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Abstract

Microscopy image analysis is a major bottleneck in quantification of single-cell microscopy

data, typically requiring human oversight and curation, which limit both accuracy and

throughput. To address this, we developed a deep learning-based image analysis pipeline

that performs segmentation, tracking, and lineage reconstruction. Our analysis focuses

on time-lapse movies of Escherichia coli cells trapped in a "mother machine" microfluidic

device, a scalable platform for long-term single-cell analysis that is widely used in the field.

While deep learning has been applied to cell segmentation problems before, our approach

is fundamentally innovative in that it also uses machine learning to perform cell tracking and

lineage reconstruction. With this framework we are able to get high fidelity results (1% error

rate), without human intervention. Further, the algorithm is fast, with complete analysis of a

typical frame containing ~150 cells taking <700msec. The framework is not constrained to a

particular experimental set up and has the potential to generalize to time-lapse images of

other organisms or different experimental configurations. These advances open the door to

a myriad of applications including real-time tracking of gene expression and high throughput

analysis of strain libraries at single-cell resolution.

Author summary

Automated microscopy experiments can generate massive data sets, allowing for detailed

analysis of cell physiology and properties such as gene expression. In particular, dynamic

measurements of gene expression with time-lapse microscopy have proved invaluable for

understanding how gene regulatory networks operate. However, image processing

remains a key bottleneck in the analysis pipeline, typically requiring human intervention

and a posteriori processing. Recently, machine learning-based approaches have ushered in

a new era of rapid, autonomous image analysis. In this work, we use and repurpose the U-

Net deep learning algorithm to develop an image processing pipeline that can not only

accurately identify the location of cells in an image, but also track them over time as they

grow and divide. As an application, we focus on multi-hour time-lapse movies of bacteria

growing in a microfluidic device. Our algorithm is accurate and fast, with error rates near

1% and requiring less than a second to analyze a typical movie frame. This increase in
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speed and fidelity has the potential to open new experimental avenues, e.g. where images

are analyzed on-the-fly so that experimental conditions can be updated in real time.

Introduction

Time-lapse microscopy is an essential technique for studying dynamic cellular processes. With

automated microscope hardware and microfluidic devices it is possible to parallelize experi-

ments to both increase data resolution and to test many different conditions in parallel. Tech-

nical improvements in hardware as well as open microscopy software initiatives [1,2] have also

made time-lapse acquisitions both faster and more flexible. Researchers today can test up to

hundreds of conditions [3] and strains [4] in a matter of hours and, after analysis, iteratively

refine their hypotheses and design a new suite of experiments. As an initial test case, we focus

our analysis on images from the so-called “mother machine” microfluidic device [5]. In this

device thousands of single bacterial cells are trapped independently in one-ended growth

chambers where they can be observed for extended periods of time, while their progeny are

progressively flushed out of the field of view (Fig 1A). This experimental set up has been widely

adopted as a popular standard for long-term, single-cell time-lapse imaging of bacteria such as

E. coli [6–9], Bacillus subtilis [7,10], and Corynebacterium glutamicum [11]. Unfortunately,

analysis of raw single-cell microscopy images remains a major bottleneck despite major efforts

in this area.

While a plethora of software suites have been developed for single-cell segmentation and

tracking [12–15], including code specific to analysis of mother machine data [11,16–19], the

vast majority require manual inputs from the experimenter and are designed for a posteriori
processing. The relatively recent breakthrough in biomedical image analysis brought by deep

convolutional neural networks, and the U-Net [20] architecture in particular, has introduced

an era of fast-paced developments in the field [21]. Deep learning-based image processing is

fast, as it can be run on graphical processors. Further, it can adapt to new data after being

trained, thus improving performance and robustness. In addition, as long as a reasonably large

and accurate training set can be generated, the same code can be re-used without parameter or

code tweaking for different experimental setups or even different organisms.

But cell segmentation alone does not extract the rich dynamic information contained in

single-cell resolution time-lapse movies. A recent study demonstrated the possibility of using

deep learning methods to track single, non-dividing cells over time after segmenting them

[22]. However typical time-lapse movies tend to feature several division events per frame, and

common object-tracking deep learning solutions cannot be used to reconstruct those lineages

as they are not meant to identify divisions of the monitored objects. The possibility to robustly

segment cells, track them, and reconstruct lineages on-the-fly would not only speed up analysis

and make it possible to process large amounts of data, but also would enable the development

of “smart” microscopy platforms that could automatically trigger actions such as microfluidic

or optogenetic inputs based on cellular events like divisions or transcription bursts.

As an example, a small number of recent studies have highlighted the potential of com-

puter-based feedback control of gene expression in single cells as a new experimental paradigm

[9,23,24]. This approach automatically adjusts chemical or optogenetic inputs based on real-

time quantification of gene expression levels in cells to precisely and dynamically perturb regu-

latory networks. These studies have garnered insights into the dynamics of cellular processes

that would have been impossible to study by other means [25]. However, to be able to perform

feedback control at the single-cell level, image analysis must be performed on-the-fly, without
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any human intervention. To circumvent this problem, researchers have exploited constrained

experimental geometries to localize cells [9], developed customized interfaces with flow cytom-

etry [26,27], or restricted studies to experimental durations that avoid too many cell division

events or conditions where the cells escape from the field of view [23]. By providing rapid

access to a suite of quantitative, dynamic measurements about single cells, entirely automated

image processing offers the potential to expand the scope of experiments that can exploit

dynamic, real-time cell tracking.

