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Abstract

The molecular mechanisms and functions in complex biological systems currently remain

elusive. Recent high-throughput techniques, such as next-generation sequencing, have

generated a wide variety of multiomics datasets that enable the identification of biological

functions and mechanisms via multiple facets. However, integrating these large-scale mul-

tiomics data and discovering functional insights are, nevertheless, challenging tasks. To

address these challenges, machine learning has been broadly applied to analyze multio-

mics. This review introduces multiview learning—an emerging machine learning field—and

envisions its potentially powerful applications to multiomics. In particular, multiview learning

is more effective than previous integrative methods for learning data’s heterogeneity and

revealing cross-talk patterns. Although it has been applied to various contexts, such as com-

puter vision and speech recognition, multiview learning has not yet been widely applied to

biological data—specifically, multiomics data. Therefore, this paper firstly reviews recent

multiview learning methods and unifies them in a framework called multiview empirical risk

minimization (MV-ERM). We further discuss the potential applications of each method to

multiomics, including genomics, transcriptomics, and epigenomics, in an aim to discover the

functional and mechanistic interpretations across omics. Secondly, we explore possible

applications to different biological systems, including human diseases (e.g., brain disorders

and cancers), plants, and single-cell analysis, and discuss both the benefits and caveats of

using multiview learning to discover the molecular mechanisms and functions of these

systems.

Introduction

Hierarchical complexity is the nature of all biological phenomena and processes. Although

made of physical entities (e.g., atoms), the phenomena and interaction of biological entities

such as DNA and proteins—among others—possess emergent properties that cannot be

reduced to or explained by physical laws, which have kept biological sciences more descriptive

than predictive for a long time. There exists no deterministic law in biology apart from the

central dogma, which has actually been questioned and adjusted many times [1, 2]. The flow of
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genetic information in the central dogma is inherently complex and involves many levels of

molecules and interactions (e.g., transcription, translation, alternative splicing, various kinds

of regulation mechanisms). To understand a biological phenomenon, we thus need a holistic

approach that integrates all the facets and interactions of a biological system as well as collects

and analyzes these hierarchical complex data as thoroughly as possible. For this reason, the

biological sciences have solely made considerable progress since the era of omics and big data.

High-throughput technologies and next-generation sequencing (NGS) data enable model-

ing biological systems for understanding underlying complex molecular mechanisms. As cor-

respondents to levels of information flow in central dogma, biological big data are also

multileveled and often referred to as multiomics data (i.e., genomics, transcriptomics, epige-

nomics, proteomics, metabolomics). By combining these “omics,” the complex big biological

data can be tackled to disclose relationships between biological entities and identify biomark-

ers characterizing biological systems. However, a significant challenge involves having access

to a set of computational methods powerful enough to shed light on these big data. Accompa-

nied by the strides made in high-throughput biology, machine learning is prospering in bio-

medical applications, although making sense of multiomics data with traditional machine

learning methods nevertheless remains elusive.

The obstacles to doing so are the heterogeneous and implicitly noisy nature of biological

data. In fact, omics data are found in many forms, such as sequences (e.g., RNA-Seq, Assay for

Transposase-Accessible Chromatin using sequencing [ATAC-Seq]), graphs (e.g., metabolic

pathways, regulatory networks), geometric information (e.g., binding site, protein folding),

and spatial components (e.g., cell compartment). Biological variables can be continuously or

discretely measurable or categorical and may originate from various sources that render them

multimodal (rather than Gaussian). These data are often noisy or inconsistent because of the

technical problems associated with biological assays, such as background effects and hybridiza-

tion noise, among others. Furthermore, high-dimensional data (e.g., gene expression profiles

with tens of thousands of genes across a limited number of experimental conditions) often suf-

fer from the “curse of dimensionality,” which may lead to overfitting [3].

These challenges are not effectively addressed by traditional machine learning methods;

relying on one single data type may lead to either an incomplete understanding of complex

processes or overfitting. To address these problems, multiview machine learning offers a solu-

tion by integrating different modes or views of data such that learning from this integration

leads to greater accuracy and effectiveness. This method is also effective because each mode

(or view) is an aspect of the whole complex phenomenon or process that is often compatible

and complementary to other modes (or views). Each view can regularize the hypothesis associ-

ated with or infer missing data and reduce noise from other data views. Multiview learning has

a long history [4] and is used to fuse various data types, such as video, voice, and text. As

mutiomics big data is thriving, a comprehensive survey for different methods of multiview

learning and their applications to multiomics or biomedical data analysis is necessary, espe-

cially for discovering functional omics (Fig 1). For example, a recent paper reviewed the multi-

view clustering methods with applications to cancer omics [5]. To extend the generality of

multiview learning in terms of both modeling and applications, in this review, we formulate

multiview learning in a unified mathematical framework called multiview empirical risk mini-

mization (MV-ERM), an extension of empirical risk minimization (ERM) originally intro-

duced by Vapnik [6]. In particular, we firstly introduce the concept of multiview learning,

build the 2 formal alignment-based and factorization-based ERM frameworks, and categorize

state-of-the-art multiview methods into these 2 categories. Finally, we review some recent bio-

medical applications of these methods for understanding functional omics and discuss some

related problems and conclusions.
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Single-view versus multiview learning

The advancement of high-throughput technologies, which has resulted in tremendous

amounts of biological data, has transformed biology from a descriptive science into a predic-

tive science in which machine learning plays an important role. Although biological data are

different from visual or speech data, all machine learning algorithms share a common mathe-

matical background that can be described as the ERM principle [6]. In the following sections,

we provide the formal descriptions of supervised and unsupervised learning alongside their

corresponding ERM estimators.

Single-view learning. Biological data are represented by feature vectors, as is the case in

other domains, wherein the i-th datapoint in a data set X ¼ ½x1; . . . ; xn; � � X is a vector xi of

measured values (e.g., gene or protein expression levels) across different samples (e.g., time-

points, experimental replicates). Each datapoint might be labeled or associated with a particu-

lar phenotype yi2Y (i.e., tumor or normal). In a supervised setting, when given an unlabeled

datapoint (i.e., a gene expression), we can predict the phenotype (disease or controlled) associ-

ated with that datapoint; this prediction is often encoded by function f:X!Y. In an unsuper-

vised setting, we can discover a latent structure from unlabeled data, such as a clustering

structure of gene expression profiles in which genes with similar expression levels are grouped

together driven by particular molecular functions. In general, the formal definitions of super-

vised and unsupervised learning are presented next.

Supervised learning. In supervised setting, we have n labeled examples S ¼ fðxi; yiÞg
n
i¼1

where yi 2 Y (the label set) and xi 2 X (the domain), sampled from an unknown underlying

joint distribution over X � Y. The goal is to find a function f : X ! Y in a hypothesis space

F that predicts the output associated to any new pattern x 2 X by f(x), as measured with

respect to a known loss function ‘ðf ðxÞ; yÞ. Note that function f stands for any transformation,

ranging from linear projection to deep neural network and kernel function. For a candidate

Fig 1. Multiview learning deciphers mechanisms across functional omics. Molecular mechanisms (Center) are resulted from the interactions within and across

multiomics, e.g., shown by green, orange, and blue color. The interactions within each omics are illustrated by colored links that matches with the color of that omics; the

interactions across different omics are demonstrated by black links. Directed edges represent causal relationships. Edge weights represent relationship strengths. The

single-view learning methods (Right) can only learn the within-view interactions separately for each omics via the functions f (k),k = 1,2,3 (e.g., pð3Þi;j ¼ ½f ð3ÞðX
ð3Þ
Þ�i;j). The

multiview learning methods (Left) can reveal the cross-talk patterns among various omics, providing complete mechanistic insights on biological functions, e.g., by co-

regularization termsOco. These cross-talk patterns are contributed by each facet of learning in either alignment-based methods or factorization-based methods. For

example, gene regulatory mechanism can relate to genomics (e.g., regulatory variants), transcriptomics (e.g., gene expression), and proteomics (e.g., TFs). ThenOco(f (2),

f (3)) represents that variants (e.g., SNPs) break the TFBSs (e.g., pð2;3Þi;j ¼ ½Ocoðf ð2ÞðX
ð2Þ
Þ; f ð3ÞðX ð3ÞÞÞ�i;j as in the figure).Oco(f (1),f (3)) represents that variants affect gene

expression (e.g., eQTLs).Oco(f (1),f (2)) represents that TFs control target gene expression. The multiview learning can thus predict gene regulatory mechanisms across

omics on how variants break TFBSs to affect gene expression. eQTL, expression quantitative trait loci; SNP, single-nucleotide polymorphism; TF, transcription factor;

TFB, transcription factor binding site.

https://doi.org/10.1371/journal.pcbi.1007677.g001
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function f 2 F , its empirical risk [6] is

Rðf Þ ¼
1

jSj

X

ðxi ;yiÞ2S

‘ðf ðxiÞ; yiÞ ð1Þ

and the regularizer controlling its smoothness isO(f) where O : F ! Rþ is a penalty function

(Rþ is the set of nonnegative real numbers). The penalized ERM estimator is

f � 2 arg minfRðf Þ þ lOðf Þ ð2Þ

where λ is regularization parameter. For example, support vector machine (SVM) is the com-

bination of hinge loss and ‘2-regularizer, whereas ordinary least squares makes use of squared

loss, etc. The basic idea of supervised learning is demonstrated in Fig 2A.

