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Abstract

Evolutionarily conserved mechanisms maintain homeostasis of essential elements, and are

believed to be highly time-variant. However, current approaches measure elemental bio-

markers at a few discrete time-points, ignoring complex higher-order dynamical features. To

study dynamical properties of elemental homeostasis, we apply laser ablation inductively-

coupled plasma mass spectrometry (LA-ICP-MS) to tooth samples to generate 500 tempo-

rally sequential measurements of elemental concentrations from birth to 10 years. We

applied dynamical system and Information Theory-based analyses to reveal the longest-

known attractor system in mammalian biology underlying the metabolism of nutrient ele-

ments, and identify distinct and consistent transitions between stable and unstable states

throughout development. Extending these dynamical features to disease prediction, we find

that attractor topography of nutrient metabolism is altered in amyotrophic lateral sclerosis

(ALS), as early as childhood, suggesting these pathways are involved in disease risk. Mech-

anistic analysis was undertaken in a transgenic mouse model of ALS, where we find similar

marked disruptions in elemental attractor systems as in humans. Our results demonstrate

the application of a phenomological analysis of dynamical systems underlying elemental

metabolism, and emphasize the utility of these measures in characterizing risk of disease.

Author summary

The metabolism of essential elements in early life is essential to healthy growth and devel-

opment. Elemental homeostasis is typically studied by characterizing distributions of ele-

mental concentrations at the level of the population. Here, we introduce a new method of

characterizing elemental metabolism at the level of the individual. Using tooth-based bio-

markers, we tracked the longitudinal trajectory of essential elements throughout child-

hood at weekly temporal resolution from birth through approximately 10 years of life. We
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analyzed these trajectories to identify the formation of stable dynamic states (attractors)

and transitions between these states throughout development. We found that metabolic

dynamics were specific to discrete elemental pathways; copper metabolism typically

involved the formation of multiple discrete states throughout childhood, whereas other

elements, such as zinc, tended to persist in a single stable dynamic throughout develop-

ment. Next, we compared elemental biodynamics in neurologically healthy cases and sub-

jects that were later diagnosed with amyotrophic lateral sclerosis (ALS). We found these

patterns were dysregulated in ALS, and also found similar results in a mouse model of

ALS. Overall, our results provide a novel approach to characterize elemental biodynamics

throughout development, and emphasize that the dysregulation of these processes may be

predictive of later onset of disease.

Introduction

Biological systems are highly dynamic, exhibiting time-dependent patterns that develop in

early-life and organize into recurrent processes ranging from milliseconds as observed in neu-

rons firing [1–3] to months as in the menstrual cycle, or longer as in pregnancy [4–7]. How-

ever, much of our knowledge of how human physiology integrates environmental exposures is

based on single time-point measures of elements and molecules, which neither captures time-

dependent dynamical states, nor tracks longitudinal state transitions, which may be character-

istic or predictive of emergent phenotypes.

Two essential challenges have prevented the characterization of dynamical systems involved

in human development over time-scales spanning childhood through early adult maturation.

First, the capacity to track fine scale temporal changes in human systems requires the ability to

take hundreds of serial in vivo measurements of biological processes over the span of child-

hood when organ systems and networks are rapidly developing, which is precluded by typical

methods of biomarker assessment in blood or urinary samples. Second, even when the capacity

to capture longitudinal biomarker profiles is available, the underlying dynamics of these sys-

tems remain largely unexplored; it is thus uncertain if these systems should be studied through

the lens of chaotic, deterministic, or stochastic dynamics. Here, we demonstrate an approach

to overcome these barriers through the combination of novel analytical technologies and

computational tools.

We used fine scale temporal profiles from novel teeth biomarkers to track the uptake of

nutrient elements and non-essential metals throughout childhood. We used permanent teeth

of adult participants to obtain weekly retrospective measures from birth to adolescence using

our well-validated approach [8]. With this method, teeth are analyzed along their growth

increments (akin to growth rings in trees) using laser ablation-inductively coupled plasma-

mass spectrometry. This analysis provides longitudinal profiles of metals over the ages the

tooth dentine is developing.

Given the uncertain nature of the processes underlying elemental homeostasis, we devel-

oped two distinct analytical approaches, each based on fundamentally differing assumptions,

to characterize dynamical systems involved in elemental metabolism at the level of the individ-

ual. First, to characterize the complexity of metabolic state formation throughout develop-

ment, we analyzed the potential energy landscape of longitudinal exposure profiles to identify

discrete quasi-stable metabolic states. This approach, based on the assumption of an underly-

ing stochastic process, allowed the characterization of discrete attractor systems, reflecting a

set of numerical values toward which a system develops [9–14]. These are interpreted as quasi-
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stable states in elemental homeostasis that emerge throughout development. In parallel, we

also applied an analytical approach focused on quantifying underlying periodicity in elemental

assimilation through the application of recurrence quantification analysis (RQA). In combin-

ing measures derived from each of these approaches, we can thus characterize complexity and

stability in state formation and periodicity in the metabolism of essential and non-essential ele-

ments throughout development. In essence, we used these different methods because we do

not make an a priori assumption that the systems we are studying are reliably chaotic, deter-

ministic, or stochastic.

