are the most abundant biological entity on the Earth [1]. They modu-

late microbial communities in several possible ways: by lysing specific taxonomic members or

narrow groups of microbiomes, they affect the microbial population dynamics and change

niche availability for different community members. Via transduction and/or lysogeny, they

mediate horizontal transfer of genetic material such as virulence factors [2], metabolic auxil-

iary genes [3], photosystems and other genes to enhance photosynthesis[4], and phage produc-

tion in general, by providing the host with immunity from killing by other phages. Temperate

phages can become part of the host genome as prophages; most bacterial genomes contain at

least one, and often multiple prophages [5,6].

Phage structures (virions) are composed of proteins that encapsulate and protect their

genomes. The structural proteins (or virion proteins) also recognize the host, bind to its sur-

face receptors and deliver the phage’s genome into the host’s cell. Phage proteins, especially

structural ones, vary widely between phages and phage groups, so much so that sequence

alignment based methods to assign gene function fail frequently: we are currently unable to

assign function to 50–90% of phage genes [7]. Experimental methods such as protein sequenc-

ing, mass spectrometry, electron microscopy, or crystallography, in conjunction with antibod-

ies against individual proteins, can be used to identify structural proteins but are expensive

and time-consuming. A fast and easy-to-use computational approach to predict and classify

phage structural proteins would be highly advantageous as part of pipelines for identifying

functional roles of proteins of bacteriophage origins. The current increased interest in using

phages as therapeutic agents [8,9] motivates annotations for as much of the phage genome as

possible. Even if they are somewhat tentative and not experimentally validated, annotations of

the relatively non-toxic structural proteins versus the potentially host health-threatening toxins

and other virulence factors could inform decisions whether to choose one specific phage versus

another.

Machine learning has been used to attack similar biological problems. In 2012, Seguritan

et al. [10] developed Artificial Neural Networks (ANNs) that used normalized amino acid fre-

quencies and the theoretical isoelectric point to classify viral proteins as structural or not struc-

tural with 85.6% accuracy. These ANNs were trained with proteins of viruses from all three

domains of life. They also trained two distinct ANNs to classify phage capsid versus phage

non-capsid ORFs and phage “tail associated” versus phage “non-tail-associated” ORFs. Subse-

quently, several groups have used different machine learning approaches to improve the accu-

racy of predictions. The resulting tools are summarized in Table 1.

Each of these previous approaches has important limitations: 1) The classification is limited

to two classes of proteins (e.g.,”capsid” or “not capsid”). 2) Training and testing sets were small

(only a few hundred proteins in some cases), limiting the utility of these approaches beyond

those proteins used in testing. 3) Methods that rely on predicting secondary structure (e.g.,

VIRALpro [11]) are slow to run. In general, these newer methods have improved accuracy at

the cost of lengthening the time required for training, or have used very small training and/or

test sets.
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Artificial Neural Networks (ANN) are proven universal approximators of functions in Rn

[12], including the mathematical function that maps features extracted from a phage protein

sequence to its structural class. We have constructed a manually-curated database of phage

structural proteins and have used it to train a feed-forward ANN to assign any phage protein

to one of eleven classes (ten structural classes plus a catch-all class labeled "others"). Further-

more, we developed a web server where protein sequences can be uploaded for classification.

The full database, as well as the code for PhANNs and the webserver, are available for down-

load at http://edwards.sdsu.edu/phanns and https://github.com/Adrian-Cantu/PhANNs

Methods

Database

In this work, we generated two complementary protein databases, "classes" and "others". The

"classes" database contains curated sequences of ten phage structural functions (Major capsid,

Minor capsid, Baseplate, Major tail, Minor tail, Portal, Tail fiber, Tail sheath, Collar, and

Head-Tail Joining). These functional classes are not exhaustive (and we will add more classes

in the future); they represent the dominant structural protein roles present in most (but not

all) phages [13]. The terms/descriptors for these classes are addressed in the next section.