Here we introduce DeLTA (Deep Learning for Time-lapse Analysis), an image processing

tool that uses two U-Net deep learning models consecutively to first segment cells in micros-

copy images, and then to perform tracking and lineage reconstruction. After training, our

pipeline can analyze new acquisitions in a completely automated fashion, with error rates of

0.06% for segmentation and 1.01% for tracking and lineage reconstruction. Data analysis is

fast, requiring between 300-800msec per frame on consumer-grade hardware, depending on

the number of tracked cells (Table 1). We used a diverse set of training samples, both from our

own experiments and from data retrieved from the literature, in an effort to generate models

Fig 1. Core elements of the DeLTA pipeline and segmentation and tracking results. (A) Schematic representation of mother machine device. Mother

cells are trapped at one end of the chamber and their progeny are progressively flushed out of the chamber, into the main nutrient flow channel.

Fluorescent reporters can be used to monitor single-cell gene expression. Scale bar is 5μm in length. (B) Inputs and outputs of the segmentation U-Net.

Note that the weight maps are only used for training and are not produced at the prediction step. (C) Inputs and outputs for the tracking U-Net. (D)

Representative kymograph of segmentation and tracking for a single chamber. Black lines highlight detected divisions and mother-daughter

relationships.

https://doi.org/10.1371/journal.pcbi.1007673.g001
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for DeLTA that can perform out-of-the-box without further training on entirely new mother

machine data. In addition to the deep learning algorithm itself, we also introduce a suite of

scripts and graphical user interfaces to interface our Python-based U-Net implementation

with Matlab to create and curate training sets. The code is available on Gitlab to facilitate dis-

tribution and adaptation by other researchers (Methods). By capitalizing on recent advances

in deep learning-based approaches to image processing, DeLTA offers the potential to dramat-

ically improve image processing throughput and to unlock new automated, real-time

approaches to experimental design.

Results

We applied the code directly to the problem of segmenting E. coli cells trapped in mother

machine microfluidic chambers [5]. In the device, cells are grown in chambers of ~1μm in

width and height, and 25μm in length (S1 Fig). This configuration traps a so-called “mother”

cell at the dead-end of the chamber, and as the cells grow and divide the daughters are pushed

out of the other end of the chamber (Fig 1A). Nutrients are introduced by flowing growth

medium through the main channel, which also serves to flush out daughter cells. This device

has become a popular way to study single-cell dynamics in bacteria, as it allows for the long-

term observation of single mother cells, with typical experiment durations of 12 to 30 hours

[4,6,7,9], and sometimes up to several days [10]. It is also possible to image progeny, allowing

for comparison of daughters, granddaughters, and great granddaughters for multi-generation

analysis. This latter source of data is less frequently exploited due to the challenges associated

with accurate tracking, therefore analysis has traditionally focused on the mother cell. How-

ever, these data have great potential, as they can contain generational information for thou-

sands of cells. The DeLTA algorithm we introduce here is centered around two U-Net models,

which are trained on curated data and then can be used to quickly and robustly segment and

then track cells in subsequent images.

Segmentation

The first U-Net model (Fig 1B, S2 Fig) is dedicated to segmentation and is very similar to the

original model [20]. To create training sets, we began by using the Ilastik software [14] to seg-

ment time-lapse movies of cells in the mother machine chips. Note that other training set gen-

eration pipelines can be used, for example with other mother machine data analysis software

[11,16,17,19], or if experimenters have pre-existing segmented sets. While our segmentation

Table 1. Key performance numbers for training and evaluation of the DeLTA algorithm.

Training

Segmentation Tracking

Set size 8,258 chambers (~53,000 cells) 7,706 tracking events

Set construction time ~10 hours ~10 hours

U-Net training time 3 hours 20 minutes 8 hours

Evaluation

Segmentation Tracking

Ground-truth set size 3,422 cells 3,073 cells

Errors (rate) 2 (0.06%) 31 (1.01%)

Sample processing time 12 msec (/chamber) 3.6 msec (/cell)

Frame processing time 212 msec ~400 msec (depending on # of cells)

Movie processing time (262,634 cells) 9 minutes 2 seconds 13 minutes 8 seconds

https://doi.org/10.1371/journal.pcbi.1007673.t001
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results with Ilastik were already fairly accurate (~1% error rate), we found that even after care-

fully designing an initial training set, the results generalized poorly to new datasets and usually

required training sets to be generated or updated a posteriori with each new experiment.

Therefore, we used a combination of Ilastik and manual curation to produce segmentation

outputs that then served as training sets for our code. We stress that this training set generation

process does not need to be repeated after initial training.

Our code uses data augmentation operations (Methods) to ensure robustness to experimen-

tal variation and differences in imaging conditions. For example, changes in nutrient concen-

tration can produce cells of different size or aspect ratio, or subtle light condenser mis-

alignments can introduce differences in illumination of the image. With simple image trans-

formations or intensity histogram manipulations to approximate such changes, the model can

be trained to generalize to new, different inputs.

To generate the training sets, the time-lapse movies were cropped into thousands of pairs

of images and segmentation masks for each chamber within the mother machine at each time

point (Methods). These potential training samples were then manually curated with a rudi-

mentary graphical user interface in Matlab to ensure that the U-Net algorithm was only fed

accurate training samples (S3 Fig). We curated a sufficient training set (~8,300 samples),

which took approximately two days to generate, and then trained the Python-based U-Net

model against the segmented binary masks (Fig 1B).

