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Abstract

Tuberculosis (TB) is an infectious disease that still causes more than 1.5 million deaths

annually. The World Health Organization estimates that around 30% of the world’s popula-

tion is latently infected. However, the mechanisms responsible for 10% of this reserve (i.e.,

of the latently infected population) developing an active disease are not fully understood,

yet. The dynamic hypothesis suggests that endogenous reinfection has an important role in

maintaining latent infection. In order to examine this hypothesis for falsifiability, an agent-

based model of growth, merging, and proliferation of TB lesions was implemented in a

computational bronchial tree, built with an iterative algorithm for the generation of bronchial

bifurcations and tubes applied inside a virtual 3D pulmonary surface. The computational

model was fed and parameterized with computed tomography (CT) experimental data from

5 latently infected minipigs. First, we used CT images to reconstruct the virtual pulmonary

surfaces where bronchial trees are built. Then, CT data about TB lesion’ size and location to

each minipig were used in the parameterization process. The model’s outcome provides

spatial and size distributions of TB lesions that successfully reproduced experimental data,

thus reinforcing the role of the bronchial tree as the spatial structure triggering endogenous

reinfection. A sensitivity analysis of the model shows that the final number of lesions is

strongly related with the endogenous reinfection frequency and maximum growth rate of the

lesions, while their mean diameter mainly depends on the spatial spreading of new lesions

and the maximum radius. Finally, the model was used as an in silico experimental platform

to explore the transition from latent infection to active disease, identifying two main triggering

factors: a high inflammatory response and the combination of a moderate inflammatory

response with a small breathing amplitude.
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Author summary

Tuberculosis is, even today, among the 10 main causes of death in the world. Despite the

effectiveness of current strategies to fight the disease and those that are under develop-

ment, the huge reservoir of latently infected individuals is a big hindrance in its eradica-

tion. One of the challenges inherent in this problem is that the mechanisms that cause

latent infection to evolve towards active disease are not fully understood. Why will 90% of

infected individuals never develop an active disease? In other words, what are the main

factors that trigger an active disease in 10% of cases? We have focused our efforts on

understanding the mechanisms that allow keeping infection latent, especially those related

with endogenous reinfection. Since it is supposed to occur through the bronchial tree, we

have designed a 3D computational model that mimics this structure, in which we have

implemented an agent-based model of lesion growth and proliferation. Our results were

contrasted with computed tomography measurements in latently infected minipigs, pro-

viding successful results that reinforce the essential role of endogenous reinfection

through the bronchial tree in keeping infection latent.

Introduction

Tuberculosis (TB) is an infectious disease that in 2017 killed more than 1.6 million people.

Mycobacterium tuberculosis (Mtb) causes TB, and this bacterium is the individual agent caus-

ing the highest mortality worldwide [1]. The World Health Organization (WHO) estimates

that 25 to 30% of the population worldwide is infected with Mtb, and that around 10% of

infected people will develop active tuberculosis (ATB) in a few years’ time [2], although these

percentages are being questioned and re-visited by recent studies [3]. WHO also estimates that

10 million humans developed ATB in 2017 [2].

TB infection starts at a pulmonary alveolus when Mtb is phagocyted by an alveolar macro-

phage (AM). The Mtb resists bactericidal mechanisms induced by AM and replicates inside

the macrophage [4]. Under proper in vitro conditions Mtb replicates once a day [5]. When the

intracellular bacterial load overcomes the AM’s maximum tolerability, macrophage necrosis is

triggered, thereby returning bacilli to the extracellular milieu. These bacilli are phagocyted by

other AMs and the cycle begins again giving rise to a further increase in bacilli. The further

inclusion of more AMs fails to control bacillary growth. The death of AMs triggers a local

inflammatory response first, and then a specific immune response, which finally controls the

infection. The end of the progressive infection leaves an encapsulated TB lesion [6]. According

to the dynamic hypothesis of Cardona [7], there is a certain probability that a few bacilli will

escape from the lesion, mostly inside a foamy macrophage, and start a new infection in another

alveolus. This process is assumed to occur through the bronchial tree, and it is what we denote

as endogenous reinfection. This includes not only new infections generated from the initial

infection site, but also those originated in successive infection foci (Fig 1). An Mtb infection

may be completely cleared by the organism [8], it may enter into a latent state in which the

host is infected but not sick and cannot infect other people, called Latent Tuberculosis Infec-

tion (LTBI), or, if the immune and inflammatory responses are not well balanced, the host

may develop Active Tuberculosis disease (ATB).

Systems biology and computational models are fruitful tools for increasing understanding

of the processes involved in TB [1]. Recently, different models have been useful in identifying

several TB key factors [9–13]. In particular, the Bubble model suggests that the coalescence of

closed lesions is the main mechanism for the growth of lesions in animals that progress to
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ATB [14]. This model successfully explains experimental observations in mice [15]. The Bub-
ble model assumes a generalised logistic (Richard’s curve) [16] growth of lesions, driven by the

inflammatory and immune responses, with their proliferation according to the endogenous

reinfection theory, and a merging between neighbouring lesions when they are close enough.

The model successfully reproduced ATB observed in C3HeB/FeJ mice, demonstrating the

importance of local inflammation, lesion proliferation, and coalescence in the triggering of

active disease. These results are relevant for mouse models; however, they are not easily extrap-

olated to humans, because of the differences between the structure of the lungs in the two spe-

cies, in addition to the well-known differences in immune systems and encapsulation capacity.

Actually, the structure of the lungs may play an important role in the infection dynamics of

TB. On the one hand, endogenous reinfection occurs mainly through the bronchial tree, and

mice have much simpler pulmonary structure than humans, as no secondary lobular structure

is found in mice (they have little or none interlobular septae) [17]. On the other hand, the

encapsulation of lesions is driven by fibroblasts and fibrin from pulmonary membranes like

intralobular septae. Nevertheless, mice do not possess intralobular septae and lesion encapsula-

tion is not possible except close to the pleura [18]. In addition, the immune response of

C3HeB/FeJ mice is much less effective than that of humans. In humans, a balanced Th1

immune response usually takes place after TB infection [19]. As mice’s immune response is

not strong and encapsulation is not possible, these animal models cannot develop an LTBI sit-

uation and all experimental observations show ATB cases [15].

Although pigs and humans share a great deal of anatomy and physiology, researchers rarely

employ pigs as in vivo models for TB. Yet their immune system and lung structure are particu-

larly close to the corresponding system and structure in humans. Thus, TB development in

Fig 1. Main features of dynamic hypothesis. Schematic representation of initial infection (A, white arrow) lesions’ growth (A–

F), endogenous reinfection (C–E, yellow arrows) and coalescence of neighbouring lesions (F).

https://doi.org/10.1371/journal.pcbi.1007772.g001
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pigs is more similar to that in humans than in mouse models [19, 20]. Minipigs are a geneti-

cally selected species, which is more convenient than other pigs for experiments in a lab,

mainly for size reasons. Experimental results in TB in minipigs resemble pathological findings

described in human [21–23].