Major capsid proteins are those that form the phage head. Many but not all phages also encode

minor capsid proteins that decorate and/or stabilize the head or proteins present at the vertices

of the icosahedral heador at the center of the hexon faces. Portals form a ring at the base of the

phage head and serve to dock the packaging complex that translocates the genome into the

phage head. Head-tail joining (aka head-tail connector or head completion) proteins form

rings inserted between the portal ring and the tail. The collar is present in some phages, e.g. the

Lactococcal phages, at the base of the neck/top of the tail to which the so-called whiskers

attach. Major tail proteins form the inner tail tube of the tailed phages, whereas the tail sheath

(aka the tail shaft) proteins form the outside of the tail, and permit contraction. Minor tail

Table 1. Summary of previous ML-based methods for classifying viral structural proteins.

Reference Method Target proteins Database size Accuracy

Seguritan et al.[10] ANN structural (all viruses) versus non-structural (all viruses) 6,303 structural 85.6%

7,500 non-structural

Seguritan et al.[10] ANN capsid versus non-capsid (phages only) 757 capsid 91.3%

10,929 non-capsid

Seguritan et al.[10] ANN Tail-associated versus non-tail (phages only) 2,174 tail 79.9%

16,881 non-tail

Feng et al.[33] Naïve Bayes structural versus non-structural 99 structural 79.15%

208 non-structural

Zhang et al.[34] Ensemble Random Forest structural versus non-structural 253 structural 85.0%

248 non-structural

Galiez et al.[11] SVM capsid versus non-capsid 3,888 capsid 96.8%

4,071 non-capsid

Galiez et al.[11] SVM tail versus non-tail 2,574 tail 89.4%

4,095 non-tail

Manavalan et al.[35] SVM structural versus non-structural 129 structural 87.0%

272 non-structural

This work ANN Ten distinct phage structural classes plus “others” 168,660 structural 86.2%

369,553 non-structural

https://doi.org/10.1371/journal.pcbi.1007845.t001
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proteins may comprise several kinds of proteins associated with the tail, including the tape

measure protein. Baseplate proteins are those that are attached to the tail and to which the tail

fibers are attached, the latter being a relatively common determinant of host range. The "oth-

ers" database contains all phage ORFs that do not encode proteins annotated as “structural” or

as any of the ten categories above.

The database of "classes"

Sequences from the ten structural classes were downloaded from NCBI’s protein database

using a custom search for the class title (the queries are in the “ncbi_get_structural.py” script

in the GitHub repository). Curation consisted of grouping sequences by their description (part

of the fasta header) and deciding which descriptions to include. The list of included headers

for each class can be found here https://github.com/Adrian-Cantu/PhANNs/tree/master/

model_training/01_fasta; the variations of terms included are too many to be included here.

All the terms preceded by a “+” (or “+ +”) were included in the respective database. In the par-

ticular case of tail fibers, we did not include the descriptions “phage tail fiber assembly protein”

(3,662 proteins) nor many “partial protein” variations (1,500+ proteins).

This method for collecting data has the limitation that a proportion of phage sequences in

the database are misannotated and that NCBI has no controlled vocabulary for bacteriophage

protein functions so it is occasionally difficult to account for misspelled annotations and/or

alternative naming. However, it is clear from previous machine learning applications that a

larger number of training examples is more important for optimal model performance than a

perfectly curated training set [14]. To minimize inclusion of wrongly annotated protein

sequences, we manually curated the databases to address these limitations.

The "others" database

To generate a database for the "others" class, all available phage genomes (8,238) were down-

loaded from GenBank on 4/13/19. ORFs were found using the GenBank PATRIC [15] server

with the phage recipe [16]. Sequences annotated as structural or any of the ten classes were

removed during manual curation. Furthermore, the remaining sequences were de-replicated at

60% together with sequences in the “classes” database using CD-hit [17]. Any phage ORF that

clustered with a sequence from the "classes" database was removed from the "others" database.

