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Abstract

Difficulty in detecting rare variants is one of the problems in conventional genome-wide

association studies (GWAS). The problem is closely related to the complex gene composi-

tions comprising multiple alleles, such as haplotypes. Several single nucleotide polymor-

phism (SNP) set approaches have been proposed to solve this problem. These methods,

however, have been rarely discussed in connection with haplotypes. In this study, we devel-

oped a novel SNP-set method named “RAINBOW” and applied the method to haplotype-

based GWAS by regarding a haplotype block as a SNP-set. Combining haplotype block esti-

mation and SNP-set GWAS, haplotype-based GWAS can be conducted without prior infor-

mation of haplotypes. We prepared 100 datasets of simulated phenotypic data and real

marker genotype data of Oryza sativa subsp. indica, and performed GWAS of the datasets.

We compared the power of our method, the conventional single-SNP GWAS, the conven-

tional haplotype-based GWAS, and the conventional SNP-set GWAS. Our proposed

method was shown to be superior to these in three aspects: (1) controlling false positives;

(2) in detecting causal variants without relying on the linkage disequilibrium if causal variants

were genotyped in the dataset; and (3) it showed greater power than the other methods, i.e.,

it was able to detect causal variants that were not detected by the others, primarily when the

causal variants were located very close to each other, and the directions of their effects

were opposite. By using the SNP-set approach as in this study, we expect that detecting not

only rare variants but also genes with complex mechanisms, such as genes with multiple

causal variants, can be realized. RAINBOW was implemented as an R package named

“RAINBOWR” and is available from CRAN (https://cran.r-project.org/web/packages/

RAINBOWR/index.html) and GitHub (https://github.com/KosukeHamazaki/RAINBOWR).

Author summary

Detecting rare variants has been one of the most problematic problems in GWAS.

Here, we proposed a novel SNP-set GWAS approach, which is superior in controlling

false positives and detecting rare variants compared with conventional approaches, and
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implemented this method as an R package named “RAINBOWR” (Reliable Association

INference By Optimizing Weights with R). In this article, we introduce the application of

RAINBOW to haplotype-based GWAS by regarding a haplotype block as a SNP-set,

which enables one to perform haplotype-based GWAS without prior haplotype informa-

tion. We showed that the haplotype-based GWAS with the RAINBOW package succeeded

in detecting causal variants with complex mechanisms that were not detected by any

other conventional methods. RAINBOW also offers a fast single-SNP GWAS method.

RAINBOW offers not only a SNP-set GWAS that can be applied to universal situations

but also one that is faster with the restircted situations using linear kernel for constructing

the Gram matrix of SNP-set of interest. We also used Rcpp (functions for using C++ in R)

for the RAINBOW implementation to achieve faster computation. We believe that our

package will lead to the detection of novel genes associated with biologically and agro-

nomically essential traits.

This is a PLOS Computational Biology Software paper.

Introduction

With the decreasing cost and increasing throughput of next-generation sequencing, the num-

ber of accessions that can be used for genome-wide association study (GWAS) is increasing

[1–3]. Using such large sequencing data, GWAS is now widely used not only in human but

also in plant and animal genetics and breeding, and has identified novel genes related to

important agronomic traits [4–6]. One example of large next-generation sequencing data is

that of the “3,000 rice genomes project” as used in this study [7, 8], data from which are avail-

able in the “Rice SNP-Seek Database” [9–11]. GWAS results using these data have already

been reported [12].

Despite the enhancement of such public data, the conventional GWAS method still faces

obstacles in the detection of unknown candidate genes. One common example is its difficulty

in detecting rare alleles or rare variants. One problem caused by rare variants is that the non-

causal markers that have a strong linkage disequilibrium (LD) with one causal rare variant

indicate a higher detection power than the true causal rare variant, which may interfere with

the detection of the true causal variant. This phenomenon is known as “synthetic association”,

and often happens when the minor allele frequency (MAF) of the non-causal marker is higher

than that of the true rare variant [13]. This problem is closely related to the complex gene com-

positions comprising multiple alleles such as haplotypes because genes related to important

agronomic traits often consist of multiple rare alleles, and this is why haplotypes are hard to

detect using GWAS [14].