In this study we aim to adapt and implement the Bubble model in a virtual bronchial tree in

order to understand the maintenance of LTBI in minipigs. In particular, we want to test the

falsifiability of the dynamic hypothesis of Cardona [7] that explains this maintenance, as well

as to obtain some orders of magnitude of its dynamics. We use experimental minipig TB data

to tune the model [23]. With the new model we perform several in silico experiments, which

successfully reproduce experimental observations, and, furthermore, permit us to systemati-

cally explore the transition between ATB and LTBI.

In Materials and Methods we describe the CT experimental data, as well as the two sub-

models used in simulations, which correspond to the computational lung and the revised Bub-

ble model. We finish this section providing details of the model’s implementation and the

methodology used for its parameterization and sensitivity analysis. Results’ section starts with

an analysis of the computational lung obtained. Then, it provides the results of the model’s fit-

ting to experimental data and the sensitivity analysis. Subsequent simulation series are used to

explore the effect of the initial configuration and to test the transition between LTBI and ATB

in minipigs. Finally, the conclusions for this study and their implications in testing the falsifi-

ability of the dynamic hypothesis are drawn.

Materials and methods

Computer tomography measurements of LTBI in minipigs

Six female specific pathogen-free (spf) minipigs were intratracheally infected by H37Rv Pas-

teur strains of Mtb (103 CFU) under sedation [23]. They were euthanized twelve weeks post-

infection, without having received any TB treatment. None of them had developed ATB

symptoms.

Broncho-pulmonary pieces were obtained from all minipigs and analysed with multidetec-

tor computed tomography scan (CT), a GE LightSpeed VCT with high image resolution

(64-slice). The morphoanatomical study was carried out with volume rendering software. For

each of the minipigs, we recorded the number of lesions, their location and size, Hounsfield

units, and distance to closest pleura. One of the analysed minipigs did not present any lesions;

it was considered non-infected for technical reasons and excluded from the subsequent

analysis.

The 5 infected animals showed 165 lesions in total, 33 ± 22 per minipig. These lesions are

shown in Fig 2. The mean diameter of the lesions was 1.3 ± 0.2 mm. Lesions were located in

each minipig with a mean dispersion of 16 ± 4 mm. The number of lesions and their positions

were used to train the computational model [24].

Ethics statement. All ethical requirements were followed according to Directive 201/63/

EU, and the protocol and procedures of the study were approved by the corresponding ethical

committee on animal welfare and the Catalan Government (Permit number: 5796). All ani-

mals were euthanized at week 12 post-infection by intravenous injection of sodium

pentobarbital.

Computational bronchial tree

The main novelty of this modelling approach is the use of an explicit 3D space that resembles a

pulmonary bronchial tree. The design of this explicit space requires the building of a computa-

tional bronchial tree inside a certain pulmonary volume, limited by the external surface. The
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geometrical information necessary for this model can be obtained from pulmonary CT images

of the studied minipigs.

Accordingly, the computational bronchial tree consists of two models: (1) an empirical

model for the external lung’ surface that limits pulmonary volume, and (2) an artificial iterative

model of bifurcations to build a bronchial tree inside this surface. This model is deterministic,

since surfaces are obtained from experimental CT measurements and the iterative model does

not incorporate randomness.

Empirical model for the lung’s external surface. An empirical surface model is built

using CT scan data from one of the minipigs, randomly chosen. This representative surface is

subsequently re-scaled according to the dimensions of others minipigs’ lungs, giving rise to 5

computational surfaces that can be used to buildi the 5 different bronchial trees.

In order to build the representative pulmonary surface, we use three images of the three

planes, i.e., coronal plane, sagittal plane, and axial plane. From these images, the contour line

is extracted, keeping the carina (i.e., the bifurcation point of the trachea where it divides into

the two main bronchi) position for purposes of reconstruction (Fig 3). The 3D reconstruction

from contour lines is carried out with Matlab. All contours are normalized to 1 in order to be

subsequently re-scaled with the specific dimensions of each of the 5 minipigs’ lungs on the

reconstruction process. Finally, the left lung is slightly rotated (5˚) so that the inter-pulmonary

space is reduced.

All the lesions observed experimentally are located in the coordinate system defined by the

reconstructions, taking the carina as the reference point, in order to check if they are located

inside the obtained computational pulmonary surfaces. As a result, 95% of the detected lesions

are inside the computed surface or in contact with pleura.

Iterative model for the bronchial tree. A bronchial tree of the conductive zone is built

inside the computational pulmonary surface with an algorithm based on previous work on the

human bronchial tree [25, 26]. Starting at the trachea, a set of iterative rules govern the succes-

sive bifurcations. The bronchial tree of the minipigs is assumed to be morphologically equiva-

lent to the human one, but with smaller dimensions [27].

Fig 2. Summary of experimental results. Left: CT image reconstruction of a minipig’s pulmonary surface. Right: 3D

representation of location and size of all minipig lesions; each colour is for a different minipig (red, magenta, blue,

yellow, and green).

https://doi.org/10.1371/journal.pcbi.1007772.g002
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Our algorithm assumes that all the divisions are bifurcations, i.e., they occur in a dichoto-

mous way. The resulting three branches involved in a bifurcation are coplanar, and the plane

that contains each bifurcation is called a bifurcation plane. The divisions are assumed to occur

in successive perpendicular planes, i.e., right-left, anterior-posterior, and upper-lower. There-

fore, each bifurcation plane is perpendicular to the previous plane. The first division starts at

the carina and directs the new branches into the right and left lungs.

When a certain conducting airway 0 divides into conducting airways 1 and 2, the flow con-

servation (Q0 = Q1 + Q2) together with Murray’s law (Q = C � d3) [28] leads to the following

relation between their diameters, di:

d0

3
¼ d1

3
þ d2

3
ð1Þ

Florens et al. [29] derived a ratio of 3 for the length of a branch (li) and its diameter (di) for

most of the bronchial trees:

li ¼ 3di ð2Þ

We also studied this relation using Rozanek and Roubik’s experimental data [30], obtaining

a proportionality constant of 3.07 and a goodness of fit of R2 = 0.98. This analysis is shown in

the Supplementary material section 3 (Fig B in S1 File).