To train the network we implemented a pixel-wise weighted binary cross-entropy loss func-

tion as described in the original U-Net paper [20] to enforce border detection between cells.

Prior to data augmentation and training, weight maps were generated to increase the cost of

erroneously connecting two cells together. In addition to the original procedure to generate

the weight maps described in the U-Net paper, we also introduced an extra step that sets the

weight to zero around the 1-pixel contour of the cells. By doing so, we relax the constraint on

learning of the exact contour as provided in the segmentation masks in the training set. This

makes the model more generalizable, as the algorithm does not have to exactly fit the output of

the Ilastik segmentation.

The network was trained on images from three different multi-position time-lapse movies

acquired in our lab, and on movies available from the literature [11,16,17,28,29]; we then eval-

uated on a third data set acquired in our lab weeks later as well as on data from the literature

(Table 1). To demonstrate generalizability of the approach, and to evaluate performance

against other analysis software, we also used the time-lapse image datasets provided with the

mother machine analysis software tools Molyso [11], MoMA [16], and BACMMAN [17] to

evaluate the performance of DeLTA on completely new data by performing “leave-one-out”

training and evaluation pairings. In these studies, one of those three different datasets was left

out at the training step, and after training, performance was evaluated against the omitted

dataset (S1 Table).

DeLTA performed extremely well when segmenting bacterial images, with only 2 errors out

of 3,422 (0.06%) segmented cells when compared to our ground-truth evaluation set (Table 1,

S4 Fig). With our desktop computer, each frame in our evaluation movie was processed in

212ms. The evaluation movie that we acquired ourselves, which features 12 positions, each

with 193 frames was processed in about 9 minutes. It also performed remarkably well on the

BACMMAN and Molyso datasets with an error rate of 0.22% (4 errors out of 1785 cells) and

0.21% (4 errors out of 1874 cells), respectively (S1 Table). Performance on the MoMA movie,

which looks markedly different from the other movies in our datasets was poor, with a seg-

mentation error rate of 17.3% (179 errors for 1037 cells). We emphasize that for these results,

the U-Net models had not been trained on samples from the BACMMAN, Molyso, or MoMA

datasets before processing them. Therefore, our results with the BACMMAN and Molyso
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datasets are excellent; with incorporation of training sets that look similar to the MoMA data

we anticipate that performance on those movies would dramatically improve.

Tracking and lineage reconstruction

The main innovation in our approach is to use a U-Net architecture not only to segment cells,

but also to track them from one frame to the next and identify cell divisions. To our knowl-

edge, this is the first time a deep learning model has been used to accomplish this second half

of the time-lapse movie analysis pipeline. Using an approach that mirrors the original U-Net

architecture (Fig 1C, Methods), we use multiple images as inputs and outputs. Namely, for

every cell at every time-point, we use four images as inputs: the transmitted light images for

the current frame and the previous frame, a binary mask delimiting one “seed” cell that we

want to track from the previous frame, and the segmentation mask for the current frame.

This second U-Net model is used downstream of the segmentation U-Net to complete our

time-lapse analysis pipeline. As outputs for training, we provide two binary masks, the first

one delimiting where the seed cell is in the new frame, and the second delimiting where the

potential daughter cell is, in case a division has happened (Fig 1C).

We developed a simple graphical user interface in Matlab for creating training sets. Because

manually creating a dataset for this tracking step is not as tedious as for segmentation, we did

not incorporate third party software into our workflow. Instead, the user simply clicks on cells to

identify them in the new frame. Using this method, we generated a sufficient dataset with ~7,700

samples in about two days. Afterwards, in order to perform the same type of leave-one-out anal-

ysis we used to evaluate the segmentation step, we used ground-truth movies we generated for

the BACMMAN, Molyso, and MoMA datasets as training samples for tracking, and compiled

training sets containing all but one of the datasets. Other approaches could speed up this process,

such as employing tools already available for automated tracking [13,14,16,30]. However, users

must be particularly careful not to introduce erroneous training samples into their set. To this

end we also provide a graphical user interface similar to the one for segmentation that can be

used to curate training samples. Note that it can also be used to curate and re-purpose the predic-

tion output of the tracking U-Net as a training set, allowing for an iterative approach to training

set generation. Again, we found that training does not need to be repeated provided the general

image analysis pipeline and cell morphology remain the same. Once the tracking U-Net has gen-

erated tracking predictions on new data, the binary mask outputs are compiled into a more user-

friendly lineage tree data structure. We provide a simple Matlab script that loops through the

tracking mask outputs of the deep learning pipeline to assemble this structure.

Once trained, we applied our tracking pipeline to follow cells and identify cell divisions in

evaluation time-lapse movies that it had never seen before (Fig 1D). Tracking and lineage

identification errors rates were low, with only 31 mistakes in an evaluation set of 3,073 samples

(1.01%). The majority of those errors arose from either non-trivial tracking problems where

humans also had difficulties identifying cells from one frame to the next or were associated

with cells at the bottom of the image that were in the process of being pushed out of the field

of view (S5 Fig). Processing times are fast, with each cell in our evaluation movie tracked in

3.6ms and the 262,634 cells identified at the segmentation step processed in about 13 minutes.