Several methods have been proposed to solve this problem. The sequence kernel association

test (SKAT) is one of the methods used to detect rare variants, and has been used mainly in

human genomics [15]. The SKAT employs a single nucleotide polymorphism (SNP) set

approach, which tests multiple SNPs in each SNP-set at the same time. The SKAT evaluates

the significance of the variance explained by a SNP-set of interest as a random effect using a

mixed effect model approach [16, 17]. The fatal drawback of the original SKAT is that the

model does not take the effects of family relatedness into account as a random effect, which

results in false positives for GWAS in materials with a strong population structure or family

relatedness, such as in the world collection of rice germplasm used in this study. Several meth-

ods were also proposed to overcome another SKAT drawback: a weighting scheme of the
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SKAT for rare and common variants can lead to loss of power of common variants, but their

models also do not include the term for correcting the confounding effects of family related-

ness [18, 19].

To solve the fatal drawbacks of the original SKAT, several methods whose models include

the term of family relatedness as random effects to control false positives have been previously

proposed [20–22]. From a statistical point of view, these methods usually perform the score

test [23], which is a computationally efficient method since it requires variance component

estimation only for the null model. In terms of the detection power, however, the score test is

not necessarily the best method for testing the random effects in the mixed effects model [24].

The likelihood-ratio (LR) test [25, 26] is another candidate used to test the variance of a SNP-

set of interest, and several methods have been proposed that use the LR test for SNP-set

GWAS in family samples [24, 27]. In particular, Lippert et al. implemented a computationally

efficient SNP-set GWAS method using the LR test, and reported that the LR test showed

greater power than the score test [24]. Despite being such an efficient method, Lippert et al.
mainly used a linear kernel for constructing the Gram matrix from each SNP-set, and there-

fore other kernels, such as a Gaussian kernel or an exponential kernel, cannot be used for con-

structing the Gram matrix in their method.

Haplotype-based approaches, which try to improve the detection power of causal haplo-

types, make sense from the point of view that a gene functions as one gene set, not as each SNP

in the gene set. These haplotype-based approaches are expected to control false positives better

than the single-SNP method because the haplotype-based methods focus on the entire haplo-

type block, not on each SNP in the haplotype block. These methods are also expected to reveal

the complex mechanism of causal haplotypes that cannot be detected when focusing on one

SNP, such as repulsion states between two causal quantitative trait loci (QTL) located close to

each other. However, only a few methods for haplotype-based GWAS have so far been pro-

posed. In plant genomics, Yano et al. performed a haplotype-based GWAS by testing the

effects of haplotypes while regarding dummy variables of haplotype groups as fixed effects,

and found new candidate genes related to heading date for rice [28]. Other approaches have

been proposed in animal genomics, which estimated ancestral haplotype effects by regarding

them as random effects [29, 30]. In their methods, each pairwise element of a covariance

matrix for the random effects was determined as 1 if individuals belong to the same ancestral

haplotype, and 0 if otherwise. However, these conventional haplotype-based GWAS methods

require haplotype information a priori, and it is not so easy to apply these methods at the

genome-wide level.

In this study, we extended the multi-kernel mixed effects model more generally to take fam-

ily relatedness into account, while enabling computational speed-up for some limited cases,

and developed a novel SNP-set GWAS approach named RAINBOW (Reliable Association

INference By Optimizing Weights). We also estimated haplotype blocks from genome-wide

marker genotype data, and used them as SNP-sets for analysis with RAINBOW to enable hap-

lotype-based GWAS without prior haplotype information.

Materials and methods

All statistical analyses in this study were conducted using R version 3.6.0 [31], and figures were

produced using the R package ggplot2 version 3.2.1 [32]. Our R package, RAINBOWR, was

implemented using the R packages Rcpp version 1.0.2 [33–35] and RcppEigen version

0.3.3.5.0 [36] to reduce the computational time required for solving the multi-kernel mixed-

effects model described below. The overall simulation framework in this study is shown in S1

Fig as a flow chart.
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Methods for RAINBOW

In this subsection, we describe the basic idea of RAINBOW.