Fig 3. Normalized contour lines obtained from CT-scan images. Contour lines were obtained from CT-scan images and used for a 3D

computational reconstruction of the pulmonary surface. Trachea division point (carina) is marked for purposes of reconstruction. (A)

Sagittal plane CT image. (B) Coronal plane CT image. (C) Axial plane CT image. (D) Sagittal plane outline reconstruction. (E) Coronal

plane outline reconstruction. (F) Axial plane outline reconstruction.

https://doi.org/10.1371/journal.pcbi.1007772.g003
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The diameters and angles of each bifurcation depend on the relative volume that each new

branch supplies. We define the qi factor as:

qi ¼
Vi

V0

; i ¼ 1; 2 ð3Þ

where V1 and V2 are, respectively, the sub-volumes irrigated by conducting airways 1 and 2

after bifurcation, and V0 is the volume supplied by the branch 0 (before bifurcation). Taking

into account Murray’s law, the diameters after the bifurcation are:

di ¼ d0 � qi
1=3; i ¼ 1; 2 ð4Þ

Minimizing the work per unit time (associated with friction and to maintain the structure)

in bifurcations, the following relations between the angles of the bifurcation and the factor qi
are obtained [31]:

cos�i ¼
1

2qi2=3
1þ qi

4=3 � ð1 � qiÞ
4=3

� �
; i ¼ 1; 2 ð5Þ

The calculation of the ratio qi (Eq 3) cannot be analytically evaluated. Therefore, a grid of

equispaced points is created so that the number of points inside each considered volume, Ni
(i = 0, 1, 2), is assessed and the ratio is evaluated as:

qi ¼
Ni

N0

; i ¼ 1; 2 ð6Þ

The distance between points is initially fixed at 1 mm [25] and then reduced to 0.2 mm to

increase precision and improve results.

In Fig 4 there can be seen a diagram of a bifurcation example for q1 = 0.6. Using Eq 4 it can

be determined that the diameter of the daughter branches are d1 = 0.84�d0 and d2 = 0.74�d0,

respectively. Length is 3 times the diameter of each branch, then: l0 = 3�d0, l1 = 3�d1 = 2.53�d0 =

0.84�l0 and l1 = 3�d1 = 2.21�d0 = 0.74�l0. Bifurcation angles can be computed using Eq 5 as: ϕ1 =

32˚ and ϕ2 = 43˚.

The initial tests with these equations resulted in a bronchial tree that does not fully occupy

the upper part of the pulmonary surface. Therefore, a correction is added to the angle calcula-

tion [25]. It consists of an evaluation of the mass centre of the volumes to be supplied,

! xMC;Vi , which is projected on the bifurcation plane. We will denote with ψi the angle

between the original branch and the projected mass centre. Experimentally, bifurcations with

an angle greater than π/2 were not observed [32]. Therefore, the corrected angle φi is:

φi ¼ min
�i þ ci

2
;
p

2

� �

; i ¼ 1; 2 ð7Þ

Branches with a diameter lower than 0.5 mm are considered terminals as areas those

branches that escape from the pulmonary surface. The model for the building of successive

bifurcations is summarized in Table 1.

The Bubble model: an update

The Bubble model is an agent-based model in which the agents are the lesions. The dynamics

of the lesions are driven by three processes: a generalised logistic growth, the reinfection pro-

cess that permits the generation of new infection focuses, and the coalescence between neigh-

bouring lesions.
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The Bubble model was originally designed and calibrated to describe the dynamics of tuber-

culous lesions in mice with an active disease [14]. The spatial structure was not relevant for

mice, due to the dimensions and the relatively simple structure of mouse lungs, and taking

into consideration the size of lesions for the active disease. This model is updated and imple-

mented as follows.

Lesion growth. We model a lesion as a sphere whose spatial position (3D coordinates, in

mm), radius (in mm), and age (in days) are variables. Lesions are firstly detected when their

radius is rmin = 0.075 mm (smaller lesions cannot be identified). This occurs after approxi-

mately tmin = 14 days from the initial infection. Then when a lesion is created it remains

“silent” for 14 days before it is initialized with a rmin radius. The model employs a generalised

logistic growth of the radius of the lesions as follows:

driðtÞ
dt
¼ vi � ri tð Þ � 1 �

riðtÞ
rmax

� �2
" #

ð8Þ

where ri is the radius of the lesion, νi is the parameter that sets the maximum growth rate, and

rmax is the maximum radius. The parameter νi is modelled as a Gaussian variable with mean

value ν and standard deviation ν/3. Therefore, each lesion grows at a slightly different velocity

at each time step. From experimental data it is known that around the 28th day a 2 mm lesion

reaches its limit [22]; therefore, ν is estimated as ν = 0.3 day-1 (σν = 0.1 day-1).

Fig 4. Bifurcation diagram. Bifurcation of 0 branch into two (1, 2) daughter branches. The cabal ratio for branch 1 is:

q1 = 0.6. Length is 3 times the diameter of each branch as may be seen in Eq 2. Diameter relations are obtained from Eq

4, as d1 = 0.84�d0 and d2 = 0.74�d0. Angular values are computed using Eq 5, as ϕ1 = 32˚ and ϕ2 = 43˚.

https://doi.org/10.1371/journal.pcbi.1007772.g004
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Lesion proliferation. The multiplication of the number of lesions is caused by endoge-

nous reinfection. In this way, a mother lesion generates new daughter lesions from day 14 to

day 28. The original reinfection probability function [14] includes two terms: (1) a linearly

increasing term with the radius of the mother, and (2) a linearly decreasing probability with

mother lesion age [22]. The second term is slightly modified in order to allow the generation of

new daughter lesions from mother lesions older than 28 days, with a small non-zero probabil-

ity:

P tð Þdt ¼ r �
riðtÞ
rmin
�e� aðai� 14Þndt; ai � 14days ð9Þ

where ρ, α, and n are parameters that define the probability profile, ai is the age of the lesion,

in days, and rmin is the minimum radius at which lesions are identified. Fig 5 shows original

[14] and modified (Eq 9) models with α = 0.035 day-n and n = 1.63 with rmax = 1 mm and ρ =

0.10 day-1. The values of α and n are fixed to ensure that the area under the two curves are

equal and to minimize the difference between the experimental results and the linear model.

The reinfection probability initially grows exponentially with the lesion radius; however, for

longer times the curve decays exponentially because of encapsulation and calcification.

In the original model for mice, the location of new lesions is selected from a probability

which decreases with the distance. In the current version for minipigs the distance is modelled

in the same way, but considering the bronchial distance between two terminals instead of the

geometric distance between two points. The model does not explicitly assume that the dissemi-

nation occurs exclusively through the aerial part, but it could include a possible recirculation

through the adjacent circulatory or lymphatic systems as well. Then, possible locations are

determined by the bronchial tree terminal positions:

P i! jð Þ ¼
e� bdij
P

je
� bdij

ð10Þ

where P (i! j) is the probability that a lesion appears at a terminal j due to a mother lesion at

terminal i, and β is the dispersion parameter that determines the spreading. Fig 6A shows the

mean distance of the appearance of new lesions as a function of the dispersion parameter. Fig

Table 1. Summary of the model for building the computational bronchial tree of each minipig.