Following leave-one-out tracking performance analysis, we were surprised to see that tracking

error rate for the BACMMAN dataset was even lower than for the movies generated in our lab,

with 0.53% (8 errors out of 1504 cells). Although the BACMMAN movie appears less compli-

cated than our own evaluation movie, it is notable that we were able to obtain high fidelity

results on data DeLTA was not trained on. Results for the Molyso dataset were also acceptable,

with a 3.03% tracking error rate (46 errors for 1514 cells). Tracking on the MoMA dataset was
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1.85% (4 errors for 216 cells), though we note that this result is not as relevant since so many

errors were introduced in the segmentation stage. Again, these results are likely to improve if

the tracking model is trained on similar images.

Feature extraction

In addition to the segmentation and tracking models, we also developed a Matlab script for

extracting morphological features such as cell length, area, and fluorescence levels following

segmentation, tracking, and lineage reconstruction. As an example, we show results from a sin-

gle chamber within the mother machine where we track a mother cell and its progeny over the

course of 16 hours (Fig 2A). The E. coli in this movie contain a green fluorescent protein (GFP)

reporter (Methods). For each cell, we extracted mean GFP levels over time and also obtained

morphological data. The length of the mother cell over time shows characteristic growth and

division patterns (Fig 2B). These data were also used to calculate growth rate (Fig 2C) and the

timing of cell division events (Fig 2D). Division events allow us to track daughters, grand-

daughters, and great granddaughters before they are flushed out of the chamber (Fig 2E).

To demonstrate the wealth of information that can be extracted from time-lapse movies

using our analysis pipeline, we compared the fluorescence levels between different generations.

We compared the mean GFP of the mother in the time interval between the preceding cell

division and the current cell division to the mean GFP of the daughter in the interval between

the current division and the next division (Fig 3A). As expected, there was a strong correlation

between mother and daughter fluorescence levels. We extended this analysis to granddaugh-

ters or great granddaughters by comparing GFP levels before the n-1 or n-2 division event for

the grandmother or great grandmother (i.e., the last period of time the two cells were the same

cell) to GFP levels after the current (n) division. We observed a decrease in the correlation

between fluorescence levels the further away cells were in generations (Fig 3B). Highlighting

the potential for massive data collection, the analysis for this specific fluorescent reporter data

Fig 2. Representative single-cell time-lapse image data demonstrating wealth of information extracted from movies. (A) Mean GFP fluorescence over

time for mother cell and its progeny. (B) Cell length, (C) growth, and (D) timing of cell division events over time for the mother cell. Note that these

morphological properties are also recorded for all progeny, but are not displayed here for visual clarity. (E) Kymograph of chamber containing mother cell

and progeny presented in (A – D).

https://doi.org/10.1371/journal.pcbi.1007673.g002
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includes 10,793 mother-daughter comparisons, 7,932 mother-granddaughter comparisons,

and 2,078 mother-great granddaughter comparisons from a movie that ran for 16 hours with

108 different chambers.

In addition, imaging many mother cells over long durations provides high quality temporal

data. We illustrate this by calculating the autocorrelation of the GFP signal (Fig 3C). The

resulting data give a high-fidelity view into the correlation times associated with the reporter,

underscoring the potential for highly accurate measurements of dynamic, single-cell proper-

ties. Indeed, a rapidly decreasing autocorrelation would indicate that the signal GFP reports

fluctuates rapidly over time, and that much of the variability in the population emerges from

intrinsic noise at the single-cell level. In turn this can give us insights into, for example, diversi-

fication and bet hedging strategies, which could not be obtained without reliable, long-term

single-cell segmentation and tracking [28,31].

Discussion

In this study, we present an image analysis pipeline centered around two deep learning models

based on the U-Net architecture to segment, track, and identify divisions of bacteria growing in

Fig 3. Analysis of fluorescence correlations in the lineage tree. (A) Mean GFP fluorescence for the mother cell compared to daughter, granddaughter, or

great granddaughter cells. Fluorescence values for the mother are derived from the cell cycle immediately prior to division, while fluorescence for the

daughter, granddaughter, or great granddaughter come from the cell cycle immediately following division from the cell in the previous generation (e.g. from

the mother when considering the daughter). (B) Correlation coefficient between mother cell mean GFP values and its progeny. (C) Autocorrelation of the

GFP signal for the mother cell. Error bars show standard deviation around the mean.

https://doi.org/10.1371/journal.pcbi.1007673.g003
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a microfluidic device. The U-Net architecture has proven to be a breakthrough technology for

cell segmentation and is emerging as a standard for this image analysis task. With our training

set and implementation, the error rate for segmentation drops to an impressive 0.06%. In addi-

tion, our novel approach extends these ideas to apply the deep learning model to also track cells

and identify division events. The 1.01% error rate on this task is excellent and a clear improve-

ment over other software designed to segment and track bacteria in mother machine devices.

For instance, the mother machine movie analysis software MoMa [16] reports tracking error

rates of about 4%. Other proposed solutions do not explicitly report their accuracy and typically

require some parameter tweaking to be adapted to new data, and often also require a posteriori
correction [10,11,17,19,32]. In contrast, DeLTA can adapt to entirely new images from a differ-

ent setup without the need for re-training if those new images are similar to those in the

training set. We note that our algorithm for post-processing the tracking output of our deep

learning pipeline is very simple, and more elegant rule-based and optimization algorithms pro-

posed in other studies [16,17,33] could be integrated with our approach to reduce the error

rate even further. Additionally, we provide large training datasets that can be used by others to

improve upon our work, and we have incorporated data from other groups in our training sets

to make our trained models as generalizable as possible. As a future direction, it would be help-

ful to explore stopping criteria to prevent overfitting by using diverse and different training

and validation sets.