To test the fundamental relevance of these childhood systems to life-long human health tra-

jectories, we applied these methods to samples from participants with a well-known neurologi-

cal disease, amyotrophic lateral sclerosis (ALS), a progressive and fatal neurodegenerative

disorder affecting motor neurons [15]. We choose ALS as an exemplar disease because expo-

sures to metals and elements are identified risk factors, and it is known that environmental fac-

tors can influence disease risk and disease survival [16–18]. It remains unknown whether

causative environmental perturbations, including exposure to metals, may occur during early-

life in future ALS patients. Because of the low incidence rate of ALS and its clinical emergence

in late adulthood, prospective studies would require large birth cohorts to be maintained for

decades, which hampers research on early life determinants of ALS risk. Here, we recon-

structed exposures in the first 10 years of life from permanent teeth of ALS participants and

healthy controls, and applied dynamical analytical methods to characterize the emergence of

quasi-stable states and periodicity in elemental metabolism. We subsequently leveraged these

indicators in the implementation of comparative and predictive statistical models to under-

stand how these factors relate to ALS. Our findings highlight the importance of understanding

homeostatic dynamics involved in elemental assimilation during early life as risk factors for

later-life neurodegenerative disorders.

Results

Attractor landscapes in childhood elemental metabolism

Our tooth matrix biomarkers generate over 500 time-series measurements of essential and

non-essential elements covering an average of 10.3 years of childhood and adolescence (Fig 1A

and Methods). This method relies on using laser ablation to sequentially sample the growth

layers of human tooth dentine and to characterize the elemental composition of the ablated

material using mass spectrometry. In this manner we generated temporally longitudinal pro-

files of elemental uptake during childhood and adolescence [19,20]. Given the uncertain

nature of the metabolic processes governing these systems, which could alternatively or succes-

sively involve stochastic, deterministic, or chaotic dynamics, we applied two distinct analytical

strategies to characterize underlying attractor dynamics from a purely phenomenological per-

spective. As applied here, attractors represent the emergence of quasi-stable state dynamics

during the establishment and development of biological processes [9,21–23].

First, to characterize the emergence of quasi-stable metabolic states during childhood and

adolescence, we implemented a potential energy analysis to identify basins of attraction under-

lying changes in elemental concentration. To illustrate this process, Fig 1B shows raw copper

measurements in one neurologically normal control subject, capturing concentrations from

129 days after birth to approximately 10.95 years of age. In Fig 1C, we show the potential

energy profile derived from this trace, with the gradient of observed concentrations on the x-

axis against the (dimensionless) potential energy associated with varying copper concentra-

tions on the y-axis. Quasi-stable attractor states, referred to as basins of attraction, are detected

as local minima in the potential energy function, as indicated in Fig 1C by SL and SH, referring

PLOS COMPUTATIONAL BIOLOGY Childhood metabolic dynamics precede the emergence of ALS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007773 April 15, 2020 3 / 22

https://doi.org/10.1371/journal.pcbi.1007773


PLOS COMPUTATIONAL BIOLOGY Childhood metabolic dynamics precede the emergence of ALS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007773 April 15, 2020 4 / 22

https://doi.org/10.1371/journal.pcbi.1007773


to low- and high-concentration states, respectively. Separating these, at point T1, the local max-

ima in potential energy identifies the threshold between states. In Fig 1B, the concentrations

corresponding to SL, SH, and T1 are identified with red or dashed blue lines, respectively, to

emphasize how the system transitions between states throughout development.

This example (Fig 1B) illustrates that copper metabolism transitions throughout childhood

between a high-concentration and slow oscillating state (SH, above T1), followed by a low-con-

centration and fast-oscillating state (SL, below T1). The relatively shallow attractor basin (Fig

1C) associated with the high-concentration state, SH, indicates that this state is relatively unsta-

ble and easily perturbed; consistent with this, we observed that even at times when this state is

predominant, the system repeatedly transitions to the alternative state and back again. The sta-

bility of the low-concentration state, SL, in contrast, is comparatively robust, as reflected in the

depth of its corresponding basin of attraction (Fig 1C, SL), though the system continues to

transition between these states to some extent throughout development. In Fig 1D, we visualize

these dynamics through the estimation of potential energy in rolling windows, which allows

the potential energy contours to be simultaneously visualized as a function of concentrations

and developmental timing. As in the two-dimensional potential energy profiles, attractor

basins in this visualization, apparent as momentary wells or persistent troughs, signify quasi-

stable attractor basins indicative of homeostatic stability in elemental metabolism.

While the analysis of potential energy landscapes allows the quantitation and visualization

of quasi-stable state formation, this approach is insensitive to periodic aspects of attractor

dynamics. To capture these, we also pursued attractor reconstruction by phase space embed-

ding of elemental profiles using Takens embedding theorem [24], as in Fig 1E, and subsequent

recurrence quantification analysis (Fig 1F). Consistent with the indicators of bistability derived

from the potential analysis in this example, attractor reconstruction via Takens embedding

yields two distinct orbital clusters in phase space, which transition between a tight cluster asso-

ciated with lower concentrations (lower left of Fig 1E) and a broader orbital trajectory associ-

ated with higher concentrations (the upper right of Fig 1E). Finally, we applied recurrence

quantification analysis (RQA) to quantify the prevalence (determinism), duration (mean diag-

onal length), and complexity (Shannon entropy) of periodicity in these systems. Consistent

with the potential energy landscapes and the Takens embedding, the resulting recurrence plot

shown in Fig 1F emphasizes a developmental shift from an initial period of slow-oscillating

dynamics that ultimately shift to a fast-oscillating laminar dynamic.