The normalized pulmonary surface is specifically re-scaled for each minipig, taking into account the measured

dimensions.

A bronchial tree is built inside each computational pulmonary surface.

The bronchial tree starts at the end of the trachea, taking the trachea diameter and carina location of each minipig as

reference.

The bronchial tree is a tubular structure, and non-terminal branches split in a dichotomous way.

The three branches implied in a division are coplanar (bifurcation plane).

In each division, the pulmonary territory is divided in two subregions by the plane that is perpendicular to the

bifurcation plane, following the direction of the mother branch.

The bifurcation plane of the first division is the vertical one that separates the right and the left lungs.

The bifurcation planes are perpendicular from one generation to the following.

Once the bifurcation plane is defined, the ratio qi = Vi/V0 is numerically evaluated by a grid of equiespaced points

with a precision of 0.2 mm, so that qi = Ni/N0 (Ni and N0 are the number of points contained in each subvolume).

The parameters of each bifurcation are evaluated using Eqs 2, 4, 5 and 7.

Branches that escape the pulmonary surface and those with a diameter of less than 0.5 mm are considered terminals.

https://doi.org/10.1371/journal.pcbi.1007772.t001
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6B shows the distribution of distance from daughter to mother lesions for β = 0.08 mm-1,

which is slightly different from the theoretical distribution (Eq 10) due to spatial quantization.

Lesion coalescence. Coalescence occurs when the distance between two neighbouring

lesions is shorter than the largest radius. Unlike the original model [14], the properties of the

resulting lesion are weighted according to the coalescing lesions. The new radius is:

rnew
3 ¼ ri

3 þ rj
3 ð11Þ

where ri and rj are the original radii of the two lesions. We employ the radius to calculate the

Fig 5. Reinfection probability. Reinfection probability for a lesion with rmax = 1 mm and ρ = 0.10 day-1. In black,

original Bubble model [14]; in blue, the updated model considering an exponential decrease during the control phase.

The area under the two curves is equivalent.

https://doi.org/10.1371/journal.pcbi.1007772.g005

Fig 6. Lesion spreading distance. (A) Mean distance where lesions appear as a function of the dispersion parameter, β
2 [0, 0.3] mm-1. Due to the quantization of the space, for β> 0.3 mm-1 the probability that the lesion appears at the

nearest terminal is very high and the value is a constant. (B) Density of probability of new lesions spreading with β =

0.08 mm-1.

https://doi.org/10.1371/journal.pcbi.1007772.g006
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weights:

ok ¼
r3
k

r3
new

; k ¼ i; j ð12Þ

which are used to calculate the new age and position of the lesions

anew ¼ oi � ai þ oj � aj ð13Þ

x!new ¼ oi � x
!

i þ oj � x
!

j ð14Þ

Coalescence process is considered every 10 time steps to reduce computational cost and to

ensure that the results are not modified. There are no significant differences when one time

step is used.

Implementation and fitting

The computational models are implemented in Matlab. First, the bronchial trees of the 5 ana-

lysed minipigs are generated to obtain 5 virtual lungs. Next, we obtain the terminal locations

and the distance between terminals through the bronchial tree. Finally, the evolution time of

the lesions are calculated using the updated Bubble model implemented in the virtual lungs.

The model depends on a set of input parameters. It is not a deterministic model so the same

set of parameters can have different outcomes. But there is a strong dependence between input

parameters and outcome variables. Parameters tmin, rmin, α, n, and ν are adjusted as detailed

above, according to the available information. The simulated total time, Tmax, is equal to the

experimental time (i.e., 84 days). The number of time steps is fixed as 1000 in order to ensure

model stability. There are three remaining parameters to be fitted:

• Mean maximum radius, rmax is the mean radius achieved by non-merged lesions following

a generalised logistic growth. It is measured in mm. To account for biology variability, each

lesion has a different maximum radius. We use a Gaussian distribution of standard deviation

σrmax = 0.2 � rmax around the mean value.

• Natality index, ρ is proportional to the probability of triggering an endogenous reinfection

process. It is measured in day-1.

• Spreading parameter, β determines spreading of the lesions through the bronchial tree due

to endogenous reinfection process. It is measured in mm-1.

The complete model reproduces the evolution of an initial distribution of TB lesions in a

3D computational lung. Each single simulation consists of 5 independent runs, one for each

virtual lung. The outcome results of the model are listed in Table 2.

Simulation scheduling. In order to assess the precision of the results obtained from the

model, the variability of the different outcomes (Table 2) is measured. 25000 simulations are

run to determine this variability. As mentioned above, in each simulation the model is run for

the 5 virtual lungs that correspond to the 5 minipigs. A total of 125000 runs are done. This

analysis is useful to learn whether the different results obtained with differing initial parameter

simulations are significant or not.

The variability (error, E) of a given outcome, OC, is defined as:

E OC;Nð Þ ¼
MðOCÞ � mðOC;NÞ

MðOCÞ

�
�
�
�

�
�
�
� ð15Þ

where m(OC,N) is the mean value of a given outcome after performing N simulations and M
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(OC) is the limit of m(OC,N) when N is large enough, in this case N = 25000. The outcome val-

ues follow a Gaussian distribution, sometimes truncated due to quantization effects. Running

simulations with different input parameters, S = {ρ, β, rmax} and different number of simula-

tions (N), a dependence between this variability (E), the targeted outcome (OC), the number of

simulations (N), and the used set of parameters (S) is seen. This error is inversely proportional

to the square root of the number of simulations. Then, Eq 15 can be rewritten as:

E OC;N; Sð Þ ¼
MðOC; SÞ � mðOC;N; SÞ

MðOC; SÞ

�
�
�
�

�
�
�
� ¼

AðOC; SÞ
ffiffiffiffi
N
p ð16Þ

where A(OC,S) is the proportionality constant that depends on the outcome variable (OC) and

the given set of input parameters (S). Table 3 presents the values of A(OC,S) for different sets

of parameters and outcomes.

From this simulation schedule, we conclude that 500 simulations for each dataset ensures

an error (variability) lower than 4% in most of the outcome values and different sets of

Table 2. Outcome variables of the model.

Outcome variable definition

Number of lesions Number of lesions with a diameter greater than 0.9 mm (resolution threshold). These are

called observable lesions.

Mean diameter Mean diameter of the observable lesions. This is measured in mm.

Dispersion Mean distance between observable lesions and their coordinates centre. This is measured in

mm.

Coalescences Number of merging processes that occurred during simulation.

Disease indicator Logical index that indicates the presence or not of lesions larger than 10 mm.

Diameters

histogram

Histogram of the diameter of the observable lesions. Edges of the histogram can be

controlled.