Unsupervised learning

In unsupervised setting [7], we have n unlabeled examples S ¼ fxig
n
i¼1

where xi 2 X sampled

from an unknown underlying distribution over X . The goal is to find a latent structure Y
(low-dimensional or clustering representation, latent factors, etc.) from X encoded by func-

tion f : X ! Y in hypothesis space F and decoded by function g : Y ! X in hypothesis

space G, as measured with respect to a reconstruction error ‘ðfg; f g; xÞ ¼ kx � g � f ðxÞk2

2
. For

Fig 2. MV-ERM. (A) ERM for single-view learning. It demonstrates a general single-view learning algorithm (based on ERM estimator) that takes one data set X ð1Þ as

input, adopts a hypothesis space F ð1Þ and a loss function ‘, and outputs a function f ð1Þ 2 F ð1Þ that predicts the label associated with any new datapoint x as f (1)(x). (B)

MV-ERM demonstrates a general multiview learning algorithm (based on MV-ERM estimator) that takes v datasets X ð1Þ; . . . ;X ðvÞ as v views, adopts v hypothesis spaces

F ð1Þ; . . . ;F ðvÞ associated with v views, and outputs v functions ðf ð1Þ; . . . ; f ðvÞÞ 2 F ð1Þ � . . .� F ðvÞ that reveals the interactions within and between each pair of datasets (via

the termsOco(f (i),f (j)). The consensus and complementary principles are implemented by the termO(f (i)) andOco(f (i),f (j)) respectively. Note that in MV-ERM estimator,

the loss function is optional because multiview learning can be unsupervised. ERM, empirical risk minimization; MV-ERM, multiview empirical risk minimization.

https://doi.org/10.1371/journal.pcbi.1007677.g002
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a pair of candidate functions fg; f g 2 G � F , its empirical risk is

Rðg; f Þ ¼
1

jSj

X

xi2S

‘ðfg; f g; xiÞ ð3Þ

The ERM estimator is

fg�; f �g 2 arg ming;fRðg; f Þ ð4Þ

Using a reconstruction error, this framework is general enough to encompass a variety of algo-

rithms, such as principal component analysis (PCA), k-means, nonnegative Matrix factoriza-

tion (NMF), autoencoder, etc. In fact, the equivalence of NMF and spectral and k-means

clustering was investigated [8]. Both k-means and PCA methods can be considered as special

cases of autoencoders [9]. Several studies have been explored the additional constraints for an

autoencoder to perform NMF [10, 11, 12, 13]. Also, NMF has a good interpretability because,

for example, it factorizes a gene expression profiles into 2 matrices, one of which describes the

structure between genes while the other describes the structure between samples [14]. It also

has good performances, especially in single-cell studies [15]. Because of the equivalence of

NMF and other unsupervised methods, we represent here the formal settings of NMF as a typi-

cal case of unsupervised learning without loss of generality:

Given a data set represented by a nonnegative matrix X, NMF decomposes X into the pro-

duction of nonnegative matrices G and F, i.e., X�GFT. The ERM estimator of NMF can be for-

mulated as follows:

fG�; F�g 2 arg min
G;F�0

kX � GFTk
2

F ð5Þ

Note that the objective function (5) takes the matrix form of unsupervised ERM estimator

(4) where all xi from S are column vectors of matrix X, f(X) = F, and G is the matrix representa-

tion of the linear operator g(�).

Pitfalls of single-view learning

Through the formal definitions of machine learning identified previously, its applications in

biological domains can be regarded as abstracting out a representation f ðXÞ of a single data

type X , where X can be, for example, a gene expression profile. This representation captures

the interactions of elements (i.e., genes) within X and the phenotypic manifestation Y (e.g.,

cancer) resulting from those interactions. However, to understand complex traits in which

the genotype—phenotype interactions manifest over multiple levels of information flows,

relying on merely one single omics data type is limited and prohibits our knowledge from

uncovering the comprehensive mechanism that underlies complex biological processes.

Even with the availability of more than one data type (e.g., X ð1Þ for gene expression, X ð2Þ for

methylation level), because they originate from different distributions, applying machine

learning algorithms on these data independently may solely assemble some pieces of the

puzzle of a complex phenomenon; many additional pieces associated with the interactions

across different data types remain unknown. Therefore, a learning method that exploits not

only information captured in each omic but also that infers from the associations between

different omics is needed to understand complex traits. Multiview machine learning is such

a method.
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Multiview learning

Many real-life datasets comprise diverse views or modalities; for example, a website can con-

tain both images and texts that refer to the same content. In multimedia applications, for

instance, both the speech and lip motions of a character are often simultaneously accessible.

These views or modalities are often compatible, which helps the learning model be more

robust as well as complementary and thereby reveal further information that cannot be fully

uncovered when depending on only one view.

In biology, the need for multiview data is quite trivial; on one hand, we have homogeneous

biological data assayed from the same molecular level (e.g., gene or protein expression), yet

these homogeneous data may be measured across different conditions, phenotypes, or species.

In this context, comparative analysis is important to, for example, find a conserved gene set

that functions in the same pathway between 2 different species. On the other hand, multiomics

is heterogeneous data in which we have different omics (e.g., genomics, proteomics, epige-

nomics) assayed from the same tissue or cell. These various omics are encoded by different

data views, such as X ð1Þ for transcriptomic abundance or X ð2Þ for protein concentration. The

goal of multiview learning is to exploit multiple representations of the input data and improve

the learning performance. Herein, we set up 2 formal frameworks of multiview learning: one

based on the ERM principle of supervised learning (Eq 2) and the other based on the ERM

principle of unsupervised learning (Eqs 4 and 5). We also analyze the following 2 characteris-

tics of multiview data that underlie those frameworks: consensus and complementary.

Consensus and complementary principles

The consensus principle seeks to maximize the agreement among multiple distinctive repre-

sentations of the data. In short, given an example x ¼ ðxð1Þ; xð2ÞÞ 2 X ð1Þ � X ð2Þ being seen in 2

views with its label y 2 Y, the goal is to maximize the probability:

maxðPr½f ð1Þðxð1ÞÞ � f ð2Þðxð2ÞÞ ¼ 0�Þ ð6Þ

The complementary principle demonstrates that in a multiview learning problem, each

representation or view may contain information that does not exist in other views. Therefore,

combining different views makes the predictor more accurate, or in other words, improves the

learning performance [16, 17]. The 2 principles are demonstrated in Fig 2B.