In combining these approaches, we characterized the dynamics underlying these systems

from two distinct phenomological perspectives, focused either on the emergence of discrete

Fig 1. Reconstruction of dynamical processes underlying childhood elemental metabolism. (A) Schematic of laser ablation inductively-coupled plasma

mass spectrometry (LA-ICP-MS) analysis to measure metal concentrations in dentine growth increments of adult teeth. Elements are simultaneously

sampled along sequential growth lines, allowing the temporal concentration profile of each element to be reconstructed over the course of development. (B)

Example of a copper profile showing calcium normalized counts sampled from 129 days to approximately 10.95 years in an individual control sample. Red

lines indicate concentrations associated with the quasi-stable equilibria of a high-concentration, slow-oscillating state (SH), and a low-concentration, fast

oscillating state (SL); the dashed blue line shows the unstable threshold point between states. (C) Potential energy profile derived from copper concentrations

in (B), with (unitless) measure of potential on the y-axis and copper concentrations on the x-axis. Red arrows specify the local potential minima (and

associated copper concentrations) of basins of attraction in potential energy profiles, which indicate formation of quasi-stable attractor states, while the black

arrow indicates the transitional ‘tipping point’ between basins of attraction, defined as a local maxima. The number of quasi-stable states observed in each

element were measured in each individual then combined for subsequent statistical analysis. (D) Three-dimensional contours of potential energies shown in

(C) plotted against copper concentrations (as normalized ion counts) and developmental time since birth (TSB). Discrete attractor states appear as localized

wells in the potential energy landscape throughout the course of development. (E) Phase portrait derived from Takens embedding of copper concentration

profile shown in (B). Axes are derived from lag-embedding of copper measurements and are therefore in units of count. Consistent with the potential energy

landscape shown in (C, D), this indicates a two-state attractor system. This system is focused toward a broader orbital trajectory at higher elemental

concentrations (upper right), or a tight cluster at lower concentrations (lower left). (F) Recurrence plot derived from (E) emphasizing a shift from an initial

period of slow-oscillating dynamics to a fast-oscillating laminar dynamic. Features derived from recurrence plots, including Determinism, Mean Diagonal

Length, and Entropy, were measured in each individual separately then combined for subsequent statistical analysis.

https://doi.org/10.1371/journal.pcbi.1007773.g001
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homeostatic states, as derived from potential analysis, or the measurement of periodic preva-

lence, duration, and complexity, as derived from RQA. Complementing these four measure-

ments, the visualization of potential energy landscapes, Takens embeddings, and/or

recurrence plots can be used to evaluate consistencies across methodologies, and dissect time-

varying dependencies; for example, the persistence of states over time, and transitions between

them. We extended these approaches to other metals and, similar to copper, found that lithium

and manganese exhibited 2–3 quasi-stable states over childhood and adolescence. Examples of

these are shown in S1 Appendix Figures A and B, and the distribution of quasi-stable states

and recurrence features (determinism, mean diagonal length, entropy) observed across differ-

ent elemental pathways are shown in Fig 2 and detailed in S1 Appendix Table A. By contrast,

other elements, such as magnesium and zinc, only showed a single attractor state that persisted

throughout development.

Attractor dynamics and periodicity of elemental metabolism are perturbed

in ALS

To demonstrate the relevance of these features to human health and development in a practical

case example, we undertook a comparison of attractor dynamics characterized in 36 ALS and

31 control participants (participant characteristics are shown in S1 Appendix Table B). In five

elemental pathways, including copper, lithium, magnesium, manganese, and zinc, we used

potential energy analysis to measure the frequency of stable state formation, and used recur-

rence quantification analysis (RQA) to characterize periodic dynamics, quantified in measures

of determinism (cycle prevalence), mean diagonal length (MDL; cycle duration), and Shannon

entropy (cycle complexity). Measuring these features, per element, in each individual subject

allowed the characterization of dynamics at the level of the individual, but also provided mea-

sures useful for testing practical statistical hypotheses at the level of comparing cases vs. con-

trols. The distributions of these features in cases and controls are shown in Fig 2. For each of

these features, we tested the hypothesis that ALS cases differed from controls in elemental

attractor dynamics during childhood, decades before the clinical signs of neurodegeneration

are evident.

The distribution of state measurements for cases and controls is provided in Fig 2A and S1

Appendix Table A. We found that copper metabolism typically presented as a multi-state

attractor system in control subjects (Fig 3A, 3C and 3E), but in 100% of ALS cases copper regu-

lation was dominated by a single attractor yielding a mono-stable system that persisted

throughout development (Fig 3B, 3D and 3F). Phase portraits derived from Takens embedding

showed patterns consistent with indicators of bi-stable/multi-stable (controls) or mono-stable

(ALS cases) systems. Examples shown in Fig 3 illustrate, in a typical control subject, a tight

orbital cluster at low concentrations (lower left of Fig 3G) that transitions towards a broader

orbital trajectory at higher concentrations (upper right of Fig 3G); whereas, similar analyses in

an ALS case (Fig 3H) suggest a singular state. Statistical analyses confirmed the reduction in

stable state formation in ALS cases was significant for copper (raw P< 0.001; FDR-adjusted

P< 0.001). We observed a similar trend in lithium (raw P = 0.03; FDR-adjusted P = 0.07; see

S1 Appendix, Figure A, panels A-D) metabolism, whereas the number of stable states formed

in other elements, for example manganese (see S1 Appendix, Figure A, panels E-H) was unper-

turbed in ALS. Additional details on statistical analyses are provided in S1 Appendix Table C.

Beyond analyzing the stability of metabolic attractor systems, we also applied RQA to char-

acterize the periodicity of elemental metabolism. We found that determinism, entropy, and

mean diagonal length (MDL), indicative of cycle prevalence, complexity, and duration, respec-

tively, were significantly dysregulated in multiple attractor systems (Fig 2B–2D, S1 Appendix
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Table D). In the case of copper, a recurrence plot derived from a typical example showed two

distinct regions, an initial period of slow-oscillating dynamics (lower left of Fig 3I) with a

sharp transition to a fast-oscillating laminar dynamic (upper right of Fig 3I). In an ALS case,

by contrast, this periodic structure in copper metabolism was lost (Fig 3J). Statistical tests of

RQA features for copper and other metals are detailed in S1 Appendix Table D; notably, we

also observed significant dysregulation of periodic dynamics in magnesium and manganese

pathways.