Coordinates

histogram

Histogram of the positions of the observable lesions. Edges of the histogram can be

controlled.

Disease coordinates Coordinates of the lesions larger than 10 mm. These are measured in mm taking the carina as

origin.

Diameters

dispersion

Standard deviation of the diameter of observable lesions. This is measured in mm.

Wounded volume Total volume occupied by observable lesions. This is measured in cm3.

Time till disease Elapsed simulation time till a larger lesion of 10 mm is found. This is measured in days.

https://doi.org/10.1371/journal.pcbi.1007772.t002

Table 3. Values of proportionality constant, A(OC,S), for different outcomes and sets of input parameters.

Latent

set

Transition

set

Active

set

Input parameters ρ (day-1) 0.120 0.045 0.045

β (mm-1) 0.08 0.10 0.15

rmax (mm) 0.68 6.50 10.00

Proportionality constant Number of lesions 0.62 0.70 0.38

Mean diameter 0.07 0.32 0.20

Dispersion 0.10 0.88 3.38

Coalescences 4.70 0.58 0.61

Disease percentage ――― 0.58 ―――

Values are approximated using N = 25000 simulations.

https://doi.org/10.1371/journal.pcbi.1007772.t003
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parameters. Only in a few cases where the mean numeric value of the outcome is very small do

we observe errors larger than 4%, but never larger than 20%.

Simplified protocol for model parameterization. We designed a protocol for parameter-

ization, to find the set of parameters, S = {ρ, β, rmax}, that best fit experimental data. We start

our simulations with a single lesion at the mass centre of the experimentally observed distribu-

tion. To fit the three remaining parameters, we built three error functions to evaluate the

agreement of three outcomes of the computer simulations with experimental data:

1. Error in number of lesions (NLE): relation of the number of lesions observed experimen-

tally, N(E), and the final number of lesions obtained from a given simulation, N(S):

NLE ¼
jNðEÞ � NðSÞj

NðEÞ
ð17Þ

2. Error in distribution of diameters of the lesions (DE), relation of the diameter histogram,

HDi(E), of the experimentally observed lesions with the corresponding simulation outcome

(HDi(S)), nbins being the number of bins in the histograms:

DE ¼
1

NðEÞ
Pnbins

i¼1
HDiðEÞ � HDiðSÞ

NðEÞ
NðSÞ

�
�
�
�

�
�
�
� ð18Þ

3. Error in spatial location of lesions (SE), comparison of the experimental (HSi,j(E)) and the

numerical (HSi,j(S) histograms of the spatial coordinates):

SE ¼
1

3 � NðEÞ
P

j¼x;y;z

Pnbins;j
i¼1 HSi;jðEÞ � HSi;jðSÞ

NðEÞ
NðSÞ

�
�
�
�

�
�
�
� ð19Þ

These error functions will subsequently be used as objective functions to be minimized in

the parameterization process.

The dependence between the objective functions and the input parameters is shown in

Table 4. In this table, green means that the objective function is sensitive to this input parame-

ter and that we can observe its minimum; orange means that it is sensitive but no minimum is

observed; red means no sensitivity. Detailed plots are shown in supplementary material, sec-

tion 4 (Fig C and Fig D, both in S1 File).

Given these results, we design the following process to fit the three parameters: (1) β is fitted

by minimizing SE; (2) then, rmax is fitted by minimizing DE; (3) finally, ρ is fitted by

Table 4. Sensitivity of the error functions (NLE, DE, and SE) to the three parameters explored (β, ρ and rmax).

Error function β ρ rmax

Number of lesions error (NLE) IM IM IM

Diameter error (DE) NM NA IM

Spatial error (SE) IM NA NA

In green (IM), error functions that are affected by these parameters for which a minimum can be identified; in

orange (NM), those that are affected but do not present a distinguishable minimum; in red (NA), those functions that

are not affected by the parameter.

https://doi.org/10.1371/journal.pcbi.1007772.t004
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minimizing NLE. This process is repeated iteratively to finally fit the three parameters jointly,

because a change in one parameter can slightly move the minimum position of the three error

functions.

Sensitivity analysis. The sensitivity analysis is performed using as initial infection a single

lesion on the mass centre of the experimental lesions observed experimentally in each minipig.

The sensitivity analysis is performed for 5 variables: β, rmax, ρ, ν, and Tmax. A set of 11 simula-

tions with different parameter values is designed: one simulation with all the parameters in

their default values, five simulations increasing one-at-a-time parameter by 10%, and five sim-

ulations decreasing one-at-a-time parameter by 10%. We compute an ANOVA test analysis

for 4 outcomes by comparing the results obtained with the original set of parameters and those

obtained with each new parameter combination [33]. An extended sensitivity analysis is per-

formed using [34] methodology; this sensitivity analysis is shown in Supplementary material

section 2 (Fig A in S1 File).

Results

Computing the bronchial tree model: Properties and fitting with

experimental data

The surface of the minipig lungs is obtained from CT images. The 5 bronchial trees are gener-

ated inside the surfaces; see an example of computer generated bronchial tree in Fig 7. The

largest tube is the trachea and at each division the alveolar diameter and length are reduced,

according to the algorithm. The branches ramify and occupy all the pulmonary territory.

Fig 8 gathers an analysis of one of the computed bronchial trees, which is representative of

what is observed in other cases. Although we have no experimental information about the exact

geometry of minipig bronchial trees, we can analyse the main characteristics of virtual lungs gen-

erated and discuss their reliability with existing knowledge and data in general terms. We find a

Gaussian distribution around 45˚ for the bifurcation angular distribution, which is similar to

that observed experimentally in humans (Fig 8A). The mean bifurcation angle is 47.7˚. The

imposition of no angles higher than 90˚ gives rise to a peak at 90˚. As expected, the terminal

branch generation is greater than the non-terminal. Most of the branches end at generation 14.

The highest generation observed in our computed virtual bronchial trees is between 29 and 31,

depending on the dimensions of the lung, which are slightly different for each minipig. The

mean terminal diameter is 0.39 mm with a minimum value of 0.1 mm and a maximum of

Fig 7. Computational minipig bronchial tree. It is represented as a tubular structure. Each conducting airway is represented by an empty

cylinder. Three axial planes are shown: (A) Sagittal plane, (B) Coronal plane, and (C) Axial plane.

https://doi.org/10.1371/journal.pcbi.1007772.g007
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0.5 mm. The minimum terminal diameter observed is determined by net spacing. Fig 8 also

shows the location of terminals and their density along the bronchial tree. This particular mini-

pig’s bronchial tree has 6267 terminals and its volume is 462 cm3; this means a density of 13.6

terminals cm-3. As shown by black points in Fig 8D–8F, terminal density is isotropic, and thus

constant along the 3 spatial axes. This suggests that the bronchial tree is reasonable, because it

would be able to supply oxygen to all terminals equally distributed around the pulmonary terri-

tory. Terminal distributions show how the pulmonary volume is distributed along the 3 axes

(i.e., the lower the pulmonary volume in a certain zone, the fewer the absolute number of

terminals).