MV-ERM

In multiview setting, we have n labeled examples S ¼ fðxi; yiÞg
n
i¼1

and m unlabeled examples

U ¼ fxig
nþm
i¼nþ1

, where yi 2 Y and each example x = (x(1),x(2),. . .,x(v)) is seen in v views with

xðiÞ 2 X ðiÞ for i = {1,2,. . .,v}. S and U are both sampled from an unknown underlying joint dis-

tribution over X ð1Þ � X ð2Þ � . . .� X ðvÞ � Y. The goal is to find v functions in v hypothesis

spaces ff ð1Þ; . . . ; f ðvÞg 2 F ð1Þ � . . .� F ðvÞ where f ðiÞ : X ðiÞ ! Y, predicting the output associ-

ated to any new pattern x 2 X ðiÞ by f (i)(x), as measured with respect to a known loss function

‘
ðiÞ
ðf ðiÞðxÞ; yÞ. For a candidate function f ðiÞ 2 F ðiÞ, its empirical risk is

Rðf ðiÞÞ ¼
1

jSj

X

ðxðiÞj ;yjÞ2S

‘
ðiÞ
ðf ðiÞðxðiÞj Þ; yjÞ ð7Þ

And the regularizer controlling its smoothness isO(f (i)), where O :
S

iF
ðiÞ
! Rþ is a penalty

function. Also, to impose a penalty on the complexity of each pair (f (i),f (j)) in a cross-product
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of 2 hypotheses in order to utilize unlabeled data in different views, we define the co-regulari-

zer

Ocoðf
ðiÞ; f ðjÞÞ ¼

1

jUj

X

xðiÞ ;xðjÞ2U

Ocoðf
ðiÞðxðiÞÞ; f ðjÞðxðjÞÞÞ ð8Þ

The penalized MV-ERM estimator is

ðf ðiÞ�Þvi¼1
2 arg minf ðiÞ

(
Xv

i¼1

Rðf ðiÞÞ þ l
Xv

i¼1

Oðf ðiÞÞ þ lco

Xv

i¼1;i<j

Ocoðf
ðiÞ; f ðjÞÞ

)

ð9Þ

In Eq 9, the last term, co-regularizer Oco(�), preserves the consensus principle for multiview

learning. Note that if λco = 0, this problem reduces to solving 2 independent problems, mean-

ing only the complementary principle is used. In the following, we present 2 frameworks, i.e.,

alignment-based and factorization-based, for multiview learning that covers most of the recent

methods. The basic idea of multiview learning is demonstrated in Fig 2B.

Alignment-based framework. In the Eq (9) of MV-ERM estimator, if there is no labeled

data, i.e., n = 0 (or S = ;), the problem is then

ðf ðiÞ�Þvi¼1
2 arg minf ðiÞ

(
Xv

i¼1

Oðf ðiÞÞ þ lco

Xv

i¼1;i<j

Ocoðf
ðiÞ; f ðjÞÞ

)

ð10Þ

which can be seen as an alignment problem finding a set of embeddings (f (1),. . .,f (v)) that

transform the original multiview data into a new common space by identifying an alignment

strategy denoted by the co-regularizer Oco(�). This co-regularizer serves as a pairwise symmet-

ric alignment function across all different views to coordinate the information among them.

This multiview framework is based on supervised setting of single-view machine learning in

Eq (2) where the loss function is optional, so the learning algorithm will try to uncover the v
functions not by comparing with a ground truth (i.e., yi) but by comparing to each other (in a

pairwise fashion), depicted by the co-regularization term Oco(f (i),f (j)). The co-regularization

term can be correlation-based, in which the 2 embeddings f (i)(x(i)),f (j)(x(j)) are maximally cor-

related, or distance-based, in which the Euclidean distance between the 2 embeddings is mini-

mized. This kind of multiview learning can be regarded as self-supervision in which the v
learners try to learn from each other’s data.

Factorization-based framework. The second framework for multiview learning is based

on single-view unsupervised learning (Eq 4), trying to seek a common latent representation

for multiple different views. In terms of NMF (Eq 5), given a multiview nonnegative data set

consisting of v different views as X ð1Þ; . . . ;X ðvÞ, for each view X ðiÞ, multiview NMF factorizes

X(i)�G(i)F(i)T, where F(i) = f (i)(X(i)), and learns a common latent representation ~F across all the

views via the following MV-ERM estimator:

ðfGðiÞ�; FðiÞ�g; ~F�Þvi¼1
2 arg min

GðiÞ ;FðiÞ ;~F�0

Xv

i¼1

fkXðiÞ � GðiÞFðiÞTk2

F þ lkF
ðiÞ � ~Fk2

Fg ð11Þ

where λ is the regularization parameter, trying to balance the importance of different views

and the reconstruction error. The latent representations F(i) in different views are forced to be

close to the consensus one ~F [18]. In any deep learning architecture, the joint latent represen-

tation can be achieved by a joint layer preceded by separated layers corresponding to separated

multiple view inputs.
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Both 2 aforementioned frameworks can be regarded as representation learning approaches.

Whereas in the alignment-based framework, data representations from each pairs of views

are forced to be coordinated, the representation of all views in the factorization-based frame-

work are forced to be the same. The consensus principle is demonstrated by the co-regularizer

Oco(f (i),f (j)) in the alignment method and by common latent representation (or sometimes

called dictionary) ~F in the factorization method; the complementary principle is demonstrated

by the regularizer O(f (i)) in alignment methods and by expansion coefficients G(i) in factoriza-

tion methods.

Multiomics interpretation of multiview learning

In terms of functional omics, each view of multiview data X(i) can be a gene expression profile,

DNA methylation level, or protein abundance. Multiview learning algorithms applied to these

data aim to infer the interactions within each omic, represented by f (i)(X(i)) or G(i), as well as

the interactions across all omics, represented byOco(f (i)(X(i)),f (j)(X(j))) or ~F . In other words,

multiview machine learning attempts to recover a common abstract space wherein the several

types of omics data are comparable such that the cross-talk patterns may easily be revealed.

For example, in single-view machine learning, gene expression profile clustering is one

method of revealing functional modules in which a group of genes collaborate to deliver a

biological function. However, the insights of many complex biological processes cannot be

understood in terms of these functional modules at the transciptomic level. On the contrary,

multiview learning can find a way to represent both gene expression X(i) and protein expres-

sion X(j) together such that the interactions of genes as well as the interactions between genes

and gene products (e.g., proteins) can be captured for a holistic understanding of complex bio-

logical phenomena. For example, if gene expression, chromatin accessibility, and protein

expression are represented in a common space, they can be simultaneously clustered not only

such that a group of genes or a group of proteins that function together can be identified but

also—and more importantly—such that the functional linkage between genes, regulatory ele-

ments, and proteins can be revealed (e.g., protein α binds to region β to regulate the expression

of gene γ). Fig 3 illustrates this example using a factorization method. With a closely related

machine learning technique called transfer learning, we can even infer information of an omic

level from another omic level. As for homogeneous data across different species, multiview

learning can be applied to infer and transfer knowledge from one species to another species

[19].

Multiview learning methods

We categorized all recent state-of-the-art methods of multiview learning into 2 groups accord-

ing to the frameworks explained in the previous sections: the alignment-based framework,

which seeks a pairwise alignment among views, and a factorization-based framework, which

seeks a common representation across all views. Each framework contains elements of either

consensus principle or complementary principle or both. All the methods described in this

review are summarized in Table 1.

Alignment-based methods. The consensus principle is realized in alignment-based meth-

ods by the co-regularization terms Oco(�)that coordinate any 2 embeddings f ðiÞðX ðiÞÞ and

f ðjÞðX ðjÞÞ, whereas the complementary principle is realized by the separately regularized feature

learning of the different views (i.e., the terms O(�)).

Canonical correlation analysis (CCA) [20] is one of the first and most popular methods to

achieve a consensus between 2 views. Formally, for the 2 datasets X(1) and X(2), CCA computes
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2 linear projections, F(1) and F(2), such that the cross correlation across 2 views is maximized:

ðFð1Þ�; Fð2Þ�Þ 2 arg min
Fð1Þ; Fð2Þ

Fð1ÞTXð1ÞXð1ÞTFð1Þ ¼ I

Fð2ÞTXð2ÞXð2ÞTFð2Þ ¼ I

� trðFð1ÞTXð1ÞXð2ÞTFð2ÞÞ ð12Þ

Fig 3. Factorization-based versus alignment-based methods. (A) Factorization-based single-view learning methods. They typically factorize a data matrix X from single

view (e.g., gene expression matrix of samples by genes) into a product of matrix G (coefficient matrix) and matrix ~F (dictionary matrix or pattern matrix). Because matrix

factorization has an intrinsic clustering property [8], the matrix ~F can represent a clustering structure of the view (i.e., the soft clustering assignments or indicators). For

example, ~F reveals 3 different gene clusters, a, b, and c, as denoted in the figure. (B) Factorization-based multiview learning methods. They factorize different matrices

from multiomics, e.g., gene expression X(1) (i.e., green matrix), protein expression X(2) (i.e., blue matrix), and chromatin accessibility X(3) (i.e., orange matrix), into a

product of different coefficient matrices G(k)(k = 1,2,3) and the common dictionary matrix ~F . This common representation enables revealing of cross-talk patterns among

genes, proteins (more precisely, TFs), and regulatory elements (i.e., enhancers); e.g., a TF binds to a region to regulate a gene’s expression. (C) Alignment-based multiview

learning methods. The 3 input omic matrices are projected via functions f (k)(k = 1,2,3) onto spaces where their internal relationships are revealed. These representations of

different omics are pairwise coordinated to each other via the termOco. For example, the figure demonstrates the pairwise alignments between X(1), X(2) and between X(2),

X(3) to reveal cross-talk patterns between TFs and enhancers, and between enhancers and gene expressions. (Alignment between X(1) and X(3) is not shown for making the

figure concise.) TF, transcription factor.

https://doi.org/10.1371/journal.pcbi.1007677.g003
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Table 1. Multiview learning methods.