RAINBOW model. The RAINBOW model can be written as

y ¼ Xβþ Zcuc þ Zri
uri
þ �; ð1Þ

where y is a n × 1 vector of phenotypic values, Xβ is a n × 1 vector of fixed effects including an

intercept, a term to correct the population structure and other covariates, Zcuc and Zri
uri

are

n × 1 vectors of random effects, and � is a n × 1 vector of residual errors. Here β is a p × 1

vector of fixed effects, where p is the number of fixed effects. uc and uri
are mc × 1 and mri

� 1

vector of genotypic values respectively, where mc is the number of genotypes for additive poly-

genetic effects and mri
is the number of genotypes for i-th SNP-set of interest. X, Zc and Zri

are

n × p, n ×mc and n�mri
design matrices that correspond to β, uc and uri

respectively. As the

following formula Eq 2, we assume that the polygenetic effect uc follows the multivariate nor-

mal distribution whose variance-covariance matrix is proportional to the additive numerator

relationship matrix Kc.

uc � MVNð0;Kcs
2
cÞ; ð2Þ

where s2
c is the additive genetic variance to be estimated in the “Estimation of variance compo-

nents” section, and here mc ×mc matrix Kc = A, where A is the known additive genetic rela-

tionship matrix estimated from marker genotype data Wc [37].

We also assume that the random effects from i-th SNP-set of interest uri
follows the multi-

variate normal distribution whose variance-covariance matrix is proportional to the Gram

matrix Kri
.

uri
� MVNð0;Kri

s2
ri
Þ; ð3Þ

where s2
ri

is the genetic variance for i-th SNP-set to be estimated in the “Estimation of variance

components” section, and Kri
is the known mri

�mri
Gram matrix estimated from marker

genotype data Wri
belonging to the i-th SNP-set. We offer a linear, an exponential and a

Gaussian kernel for the Gram matrix Kri
, and faster computation can be realized for the linear

kernel case (Supplementary Note in S1 Appendix) [24].

Finally, the residual term is assumed to identically and independently follow a normal dis-

tribution as shown in the following equation.

� � MVNð0; Ins2
eÞ; ð4Þ

where In is a n × n identity matrix and s2
e is estimated in the “Estimation of variance compo-

nents” section.

Estimation of variance components. The variance components were estimated by maxi-

mum-likelihood (ML) [26, 38] and restricted maximum-likelihood (REML) [39]. Here we

explain how to obtain ML and REML estimates of Eq 1 for the general Kri
.

First we estimated the weights (we define wc and wri
) between the genetic variances (s2

c and

s2
ri

) by the following algorithm.

1. Setting initial parameters for wc and wri
:

wc ¼ wri
¼

1

2
: ð5Þ
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2. Computing the following n × n matrix Ks:

Ks ¼ ZcKcZ
T
cwc þ Zri

Kri
ZT

ri
wri
: ð6Þ

3. Solving the following single-kernel linear mixed model (LMM) by using EMMA (efficient

mixed model association) or GEMMA (genome-wide efficient mixed model association)

[40, 41].

y ¼ Xβþ us þ �; ð7Þ

where

us � MVNð0;Kss
2
s :Þ ð8Þ

4. Computing the full log likelihood (lF) or the restricted log likelihood (lR) of Eq 7 by using

estimated parameters; b̂, ŝ2
s and ŝ2

e :

lFðy; β̂; ŝs; d̂Þ ¼
1

2

h
� n log 2pŝ2

s

� �
� log jĤj

�
1

ŝ2
s

ðy � Xβ̂Þ T Ĥ � 1ðy � Xβ̂Þ
i
;

ð9Þ

lRðy; ŝs; d̂Þ ¼ lFðy; β̂; ŝs; d̂Þ

þ
1

2
½p log 2pŝ2

s

� �
þ logjXTXj

� logjXTĤ � 1Xj�:

ð10Þ

Here Ĥ is

Ĥ ¼
V̂
ŝ2

s

¼ Ks þ d̂In: ð11Þ

where V̂ is a phenotypic variance-covariance matrix and d̂ ¼ ŝ2
e=ŝ

2
s .