Most terminals (90%) have the closest terminal between 1.0 mm and 3.2 mm. However, in

a few zones with low pulmonary space assigned we may observe great variations in the mean

value and each terminal has another terminal at a distance of between 0.1 mm and 6.1 mm.

Fitting the model with simplest initial assumptions

The updated Bubble model is used to simulate the evolution of an initial infection in a compu-

tational lung, taking into account experimental results. Experimental CT images showed the

final state of the infection; we do not have direct information on its initial location. Coordi-

nates and diameters datasets are analysed to determine whether they follow a Gaussian distri-

bution. These Gaussian distributions would be indicative of a group of initial lesions that were

generated from a single infection process and that would have evolved from this common ori-

gin with the same mean growth rate. Nevertheless, after a one-sample Kolmogorov-Smirnov

test we rejected the null hypothesis, which is that the data were part of a standard normal

distribution.

Fig 8. Computational bronchial tree analysis. (A) Angular distribution of bronchial tree bifurcations. The angle is measured between the mother branch and the

new one. (B) Generation distribution; in red, the terminal branches, in blue the non-terminal, and in pink the intersection between them. (C) Diameter distribution

of the terminal branches. (D) Terminal distribution (blue) and density (black dots) along X coordinate. (E) Terminal distribution (blue) and density (black dots)

along Y coordinate. (F) Terminal distribution (blue) and density (black dots) along Z coordinate.

https://doi.org/10.1371/journal.pcbi.1007772.g008
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The lack of reliable information about the initial infection entails the need for a blind

assumption. Following the law of parsimony, we assume the simplest initial configuration, and

alternative possibilities will be explored later on. We use as initial infection for the simulations

a single lesion located at the nearest terminal to the mass centre of all the lesions, given the

final distribution shown by CT images. The set of parameters is adjusted to minimize the

errors as explained in Materials and Methods. followed by the performance of 500 indepen-

dent simulations of each minipig’s configuration (i.e., a total of 2500 simulations). The set of

parameters obtained after the minimization of the objective functions (Eqs 17–19) is ρ = 0.13

day-1, β = 0.08 mm-1, and rmax = 0.68 mm, which corresponds to NLE = 0.089, DE = 0.283, and

SE = 0.299.

In Fig 9 we show the comparison between the experimental and the simulated outcome dis-

tributions of spatial coordinates X, Y, and Z, and of lesion diameters. A two-sample Kolmogo-

rov-Smirnov test of the four pairs of distributions show that there are not significative

differences in any of the cases with a signification level of 0.05. Therefore, the distributions

resulting from the numerical simulation successfully reproduce the experimental observations.

Simulations show that coalescence of lesions is nearly non-existent, on average less than

one coalescence per minipig. This result is in agreement with Prats et al. [9] and Marzo et al.

[15], who presented coalescence as a mechanism essential to the evolution towards an active

Fig 9. Comparison of experimental and computationally obtained distributions of lesion location and size.

Computational distributions were obtained considering as initial infection one lesion in the mass centre of the observed

lesions. The set of parameters used is: ρ = 0.13 day-1, β = 0.08 mm-1, and rmax = 0.68 mm. (A) Coordinate X (Left—

Right) histogram comparison. (B) Coordinate Y (Anterior–Posterior) histogram comparison. (C) Coordinate Z

(Vertical) histogram comparison. (D) Diameter distribution histogram comparison.

https://doi.org/10.1371/journal.pcbi.1007772.g009
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disease from a latent infection. A lack of coalescences, therefore, would be a control indicator

of the latent infection.

Furthermore, simulation results show that the process of endogenous reinfection is crucial

to understanding how lesions appear at different locations in the lungs. The use of a computa-

tional bronchial tree for driving such reinfection produces spatial distributions which resemble

the experimental cases. This process has been shown to be a key factor in maintaining a latent

infection inside big mammals like minipigs.

Sensitivity analysis

Table 5 shows the results of the sensitivity analysis, with the minimum value for the ANOVA

test between the increased and the decreased parameters. This analysis reveals that the number

of lesions is strongly related with ρ, ν, and Tmax. It was not obvious that the number of lesions

would be related with the growth velocity; however, when lesions grow faster there is an

increase in the likelihood that the process of endogenous reinfection will generate new lesions.

The mean diameter varies with parameters β, rmax, and Tmax. The inflammatory response is

the cause of lesion growth, so relations with rmax and Tmax are expected. The results also show

that the dispersion parameter, β, slightly affects the mean diameter. A smaller dispersion

parameter causes lesions to be closer, thereby increasing the chance of a coalescence event. In

fact, as seen in extended sensitivity analysis for the explored parameter space, rmax and β are

the two parameters that affect the mean diameter value most. An increase in one of these

parameters increases mean diameter value.

According to this analysis, Tmax is the only parameter that is not related with the resulting

number of coalescences. All other parameters affect the coalescence processes; nevertheless, a

counter-intuitive result is that the dispersion parameter is not the most strongly related. One

may expect the dispersion parameter to be the parameter that would affect the coalescence

process most because it is the one that determines coalescence spreading, and then determines

the distance at which new lesions appear.

The sensitivity analysis evidently depends on the initial set of parameters. Nevertheless, we

have employed other sets of parameters to carry out sensitivity analyses, providing equivalent

results. These analyses are shown in the Supplementary material section 1 (Table A and

Table B).

Analysing the effect of initial conditions

After confirming that the model with the simplest assumption for the initial conditions is good

enough to explain the experimental results, we explored the possibility of improving the

Table 5. Sensitivity analysis for the set of parameters: S = {ρ, β, rmax} = {0.12 day-1, 0.08 mm-1, 0.68 mm}.

Input parameters

β rmax ρ ν Tmax

Outcome variables Number of lesions 0.137 0.092 <0.001�� <0.001�� <0.001��

Mean diameter 0.003�� <0.001�� 0.475 0.106 <0.001��

Dispersion <0.001�� 0.613 0.089 <0.001�� <0.001��

Coalescences 0.024� 0.004�� <0.001�� <0.001�� 0.754

Each value is the minimum of the p-values from ANOVA test comparing 500 runs of the original set of parameters and the set of parameters where one parameter is

increased or decreased by 10%. Numbers marked with

� present statistically significant differences with p<0.05 and numbers marked with

�� with p<0.01.

https://doi.org/10.1371/journal.pcbi.1007772.t005
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agreement between the model and experimental measurements by testing different initial dis-

tributions of lesions. Table 6 shows the 12 initial configurations analysed, in addition to the

previous one. We explore the choice of one or more lesions from CT data as the initial infec-

tion using location, size, and density criteria, as well as different random choices. For each ini-

tial distribution, the set of parameters is adjusted to minimize the objective functions as

explained in Materials and Methods. Table 6 shows the parameter values that minimize errors

as well as the corresponding values for each of the explored initial distributions.