Method Multiview

Principles

Biological

Applications

Data Types Refs.

Alignment-based

CCA Consensus Cancer,

Alzheimer

CSF, MRI, FDG-PET;

gene expression, miRNA expression,

DNA methylation

[5,20,21]

KCCA/TCCA/SVM-2K Consensus Cancer [22–24]

DCCA Consensus Cancer gene expression, miRNA expression,

DNA methylation

[5,25]

DCCAE Both [26]

MULPP Both [27]

MCCA Consensus Cancer gene expression, miRNA expression,

DNA methylation

[5,28]

RGCCA/SGCCA Consensus Spinocerebellar

Ataxia

metabolomics, lipidomics,

magnetic resonance spectroscopy

[29]

PLS Consensus Cancer gene expression, miRNA expression,

DNA methylation

[5,30,31]

MvDA/MvDN Consensus [32,33]

Manifold Alignment Both [34,35]

Manifold Warping Both [36]

MATCHER Both Single-cell transcriptomic levels,

epigenomic levels

[37]

ManiNetCluster Both Plants gene expression [19]

MKL Complementary Mild cognitive impairment CSF, APOE genotype,

MRI, FDG-PET

[21,38,39]

rMKL-LPP Complementary Cancer gene expression, miRNA expression,

DNA methylation

[5,40]

SNF Complementary Cancer gene expression, miRNA expression,

DNA methylation

[5,41,42]

NEMO Complementary Cancer gene expression, miRNA expression,

DNA methylation

[43]

coupleNMF Both Single-cell gene expression,

chromatin accessibility

[44]

Factorization-based

MultiNMF Both Cancer, Alzheimer gene expression,

copy number variation,

DNA methylation

[5,18,21,45]

GMvNMF Both Cancer gene expression, miRNA expression,

DNA methylation

[46]

Multiview

Spectral Clustering

Both Cancer gene expression, miRNA expression,

DNA methylation

[5,47,48]

Multiview k-means Both Cancer gene expression, miRNA expression,

DNA methylation

[5,49]

MOFA Both Single-cell RNA expression, DNA methylation,

ex vivo drug responses

[50]

iClusterBayes Both Cancer gene expression, miRNA expression,

DNA methylation

[5,51]

rMV-spc Consensus Cancer gene expression, PPI network [52]

Multimodal DNN Consensus Mild cognitive impairment SNP, MRI, PET [53,54]

Bimodal Deep

Autoencode

Consensus [53]

Multimodal DBM Consensus [55]

(Continued)
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Compared with the general form of the alignment-based method in Eq (10), CCA only support

the consensus principle, denoted byOco(�) = −tr(F(1)TX(1)X(2)TF(2)). Note that in Eq (12), the

transformation f (i)(�) takes the form of a linear projection, represented by matrix F(i).

Many extensions of CCA support nonlinear embeddings, such as kernel CCA (KCCA)

[22], by using the kernel trick to produce a nonlinear version of CCA by implicitly looking

for functions f (1) and f (2) through correspondent kernel functions such that f (1)(X(1)) and

f (2)(X(2)) are maximally correlated. KCCA is also an effective preprocessing step for classifica-

tion algorithms like the SVM; e.g., SVM-2K [24]. TCCA [23] is a tensor-based extension of

CCA capable of handling multiple data views by analyzing the covariance tensor of those

views. Deep CCA (DCCA) [25] is a deep learning–based extension of CCA that can be

regarded as a parametric alternative to the instance-based method of KCCA to learn correlated

nonlinear deep embeddings. Unlike KCCA, DCCA does not require an inner product and

does not restrict its hypothesis to a reproducing kernel Hilbert space (RKHS); DCCA also has

scalability advantages according to data size. A more recent approach is deep canonically cor-

related autoencoder (DCCAE) [26], which combines the advantages of both DCCA and deep

autoencoder. DCCAE’s architecture is formed by 2 different autoencoders correspondent to 2

views, and although it preserves the autoencoders’s reconstruction errors, it also optimizes the

canonical correlation between their bottleneck representations. Because of this simultaneous

optimization strategy, a trade-off occurs between information learned within each view and

information learned across different views. Traditionally, CCA-based approaches imple-

mented only the consensus principle (except for DCCAEs, which have the O(�)for learning the

compact representation of each view). Yet a recent method, multiview uncorrelated locality

preserving projection (MULPP) [27], also implemented the complementary principle by pre-

serving the local structures of all the views.

Similar to CCA-based methods that determine the directions of maximum correlation

between each view, partial least squares (PLS) finds the directions of maximum covariance. In

fact, a correlation can be considered a normalized covariance, and CCA-based methods there-

fore have close connections with PLS-based methods in several facets [30, 31]. Formally, given

a pair of datasets fXð1Þ ¼ ½xð1Þ1 ; . . . ; xð1Þn �;X
ð2Þ ¼ ½xð2Þ1 ; . . . ; xð2Þn �g, the PLS problem can be

expressed as:

ðFð1Þ�; Fð2Þ�Þ 2 arg min
Fð1Þ; Fð2Þ

Fð1ÞTFð1Þ ¼ Fð1ÞTFð2Þ ¼ I

� trðFð1ÞTE½xð1Þxð2ÞT�Fð2ÞÞ ð13Þ

We may observe that, similar to CCA, in PLS, the consensus principle is exclusively

Table 1. (Continued)

Method Multiview

Principles

Biological

Applications

Data Types Refs.

Multiview CRF Both [56]

APOE, apolipoprotein E; CCA, canonical correlation analysis; CRF, conditional random fields; CSF, cerebrospinal fluid; DBM, deep Boltzmann machine; DCCA, deep

canonical correlation analysis; DCCAE, deep canonically correlated autoencoder; DNN, deep neural network; GMvNMF, graph regularized multiview nonnegative

matrix factorization; MATCHER, manifold alignment to characterize experimental relationships; MCCA, multiway canonical correlation analysis; miRNA, microRNA;

MKL, multiple kernel learning; MOFA, multiomics factor analysis; MvDA/MvDN, multiview discriminant analysis/multiview deep network; MULPP, multiview

uncorrelated locality preserving projection; NEMO, neighborhood based multi-omics clustering; PET, positron emission tomography; PLS, partial least squares; PPI,

protein–protein interaction; RGCCA/SGCCA, regularized generalized canonical correlation analysis/sparse generalized canonical correlation analysis; rMKL-LPP,

regularized multiple kernel learning-locality preserving projections; rMV-spc, regularized multiview subspace clustering; SNP, single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pcbi.1007677.t001
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implemented: Ocoð�Þ ¼ � trðFð1Þ
TE½xð1Þxð2ÞT�Fð2ÞÞ. Multiview discriminant analysis (MvDA)

[32] can be perceived as the extension of PLS wherein both the between-view and within-view

information are considered: Ocoð�Þ ¼ tr FTSF
FTDF

� �
, where F ¼ ½Fð1ÞT; . . . ; FðvÞT�, FTSF is the within-

class scatter matrix, and FTDF is the between-class scatter matrix. Employing a deep architec-

ture, Kan and colleagues [33] also proposed a multiview deep network (MvDN), which aims to

achieve a consensus representation of discriminant features across all views. In particular,

MvDN consists of 2 subarchitectures—one involving view-specific components f (i)(�) for the

reduction of view-specific variations and the other involving a common component gc(�)for

the shared representation across all views. Finally, the loss function of MvDA (i.e., a Fisher-

like loss) is applied on the top layer of the network to learn the network’s parameters through

backpropagation and gradient descent: Ocoð�Þ ¼ tr FTSF
FTDF

� �
where F = [gc � f (1)(X1),. . .,gc �

f (v)(Xv)].