Indeed, we anticipate that the deep learning workflow presented here can be applied to any

other microscope and mother machine devices without any code or parameter modifications.

Other researchers can generate their own training sets following the workflow described in

Results and Methods. The tedious construction of training and evaluation datasets is often a

limiting step in the adoption of machine learning techniques. To this end we provide simple

scripts and graphical user interfaces for users to assemble their own training sets for their spe-

cific setup. Beyond bacteria in mother machine-type devices, our approach can, in principle,

be applied to a wide range of similar problems. We rapidly explored this possibility by applying

our software to tracking of the yeast species Saccharomyces cerevisiae freely growing in two

dimensions, with benchmarking data taken from another study [34]. Although encouraging,

the tracking error rate of our pipeline was in the 5–10% range for datasets it was not trained

on (S6 Fig), and thus does not outcompete state-of-the-art software designed specifically for

yeast data analysis [34,35]. However, the yeast datasets we used are much smaller than what

we generated for training our network on the mother machine data, which likely limits the

performance of our models. Better post-processing algorithms could also help reach the same

accuracy we achieved with the mother machine experiments. The ability of the algorithm to

segment and track cells with dramatically different morphology and experimental constraints

from the mother machine data suggests excellent potential for generalization of the approach.

In conclusion, the DeLTA algorithm presented here is fast and robust, and opens the door

to real-time analysis of single cell microscopy data. We anticipate that there are a number of

avenues for improvement that could push the performance even further, improving accuracy

and processing speed. For instance, a clear candidate would be to use the U-Net tracking out-

puts as probability inputs for linear programming algorithms to compile lineages [33], replac-

ing the simplistic approach we use in post-processing. Another possible extension to the work

would be to implement a single U-Net model that performs segmentation and tracking simul-

taneously. In principle, this could increase processing speed even further by streamlining seg-

mentation and tracking, and improve accuracy as the segmentation step would also take into

account information from previous frames. Although we have focused on E. coli bacteria in

the mother machine here, preliminary tests suggest that this algorithm may be broadly applica-

ble to a variety of single-cell time-lapse movie data. We expect this approach to be generally
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well-suited to high-throughput, automated data analysis. In addition, this algorithm can be

incorporated in “smart” microscopy environments, which represent a promising emerging

research field, as cells and computers are interfaced to probe complex cellular dynamics or to

steer cellular processes [25].

Methods

Data acquisition and datasets

The E. coli strains imaged in the mother machine are an E. coli BW25113 strain harboring a

low-copy plasmid where the native promoter for the rob gene drives expression of a gene for

green fluorescent protein (gfp). The reporter comes from Ref. [36]. Cells were grown in M9

minimal medium with 0.4g/L glucose, 0.4g/L casamino acids, and 50μg/mL kanamycin for

plasmid maintenance. The growth medium was also supplemented with 2g/L F-127 Pluronic

to prevent cell adhesion outside of the growth chambers.

The mother machine microfluidic master mold was designed using standard photolithogra-

phy techniques [37]. Polydimethylsiloxane (PDMS) was poured onto the wafer, cured over-

night, and plasma bonded to a glass slide to form the final microfluidic chip. The chip features

8 independent main channels where media flows, and each channel features 3,000 chambers of

25μm in length and 1.3 to 1.8μm in width (S1 Fig, and https://gitlab.com/dunloplab/mother_

machine for GDSII file and details). Three time-lapse movies, two for training and one for

evaluation, were acquired with a 100X oil objective on a Nikon Ti-E microscope. A fourth

time-lapse movie used for training was acquired on another Nikon Ti-2 microscope, also with

a 100X oil objective. The temperature of the microscope chamber was held at 37˚C for the

duration of the experiment. Images were taken every 5 minutes for 16 to 20 hours. An auto-

mated XY stage allowed us to acquire multiple positions on the chip for each experiment. The

three training movies and the evaluation movie for mother machine data contain 18, 15, 14,

and 12 positions, respectively, with each imaging position containing 18 chambers. For each

position and timepoint, the images were acquired both in phase contrast and epifluorescence

illumination with a GFP filter.

In addition to our own movies, we also analyzed movies that were provided as supplemen-

tary data sets associated with other studies in the literature. Specifically, we used datasets asso-

ciated with Molyso [11], MoMA [16] and BACMMAN [17] mother machine analysis software

tools as well as other mother machine movies available from the literature [28,29] to generate

diverse training sets. Unless otherwise specified, such as in the case with the leave-one-out

analysis, all datasets were used when compiling training sets.

All raw data and datasets are available online at:https://drive.google.com/drive/folders/

1nTRVo0rPP9CR9F6WUunVXSXrLNMT_zCP

Implementation and computer hardware

We recommend using the Anaconda Python distribution as this greatly simplifies installation

and increases portability. All the necessary libraries can be installed on Windows, Linux, or

MacOSX with Anaconda in just a few command lines, detailed in the Gitlab repository:

https://gitlab.com/dunloplab/delta.

The U-Net implementation we use here is based on Tensorflow 2.0/Keras and is written

in Python 3.6. The general architecture is the same as the one described in the original U-Net

paper, with small variations in the tracking U-Net architecture to account for the different

input/output dimensions and the different loss functions (S2 Fig). Our code can be run on a

CPU or GPU, though GPU results will be faster. Pre-processing and post-processing scripts as

well as training set curation scripts and Graphical User Interfaces (GUIs) were written for and
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executed on Matlab R2018b. All computations were performed on an HP Z-840 workstation

with an NVidia Quadro P4000 graphics card.