The results of this analysis, shown in Table 6, do not provide a conclusive criterion for dis-

tinguishing those lesions that belonged to the initial infection. Nevertheless, they corroborate

that the final lesion distribution is strongly related with the initial infection distribution, since

the objective function that is most affected is that of spatial error (SE). The distributions that

assume as initial infection one or two random experimental lesions provide better spatial error

objective function results; however, they give rise to larger values for DE.

In some cases, the value of the spatial parameter that minimizes the spatial error function is

β = 0 mm-1. This value permits a macrophage to travel to all other terminals not taking into

account the distance through the bronchial tree. In consequence, the final distribution

becomes one that follows all terminal spatial distributions and is not related with the particular

initial distribution. Therefore, in these cases the initial distribution is related neither with den-

sity nor diameter.

From latent to active tuberculosis: In silico experiments

Mathematically we define a case of active disease as one with numerical simulations providing

a lesion larger than 1 cm in diameter [35]. The model is designed to reproduce experimental

results from latent tuberculosis in minipigs. Therefore, no trigger of disease is observed in any

of simulations with the fitted parameters. The following set of simulations is designed to

explore the parameter space, looking for those zones leading to active disease.

Table 6. Initial configurations explored with the model using experimental data.

Initial infection Parameters set Errors

ρ
(day-1)

β
(mm-1)

rmax

(mm)

NLE DE SE SE/SEcontrol

Mass centre (control) 0.134 0.071 0.67 0.015 0.25 0.30 1.00

Coordinate centre 0.134 0.070 0.66 0.026 0.23 0.34 1.14

Biggest lesion 0.129 0 0.68 0.006 0.18 0.74 2.45

Two biggest lesions 0.102 0 0.68 0.015 0.18 0.73 2.42

30% biggest lesions 0.084 0 0.69 0.009 0.17 0.77 2.58

Densest lesion 0.123 0 0.69 0.003 0.19 0.73 2.43

Two densest lesions 0.110 0 0.68 0.026 0.17 0.73 2.44

30% densest lesions 0.084 0 0.68 0.004 0.16 0.78 2.58

Density>150HU 0.078 0 0.68 0.020 0.17 0.79 2.62

One random lesion 0.227 0.170 0.54 0.027 0.63 0.25 0.82

Two random lesions 0.122 0.129 0.58 0.008 0.35 0.23 0.77

One random terminal 0.212 0.160 0.55 0.011 0.59 0.71 2.36

Two random terminals 0.129 0.150 0.59 0.016 0.40 0.71 2.37

The first column shows the criteria for choosing which of the measured lesions were assumed as initial infection. The following columns show the parameter values that

minimized errors (ρ, β, rmax) and the values of the three errors obtained (NLE, DE, and SE). The last column compares the spatial error objective function (SE) with the

one from the control simulation. HU: Houndsfield units.

https://doi.org/10.1371/journal.pcbi.1007772.t006
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The parameter space is delimited by β 2 [0, 0.2] mm-1, rmax 2 [1, 5] mm, and ρ 2 [0.02, 0.2]

day-1. We used equidistant points, 11 for β, 10 for rmax, and 4 for ρ. We explored a total of 440

points. We ran 2500 simulations for each point of this parameters space, and 500 for each

minipig virtual lung. The initial infection configuration is set as the control (i.e., one lesion in

the mass centre of the measured lesions’ distribution). Finally, we define an Active Disease
Index as the frequency of active cases among the total number of in silico experiments for each

point of the parameter space.

We show in Fig 10 the obtained Active Disease Index for each of the explored points. This

index increases with any of the 3 parameters, rmax, β, and ρ. Three different zones of the

parameters space can be defined: a latent zone, where most of the simulations result in a latent

infection (green colour in Fig 10), an active disease zone, where most of the simulations derive

into an active disease (red colour in Fig 10), and a transition zone, where both dynamics are

possible (from light green to dark orange in Fig 10).

The parameter rmax is related with the effective inflammatory response in a broad sense;

the greater the effect of the inflammatory response, the bigger the lesions and the greater

the likelihood of developing an active disease. This result is in agreement with experimental

observations [15] and with other biology systems approaches [14]. Of course, the effective

dynamics of inflammatory response can be modulated by local properties such as oxygen con-

centration or macrophages’ availability, among others, which are not explicitly considered by

the model.

Parameter β is the dispersion parameter; a higher value of β corresponds to lower disper-

sion inside the lung, which can be a consequence of a lower breathing amplitude. Therefore, a

Fig 10. Active Disease Index for different sets of parameters. Exploration of parameters space (rmax, β and ρ) to see

the fraction of in silico experiments that present an active TB disease. The colour is proportional to this frequency;

green colour means most of the cases remained latent, red colour means that most of the cases derived into an active

disease, and intermediate colours mean that both dynamics are possible.

https://doi.org/10.1371/journal.pcbi.1007772.g010
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low breathing amplitude appears again as a possible cause for the appearance of big lesions, as

was previously described in the literature [9]. It has to be taken into account that breathing

amplitude changes from one lobe to another one, i.e., it is wider in lower lobes. Therefore, the

conditions that facilitate the development of an ATB would vary from one lobe to another.

Our model shows that active disease can be triggered by a high inflammatory response or due

to a moderate inflammatory response combined with a small breathing amplitude. Neverthe-

less, at this point the virtual lungs are considered to be homogeneous, i.e., we are not consider-

ing variations of parameters along the lungs’ structure.

After this exploration, the sensitivity analysis is extended to check if sensitivity of the model

depends on the set of parameters used. In addition to the default parameters that belong to the

latent infection zone, we chose two combinations of parameters: one representative of the

active disease zone and the other of the transition zone; see Fig 10. A latent TB parameter set

shows that the space parameter, β, determines mostly the lesions dispersion; however, a

parameter set of the transition zone (rmax = 6.5 mm, β = 0.1 mm-1, ρ = 0.05 day-1) shows that

the space parameter affects mostly the number of lesions, mean diameter, and coalescences,

and does not affect the dispersion of the lesions. This can be seen in Supplementary material,

section 1.

Discussion

Limitations and further work

In this modelling approach we have followed the law of parsimony (Occam’s razor) [36], trying

to find a simple solution for complex problems such as TB infection dynamics in lungs. The

level of complexity was chosen according to the questions to be addressed. This method was

developed specifically to submit the main assumptions of the dynamic hypothesis to falsifiabil-

ity testing. Therefore, the current model includes the most important steps of TB infection

evolution suggested by this hypothesis: endogenous reinfection, lesion growth, and coales-

cence. These processes are supposed to capture the essence of TB dynamics in lungs, but of

course they are not the only ones [6]. In fact, no model could be complete [37]. This also allows

the use of a fewer number of parameters, when compared with other systems biology

approaches to the same problem [1], and thus provides more robustness to the fitting.