Attractor dynamics and periodicity of elemental metabolism in animal

models

In wild-type mice, we examined if elemental metabolism would organize itself into high-

dimensional attractor systems similar to what was observed in our human controls. Given the

highly regulated environment of laboratory mice, presence of stable attractor basins demar-

cated from unstable regions by tipping points would provide additional evidence that attractor

dynamics were a physiologic norm of elemental metabolism and not solely due to fluctuations

in environmental exposures. As in control humans, we found that in wild-type mice, attractor

dynamics differed across elemental pathways, with some elements, such as magnesium, exhib-

iting multiple attractor systems in control mice, whereas others, such as manganese, only

showed a single attractor basin (S1 Appendix Figures C and D, Table E).

Due to the unknown genetic etiology of sporadic ALS, there are no transgenic animal mod-

els that correspond exactly to the human condition; however, we used a mouse model of famil-

ial ALS overexpressing mutant superoxide dismutase-1 (SOD1) with a guanine to alanine

point mutation at amino acid 93, which exhibits neurodegeneration similar to human ALS

[25,26]. We compared the elemental attractor patterns in control mice to those observed in

SOD1G93A mice to determine if a genetically induced alteration in metal-dependent pathways

would be apparent in the dynamics of elemental metabolism. Similar to our human data, we

observed marked differences in the periodicity of copper attractor systems between WT and

SOD1G93A mice, in that we identified significant differences in copper determinism (raw

P = 0.0008; FDR-adjusted P = 0.01) (Fig 4 and S1 Appendix Table F). As well, we noted differ-

ences in Li dynamics, though these did not survive adjustment for multiple comparison (see

S1 Appendix Table F). Contrary to our observations in humans, in the animal model we found

no alterations in the stability of attractor systems (assessed via the frequency of attractor basins;

see S1 Appendix Table E). Fig 4 shows example data emphasizing these general trends in cop-

per metabolism derived from WT and SOD1G93A mice. In Panels C-F, potential energy land-

scapes derived from the WT and ALS animal model exhibit a similar pattern of persistent

metabolic state formation, while the Takens embedding and recurrence analysis (Panels G-J),

emphasize the dysregulation of periodic dynamics. In SOD1G93A mice ALS was associated

with elevated determinism in copper metabolism, whereas copper determinism was reduced

in humans. Although no direct comparison of the transgenic mouse data with sporadic human

ALS cases is possible, an important finding was the dysregulation of copper metabolism in

both scenarios.

Fig 2. Distribution of elemental attractor states and recurrence features in controls and ALS cases. In (A), the

mean (± SEM) number of quasi-stable states identified in healthy controls (blue bars) and ALS cases (red bars) are

shown in varying elemental pathways. (B, C, D) show RQA-derived mean ± SEM Determinism (B), Entropy (C), or

Mean Diagonal Length (D) for ALS cases (red bars) and controls (blue). Abbreviations: Copper (Cu), Lithium (Li),

Magnesium (Mg), Manganese (Mn), Zinc (Zn).

https://doi.org/10.1371/journal.pcbi.1007773.g002
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Elemental attractor dynamics as an early warning system for ALS

Given the divergence of attractor dynamics in ALS cases vs controls decades before the emer-

gence of symptoms, we next tested the predictive utility of these measures in classifying ALS.

In essence, we explored if there are elemental signatures present during childhood develop-

ment that distinguish controls from individuals who will later develop ALS in adulthood.

Using features derived from potential analysis and RQA, which included the number of quasi-

stable states and RQA-derived determinism, MDL, and entropy measured in each element for

every subject, we implemented two classification algorithms to determine if early-life elemen-

tal dynamics were predictive of ALS.

In our initial approach, we implemented a penalized logistic classification algorithm

(LASSO) to train a model predictive of ALS on 60% of the total dataset. When we applied this

to a testing set (40% of the data), with an optimal decision making threshold of 0.527 defined

by maximizing the distance from the central diagonal, this model was 84.6% accurate in pre-

dicting case/control status. To quantify uncertainty in model predictions, we bootstrapped

(N = 2000) predicted outcomes to estimate error in our ROC curve (Fig 5A), yielding an esti-

mated AUC of 0.87 (0.72–1.00), which we confirmed differed from performance expected at

chance (P = 0.0004). S1 Appendix Table G shows effect estimates for each feature selected in

this model, with RQA-derived metrics of copper, magnesium, manganese, zinc, and lithium

contributing most to this prediction. To confirm the predictive efficacy of these top features,

we conducted a follow-up analysis utilizing only the top 5 features, defined as those with high-

est (absolute value) effect estimates. This model performed comparably to the original model

constructed on the full feature set, with AUC of 0.85 (0.68–1.00).

We followed this analysis with the parallel implementation of a tree-based classifier to con-

firm the predictive efficacy of these features was robustly generalizable. As in the implementa-

tion of the LASSO algorithm, the available data were divided into training (60%) and testing

(40%) sets, with predictive efficacy ultimately evaluated in the testing set. We found that pre-

dictive efficacy was generally similar in the tree-based classifier, yielding an AUC of 0.8 (0.62–

0.98), as shown in Fig 5B. As with the LASSO, we found that model performance significantly

exceeded chance (P = 0.001). The features that contributed most to model performance are

identified in S1 Appendix Table H; as in the LASSO model, these included RQA-derived met-

rics of copper, magnesium, and manganese performance. Testing predictive efficacy in a