Whereas most of CCA-based methods solely utilize the consensus principle, manifold align-

ment can be perceived as an advanced alternative in which both consensus and complementary

principles are applied. Manifold alignment is based on the manifold hypothesis, which states that

the distribution of real-world high-dimensional data is concentrated near a lower dimensional

manifold embedded in the ambient space of the original data. A family of machine learning algo-

rithms (i.e., manifold learning) attempts to capture these data’s manifold structures through non-

linear projections. The idea behind manifold alignment is the aim to capture a low-dimensional

common manifold shared by 2 high-dimensional datasets. This aim can be achieved by (1) uti-

lizing 2 nonlinear embeddings (f (1)(�) and f (2)(�)), which transform the 2 original datasets to

minimize the distance between them as well as by (2) preserving the geometric structure of

each data set. Specifically, given 2 input datasets fXð1Þ ¼ ½xð1Þ1 ; . . . ; xð1Þn �;X
ð2Þ ¼ ½xð2Þ1 ; . . . ; xð2Þm �g,

we want to determine the 2 transforms f (1)(�) and f (1)(�) as solutions to this minimization

problem:

ðf ð1Þ�; f ð2Þ�Þ 2 arg min
f ð1Þ ;f ð2Þ

lco

X

i;j

kf ð1Þðxð1Þi Þ � f ð2Þðxð2Þj ÞkW þ f ð1ÞTLXð1Þ f ð1Þ þ f ð2ÞTLXð2Þ f ð2Þ ð14Þ

where f (1) and f (2) are functions defined on the respective datasets X(1) and X(2), and LXð1Þ and

LXð2Þ are the graph Laplacian of X(1) and X(2), respectively; W is the matrix that encodes the cor-

respondences between X(1) and X(2) such that Wi,j = 1 iff xð1Þi corresponds to xð2Þj (e.g., protein

xð2Þj is coded by gene xð1Þi ) [19]. The first term preserves the correspondence (or minimizes the

differences) between the 2 views, whereas the second and third terms preserve the local geo-

metric structure of the 2 original datasets by imposing a graph regularization on f (1) and f (2)

[34]. In manifold alignment, Oco(�) = λcokf (1)(X(1))−f (2)(X(2))k and Oð�Þ ¼ f ðiÞTLXðiÞ f ðiÞ. Wang

and Mahadevan [35] generalized manifold alignment to deal with more than 2 views. To deal

with sequence and time series data, Vu and colleagues [36] combined manifold alignment and

dynamic time warping [57]. The idea behind graph regularization for multiview learning—as

in manifold alignment—is thriving in biomedical applications, for biological networks are per-

vasive in every level of the analysis.

As the function f (i) in the alignment-based equation represent any transformation, includ-

ing the implicit transformation in an RKHS H—because a kernel function kðiÞðx; x0Þ ¼
hf ðiÞðxÞ; f ðiÞðx0ÞiH—a broad range of multiple kernel learning (MKL) methods [38, 39] can be

considered to be alignment-based methods. The basic idea of MKL aims to combine (in a lin-

ear or nonlinear way) various kernels that present different notions of similarity from multiple

datasets into one additive kernel. In particular, given v datasets X(i) with v corresponding ker-

nel matrices K(i) (for i = {1,2,. . .,v}) denoting the similarity over pairs of data points in X(i), we
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introduce a new kernel K0 = ∑iβiK(i), where β is a vector of coefficients for each kernel. Because

of a kernel’s additivity—a property of RKHS—this new function K0 is still a kernel. However,

the MKL methods solely support the complementary principle (i.e., O(�) = K(i)) because we

learn merely the appropriate combination of kernels rather than a specific kernel that works

most efficiently.

Factorization-based methods. In factorization-based methods, the consensus principle is

illustrated by the common latent representations ~F (called the dictionary matrices), whereas

the complementary principle is illustrated by the terms G(i) (called the expansion coefficients

matrices).

Many extensions exist for the multiview NMF; for example, multiview clustering via deep

matrix factorization [45] employs a seminonnegative matrix factorization to learn the hierar-

chical semantics of multiview data in a layer-wise fashion. The ERM estimator is:

GðiÞ
�

1 ; . . . ;GðiÞ
�

m ; ~F�; aðiÞ�
� �v

i¼1
2

2 arg min GðiÞ1 ; . . . ;GðiÞm ; ~F; a
ðiÞ

~F � 0;
Pv

i¼1
aðiÞ ¼ 1

Pv
i¼1
aðiÞ

g XðiÞ � GðiÞ1 GðiÞ2 . . .GðiÞm ~F
�
�
�

�
�
�

2

F
þbtrð~FLðiÞ~FTÞ

� �

ð15Þ

The first term is the decomposition on all views through m layers in which the representations

on the last layer are forced to be the same ~F . The learning procedure depends on 2 parameters—

α(i), which controls the weight for the ith view, and γ, which controls the distribution of weights

such that the important views have high weights. The second term, including L(i), the graph

Laplacian of the k-nearest neighbor graph constructed from data view i, maintains the geometric

structure of each view. The nonnegativity constraint on the hidden representation ~F makes the

model easy to interpret.

As spectral clustering has been proven to be equivalent to NMF [8], multiview spectral clus-

tering is also related to multiview NMF. The idea behind multiview spectral clustering is the

aim to achieve a common eigenvector matrix from different views. In particular, the method

regularizes all distinct eigenvector matrices towards a consensus matrix by solving the follow-

ing optimization problem [47]:

ðFðiÞ�; ~F�Þvi¼1
2 arg min

FðiÞ; ~F

FðiÞTFðiÞ ¼ ~FT~F ¼ I

� ½
Pv

i¼1
FðiÞTLðiÞFðiÞ þ l

Pv
i¼1

trðFðiÞFðiÞT ~F~FTÞ� ð16Þ

Another way to establish the common eigenvector matrix is presented by Cai and colleagues

[48], whose optimization problem is formulated as

ðFðiÞ�; ~F�Þvi¼1
2 arg min

FðiÞ; ~F
~F � 0; ~FT~F ¼ I

� ð
Pv

i¼1
FðiÞTLðiÞFðiÞ þ l

Pv
i¼1

tr½ð~F � FðiÞÞTð~F � FðiÞÞ�Þ ð17Þ

where ~F � 0 makes ~F become the final clustering indicator matrix. The main difference between

the 2 methods is that the first uses trðFðiÞFðiÞT~F~FTÞ, and the second adopts tr½ð~F � FðiÞÞTð~F � FðiÞÞ�
as 2 different terms that measure the lack of consensus between views that must be minimized.

As shown by Ding and colleagues [8], k-means clustering can also be formulated as an

NMF problem by using an indicator matrix ~F . To deal with large-scale multiview data, Cai and

colleagues [49] proposed a multiview k-means clustering method that adopts a common
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indicator matrix across different views. The optimization problem is formulated as follows:

ðGðiÞ�; aðiÞ�; ~F
�
Þ arg min

GðiÞ; aðiÞ; ~F
~Fj;k 2 f0; 1g;

X

k

~Fj;k ¼ 1;

Xv

i¼1

aðiÞ ¼ 1

Xv

i¼1

aðiÞgkXðiÞT � ~FGðiÞTk2

F ð18Þ

The learning procedure depends on 2 parameters—α(i), which controls the weight for the v-th

view, and γ, which controls the distribution of weights—such that the important views acquire

significant weight during multiview clustering.

As a multiview deep learning extension for autoencoder model, Ngiam and colleagues [53]

introduce a bimodal deep autoencoder to extract the shared representation of the bottleneck

layer, which is the concatenation of 2 views’ code. This fusion forces the compact representa-

tions of 2 views to be comparable. Many different network architectures implement the similar

idea of a shared top (or bottleneck) layer of various networks associated with different views

[58, 59, 60, 61]. Multimodal deep Boltzmann machine [55] is a similar method derived from a

probabilistic graphical model approach. In these deep learning methods, the shared layer

serves as the consensus principle, whereas layers that belong to different networks serve as the

diversity principle. Currently, most of these multiview deep learning methods are merely

applied for multimedia data (i.e., sounds and visions), not for biomedical data yet.