The principal novelty of this model is the implementation of the bubble model in an explicit

space like the bronchial tree in order to simulate the endogenous reinfection processes. Never-

theless, it still has a few limitations that should be mentioned, the most important being the

following:

- Exogenous reinfection is not yet considered in this model. Its incorporation may change

the outcome when simulating an ATB infection, as it acts as a new mechanism to generate new

infection focuses. Nevertheless, the experimental data used in this study were obtained under

conditions that prevented exogenous reinfection. Therefore, the inclusion of this mechanism

should be supported by experimental designs that allow it.

- The bronchial tree model is absolutely deterministic, for now. In the future we expect to

add some random noise in this algorithm in order to obtain different bronchial trees from a

single pulmonary surface. This will be useful for analysing the role of specific bronchial tree

properties in TB evolution as well as to account for heterogeneity sources.

- Infection spreading parameters are uniform in each virtual lung. Nevertheless, breathing

amplitude is not constant, but varies from lower and middle lobes (wider amplitude) to upper

ones (lower amplitude). Breathing amplitude is probably related with lesion spreading; then,

higher values of β would better fit the local behaviour of less dispersion in the upper lobe,

while lower values of β would be appropriate for describing the spreading in the lower and
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middle lobes. This should be taken into account by creating a β variable profile inside the

bronchial tree. With our model, we have seen that a bigger dispersion reduces the probability

of causing big lesions, which is true locally. At the same time, greater dispersion may increase

the probability of generating new infection foci in parts of the lung with a smaller breathing

amplitude, and therefore with a higher probability of evolving towards bigger granulomas.

These dynamics will be carefully explored in the future.

Finally, we must mention the four principal assumptions that could be refined and even

refuted in the future:

a. Our model follows dynamic hypothesis assumptions [38], but there are more hypotheses

that can be submitted to check feasibility such as [39, 40]. In addition, other important pro-

cesses such as the role of oxygenation [41, 42] could be incorporated.

b. The model assumes that the larger the mother, the more likely it is to generate new lesions.

This is based on the assumption that bigger lesions would have more foamy macrophages

that are more likely to be drained and, therefore, to be able to cause a reinfection [43]. It is

also supported by experimental observations in macaques of a higher tendency of bigger

lesions to disseminate [44].

c. The reinfection model also considers that the older a lesion is, the less likely an infected

macrophage is to escapes from it. This is in accordance with experimental observations

[22]. In the future, a term that depends on the initial infection time in addition to the age of

the lesion could be taken into consideration because, as can be seen in [45], initial lesions

are bigger than their daughters in ATB.

d. An infection is considered to correspond to an active disease if a lesion grows larger than 1

cm. ATB definition is more complicated than simply having a lesion bigger than 1 cm [35].

Then, other indicators should be explored to define an ATB. In fact, this threshold is not a

standard accepted boundary. In supplementary material, section 5 (Fig E in S1 File), an

exploration of different values of this threshold is shown. The strength of this model is that

the same tendencies that were observed in Fig 10 can be observed in the different explora-

tion threshold simulations.

In general, model falsifiability could be successfully carried out with data from CT (or

equivalent) of TB dynamics in big mammals, at different time points. The fact that only a final

photo of the system is available is clearly a drawback for the testing of the processes involved.

Indeed, tracking the growth of individual lesions at several timepoints should be enough for

testing the generalized logistic model. Barcoding techniques have also shown their appropri-

ateness to distinguish contained from disseminated lesions in macaques [44], and thus could

provide a way to determine which the initial granulomas are and a pattern of dissemination.

Bacteria barcoding, together with a time tracking for the 3D characterization of location and

size of lesions by means of CT, can provide key information about the range and relative

importance of dissemination, as well as the possible geometrical constraints. Nevertheless, one

of the drawbacks of the required experimental tests that should be always kept in mind is that

the n is usually small, while the intraspecific diversity is high.

This approach has consisted of the testing of a single model, which seems to go against the

strong inference in mathematical modelling [46]. Nevertheless, we have focused on exploring

and exploiting all the possibilities given by this model and the available experimental data. In

addition to the above-mentioned search for new experimental measurements that can refute

the stated hypotheses, future work should include the testing of alternative models whose

rejection would provide more clues on the natural history of tuberculosis.
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Conclusions

We built a computational model which includes the virtual lung and the updated Bubble
model. This model successfully fits CT experimental observations of latent tuberculosis in

minipigs. The model incorporates the basis of the dynamic hypothesis [7, 37] to reproduce

lesion propagation through the bronchial tree on a latent tuberculosis infection. The agree-

ment between experimental and numerical results reinforces the feasibility of the dynamic

hypothesis, i.e., it is able to explain the experimental results observed in latently infected mini-

pigs. In particular, we have observed the importance of the bronchial tree in the endogenous

reinfection (β> 0).

Most important parameters of the model could be related with the corresponding biophysi-

cal processes. Therefore, the model is consistent with the data. Parameter β can be related with

the breathing amplitude as a factor determining how far new lesions can appear; rmax may be

related with the effect of inflammatory response of the host, as it is the main cause of lesion

growth; and ρ determines the probability of triggering the endogenous reinfection process. It

has been seen that ν, the growth velocity of the lesions, can play a similar role in triggering

endogenous reinfection process, while slowing the growth velocity of lesions may be a mecha-

nism for detaining endogenous reinfection.

According to the in silico experiments carried out with the model, an active TB in an immu-

nocompetent host may be caused by high inflammatory response or by moderate inflamma-

tory response combined with small breathing amplitude. The former has already been

observed experimentally in several studies [15, 21, 22]. The latter may be a clue for understand-

ing the usual presence of active TB in the upper lobe, as suggested by Cardona & Prats [9],

since it is in the lung zone that the breathing amplitude is smaller. In fact, further refinements

and updates of the model should include inter-lobular differences so that this last possibility

can be carefully explored.

Supporting information

S1 Dataset. Experimental dataset of CT measurements. Sheet “Lungs” contains, for each

minipig, the pulmonary geometrical measurements and the global distribution of lesions in

each lung. Sheet “Lesions” contains the measured characteristics of each lesion.

(XLSX)

S1 File. Supplementary material. This file includes the following supplementary sections: (1)

Sensitivity analysis for transition and active set; (2) Extended sensitivity analysis; (3) Diame-

ter-length relation in bronchial tree; (4) Details of the simplified protocol for model parametri-

zation sensitivity; and (5) Thresholds exploration.

(PDF)
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