Fig 3. Copper attractor dynamics and metabolic periodicity in controls and ALS cases. (A) Copper concentration

profile over developmental time in a healthy control. Red lines indicate equilibria for high (SH) and low (SL)

concentration quasi-stable states, as identified in local minima of the potential analysis in (B), and blue dashed line

indicates the unstable equilibria between these states. (B) Copper concentration in an ALS case. Red line indicates the

single quasi-stable state identified from potential analysis in this system. (C) Control copper potential energy profiles

corresponding to concentrations in (A), showing two basins of attraction (red arrows; SL and SH), and the transition

point between them. These are identified as the local minima and maxima, respectively, of the potential energy

function. (D) In contrast to (C), the ALS case corresponding to (B) conforms to a single attractor system. (E) Three-

dimensional contours of potential energies plotted against copper concentrations (as calcium normalized ion counts)

and developmental time since birth in a healthy control. Discrete attractor states appear as localized wells in the

potential energy landscape throughout the course of development. (F) Unlike the bistable system shown in (E), in the

ALS case copper metabolism is dominated by a single attractor system that emerges early and persists throughout

development. Plateau indicates that any departure from the attractor well was highly transient. (G) Phase portrait

derived from a healthy control subject, again suggesting the formation of a bistable attractor system, focused either

toward a tight cluster in the lower left, or a broader orbital trajectory toward the upper right. Axes are derived from

lag-embedding of copper measurements and are therefore in units of count. (H) Phase portrait of copper

concentration profile from an ALS case, indicative of a singular stable state throughout development. (I) Recurrence

plot of healthy control derived from (G) emphasizing a shift from an initial period of slow-oscillating dynamics to a

fast-oscillating laminar dynamic. (J) Recurrence plot of ALS case derived from (H) showing disruption and loss of

structure. Time axis extends from birth to a maximum of 13.96 years.

https://doi.org/10.1371/journal.pcbi.1007773.g003
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model including only the 5 most-predictive features yielded a predictive model with an AUC

of 0.76 (0.57–0.94).

Discussion

We demonstrate a novel approach to probe the dynamics underlying elemental assimilation

and metabolism, and how these processes are associated with health and disease. To achieve

this, we combined methodologies in exposure biology, dynamical systems theory, and biosta-

tistics. First, at the level of biomarker assessment, we developed tooth biomarkers that provide

over 500 consecutive time-series measures of elemental metabolism from birth to approxi-

mately 15 years of age, with an average time span in our cohort of 10.3 years. To characterize

dynamics involved in elemental assimilation, we applied methods derived from dynamical sys-

tems theory to measure periodicity and quasi-stable state transitions throughout development.

These phenomological indicators, derived at the level of the individual, provided the basis for a

subsequent statistical analysis to test for differences in these processes between healthy subjects

and ALS cases, and to develop algorithms predictive of disease. Our results identify significant

Fig 4. Copper dynamical attractor systems in an animal model of ALS. (A) Copper concentration in a wild-type

mouse. Red line indicates singular quasi-stable state identified from potential analysis in (C). (B) Copper

concentration in a SOD1G93A mice. Red line indicates singular quasi-stable state identified from potential analysis in

(D). (C) Wild-type copper potential energy profiles corresponding to concentrations in (A). Red arrow (S0) indicates

singular local minima identified in potential energy function, indicative of a single basin of attraction. (D) SOD1G93A

potential energy profiles corresponding to concentrations in (B). Red arrow (S0) indicates singular local minima

identified in potential energy function, indicative of a single basin of attraction. (E) Three-dimensional contours of

potential energies plotted against copper concentrations and developmental time in a wild-type mouse and (F)

SOD1G93A. (G) Phase portrait derived from (E). Axes are derived from lag-embedding of copper measurements and

are therefore in units of count (H) Phase portrait derived from (F). (I) Recurrence plot of wild-type mouse derived

form (G). (J) Recurrence plot of SOD1G93A derived from (H) emphasizing the emergence of periodic structure.

https://doi.org/10.1371/journal.pcbi.1007773.g004

Fig 5. ROC curve for predictive models classifying ALS cases and controls. (A) Lasso model. (B) Tree-based gradient boosting classifier. Shaded area shows

confidence interval of the sensitivity at varying specificities estimated across 2000 bootstrapped permutations of predicted outcomes; AUC shows estimated mean area-

under-curve and 95% CI intervals.

https://doi.org/10.1371/journal.pcbi.1007773.g005
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differences in these features between ALS cases and controls, which we subsequently extended

to an SOD1 ALS mouse model system.

The rationale for a phenomological analysis of system dynamics is to provide a new meth-

odological perspective on the analysis of elemental assimilation and metabolism during child-

hood development. Whereas elemental homeostasis is typically studied through the

establishment of population distributions, and an individuals’ health assessed through their

momentary concentration relevant to this distribution, here we demonstrate the utility of

characterizing homeostatic equilibria at the level of the individual, as measured through the

formation of quasi-stable states and cyclical dynamics. The measures derived from the analyses

we present provide a new avenue for epidemiological studies that traditionally employ statisti-

cal hypothesis testing seeking to detect concentration differences between health and disease.

Future efforts will build on this work by investigating the connection between state transitions

and anthropometric indicators of growth and development, and/or explore links to disease.

The foremost challenge in studying a previously-uncharacterized and therefore interesting

biological system is that we do not know (or it is not possible to know) whether the observed

time series data reflects a chaotic, deterministic, or a stochastic process, or if the system transi-

tions between these states. These uncertainties present a challenge in determining the appro-

priate assumptions under which to analyze the system. To overcome this, we applied parallel

and complementary dynamical methods which are sensitive to varying aspects of the underly-

ing attractor system. Each of these approaches is useful in quantifying dynamics that the alter-

native method may be insensitive to; RQA, for example, provides direct measures of the

prevalence (determinism), duration (mean diagonal length, MDL), and complexity (entropy)

of cyclical processes, but does not directly quantify state shifts (though indicators of these may

be observed in Takens embedding and recurrence plots). In contrast, potential analysis is use-

ful in quantifying the emergence of discrete attractor states, but does not provide direct indica-

tors of periodicity in these systems. By combining these approaches, it is thus possible to

capture phenomological dynamics that might be missed by either analysis applied alone, and

would be ignored entirely in standard approaches to biomarker assessment.