Movie pre-processing

To reformat the movies for subsequent analysis with our U-Net pipeline, the movies were first

pre-processed in Matlab. This analysis allowed us to crop the larger image into small images

featuring a single growth chamber that were individually analyzed. A model image of a single

empty chamber was cross-correlated with the full-view frame to detect the position of the

chambers in the first frame of each movie. After cross-correlation, peaks in the cross-correla-

tion product image were detected as the centers of each individual chamber and an image of

each of them was cropped around this point and saved to disk. Afterwards, we applied a sec-

ond cross-correlation operation to correct for small XY drifting errors between frames. The

individual chambers were then cropped out of each frame and saved to disk for subsequent

analysis.

Training set generation

The time-lapse movies used for training were first analyzed with the Ilastik software [14] to

produce potential segmentation training samples (S3 Fig). Image pixels were categorized into

three classes: Cell insides, cell contours, and background (anything that was not a cell pixel).

By using the two different classes for the inner part of the cells and the contour, we minimized

under-segmentation errors where two touching cells would be connected in the segmentation

binary mask. The Ilastik output was then processed with a custom Matlab script that applied

simple mathematical morphology operations to get rid of small erroneous regions, and then

used watershedding to expand the inner part of each cell into the border pixel regions. The

resulting binary segmentation masks cover the entire cell area but do not tend to connect

independent cell regions together. The chamber cropping and XY drift correction operations

described above were applied to the Ilastik output. Ilastik project files are provided with the

rest of the data as examples.

A rudimentary GUI was then used to manually curate a random subset of the Ilastik seg-

mentation samples to generate a training set. Once a large enough training set was generated

(we started obtaining reliable results with around 1,000 chamber segmentation samples for the

E. coli mother machine data, however this number will vary with the complexity of the task),

pixel-wise weight maps were generated (Fig 1B). Different parts of each training mask were

weighted based on the formula described in the original U-Net paper [20], where a strong

emphasis is put on “border pixels”, i.e. pixels that lie on a thin border region separating two

cells. Combined with the pixel-wise weighted cross entropy described below, this extra weight

on border pixels forces U-Net to learn those separations and not under-segment two cells that

are touching. We then added an extra step where we set the weight for contour pixels, i.e. pix-

els on the outer perimeter of cells in the binary mask, to 0. The exact contour of cells is hard to

determine, even for humans, and we found that the Ilastik approach can introduce artifacts in

the exact cell contour. To prevent overfitting U-Net to exactly the cell contours produced by

our training set generation method, we added this 1-pixel margin. Using this step marginally

improves performance, with an error rate on our evaluation movie of 0.09% without the zero-

weight pixel margin used for training instead of the 0.06% error rate we obtain with it. How-

ever, because the total number of errors is very low, it is hard to conclude whether this effect is

significant. It does however reduce pixel error between the ground-truth (described below)

and the DeLTA segmentation output from 4.4% to 1.64%.
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Once the segmentation U-Net was trained, we moved on to creating a training set for the

tracking U-Net model (S3 Fig). We used the trained segmentation U-Net to predict segmenta-

tion masks on the training movies. This segmentation output was then used to generate the

training set for tracking with another simple GUI. In the GUI, a random segmented cell from

the training movies is presented and the user manually generates the training set by clicking

on the cell in the frame at the next timepoint, as well as on the daughter cell if a division hap-

pened between those timepoints. For tracking cells in the mother machine, we generated a

training set of 7,706 samples.

Data augmentation

An important step when using deep neural networks like U-Net that contain millions of

parameters to fit is to artificially increase training set size by applying random transformations

to the inputs and outputs. This “data augmentation” step not only increases training set size

but ensures that the model does not overfit the data and that it can easily generalize to new

inputs, for example those generated with relatively different imaging conditions.

Our training data was augmented on-the-fly with custom Python generators. We imple-

mented our own data augmentation functions as we sometimes required finer control over

image manipulation operations than what the standard Keras functions offered. We used

mostly standard operations such as random shifting, scaling, rotation and flipping, but we also

added three non-standard operations, one for elastic deformations as described in the original

U-Net paper [20] and two for manipulating image contrast to simulate variations in illumina-

tion between experiments (S7 Fig). The first image intensity manipulation operation applies a

randomly-generated and monotonically increasing Piecewise Cubic Hermite Interpolating

Polynomial (PCHIP) mapping operation on pixel intensities over the entire image, which in

effect distorts the image histogram to simulate the effect of different lamp settings on illumina-

tion. The second image intensity manipulation operation also relies on a randomly generated

PCHIP. The generated curve is multiplied along the y-axis (i.e. along the chamber axis) of a

single chamber image, meant to simulate the illumination artefacts that can appear at the bor-

der between different regions of a microfluidic chip under phase contrast illumination. With-

out these last two data augmentation operations, the segmentation error rate against our

evaluation movie ground-truth nearly quadruples from 0.06% to 0.23%.

U-Net architecture and training

We used a standard U-Net architecture for the segmentation model (Fig 1B & S2 Fig), with 5

contraction/up-sampling levels. For training with the weight maps described above, we imple-

mented our own loss function, as pixel-wise weighted binary cross-entropy is not a standard

loss function available through the Keras API. The model was trained over 400 epochs of 250

steps, with a batch size of 10 training samples. As described above, data augmentation opera-

tions were randomly applied on-the-fly to reduce the risk of over-fitting.