Another multiview extension for deep probability model is multiview conditional random

fields (multiview CRF) [56], which is used to label sequential data. To implement the consen-

sus principle, the authors used a joint representation for features extracted from different neu-

ral networks and then minimize the distance between the 2 views. To implement the

complementary principle, they integrated features of multiple views into the framework of

CRF. Variational dependent multioutput Gaussian process [62] is also a multiview method for

sequential data modeling, which utilizes the Gaussian process.

Applications

Cancers

Cancer is a complex disease whose phenotypic manifestation might be related to many differ-

ent levels of molecular signatures, such as gene expression and DNA methylation. In other

words, cancer types and subtypes can be defined based on, for example, both genetic muta-

tions and epigenetic landscapes. Therefore, any causal analysis based on solely one aspect or

single omics will be a causal reductionism that might lead to insufficient results. Multiomics

approaches in oncology research is thriving [63], and many applications of such approaches

have been recently pursued.

Rappoport and Shamir [5] performed an extensive review and benchmark that compare 9

multiview methods on 10 cancer types using cancer datasets from The Cancer Genome Atlas

(TCGA) spanning 3 omics—that is, gene expression, microRNA (miRNA) expression, and

DNA methylation. Among the 9 algorithms chosen, LRAcluster [64], k-means, and spectral

clustering are clustering methods that performs on the concatenation of various omics into a

single matrix, which is a method often referred to in the literature as early integration [16].

The other 7 methods are similarity network fusion (SNF), regularized multiple kernel learn-

ing-locality preserving projections (rMKL-LPP), multiway canonical correlation analysis

(MCCA), multiview NMF (MultiNMF), iClusterBayes, and PINS. These methods are chosen
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to reflect their categorization which, as stated therein, is overlapped; nevertheless, these practi-

cally available tools are widely used. The k-means, spectral clustering, and multiNMF methods

are mentioned in the previous section. iClusterBayes [51] is also a factorization method

belonging to the subspace clustering family that shares an objective function similar to that of

NMF and k-means. MCCA [28] is a generalization of CCA wherein pairwise correlations

between embeddings are maximally summed up. The rMKL-LPP method [40] is a case of

MKL specifically developed for multiomics data. SNF [41, 42] is a graph-based approach that

aims to fuse different graphs that represent various omics and may also be regarded as an

MKL method on graph structure. The PINS method [65], belonging to the approach some-

times called late integration [16], is the averaging of all clustering results from different omics.

In their paper, Rappoport and Shamir [5] demonstrate that rMKL-LPP performs most effi-

ciently in terms of clinical enrichment, whereas MCCA and MultiNMF perform most effi-

ciently with respect to survival. It is worth noting that rMKL-LPP is a specialized multiomic

method, whereas MCCA and MultiNMF are general multiview learning methods.

Rappoport and Shamir [43] also developed a new method for multiomics clustering, neigh-

borhood-based multi-omics clustering (NEMO), which can be applied to partial datasets in

which patients’ omic data are missing without performing data imputation. The authors also

compared NEMO with the benchmark on a previous study [5] and demonstrated an improve-

ment of their method on partial data. The idea behind NEMO is similar to those behind SNF

and rMKL-LPP; all 3 methods are MKL approaches. Firstly, the similarity matrix of each omic

is built based on a radial basis function kernel. Secondly, theses matrices are integrated into

one average relative similarity matrix. Finally, spectral clustering is applied on this unified

matrix wherein a modified eigenmap method is employed. The ability of NEMO to handle a

partial data set is based on a local neighborhood approach. Experiements revealed that NEMO

is faster and simpler than existing multiomics clustering algorithms.

Multiview NMF is also used for the selection of common codifferential genes [46]. In this

paper, the authors implemented a graph-regularized version of multiview NMF (GMvNMF)

to encode the data manifold of genomic data. Manifold regularization for multiview learning

was first introduced in the form of manifold alignment. This kind of geometric information

embedding can be applied to any multiview machine learning method, including GMvNMF.

This method’s validity was tested in 4 cancer multiomics data from TCGA, and each of these

cancer types comprises 3 omics (i.e., gene expression, copy number variation, and DNA meth-

ylation). GMvNMF was demonstrated to perform more efficiently than other NMF methods,

including plain multiview NMF.

Also using graph regularization, Zhang and Ma [52] proposed a regularized multiview sub-

space clustering (rMV-spc) method to discover common co-expressed modules. These mod-

ules serve as biomarkers across various cancer stages that might lead to the revealing of

mechanisms that underlie the development of cancers. The graph regularization employed

therein is the protein—protein interaction (PPI) network; their optimization procedure is

based on interior point algorithm. They performed their method on breast cancer data from

TCGA and reached a more favorable result compared with that of an artificial network bench-

mark. Yet while claiming the method’s extensibility to heterogeneous multiomics data, in this

study, the authors exclusively included gene expression data. Although the PPI network was

also used, it is regarded as prior information in the form of regularization rather than a differ-

ent source of data view.

Yu and colleagues [66] proposed a method for simultaneous clustering of multiview cancer

data using a multiview spectral clustering method. However, their computational method sub-

stantially differs from other spectral clustering approaches in that, rather than calculating

eigenvectors, the optimization procedure therein involves of a line-search algorithm on Stiefel
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manifold. In this gradient descent method, the gradient calculated from a Euclidean space in

each iteration is projected onto an embedded matrix manifold. The authors applied this

method to both simulation and real data, which also originate from TCGA. In both cases, the

method performed favorably. In the real data set composed of gene expression, miRNA

expression, and DNA methylation across 12 cancer subtypes, their method identified more

clusters that are enriched by gene ontology and KEGG pathways, which could be used to

explain the different mechanisms for each subtype of cancer development.

Brain diseases

The nature of mental disorders and neurodegenerative diseases, of which Alzheimer’s disease

(AD) is the most common one, remains a puzzle. Although many psychiatry diagnoses are

currently based on neuroimaging and, hence, multiview learning from different types of neu-

roimages (e.g., MRI, fMRI, positron emission tomography [PET], computerized tomography

[CT]), a study of AD [67, 68] suggests that memory impairment and dementia are the results

of nonlinear interactions involving multiple brain cell types (e.g., neurons, microglia), patho-

genic forms of τ proteins and amyloid-β as the brain ages. Whereas these interactions are pre-

served in a healthy brain, they are dysfunctional in an unhealthy brain, thereby leading to mild

cognitive impairment (MCI) and giving rise to AD. Also, each cell type is affected by unhealthy

aging at multiple levels, such as transcriptomic, epigenomic, proteomic, metabolomic, and

lipidomic. Therefore, a holistic approach that combines these omic data on blood, cerebrospi-

nal fluid (CSF), brain samples, and also neuroimages as phenotypic traits is essential for reveal-

ing the complex mechanism underlying the disease. The combination of omics studies and

medical imaging (sometimes called radiogenomics) advances our understanding of AD and

neurodegenerative disorders in general at multiple levels through the identification of bio-

markers for diagnosis and through association studies that reveal the interaction mechanism

among genetic and phenotypic data.

Xu and colleagues [69] developed a Bayesian multiview learning method for association

studies and diagnosis of AD through 2 data views: genetic variations (i.e., single-nucleotide

polymorphism [SNP]) (discrete ordinal data) and MRI features (continuous data). By using

sparse linear projections to factorize common latent features, the method aims to (1) simulta-

neously discover the interactions between genetic variations and MRI features and (2) select

biomarkers associated with the disease. The authors also incorporated the linkage disequilib-

rium as a prior knowledge for the SNP data.

As also a radiogenomics approach, Zhou and colleagues [54] utilized both MRI and PET

images as well as SNP to identify AD’s prodromal status—MCI—and to classify MCI subjects

into 2 groups of either progressive MCI (pMCI) or stable MCI (sMCI); these groups are cate-

gorized based on who will develop AD and who will remain stable. For diagnostic predicting

and for dealing with the heterogeneity and high-dimension, low-sample-size problem of the

multiview data, the authors developed a deep multiview network that slowly fuses 3 different

datasets into a common representation after a stage-wise training using the “maximum num-

ber of available samples”; specifically, the architecture makes use of a “three-stage deep feature

learning and fusion framework.” In the first stage, latent representations of each view (MRI,

PET, SNP) are learned separately, whereas in the second stage, the joint pairwise representa-

tions are learned by using the features in the first stage. In the third stage, diagnostic labels are

learned by integrating all features from the second stage. The analysis is made on the AD neu-

roimaging initiative (ADNI) data set and achieves a favorable performance. The multiview

deep learning approach taken therein can be regarded as a slow fusion architecture [70].