Training, test, and validation split

Sequences in each class were clustered at 40% using CD-hit and split into eleven sets (10 for

cross validation and one for testing, as shown in Fig 1). Once the clusters were established, to

prevent loss of the sequence diversity available within the clusters, which is essential for opti-

mal training, the clusters were expanded by adding back within each set all the representatives

of that set (described in Fig 1). Subsequently, the sets corresponding to each structural class

were merged. We named the generated sets 1D-10D and TEST. Splitting the database this way

ensures that the different sets share no homologous proteins while recapturing all the sequence

diversity present in each class. Finally, 100% dereplication was performed to remove identical

sequences (See Table 2). The effect of the cluster expansion on performance is explored in S1

and S2 Figs.

Extraction of features

The frequency of each dipeptide (400 features) and tripeptide (8,000 features) was computed

for each ORF sequence in both the “classes” and “others” databases. As a potential time-saving
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Fig 1. Non homologous database split—To ensure that no homologous sequences are shared between the test, validation, and training sets the sequences from

each class (Major capsid proteins in this figure) were de-replicated at 40%. In the de-replicated set, no two proteins have more than 40% identity and each sequence

is a representative of a larger cluster of related proteins. The de-replicated set is then randomly partitioned into eleven equal size subsets, (1dMcp-10dMpc plus TestMpc).

Those subsets are expanded by replacing each sequence with all the sequences in the cluster it represents (subsets 1DMpc-10DMpc plus TESTMpc). Analogous subsets are

generated for the remaining ten classes and corresponding subsets are combined to generate the subsets used for 10-fold cross-validation and testing (1D-10D and

TEST).

https://doi.org/10.1371/journal.pcbi.1007845.g001

Table 2. Database numbers—Raw sequences were downloaded using a custom script available at https://github.com/Adrian-Cantu/PhANNs. All datasets can be

downloaded from the web server. �Numbers before and after removing sequences at least 60% identical to a protein in the classes database.

Class Raw sequences After manual curation After de-replication at 40% After expansion and de-replication at 100%

Major capsid 112,987 105,653 1,945 35,755

Minor capsid 2,901 1,903 261 1,055

Baseplate 75,599 19,293 401 6,221

Major tail 66,513 35,030 536 7,704

Minor tail 94,628 80,467 918 18,002

Portal 210,064 189,143 2,310 59,745

Tail fiber 29,132 18,514 1,222 7,256

Tail sheath 37,885 35,570 599 15,349

Collar 4,224 3,709 339 2,105

Head-Tail joining 60,270 58,658 1,317 15,468

Total structural 694,203 547,940 9,848 168,660

Others 733,006 643,735/643,380� 106,004 369,553

https://doi.org/10.1371/journal.pcbi.1007845.t002
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procedure during neural net training while also permitting classification of more diverse

sequences, each amino acid was assigned to one of seven distinct "side chain" chemical groups

(S1 Table). The frequency of the "side chain" 2-mers (49 features), 3-mers (343 features), and

4-mers (2,401 features) was also computed. Finally, some extra features, namely isoelectric

point, instability index (whether a protein is likely to degrade rapidly; [18]), ORF length, aro-

maticity (relative frequency of aromatic amino acids; [19]), molar extinction coefficient (how

much light the protein absorbs) using two methods (assuming reduced cysteins or disulfide

bonds), hydrophobicity, GRAVY index (average hydropathy; [20]) and molecular weight,

were computed using Biopython [21]. All 11,201 features were extracted from each of 538,213

protein sequences. The complete training data set can be downloaded from the web server

(https://edwards.sdsu.edu/phanns).

ANN architecture and training

We used Keras [22] with the TensorFlow [23] back-end to train eleven distinct ANN models

using a different subset of features. We named the models to indicate which feature sets were

used in training: the composition of 2-mers/dipeptides (di), 3-mers /tripeptides (tri) or 4-mer/

tetrapeptide (tetra), or side chain groups (sc) (as shown in S1 Table), and whether we included

the extra features (p) or not. A twelfth ANN model was trained using all the features (Table 3).