The tracking model (Fig 1C & S2 Fig) is similar to the segmentation U-Net, but differs in

two significant ways. First, the input layer contains four components per training sample

(image of the previous frame, binary mask of the “seed” cell in previous frame, image of cur-

rent frame, and binary mask of all segmented cells in current frame (Fig 1C)). Second, the out-

put layer contains three components per training sample, with the first one corresponding to

the mask of the “seed” cell in the new current frame, one corresponding to the mask of the

daughter cell if a division just happened, and finally the third layer is the mask of everything

else in the image. Because those three components are mutually exclusive, i.e. a “mother” pixel

cannot also be a “daughter” pixel, we were able to use the standard categorical cross-entropy
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loss function provided by Keras. This categorical cross-entropy determines whether each pixel

is categorized as part of the tracked cell in the image, its potential daughter, or the background,

and attributes misclassification costs accordingly. For each training set, the model was trained

over 400 epochs of 250 steps, with a batch size of five training samples. The same data augmen-

tation operations as described above were applied on-the-fly as the network was trained.

For both segmentation and tracking, the standard Keras Adam optimizer was used with a

learning rate of 10−4.

Prediction, post-processing and evaluation

After the tracking step, the data contained in the output images was reformatted into a more

user-friendly structure using Matlab. The pixels attributed to each cell in the tracking output

were matched with the pixels in the segmentation mask for the current frame, and a score

matrix for this specific chamber and timepoint was generated. Conflicts, for example where

two cells get the same attribution score from the same cell in the previous frame, are dis-

carded with simple rules where one cell simply becomes a “new” cell that appears and forms

a new lineage tree. The low error rate at the U-Net tracking step allows us to use such sim-

plistic methods and still get good results, but more elegant tracking algorithms [33] using

our tracking prediction maps as inputs could further increase performance. The code also

extracts morphological features like single cell length and area, as well as fluorescence levels

associated with the fluorescence images in the movie.

We manually created ground-truth outputs for segmentation and tracking by using the first

30 frames of the first position of our evaluation movie, the Molyso movie, and the BACMMAN

movie, and for all of the 10 frames of the MoMA movie. To evaluate the performance of

DeLTA on those datasets, we compiled four leave-one-out training sets, in which one of the

datasets was removed entirely from the samples used to train the segmentation and tracking

U-Nets. We then evaluated segmentation and tracking error rates by comparing the ground-

truth from the left-out dataset to the DeLTA output on that same dataset (Table 1, S1 Table).

The first metric, which we refer to as “segmentation error rate” is the percentage of under-

segmented, over-segmented, false positive, and false negative cells. To compute this, we first

perform an attribution step in which cells in the DeLTA output to be evaluated are matched to

cells in the ground-truth if they overlap with the ground-truth cell over at least 90% of their

surface. If two or more cells are attributed to one cell in the ground-truth, this is considered as

a possible over-segmentation error. However, because the exact time that two cells can be con-

sidered to have divided is arbitrary to some degree, we do not count it as an actual error if the

two cells in the evaluated output just divided and the cell in the ground-truth divides in the

next frame. Similarly, we do not consider one cell that is attributed to two in the ground-truth

to be an under-segmentation error if the cell is about to divide and the ground-truth cells just

divided. If a cell is present in the ground-truth but not in the evaluated output, we count it as a

false negative, and if a cell is present in the output but not in the ground-truth, we count it as a

false positive. Unless those cells are in the bottom 5 pixel margin of the image and are about to

be flushed out, either in the ground-truth or the output being evaluated, we do not count these

as errors, as identifying these as valid cells is also arbitrary.

To evaluate tracking performance, we simply count each time a cell is attributed to the

wrong cell in the next frame as an error, and report the tracking error rate as the number of

errors divided by the number of cells tracked. Tracking events that are tied to cells that were

either erroneously segmented or that were analyzed as divided at an earlier or later timepoint

than the ground-truth were excluded from this analysis. In most cases, this effect is minimal

because segmentation errors are so rare.
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Data analysis with generation information

Fluorescence data extracted from the cell lineages were used to measure correlation coeffi-

cients (corrcoef function in Matlab) between mother cell mean GFP levels and daughter,

granddaughter, or great granddaughter mean GFP levels. In this analysis, we measured the

GFP level for the mother cell using the time interval immediately prior to division and consid-

ered one cell cycle worth of data. We compared this to one cell cycle worth of GFP data for the

daughter (or granddaughter, great granddaughter) immediately following division from the

mother cell.

Autocorrelation data (computed using the xcov function in Matlab which computes the

cross-variance between two signals, or in our case of a cell’s GFP signal with itself) for each

mother cell were normalized to the value at zero time lag.

Supporting information

S1 Fig. Mother machine chip design used in this study. This image is adapted from the mask

design file of the mother machine microfluidic chip that was used to generate the training and

evaluation data. The upper half of the figure shows the entire chip which features 8 indepen-

dent main channels of 400μm in width and ~60μm in height in which media containing nutri-

ents and selection markers is flown. Each of those channels features on its side 6,000 chambers

of 1.1μm in height, 25 or 35μm in length, and 1.3 to 1.8μm in width in which mother cells are

trapped and can then be grown for hours to days.