5. Optimizing wc and wri
over maximization of the full/restricted log likelihood by using

L-BFGS optimization method through repeating step 2-4 [42].

After estimating the weights wc and wri
, we estimated the variance components (s2

s and s2
e)

of the model Eqs 7 and 8 by EMMA/GEMMA using ŵc and ŵri
. Then we obtained ŝ2

c ¼ ŵcŝ
2
s

and ŝ2
ri
¼ ŵri

ŝ2
s .

Our fitting method, as described above, is a two-step approach, which first estimates the

weights of genetic variances, and then estimates the variance components of the model shown

in Eqs 7 and 8 by EMMA/GEMMA with the estimated weights. On the other hand, some fit-

ting methods that directly estimate the variance components for Eq 1 via AIREML (average

information REML) [43] have also been proposed and implemented in some packages/soft-

ware [44, 45]. The advantage of our two-step approach compared with the direct estimation

approach via AIREML is that the search space of the weights is limited to the interval [0, 1],

and the convergence is relatively warranted [46] even when the heritability is too low/high.
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Likelihood ratio test for GWAS. To test the significance of each SNP-set, we performed

the LR test of whether s2
ri
¼ 0 or not. As a null hypothesis, the following model, which does

not include the term of SNP-set effects was assumed.

y ¼ Xβþ Zcuc þ �: ð12Þ

In contrast, as an alternative hypothesis model, the multi-kernel linear mixed model

(MKLMM) of Eq 1 was assumed. Therefore, we computed the following deviance after the

estimation of variance components for each SNP-set.

D ¼ 2� ð̂lR;model � l̂R;nullÞ; ð13Þ

where l̂R;model is the maximum of the restricted log likelihood for the model of Eq 1 and l̂R;null is

the maximum of the restricted log likelihood for the model of Eq 12.

Finally, we tested the significance of s2
ri

and calculate the p-value by assuming that the devi-

ance in Eq 13 followed the mixture of two chi-square distributions with different degrees of

freedom [47, 48].

D � p0w
2
0
þ ð1 � p0Þw

2
1
; ð14Þ

where π0 is the mixture parameter and here we used π0 = 1/2.

Materials and simulations

Genotype data. In this study, 414 accessions of Oryza sativa subsp. indica were collected

from “the 3,000 rice genomes project” (S1 Table) [7]. We used a marker genotype consisting of

core SNPs defined by the Rice SNP-Seek Database as “404k CoreSNP Dataset”. Imputations

were imputed using Beagle version 5.0 [49, 50]. We analyzed only bi-allelic sites over all acces-

sions with a MAF� 0.025 by using VCFtools version 0.1.15 [51]. In the following analysis,

genotypes are represented as -1 (homozygous of the reference allele), 1 (homozygous of the

alternative allele) or 0 (heterozygous of the reference and alternative alleles). As a result of this

data processing, marker genotypes with 112,630 SNPs were used for the following simulation

study.

Estimation of haplotype block. To perform haplotype-based GWAS by regarding each

haplotype block as a SNP-set, haplotype blocks were estimated from marker genotype data by

using PLINK 1.9 [52–54]. As a result of estimation, we obtained 15,275 haplotype blocks con-

sisting of 78,237 SNPs.

Simulation of phenotype data. We considered two scenarios to validate our novel haplo-

type-based GWAS approach. In both models, phenotypic values were simulated as follows.

y ¼ X1b1 þ X2b2 þ X3b3 þ Zuþ e; ð15Þ

where y is the vector of simulated phenotypic values of 414 accessions, X1, X2 and X3 corre-

spond to three quantitative trait nucleotides (QTNs) scored as -1, 0 or 1 (hereinafter, referred

to as “QTN1”, “QTN2” and “QTN3” respectively), β1, β2 and β3 are scalars representing the

effects of the three QTNs, u is the vector of polygenetic effects, and e is the vector of the

residuals.