Each ANN consists of an input layer, two hidden layers of 200 neurons, and an output layer

with 11 neurons (one per class). A dropout function with 0.2 probability was inserted between

layers to prevent overfitting. ReLU activation (to introduce non-linearity) was used for all lay-

ers except the output, where softmax was used. Loss was computed by categorical cross-

entropy and the ANN is trained using the "opt" optimizer until 10 epochs see no training loss

reduction. The model at the epoch with the lowest validation loss is used. Class weights

inversely proportional to the number of sequences in that class were used.

10-fold cross-validation. Sets 1D to 10D (see Fig 1) were used to perform 10-fold cross-

validation; ten ANNs were trained as described above, sequentially using one set as the valida-

tion set and the remaining nine as the training set. The results are summarized in Figs 2, 3, 4,

S1 and S2.

Table 3. Feature types included in each of the 12 models. di—2-mer/dipeptide composition; tri—3-mer/tripeptide composition; tetra—4-mer/tetrapeptide composi-

tion; sc—side-chain grouping; p—plus all the extra features [isoelectric point, instability index (whether a protein is likely to be degraded rapidly), ORF length, aromaticity

(relative frequency of aromatic amino acids), molar extinction coefficient (how much light a protein absorbs) using two methods (assuming reduced cysteines or disulfide

bonds), hydrophobicity, GRAVY index (average hydropathy), and molecular weight, as computed using Biopython. - �Per class score figures are available as supplementary

material.

Model di tri di_sc tri_sc tetra_sc p

di_sc� x

di_sc_p� x x

tri_sc� x

tri_sc_p� x x

tetra_sc� x

tetra_sc_p� x x

di x

di_p x x

tri x

tri_p x x

tetra_sc_tri_p x x x

all x x x x x x

https://doi.org/10.1371/journal.pcbi.1007845.t003
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The PhANNs score. For each input sequence, PhANNs run 10 ANNs predictions (those

trained during the 10-fold cross-validation). Each of those 10 ANNs outputs the soft-max

scores for every class (a number between 0 and 1, such that the score of all classes adds to 1).

PhANNs outputs the per class sum of the ten ANNs scores (the maximum achievable PhANNs

score is 10, as there are ten ANNs). The input sequence is classified as the class with the highest

PhANNs score.

To give a clearer indication of the quality of this prediction we added a “confidence” score

to each prediction. The “confidence” score shows what fraction of sequences in the test set that

were classified as the same class as the input sequence, and with the same PhANNs score or

higher, were correctly classified (True positives). The confidence scores differ depending on

the protein class. For example, a sequence classified as “major capsid” with a PhANNs score of

7 has 97% confidence, while a “Tail fiber” with a PhANNs score of 7 has only 82.4% confi-

dence. The per class relationship between the PhANNs score and the confidence is explored in

Fig 5.

Web server

We developed an easy-to-use web server for users to upload and classify their own sequences.

Although ANNs need substantial computational resources for training the model (between

54,861 and 127,756,413 parameters need to be tuned, depending on the model), the trained

model can make fast de novo predictions. Our web server (https://edwards.sdsu.edu/phanns)

can predict the structural class of an arbitrary protein sequence in seconds and assign all the

Fig 2. Model-specific F1 score—F1 scores (harmonic mean of precision and recall) for each polypeptide model/class combination. All

models follow similar trends as to which classes are more or less difficult to classify correctly. Error bars represent the 95% confidence

intervals.

https://doi.org/10.1371/journal.pcbi.1007845.g002
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ORFs in a phage genome to one of the 10 classes in minutes. The application can also be down-

loaded and run locally for large numbers of queries or if privacy is a concern.

Results and discussion

We evaluated the performance of 120 ANNs (10 per model type) on their respective validation

set. For each ANN, we computed the precision, recall, and F1-score of the 11 classes. A

“weighted average” precision, recall and F1-score, where the score for each class is weighted by

the number of proteins in that class (larger classes contribute more to the score) was com-

puted. The accuracy (fraction of observation correctly classified) is equivalent to the weighted

average recall. The three weighted average scores are represented as a 12th class. This gives us

ten observations for each combination of model type and class, which allows us to construct

the confidence intervals depicted in Figs 2, 3 and 4.