To examine whether these approaches are of value in detecting disease signatures, we

focused on ALS, a late-onset neurodegenerative disease believed to be triggered by early-life

environmental factors acting in conjunction with genetic predisposition [27,28]. In individuals

with ALS, we observed disruptions in the architecture of elemental attractor systems, evident

in the dysregulation of bistable systems, which in ALS subjects typically presented as singular

attractor states. For example, while copper and lithium pathways showed multiple attractor

states in healthy control individuals, ALS was associated with the formation of fewer attractor

states, typically yielding a single attractor that persisted throughout development. We charac-

terize the emergence of multiple attractor states as an indicator of bistability because these sys-

tems appear to freely transition between states, which is in contrast to behavior indicative of a

bifurcation, wherein departure from a given state implies its sublimation. In a few human

cases, and in some mice, we further observed the formation of multi-stable states, where three

or more quasi-stable states were observed.

The dysregulation of attractor dynamics in ALS when compared to controls was addition-

ally apparent in our analysis of periodicity via Takens embeddings and RQA. Consistent with

our analysis of potential energy landscapes, we observed significant dysregulation in the preva-

lence, complexity, and duration of periodic processes in elemental metabolism, as quantified

in determinism, entropy, and mean diagonal length (MDL). This pattern was evident in cop-

per, magnesium, and manganese pathways, though not in zinc and lithium. These results

emphasize that varying dynamical methods may capture different aspects of attractor dysregu-

lation. Further, the observed early-life dysregulation of periodicity in elemental metabolism is
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consistent with recent findings which relate to the emergence of autism spectrum disorder

(ASD) [29], though that study focused on prenatal and perinatal elemental dynamics. None-

theless these studies together emphasize the importance of assessing elemental metabolism for

neurological disorders.

Considered together, the findings in our human participants suggest that ALS pathology

involves broad dysregulation of various mechanisms that regulate metabolism of copper, and

specific aspects of the metabolism of other elements including manganese, lithium and magne-

sium. Supporting this, both linear and tree-based classification algorithms that were used for

the predictive analysis identified these elements as the most important contributors to predic-

tive performance; and, follow-up analyses which utilized only features derived from these ele-

ments yielded good performance. Our data are in agreement with clinical and experimental

studies revealing copper dyshomeostasis in ALS [30], and add to the growing literature relating

lithium regulation to ALS [31,32].

We further extended our findings in human subjects to a mouse model of ALS expressing

the human G93A mutant SOD1 protein, which results in neurodegeneration and a phenotype

similar to human familial ALS. As in healthy humans, in wild-type mice we also observed the

formation of multi-state attractor dynamics in developmental elemental assimilation. Consis-

tent with our findings in humans, the transgenic mice showed dysregulated copper and lith-

ium metabolism, primarily captured in the RQA-based measures of periodicity in these

pathways. As shown in (Fig 4G and 4H), we did not observe differences in quasi-stable state

formation in the animal model as we did in humans. While the transgenic mouse model is not

a direct correlate of sporadic ALS (sALS) cases, it allowed us to confirm that genetically

induced metabolic perturbations are expressed as disrupted attractor dynamics of essential ele-

ments. As in our analysis of human subjects, however, these findings should nonetheless be

interpreted from the perspective of an observational study; that is, while the underlying genet-

ics in the mouse model were experimentally controlled, we did not directly manipulate the ele-

mental dynamics, and should therefore interpret the observed changes in these systems as

associative.

Collectively, our data show that both the stability and plasticity of elemental metabolic

attractors, and the systematic consolidation of metabolic pathways, relate to important indices

of normal development. We also discovered previously uncharacterized aspects of metabolic

pathways during neurodevelopment that related to the eventual onset of ALS. It is important

to consider our results in the context of the known environmental and genetic risk factors for

ALS. Aberrant levels of essential and toxic metals are found in biospecimens from ALS

patients. Some of those metals have been associated with biological pathways altered in ALS,

such as oxidative stress and mitochondrial dysfunction [33]. Over 25 genes have been identi-

fied either as the genetic cause of the disease in the familial cases, or as genetic variants influ-

encing predisposition in sALS, the most common form of the disease [34,35]. Proteins

encoded by some of these genes require manganese, copper, and zinc as cofactors for their

enzymatic activity, or are interrelated to other elemental pathways [36]. Previous studies have

largely relied on elemental biomarkers or surrogate estimates of exposure at a few time points

after diagnosis [34]. Our data show that elemental metabolic pathways are complex and vary

over time. Our approach, therefore, offers an alternative to explore gene-environment interac-

tions by including measures of attractor landscapes underlying elemental metabolism. Our

study is limited by a small sample of participants and was undertaken at one clinical center,

which limits generalizability; as well, since our sampling method is dependent on the quality of

the tooth sample, we were unable to sample exactly equivalent developmental windows in all

participants. We used self-reported measures of smoking but did not have biomarkers of

tobacco smoke exposure.
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Overall, we show the existence of elemental attractor landscapes spanning approximately a

decade of childhood. The utility of these features in predictively classifying ALS and other dis-

orders, from measures derived decades before the emergence of clinical signs and symptoms,

emphasizes both the theoretical and practical significance of developing sentinel approaches

that apply dynamical systems methods to biological samples.