(TIF)

S2 Fig. U-Net architecture for segmentation/tracking. The layers and tensor dimensions

used in our U-Net implementation. The differences between the segmentation and the

tracking U-Net are highlighted with red rectangular boxes. The first element is for the seg-

mentation U-Net version, the second for the tracking version (segmentation/tracking). Note

that the architecture is the same as the original U-Net model, except for image dimensions,

number of input and output layers, and the final activation layer for tracking. The values we

used for these are noted on the figure. The loss function for segmentation is a pixel-wise

weighted binary cross-entropy as described in the original U-Net paper. The pixel-wise

weight maps are provided for each output mask during training as an auxiliary input. The

loss function for tracking is the standard categorical cross-entropy function from Keras.

(TIF)

S3 Fig. Training set construction. (A) We used the Ilastik software to generate initial segmen-

tation masks for training. The Ilastik software uses a random forest classifier and various local

pixel features to classify pixels in an image on the basis of a training set drawn by the user. On

the left side of the image are the three classes we use to generate initial segmentation masks

and an example of how we draw Ilastik training sample sets: The first label (or class) is dedi-

cated to the internal part of the cells, the second label is used to delineate cell borders, and the

third is used for everything else. On the right-hand side is an example of the pixel-wise classifi-

cation output generated by Ilastik after training on our drawn training set input. While the

result is not perfect, this approach allowed us to generate a large number of potential training

samples with minimal manual effort. (B) The Ilastik output was then processed via Matlab,

where a few simple mathematical morphology operations were used to remove small isolated

pixel regions that have been misclassified. We then performed a watershedding operation

from the first “internal” label/class into the second “border” class of the Ilastik output. This

operation segments separated cell regions in the Ilastik output. The user is then prompted with

randomly selected segmentation samples as illustrated in this image. If the user considers the
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training sample correct, the user can press the “enter” key and the sample is saved to disk as a

training sample for the segmentation U-Net. If not, they can press “q” and the sample is saved

to disk in a separate folder should the user want to correct it manually. (C) For tracking set

generation, the user is presented with a randomly selected sample from the processed Ilastik

output, and a cell from the previous timepoint is randomly selected as the “seed” cell to track

as in this image. The user can then click on where they think the cell is in either the “current

frame” or “segmentation” image in the window, and a second time if they think the cell has

divided. The user input is displayed in the “mother” and “daughter” images in the window,

and they can press “enter” or “q” to accept or reject at any time. Both interfaces and the Ilastik

output post-processing code are made available with the rest of our code. We intentionally

kept the code and the interfaces simple to allow easy modification by others.

(TIF)

S4 Fig. Segmentation errors identified in our evaluation set. Only 2 segmentation errors out

of 3,422 cells were identified when computing the error rate of our trained U-Net against the

ground-truth for our evaluation movie. The error on the left illustrates an over-segmentation

error, where the bottom cell has been divided by our algorithm when the ground-truth has

not. The error on the right illustrates under-segmentation where two cells in the ground-truth

have been identified as a single one by DeLTA. For the second error, the DeLTA output could

arguably be considered to be correct and the ground-truth erroneous, as the exact point of cell

division is sometimes difficult to discern.

(TIF)

S5 Fig. Tracking errors identified in our evaluation set. 31 errors were identified out of

3,073 tracking events in the evaluation movie acquired in our lab. Here we show seven repre-

sentative errors. For each set of images, the raw input images are shown on the left for the

current and previous timepoint. The two images in the center illustrate the DeLTA tracking

output. Each cell is color coded and the color is preserved from one timepoint to the next.

Divisions are identified with black solid lines. Tracking errors are signaled by red arrows. On

the right, the ground-truth data are shown for reference. Note that most errors occur as cells

are being flushed out of the chambers.

(TIF)

S6 Fig. Representative examples of yeast segmentation and tracking with DeLTA. The yeast

time-lapse movies datasets are from the Cellstar sample datasets. Yeast cells were imaged with

a 60X phase contrast objective in a microfluidic device that constrained them to a monolayer.

Black arrows highlight tracking and segmentation errors. Note that the original training sets

did not feature mother-daughter relationship information so we did not train the tracking

U-Net to identify daughter cells. The two U-Net models were not trained on data from the

experiment shown here, but on other experiments in the dataset. While almost all cells are

correctly segmented, tracking appears to be more erroneous. However, the datasets that were

available online were significantly smaller than the mother machine movies we had (In total

there are 170 movie frames in the yeast dataset, with most of them containing only a few cells,

when the mother machine movies contain thousands of frames and tens of thousands of cells.)

and therefore the training sets may not be diverse enough for DeLTA to be able to generalize

tracking rules to new data. We anticipate this would improve with additional training data.

(TIF)

S7 Fig. Data augmentation operations. In order to simulate changes in illumination between

different experiments or different microscopes, we implemented two data augmentation oper-

ations. Two representative examples are given here. The first example of data augmentation
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(top row) generates a random monotonically increasing Piecewise Cubic Hermite Interpolat-

ing Polynomial (PCHIP) curve that is used to distort the intensity histogram of the input

image. The second data augmentation example (bottom row) generates another PCHIP curve

that is multiplied against image intensity along the y-axis (along the chamber) to simulate

imaging artefacts caused by microfluidic features in the phase contrast light path. After multi-

plication, the image intensity range is mapped linearly back to the original range.

(TIF)

S1 Table. Leave-one-out evaluation of the DeLTA algorithm against other mother machine

software analysis datasets.
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