(Figs 2 and S1) shows that all the models follow the same trend as to which classes they pre-

dict with higher or lower accuracy. Some classes of proteins, for example major capsids, col-

lars, and head-tail joining proteins, are predicted with high accuracy. On the other hand, the

minor capsid and tail fiber protein classes seem to be intrinsically hard to predict with high

accuracy irrespective of the model type used (Figs 3 and S2). One reason for this is the limited

size of the training set: the minor capsid protein set is the smallest class, with only 581 proteins

available for inclusion in our database. Even if the classes were weighted according to their size

during training, it appears we do not have enough training examples to identify this class with

Fig 3. Class-specific F1 score—F1 scores (harmonic mean of precision and recall) for each polypeptide model/class combination.

Some classes, such as minor capsid, tail fiber, or minor tail, are harder to classify correctly irrespective of the model used. Error bars

represent the 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1007845.g003
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high accuracy. Furthermore, “minor capsid” is often misclassified as “portal” (Fig 6). This

probably reflects an annotation bias, as we found about 800 proteins annotated as “portal

(minor capsid)” in the raw sequences. When the ~800 proteins are analyzed with PhANNs,

over 90% are predicted to be portal proteins. Although these were removed during manual

curation of the training data sets, some (small) fraction of minor capsid proteins in our data-

base may have been annotated as “minor capsid” by homology to one of those 800 sequences.

The predictive accuracy for a specific class of proteins is likely to be affected by the bias in

the training datasets. The bias could be biological and/or due to a sampling bias. An example

of the former is the tail fiber class: the tail fiber is one of the determinants of the host range of

the virus, and is under strong evolutionary selective pressure [24–29]. On the other hand, sam-

pling bias may be introduced due to oversampling of certain types of phages, such as the thou-

sands of mycobacterial phages isolated as part of the SEA-PHAGES project [30], many of

which are highly related to each other.

Average validation F1-scores range from 0.653 for the “di_sc” model to 0.841 for the “tet-

ra_sc_tri” model (Fig 4). Although the average validation F1-score for the top three models

“tri_p” (0.832), “tetra_sc_tri_p” (0.841), and “all” (0.827) are not significantly different from

each other, we decided to use “tetra_sc_tri_p” for the web server and all subsequent analyses

because, while it uses ~7% fewer features than “all” (10,409 vs 11,201), we expect that the tetra

side chain features may be better than the tripeptide features at generalizing predictions and

accessing greater sequence diversity.

Fig 4. Model-specific validation weighted average scores—Precision, recall, and F1 scores for all models. Precision

is higher in all models as the “others” class is the largest and easiest to classify correctly. Error bars represent the 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1007845.g004
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Using the “tetra_sc_tri_p” ensemble, we predicted the class of each sequence in the test set

(46,801) by averaging the scores of each of the ten ANNs. Results are summarized in Fig 6 and

Table 4. Doing this we reach a test F1-score of 0.89 and accuracy of 86.2% over the eleven

classes.

Higher accuracy can be reached if one is willing to disregard sequences with low PhANNs

scores. Using only sequences with a PhANNs score of 5 or higher, the F1-score for the test set

is 0.945, accuracy is 94%, with 9,006 of 46,801 (~20%) test sequences being “not classified”. If

using sequences with a PhANNs score of 8 or higher, the F1-score for the test set is 0.982, accu-

racy is 98%, but 19,208 of 46,801 (~41%) test sequences would be “not classified” (see Fig 7).

Table 4 shows summary statistics for the complete test set, while Table 5 shows the same sta-

tistics for the test subset of sequences with PhANNs 8 or greater. The stringency with which

users interpret the PhANNs score may vary depending on their specific need. Therefore we

recommend that the actual PhANNs score (or the confidence score) be reported in addition to

the predicted function class.