Here, QTN1 and QTN2 were randomly selected from all genome-wide SNPs to satisfy that

they belonged to the same haplotype block that harbored more than 4 SNPs. QTN3 was ran-

domly selected from all the SNPs. We assumed that the effects of QTN1 and QTN2 had a vari-

ance 4 times greater than that of the effects of QTN3 to mainly check the detection power for

the haplotype block. More details about the other terms are described in S1 Appendix.
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The difference between two scenarios is based on the directions of the two QTN effects β1

and β2. Scenario 1 assumed that the directions of two effects were identical. That is,

b1 ¼
b2 ðr12 � 0Þ

� b2 ðr12 < 0Þ

(

; ð16Þ

where ρ12 is Pearson’s correlation coefficient between X1 and X2. We call this model as

“coupling”.

Conversely, scenario 2 assumed that the directions of the two effects were opposite. That is,

b1 ¼
� b2 ðr12 � 0Þ

b2 ðr12 < 0Þ

(

ð17Þ

We call this scenario 2 as “repulsion”.

Evaluation of RAINBOW

Comparison of four methods. To validate our novel approach, we compared the follow-

ing four methods: a single-SNP GWAS [55], a haplotype-based GWAS introduced by Yano

et al. (hereinafter, referred to as “HGF”) [28], the SKAT [15] as a SNP-set approach, and our

novel approach, RAINBOW. For all methods, to account for the population structure, the two

eigen vectors (which correspond to the top two eigen values) of the additive genetic relation-

ship matrix were included in the model as fixed effects. The details of these four methods are

described in S1 Appendix.

Evaluation of the simulation results. The value of −log10(p) of each marker or haplotype

block was calculated by the four GWAS methods 100 times for the two simulated scenarios,

coupling and repulsion. In this study, the following summary statistics were used to evaluate

the simulation results.

−log10(p) and −log10(pa). The first summary statistic is −log10(p) of each causal SNP or hap-

lotype block itself. For haplotype-based GWAS methods, HGF, SKAT and RAINBOW, the sig-

nificance of β1 and β2 was represented by −log10(p) of the causal haplotype block to which X1

and X2 belong. In the single-SNP GWAS method, the −log10(p) of β1 and β2 were calculated

separately, even though these SNPs were in the same haplotype. To compare the single-SNP

GWAS method with the haplotype-based GWAS methods, the −log10(p) values were averaged

over β1 and β2.

As some of these methods showed the results of inflated −log10(p), we defined the following

summary statistic to evaluate the degree of inflation.

inflator ¼
1

L

XL

l¼1

ð� log
10
ðpfalse;lÞÞ; ð18Þ

where pfalse,l is the lth p-values for false positives arranged in increasing order. In this study, L
was set as 10. Then we adjusted −log10(p) of the causal by using the inflator (Eq 18) as follows.

� log
10
ðpaÞ ¼ � log10

ðpÞ � inflator; ð19Þ

where pa is the p-value adjusted by the inflator.

Here, we calculated each summary statistic in two ways. The first method is to calculate

each summary statistic by directly using −log10(p) of each causal SNP / haplotype block. The

other method is to calculate the summary statistics by regarding multiple SNPs or haplotype

blocks within the extent of the LD as one set. In this study, we defined SNPs or haplotype

RAINBOW: Haplotype-based GWAS using a SNP-set method
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blocks that satisfy the condition that they are within 300 kb from the focused SNP or haplotype

block and the condition that their square of the correlation coefficients with the focused SNP

or haplotype block are 0.35 or more as one set considering the LD. The highest value of

−log10(p) in the LD region was assumed to represent the values of the SNPs or haplotype

blocks within the extent of the LD.