Another approach of discriminating MCI subgroups is presented by Young and colleagues
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[71], wherein the authors made use of Gaussian process as an MKL method to integrate volu-

metric MRI, fluorodeoxyglucose positron emission tomography (FDG-PET), CSF, and apoli-

poprotein E (APOE) genotype for a binary classification. This combination of neuroimaging,

genomic, and metabolomic data delivered an accuracy of 74%, higher than any results

achieved using a single modality. The combination of structural MRI, FDG-PET, and CSF are

also used in an experimental study [21] in which 3 different multiview learning methods—

namely CCA, MKL, and matrix factorization—are compared on the ADNI data.

For late-onset AD (LOAD), Mukherjee and colleagues [72] proposed a general multiview

framework for feature learning of 27 previously known driver genes of LOAD, which may

then be used to identify other potential driver genes. The authors also proposed a ranking

method for these genes by aggregating the predictions associated with each feature set with

genome-wide association study (GWAS) statistics. While claiming the framework’s generality

for any data modalities, the authors demonstrated the analysis via 3 modes of data: differen-

tially expressed genes between AD cases and controls, global gene co-expression network fea-

tures, and 42 tissue-specific co-expression modules. These transcriptomic data are collected

from postmortem brain tissue across 3 different studies that are assumed to possess indepen-

dently predictive information. To tackle sparsely labeled data (of only 27 known genes), they

developed a multiview classification based on a co-training scheme. For feature learning, they

indicated that topological features (e.g., node degree) are more predictive than are differential

expression features; for ranking, they identified previously known and also potentially new

LOAD driver genes that are significantly enriched for both SNPs and pathways associated with

AD.

Another degenerative genetic disease is spinocerebellar ataxia (SCA), which is responsible

for severe movement disorders. This complex disease, which possesses more than 40 geneti-

cally different types, must also be studied from an integrative approach that makes use of

omics data, neuroimaging data, and clinical data, among others. Garali and colleagues [29]

analyzed 4 subtypes of SCA, which are SCA1, SCA2, SCA3—the 3 most common subtypes—

and SCA7, by employing component-based methods known as regularized generalized CCA

(RGCCA) and sparse generalized CCA (SGCCA). These methods generalize CCA to analyze

data sets structured in blocks, each of which represents a unique view of data. This kind of

analysis aims to reveal information between and within blocks. Because SCA is characterized

by the volume of a brain region called the pons, the authors performed RGCCA and SGCCA

as block-based multimodal biomarkers approaches to discover the relationships between the

pons volume, metabolomics, lipidomics, and metabolic imaging resulting from magnetic reso-

nance spectroscopy.

Single-cell omics

Cellular populations are heterogeneous in nature. Although cells in a particular tissue are of

the same type (e.g., neuron, muscle), they are nevertheless varied in terms of their states (e.g.,

mitotic, migratory) and behaviors according to the transcriptomic, proteomic, and other mea-

surement levels in a spatiotemporal pattern. Research based on bulk sample of cells from a spe-

cific tissue undermines these variations across cells so that the emerged single-cell

technologies flourish and thereby enable the exploration of cellular heterogeneity in complex

diseases and stem cell differentiation. Single-cell multiomics provide diverse views for each

individual cell (e.g., genomic, epigenomic, transcriptomic) that suggest how these different

molecular levels interact to result in a phenotypic heterogeneity of cellular types, states, and

fates (e.g., the effects of DNA methylation in the cell population on gene expression [73, 74,

75]). Integrating these multiomics remains a challenge, especially when sparseness and high
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dimensionality are the 2 pervasive characteristics of single-cell multiomics data [76, 77].

Sparseness is caused by dropout events wherein the gene expression is very high in some cells

but very low or almost zero in other cells due to the stochastic nature of gene expression at the

resolution of single-cell. The mixing of these false zeros with true zeros of nonexpressed genes

makes the analysis difficult. Thus, to impute missing values from an omic, we need informa-

tion from other omics. Also, the high dimensionality caused by the large number of genes in

each cell would make any approach for discrimination between cells be very hard because, in

this high-dimensional space, the distance between cells is indistinguishable.

Few imputation methods in single-cell analysis make use of multiview learning from mul-

tiomics data. Lin and colleagues [78] developed an ensemble regression imputation method

that combines the self-imputation from a single omics (e.g., miRNA) as well as cross-imputa-

tion from other correlated omics (e.g., mRNA, DNA methylation). When comparing 5 other

single-view imputation methods, the method presented therein was demonstrated to be

advanced and efficient in terms of imputation accuracy and the recovery of mRNA-miRNA

interactions. Multiomics factor analysis (MOFA) [50] is another multiomics integrative

method that can efficiently identify outlier samples and accurately impute missing values. The

method learns a set of hidden factors responsible for biological and technical variability from

different omics and clearly identifies the consensus information shared across multiple omics

as well as the diversity of specific information that belongs to individual omics. The inferred

factors enable the identification of sample subgroups, data imputation, and sample outliers.

When applied to a data set of chronic lymphocytic leukaemia on 200 patient samples, includ-

ing somatic mutations, RNA expression, DNA methylation, and ex vivo drug responses,

MOFA identified many sources of disease heterogeneity, such as immunoglobulin heavy-

chain variable region status, trisomy of chromosome 12, and response to oxidative stress.

When applied to single-cell multiomics data, MOFA identified coordinated transcriptional

and epigenetic changes along cell differentiation. The ensemble method used by Lin and col-

leagues [78] can be regarded as an alignment-based method because it makes use of correla-

tions between omics, whereas MOFA is a factorization-based method that attempts to reveal

common latent factors.

The high dimensionality of single-cell multiomics requires any integration method to con-

sider dimension reduction one of its goals. This requirement is naturally implemented in fac-

torization-based methods because they attempt to reveal a common latent structure that often

resides in a low-dimensional space. The desired result may also be accomplished if the embed-

dings f (i) in alignment-based methods transform the original data to a linear or nonlinear

manifold. Welch and colleagues [37] developed MATCHER to perform manifold alignment

between transcriptomic and epigenomic levels from different cells. The method firstly uses a

Gaussian process latent variable model to obtain pseudotime values for every cell by indepen-

dently clustering them in every omics and secondly aligns the quantiles of the pseudotime dis-

tribution and those of a uniform distribution to make them directly comparable. As far as we

understand, very few computational methods in bioinformatics—especially in multiomic inte-

gration—utilize the method of manifold alignment even though manifold structure is a suit-

able representation for gene regulatory networks because it preserves the locality of regulons

[79]. Similar to MATCHER, ManiNetCluster [19] is another method for multiview learning

that attempts to identify conserved or specific gene modules across species via manifold align-

ment. Although the data used in their studies are merely transcriptomic profiled from bulk

samples, the method is general sufficient to apply to single-cell multiomics data to identify cell

types, cell states, and even the functional linkage between various omics. It is worth noting that

not all NMF methods used in single-cell multiomic integration are factorization-based

approaches. Duren and colleagues [44] developed a method called coupleNMF to cluster cells

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007677 April 2, 2020 18 / 26

https://doi.org/10.1371/journal.pcbi.1007677


using both gene expressions (scRNA-seq) and chromatin accessibility (scATAC-seq). This

method does not recover a common dictionary matrix that captures the consensus across dif-

ferent views, as is the case in other multiview NMF methods; rather, it identifies the association

between genes and regulatory elements and is thus a co-regularized method.