Because “minor capsid” is the worst performing class in our test set, we trained an analo-

gous ANN ensemble without that class to explore if accuracy of the remaining classes is

improved. Multiple metrics can be used to assess which model is better. The per class ROC

curves of both models [Fig 8A (with minor capsid class) and 8-B (without minor capsid

class)] and areas under the curves are similar. Removing the minor capsid class from the mod-

els doesn’t significantly alter the relationship between the PhANNs score and the confidence

score (Fig 8C and 8D). The confusion matrices of both models (Fig 8E and 8F) show that pre-

dictions for portal proteins improve, as 3% of them are misclassified as minor capsid. For all

other classes, the two models are similar with respect to which classes are most commonly

Fig 5. Per class relationship between PhANNs score and confidence—The confidence corresponding to a particular class

PhANNs score represents the fraction of true positives (correctly classified) sequences in the test set that were classified as that

class, with a given PhANNs score or higher. As it is uncommon for the highest class PhANNs score to be less than 2, the left side of

the graph includes all test proteins that were classified as that class, and the confidence corresponds to the per class precision (see

Table 4).

https://doi.org/10.1371/journal.pcbi.1007845.g005
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Fig 6. Confusion matrix using the “tetra_sc_tri_p” model—Each row shows the proportional classification of test

sequences from a particular class. A perfect classifier would have 1 on the diagonal and 0 elsewhere. In general, a

protein that is misclassified is predicted as “others”.

https://doi.org/10.1371/journal.pcbi.1007845.g006

Table 4. Results of per class classification for the test set. Support indicates the number of test sequences in each specific class. accuracy (fraction of observation cor-

rectly classified) is equivalent to the weighted average recall (weighted by the support of each class). The macro average is unweighted (all classes contribute the same).

precision recall f1-score support

Major capsid 0.80 0.91 0.85 2,456

Minor capsid 0.07 0.78 0.13 81

Baseplate 0.69 0.75 0.72 851

Major tail 0.55 0.79 0.65 502

Minor tail 0.66 0.82 0.73 1,072

Portal 0.81 0.81 0.81 5,261

Tail fiber 0.35 0.74 0.47 648

Tail sheath 0.97 0.93 0.95 2,031

Collar 0.51 0.86 0.64 300

Head-Tail joining 0.56 0.84 0.67 1,277

Others 0.96 0.86 0.91 32,322

macro avg 0.63 0.83 0.68 46,801

weighted avg 0.89 0.86 (accuracy) 0.87 46,801

https://doi.org/10.1371/journal.pcbi.1007845.t004
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confused. A comparison of per class precision, recall and F1-score can be found in Table 6.

When the minor capsid class is excluded, metrics are just as likely to improve as to worsen,

and the accuracy gain is only 1%; greater accuracy gains can be achieved by disregarding

sequences with low PhANNs scores as “not classified,” as described above. Therefore, we

decided not to exclude the minor capsid class from our model; the performance in this class is

likely to improve in the future, as more sequences become available and, hopefully, are experi-

mentally validated.

Fig 7. Effect of disregarding low scoring test proteins—Progression of the weighted average precision, recall and

F1-score of the test set after excluding low scoring proteins. The portion of included proteins is the fraction that can

be classified if you only trust that score or higher. Very few test proteins have PhANNs score of 10 and not all classes

are represented.

https://doi.org/10.1371/journal.pcbi.1007845.g007

Table 5. Results of per class classification for proteins in the test set with a PhANNs score of 8 or higher. Support indicates the number of test sequences in each spe-

cific class. accuracy (fraction of observation correctly classified) is equivalent to the weighted average recall (weighted by the support of each class). The macro average is

unweighted (all classes contribute the same).