Methods

Study participants

ALS participants, meeting revised EI Escorial Word Federation of Neurology criteria [37]

(N = 36) were recruited at the University of Michigan ALS clinic (S1 Appendix Table B). Clini-

cal and family history data were obtained. Age- and sex-matched control participants under-

going multiple teeth extractions were recruited at the Oral Surgery Clinic at the University of

Michigan Dental School. Control subjects (N = 31) were excluded if they or a first- or second-

degree family member had a neurodegenerative disease. Participants or next of kin provided

informed consent. This research was approved by the University of Michigan Medical School

Institutional Review Board. Permanent teeth obtained at autopsy or during routine dental

extractions were gently cleaned to remove tissue, rinsed with deionized water, air dried, and

stored at room temperature, as metal deposits in teeth are known to be stable and reflect expo-

sure during development [19].

Animal model of ALS and sample collection

Fourteen (7 male and 7 female) B6.Cg-Tg(SOD1�G93A)1Gur/J (SOD1G93A) and 15 (8 male

and 7 female) control littermate mice (JAX stock #004435; Jackson Laboratories, Bar Harbor,

Maine) were maintained with a Lab Diet 5LOD chow (Lab Diet, St. Louis, MO) and housed at

the University of Michigan following the Committee on the Care and Use of Animals guide-

lines (approval #PRO00008431) [38]. Animals were sacrificed at the age of 41 d, 73 d, 120 d,

and end stage using pentobarbital (Vortech, Dearborn, MI). End stage (161–175 d) was deter-

mined based on the health of the mouse. An age and gender matched control was sacrificed at

the same time point for each SOD1G93A mouse. Genotyping was performed by PCR as sug-

gested by supplier (Jackson Laboratories). The lower mandibles were dissected and the teeth

removed for metals analysis.

Metals analysis of teeth

Metal concentrations in deciduous and permanent teeth have been validated against levels in

environmental samples and in blood in both human and animal studies [19,20,39–41]. Our

method is detailed in S1 Appendix Procedures and Figures E and F. Metal concentrations

were determined by laser ablation inductively-coupled plasma mass spectrometry (LA-

ICP-MS) [42–44]. Briefly, we used a New Wave Research NWR-193 (ESI, USA) laser ablation

unit equipped with a 193 nm ArF excimer laser connected to an Agilent Technologies 8800 tri-

ple-quad ICP-MS (Agilent Technologies). The laser was scanned in dentine from the dentine

horn tip towards the tooth root tip and surface contamination was removed using a pre-abla-

tion scan. Data were analyzed as metal (metal studied) to calcium (internal standard) ratios to

control for any variations in mineral content within a tooth and between samples. Each tooth

was sampled, on average, at over 500 locations. The method and operating parameters for

LA-ICP-MS are shown in S1 Appendix Procedures and Table I. For the animal model, identi-

cal instrument operating conditions were applied. Concentration of multiple metals of 14

mice was determined in the incisor dentin by LA-ICP-MS. The majority of samples were first
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molars (43%), followed by second molars (24%), canines (13%), incisors (12%), premolars

(4%), and third molars (3%). Statistical analysis accounted for tooth type in the analysis. Tem-

poral information was assigned using well-established ages for the initiation and termination

of tooth development (for review see: [45]).

Phase space reconstruction

For many dynamical methods, including those applied here, the reconstruction of time series

data in a phase space coordinate system via Takens embedding is an initial step in evaluating

orbital trajectories, recurrence parameters, and attractor topology. We used delay embedding

for phase space reconstruction, [24] which involves the specification of delay parameter, τ, and

embedding dimension, m, to reconstruct an m-dimensional coordinate system from a univari-

ate time series, in this case an elemental measurement from a single subject. To estimate the

appropriate delay parameter (τ), a mutual information algorithm was applied, with the given

delay corresponding to the minimal interval needed to minimize mutual information [46,47].

Similarly, the minimization of a false nearest neighbors (FNN) algorithm determined the

appropriate embedding dimension, m. For each elemental pathway, per person, these parame-

ters were derived as described above for use in phase space reconstruction and subsequent

analysis with recurrence quantification analysis (RQA), as described below. Across subjects

and pathways, the median optimal embedding dimension and associated delays used in this

study are provided in S1 Appendix Table J. The “nonlinearTSeries” package in R (v3.5.2) was

used to calculate associated parameters and visualize Takens reconstructions; the full code to

implement these procedures as shown throughout this paper is provided in the S1 and S2

Codes.

Recurrence quantification analysis

We have previously described the application of recurrence quantification analysis (RQA) to

elemental time series as applied here [29,48]. RQA was developed to characterize periodic pro-

cesses in signals from physical and biological systems, and has been extensively applied in

diverse fields including geology and climatology, physiology and molecular biology, and neu-

roscience and psychology, among others (see reviews by Webber et al. [49, 50] and Marwan

et al. [47]). Briefly, the application of RQA involves the construction of a recurrence plot,

derived from an attractor reconstructed via Takens lag-embedding method (see above sec-

tion), whereby a threshold function, ε, is successively applied to each lag-embedded point and

a matrix is constructed to capture the index value (timing) of any neighboring points within ε,

with recurrent points represented in black. A process yielding a repeating sequence, e.g. a

cycle, will thereby yield the reconstruction of a diagonal line in the recurrence matrix, and the

distribution of diagonal lines will reflect the timing and duration of the periodic process. Like-

wise, during periods when the signal remains relatively stable, such that successive measure-

ments remain within the threshold function ε, laminar patterns, e.g. vertical and horizontal

lines, or square “boxy” structures, will be apparent in the recurrence plot. Points in phase

space that are never revisited will be apparent in the recurrence plot as white space. To facili-

tate comparison across elemental pathways that may differ in their concentrations and proper-

ties, in all RQA analyses conducted here an adaptive threshold value was used such that ε
yielded a fixed recurrence rate of 10%, as in prior studies that examined RQA features in ele-

mental metabolism [29, 48, 51]. The median lag and embedding dimensions derived during

RQA of varying elemental pathways are reported in S1 Appendix Table J.