Plants

Multiomics and machine learning may be applied in plant science, especially to understand

the mechanisms of photosynthesis and hydrogen metabolism that are valuable for biofuel

research. Chlamydomonas reinhardtii is a microalgae often used as a premier reference organ-

ism to study biohydrogen production because of its high hydrogenase activity [80]. For exam-

ple, a study applied both transcriptomic and proteomic levels to reveal a majority of the algal

genomes being differentially expressed over the course of the light condition and the timing of

specific genes being determined by their biological functions [81]. Another study implemented

of genomics, transcriptomic, proteomics, and metabolomics to identify critical genes in hydro-

gen metabolism [80]. The combination of transcriptomic, proteomic, metabolite, and lipid

profiling was also used to investigate the the regulation of photosynthetic process during nitro-

gen deprivation in C. reinhardtii [82]. However, these studies exclusively applied basic statisti-

cal techniques in their analysis and as such, lacked a systematic method for integrating and

inferring from different types of omics.

As far as we understand, ManiNetCluster [19] is the only multiview learning method that

has been used in plant science. In general settings, the method takes 2 different data sets as

inputs, transforms them into a common latent subspace where they can be aligned with each

other, then simultaneously clusters the aligned network for the discovery of conserved mod-

ules and functional linkages between 2 data types. In their study [19], a gene expression profile

of C. reinhardtii between light and dark conditions was employed, and the 2 conditions were

treated as 2 views of a multiview data set. ManiNetCluster was subsequently applied on these 2

inputs, which led to the discovery of conserved modules in which a group of genes retain their

functions during both the daytime and nighttime. Some critical genes that serve as functional

linkages to bridge and regulate daytime and nighttime functions were specifically identified.

Summary and discussions

Multiview learning has a long history [4], and many literature reviews have been produced on

this topic, including the following: Li and colleagues [83] focus on multiview representation

learning methods; Zhao and colleagues [84], Sun [85, 86], Sun and colleagues [87] focus on

some theoretical aspects—that is, generalization bounds—of some old paradigms of multiview

learning (e.g., co-training); one of the first reviews discussing extensively on the consensus and

complementary principles of multiview learning is made by Xu and colleagues [16]; Chao and

colleagues [88] focus on and categorize multiview clustering methods into generative and dis-

criminative methods; and Baltrušaitis and colleagues [89] conducted a comprehensive survey

that categorizes multiview learning methods into 5 technical challenges—representation,

translation, alignment, fusion, and co-learning. Most methods surveyed by Baltrušaitis and

colleagues [89] are general or specialized for multimedia applications. The applications of mul-

tiview learning in biomedical data are just recently investigated [90, 91], and there are also sur-

veys investigating the methods to integrate heterogeneous biological and multiomics data [92,

93, 94, 91]. However, they did not discuss the underlying machine learning principles (e.g.,

ERM) for multiview learning and how to use these principles for modeling multiomics data

and revealing functional omics.
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Different from these reviews, we focused on the basic principle underlying all machine

learning algorithms (i.e., ERM) and built the alignment-based and factorization-based frame-

works for multiview learning based on that principle. We can categorize nearly all the multi-

view learning methods into those 2 framework by demonstrating which components of their

objective functions are responsible for the consensus or the complementary principles of mul-

tiview learning. These 2 forms of MV-ERM may also be employed in a future theoretical analy-

sis to derive the generalization bounds of a learning algorithm. We have demonstrated that,

with the general settings, our multiview learning framework may be either supervised or unsu-

pervised. In fact, the alignment-based methods are based on supervised settings of single-view

machine learning, whereas factorization-based methods are based on the reconstruction error

of single-view unsupervised learning. The alignment-based methods are always performed in

pairwise fashion and therefore not scalable, as is the factorization-based method; however, in

parallel to data integration, alignment-based methods may be applied for an association or

comparative analysis.

Current machine learning methods based on ERM have some potential pitfalls, e.g., for

understanding causal relationships between variables. When minimizing empirical error, the

learning algorithm tries to absorb all the association relationships (e.g., correlation) found in

the data. To tackle this association-versus-causation dilemma, Arjovsky and colleagues [95]

proposed a theoretical framework, invariant risk minimization (IRM), to learn causations by

inferring invariances across conditions (e.g., different omics in biological context). This opens

up the possibility to generalize IRM to multiview settings (i.e., multiview IRM) for learning the

directed links among variables across omics, implying potential causal relationships.

There are also a few caveats in multiview learning applications, especially in terms of time

and space complexities. First, given that its input is typically multiomic data, multiview learn-

ing is computationally costly and demands high data memory usage. For example, alignment-

based methods proceed in a pairwise fashion, which probably results in a 2-fold increase of

data memory. Moreover, factorization-based methods can result in a higher degree of polyno-

mial space complexity in that they simultaneously process all available datasets. Second, a

number of hyperparameters may be used to define a multiview learning model [96]. Tuning

various hyperparameters is still challenging. In particular, searching an optimal set of hyper-

parameters is likely computationally intensive. For example, DCCA [25], a multiview deep

learning method, has to simultaneously optimize 2 deep neural networks, creating additional

computational burden in training.

Many topics were not covered in this paper. To identify and categorize various kinds of

multiview learning methods, we exclusively focused on the algorithms’ objective functions but

did not discuss the details of their optimization procedures. In fact, many learning methods

share similar objective functions but nevertheless differ from optimization methods. Most of

the NMF-based methods are based on an alternating optimization technique, whereas spectral

methods (e.g., spectral clustering) are based on solving a generalized eigenproblem. Spectral

clustering can also be solved by an optimization procedure on a matrix manifold, such as Stie-

fel manifold [66]. Most deep learning approaches are solved by backpropagation and stochastic

gradient descent methods, whereas many other solvers are based on a convex relaxation [64,

97, 98, 76]. There are additional topics that are closely related to multiview learning, such as

domain adaptation and transfer learning, that we were unable to dig into in this paper despite

their biological application; in our outlook, we find the inferring of the information from an

omic to another omic more promising. Also, biological interpretability is still a challenge

for machine learning applications. To address this, previous work embedded biological

knowledge to the machine learning model for underlying mechanisms; e.g., interpretable deep

neural network modeling [99, 15]. Thus, how to make multiview learning interpretable will be
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an interesting topic in near future. For biological applications, we herein focused on the cut-

ting edge of cancer, neurodegenerative diseases, and single-cell multiomics. The many other

applications we were unable to cover include epigenomic variation, gene regulation, and

computational pharmacology (e.g., drug repositioning, patient subtyping), among others.

These applications can be identified in other surveys, such as [76]. As for benchmark datasets,

in addition to cancers [5], we also summarized additional multiomic benchmark datasets for

additional contexts (S1 Table).

We also acknowledge that many multiview learning models (especially deep learning mod-

els), although popular in domains such as computer vision and speech recognition, are not

currently applied in the biological domain. To move forward, we may take example of other

domains. For example, a multiview clustering based on deep matrix factorization [45] learns

features via a hierarchical model with multiple layers. Each layer learns a feature representing

specific data attributes; e.g., a portrait photo has attributes of pose, facial expression, and facial

identity. Clustering photos based on this multiview learning model enables the simultaneous

identification of the features and the relationships among photo attributes. Similarly, the idea

of identifying hierarchical features in this model can be potentially applied to single-cell data

for understanding cell-type-specific gene expression and identity. For example, we can input

single-cell gene expression matrices (genes by cells) [100] and learn the features representing

(1) cell identity (e.g., cell type) and (2) cell activity (e.g., gene expression) as well as the feature

relationships (e.g., cell type interactions).

Another research that has a great influence in healthcare in recent years is the study of the

microbiome community inhabiting the host or an environmental niche. For example, metage-

nomics studies of the gut microbiome have shown the changes of community structures under

the changes of diet [101]. However, metagenomics constitute merely another one view for the

whole understanding of complex phenotypic traits; to understand the whole microbial traits,

we need to integrate metagenomics with other omics and meta-omics (e.g., metatranscrip-

tomics, metaproteomics) in a multiview framework. Among various multiomics integration,

combining metabolomics with metagenomics is a promising way to understanding functions

and interactions between microbial community and the host [102].

In short, we have provided the formal framework for categorizing current multiview learn-

ing methods; it can also serve as a guideline for developing many new methods. We demon-

strated that the biological applications of these methods are thriving and promising, especially

in the fields of brain diseases (e.g., neurodegenerative and neurodevelopmental diseases) and

single-cell analysis because of the growing use of multiomics data. Biological problems always

involve of many diverse facets, and multiview learning is an efficient strategy for tackling those

problems. We expect that, through this review, additional applications and issues in multiview

learning research shall emerge and benefit the community.

Supporting information

S1 Table. Multiomics benchmark datasets.
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