precision recall F1-score support

Major capsid 0.99 0.99 0.99 1,563

Minor capsid 0.28 0.96 0.43 45

Baseplate 0.97 0.83 0.89 151

Major tail 0.95 0.97 0.96 307

Minor tail 0.95 0.99 0.97 625

Portal 0.99 0.94 0.97 3,810

Tail fiber 0.89 0.94 0.91 360

Tail sheath 1.00 1.00 1.00 1,495

Collar 0.82 1.00 0.90 98

Head-Tail joining 0.91 1.00 0.95 916

Others 0.99 0.99 0.99 18,223

macro avg 0.89 0.96 0.91 27,593

weighted avg 0.98 0.98 (accuracy) 0.98 27,593

https://doi.org/10.1371/journal.pcbi.1007845.t005
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Fig 8. Comparison of “tetra_sc_tri_p” model trained with and without the Minor capsid class—As minor capsid is the worst performing class in our test set, we

trained an analogous ANN ensemble with it removed. Panels A and B show the ROC curves for the models with and without minor capsid respectively. Panels C and

D show the relationship between PhANNs score and Confidence for the models with and without minor capsid respectively. Panels E and F show the confusion matrix

for the models with and without minor capsid respectively.

https://doi.org/10.1371/journal.pcbi.1007845.g008
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We compared the performance of PhANNs with that of VIRALpro by predicting the func-

tion class of each other’s test set. Doing this requires us to map our 11 classes onto VIRALpro’s

4 (capsid versus not-capsid, tail versus not tail). We decided not to use the PhANNs “collar” or

“baseplate” test set as VIRALpro has a hard time classifying them (presumably because it was

not trained on those classes). Hence we discarded any of the VIRALpro test proteins that

PhANNs predicted as “collar” or “baseplate”. “Capsid” in VIRALpro means either “major cap-

sid” or “minor capsid” in PhANNs. “Tail” in VIRALpro means “Major tail”, “Minor tail”, “Tail

fiber” or “Tail sheath” in PhANNs. This transformation makes possible the comparison of the

two tools. Results are summarized in Table 7. The two tools have similar accuracy, with VIR-

ALpro slightly better at predicting capsid proteins and PhANNs slightly better at predicting

tail proteins. It is important to mention that the VIRALpro predictions took several days on a

200+ CPU cluster (it would take a few years on a laptop). A similarly sized test takes less than

an hour using the PhANNs server.

The utility of the PhANNs tool is to permit more extensive function predictions of meta-

genome sequences from phages used for phage therapy (A. Cobian, N. Jacobson, M. Rojas, H.

Hamza, R. Rowe, D. Conrad, and A. Segall, et al., work in progress) and to better describe the

coding potential of the virome in patients suffering from diseases such as inflammatory bowel

disease versus household controls (A. Segall, R. Edwards, A. Cantu, S. Handley, and D. Wang,

work in progress). In some cases, phage-associated sequences from isolated viromes have no

or very weak functional predictions when using BLAST, RPS-BLAST, or related bioinformatic

tools (work in progress). In parallel, we are experimentally validating some of the predicted

functions using electron microscopy and X-ray crystallography (S.H. Hung, V. Seguritan,

et al., ms. in preparation).

Table 6. The effect on the models’s scores from excluding the minor capsid class (mc)—Most scores are affected only slightly and are as likely to improve as to

worsen.

precision precision (mc) recall recall (mc) F1-score F1-score (mc) support ROC area ROC area (mc)

Major capsid 0.76 0.76 0.92 0.92 0.83 0.83 2456 0.917 0.918

Minor capsid 0.08 - 0.77 - 0.15 - 81 (0) 0.899 -

Baseplate 0.69 0.69 0.74 0.83 0.72 0.75 851 0.621 0.72

Major tail 0.56 0.53 0.77 0.80 0.65 0.64 502 0.918 0.91

Minor tail 0.75 0.70 0.82 0.81 0.78 0.75 1070 0.939 0.94

Portal 0.83 0.80 0.81 0.85 0.82 0.82 5261 0.943 0.945

Tail fiber 0.31 0.32 0.76 0.75 0.44 0.45 648 0.861 0.86

Tail sheath 0.96 0.95 0.94 0.93 0.95 0.94 2031 0.986 0.957

Collar 0.61 0.53 0.84 0.80 0.70 0.63 300 0.865 0.85

HTJ 0.56 0.58 0.84 0.85 0.67 0.69 1277 0.933 0.923

Others 0.96 0.96 0.87 0.88 0.91 0.92 33402 0.838 0.838

macro avg 0.64 0.68 0.83 0.84 0.69 0.74 47879 (47798)

weighted avg 0.90 0.90 0.86 0.87 0.88 0.88 47879 (47798)

https://doi.org/10.1371/journal.pcbi.1007845.t006

Table 7. Comparison of PhANNs with VIRALpro. Results from using VIRALpro test set in PhANNs and PhANNs test set in VIRALpro.