To quantify cyclical processes in the underlying signal, the distribution of diagonal lines is

quantified in RQA to yield measures of determinism, entropy, and mean diagonal length.
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Determinism quantifies the prevalence of periodic processes as the ratio of cyclical recurrences

to all other recurrence points, as defined as Determinism ¼
PN

L¼lmin
lPðlÞ

PN

l¼1
lPðlÞ

, where P(l) defines the

histogram of diagonal lines of length l derived from a recurrence plot, thus the numerator
PN

l¼lmin
lPðlÞ reflects all diagonal lines above a minimal length (here, 3 successive measure-

ments), and the denominator
PN

l¼1
lPðlÞ reflects all other structures in the recurrence plot.

Similarly, mean diagonal length (MDL), which captures the average duration of cyclical pro-

cesses, can thus be formulated as MDL ¼
PN

l¼lmin
lPðlÞ

PN

l¼lmin
PðlÞ

. The variability in cyclical processes is

measured through Shannon entropy, formulated as ENT ¼ �
PN

l¼lmin
pðlÞlnpðlÞ, which

describes the probabily p(l) to find a diagonal line of exactly length l in the recurrence plot; in

other words, the complexity or predictability of the system.

RQA was implemented here via the Cross-Recurrence Toolbox v5.16 in Matlab v2016b

(MathWorks); example code to recreate recurrence analyses and associated visualizations as

shown throughout this paper is provided in the S1 Code. Features derived from RQA analysis

of individual traces, i.e. measures of determinism, MDL, and entropy, were used in subsequent

statistical analysis in order to test for differences in periodicity at the level of groups, e.g. ALS

cases vs. healthy controls.

Potential energy landscapes

Potential analysis was used to quantify the number of distinct attractor states present in the

reconstructed attractor phase space, as applied in previous climatic [12], ecological [21], and

microbiological [11] studies of attractor dynamics. This method assumes an underlying sto-

chastic system with a potential energy function following the form:

dz ¼ � UðzÞdt þ sdW

where U(z) is the potential function, z is the time-series of elemental concentrations, σ is the

standard deviation in concentrations (here, standardized to 1), and dW reflects a Wiener

entropy process. The potential function, U, is linked to the probability density function of ele-

mental concentration by the Fokker-Planck equation, yielding U = � s2

2
logPd, where Pd is the

empirically estimated probability density function of the elemental concentration. Note that

this steady-state approximation relies on the assumption that a univariate time series, as ele-

mental concentrations were treated in our analyses, can generally be assumed to meet the

assumptions of a gradient system [14].

Probability density functions were estimated with Gaussian density kernels and automated

kernel width adjustment with Scott’s method [52]. Potentials were scaled to the noise levels

(U/σ2), following Hirota et al. [21]. As in Lahti et al. [11] local minima and maxima were esti-

mated numerically, with the number of local minima used to quantify the number of distinct

attractor states, and the local maxima used to define transitions between states. The number of

discrete quasi-stable states was measured for each element, per subject, and then used in subse-

quent statistical analyses. To visualize state-formation across both time and elemental concen-

tration, potential energy analyses were also conducted in rolling windows, allowing potentials

to be assigned to discrete time points, across grids sized at 50 measurements. The “earlywarn-
ings” package in the R programming language was used in calculating these functions; full

code for the implementation of these analyses and associated visualizations as shown through-

out this paper is provided in the S2 Code.
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Statistical analyses

Potential energy analysis and RQA were used to extract, in each individual subject and from

each elemental pathway, measures describing the number of quasi-stable states observed, and

the determinism, mean diagonal length, and entropy in the elemental exposure profile. Fre-

quency counts of quasi-stable states were analyzed with Poisson regression models to test the

effect of ALS diagnosis on the frequency (counts) of stable states throughout development,

with covariate adjustments for sex and age at diagnosis. History of tobacco use was included in

the model but was not significant. RQA features (determinism, entropy, MDL) were evaluated

in general linear models to test for differences in these features between ALS cases and con-

trols, with covariate adjustment for sex and age at diagnosis. For predictive models, both linear

and tree-based algorithms were evaluated to test the predictive efficacy of dynamical features.

In the linear approach, a least absolute shrinkage selection operator (LASSO) classification

model was trained on 40% of the available data (randomly sampled), and tested on 60% of the

remaining data. In parallel a tree-based gradient boosting algorithm [53–55] was applied, simi-

larly following a 40/60% random divide of the data for training/testing, with an additional step

of 3-fold cross-validation applied in the training step. The data used in both predictive models

included only features derived from potential analysis and RQA for each element, e.g. fre-

quency of quasi-stable states, and determinism, entropy, and MDL. Following the method of

Mason and Graham [56], we used rank-based tests to evaluate the hypothesis that ROC curves

yielded better performance than would be expected by chance. All statistical analyses were

implemented in the R programming language using packages glm2, glmnet, and Xgboost for

generalized linear models, predictive LASSO, and tree-based gradient boosting, respectively.

All statistical tests were conducted against an alpha of 0.05 for purposes of determining statisti-

cal significance; p-values are reported both in raw, unadjusted form, and following FDR

adjustment for multiple comparisons.

Supporting information

S1 Appendix. Supporting information for this manuscript including Figures, Tables, Cap-

tions, Procedures and References.
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S1 Code. Example code for recurrence quantification analysis.
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S2 Code. Example code for potential energy landscapes.
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S1 Movie. Potential energy landscape shows multiple attractor wells separated in a control

subject.
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S2 Movie. Potential energy landscape shows a single well attractor system in an ALS case.
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