PhANNs test set in TAILpro TAILpro test set in PhANNs PhANNs test set in CAPSIDpro CAPSIDpro test set in PhANNs

test set size 10,805 672 15,107 787

precision 0.28 0.77 0.14 0.82

recall 0.79 0.68 0.86 0.32

accuracy 0.80 0.82 0.70 0.67

F1-score 0.42 0.72 0.25 0.46

https://doi.org/10.1371/journal.pcbi.1007845.t007
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The performance of any machine learning system is limited by the availability and cost of

training examples [14]. Invariably, top performing image and audio classification systems

must augment their training data with synthetic examples created by applying semantically

orthogonal transformations to the training set (i.e., slightly rotating or distorting an image, or

adding background noise to audio) [31,32]. In bioinformatics, the current practice of de-repli-

cation moves us in exactly the opposite direction—perfectly good samples cannot be used if

their overlap with other samples is too high, leaving only one version of the biostring to use for

training, thereby ignoring sequence variations. This despite the fact that biological examples

such as protein sequence data are replete with variations from a consensus sequence or motif.

Our approach overcomes this failing by using all non-redundant data. By splitting the dataset

into the training, validation, and test sets after first de-replicating at 40%, we remove even

slightly redundant samples and make sure that none of the performance is due to data memo-

rization rather than generalization. Augmenting the training set by expanding the clusters to

include all non-redundant samples is the novel idea we have introduced in the present paper

as a way of increasing our training set size and hence our accuracy.

Conclusion

ANNs are a powerful tool to classify phage structural proteins when homology-based align-

ments do not provide useful functional predictions, such as “hypothetical” or “unknown func-

tion”. This approach will become more accurate as more and better characterized phage

structural protein sequences, especially more divergent ones, are experimentally validated and

become available for inclusion in our training sets. This method can also be applied to predict-

ing the function of unknown proteins of prophage origin in bacterial genomes. In the future,

we plan to expand this approach to more protein classes and to viruses of eukaryotes and

archaea.

Supporting information

S1 Table. Side chain groupings.

(XLS)

S1 Fig. Model-specific F1 score—F1 scores (harmonic mean of precision and recall) for

each side chain model/class combination. All models follow similar trends as to which classes

are more or less difficult to classify correctly. Error bars represent the 95% confidence inter-

vals.

(PNG)

S2 Fig. Class-specific F1 score—F1 scores (harmonic mean of precision and recall) for each

side chain model/class combination. Some classes, such as minor capsid, tail fiber, or minor

tail, are harder to classify correctly irrespective of the model used. Error bars represent the

95% confidence intervals.

(PNG)

S3 Fig. Comparison of the validation weighted average F1-score of three models on the

same feature sets—We compared our ANN ensemble trained on 1D-10D sets against a

logistic regression trained on the 1D-10D sets and an ANN ensemble trained on the 1d-

10d sets (40% dereplication, without cluster expansion—see Methods). The ANN ensem-

bles perform significantly better than the logistic regression. Error bars represent 0.95 confi-

dence intervals.

(PNG)
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S4 Fig. Per class comparison of the validation F1-score of three models on the “tetra-

s_sc_tri_p feature” set—In the structural classes, the 1D-10D ANN ensemble performs

slightly better than the logistic regression and significantly better than the 1d-10d ANN

ensemble. In the “others” class (by far the largest), 1D-10D ANN ensemble performs as well as

1d-10d ANN and better than logistic regression. Error bars represent 0.95 confidence inter-

vals.

(PNG)
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