Recall, precision and F-measure. We calculated the recall, precision and F-measure

means as other summary statistics to evaluate the GWAS results. These summary statistics

were calculated from the numbers of SNPs or haplotype blocks that were true positives, false

positives, false negatives and true negatives. Here, we regarded a SNP or haplotype block as

“positive” when that SNP or haplotype block exceeded the threshold. In this study, the value of

−log10(p) so that the FDR (false discovery rate) was 0.01 was set as the threshold by using the

Benjamini-Hochberg method [56, 57]. In addition, these three summary statistics, recall, pre-

cision and F-measure, were calculated by assuming that the highest value of −log10(p) in the

LD region represented the values of the SNPs or haplotype blocks within the extent of the LD.

Therefore, recall represents the proportion of causals detected by GWAS. In contrast, preci-

sion represents the ratio of the detected SNPs or haplotype blocks that were causals. Finally, F-

measure was calculated as the harmonic mean of the recall and the precision, which evaluates

the GWAS results comprehensively. The greater these three summary statistics, the better the

results of GWAS are. Here we simply took the average of each summary statistic from all the

100 simulation results.

AUC for regions around causals. We calculated the mean of the AUC (area under the

curve) for regions around the causals as a summary statistic. AUC refers to the area under the

ROC (receiver operating characteristic) curve obtained by plotting the false positive rate on

the horizontal axis and the true positive rate on the vertical axis when the threshold is varied.

In this study, the AUC was calculated for the SNPs or haplotype blocks near the causal SNP /

haplotype block (QTN1 and QTN2). In other words, the non-causal markers that had a strong

LD with the causal SNP / haplotype block were regarded as false positives under this summary

statistic. Therefore, this summary statistic indicates the extent to which the causal itself can be

detected by GWAS without relying on the LD. Here, when taking the average of the AUCs

obtained from the simulation results, two methods were used, either using all the 100 results

or only using the results whose QTN1 and QTN2 were “detected”. Here, QTN1 and QTN2

were regarded as “detected” if −log10(pa)� 1.5 for each method.

Availability of data and material

RAINBOW was implemented as an R package named “RAINBOWR”, which offers the single-

SNP GWAS method [41, 55] and a novel SNP-set method that includes faster computation for

the linear kernel [24]. A stable version of RAINBOWR is available from the CRAN (Comprehen-

sive R Archive Network), https://cran.r-project.org/web/packages/RAINBOWR/index.html. The

latest version of RAINBOWR is also available from the “KosukeHamazaki/RAINBOWR” reposi-

tory in the GitHub, https://github.com/KosukeHamazaki/RAINBOWR. Source codes for the R

package RAINBOWR are deposited in S1 File. The datasets generated and analyzed during the

current study and their source codes are also available from the “KosukeHamazaki/HGRAIN-

BOW” repository in the GitHub, https://github.com/KosukeHamazaki/HGRAINBOW.

Results

The detection power of four methods

The detection power of the four methods was evaluated by the value of −log10(p) and

−log10(pa) of QTN1 and QTN2 for the two models, coupling and repulsion (Fig 1). RAINBOW
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outperformed the other methods when the significance was evaluated by the causal itself (Fig

1a, 1c, 1e and 1g). However, when the significance was evaluated by the highest values of SNPs

or haplotypes within the extent of the LD, other methods, e.g., HGF (k = 2, k-medoids

method), showed a greater detection power than RAINBOW (Fig 1b). When the detection

power was evaluated by taking the extent of inflation into account, RAINBOW showed as

great a power as HGF (k = 2, 3) even if the significance was evaluated by the unit of the LD

block (Fig 1d). Moreover, although the detection power of all the GWAS methods for the

repulsion scenario was less than that for the coupling scenario, the tendency for RAINBOW to

outperform the other methods was clearer for the repulsion scenario than the coupling sce-

nario (Fig 1). Finally, as compared with the other haplotype-based GWAS methods, RAIN-

BOW showed smaller variation among iterations, indicating that the causal variants can be

stably detected (Fig 1).

The detection power for QTN3 was also evaluated. The single-SNP GWAS method showed

a greater power than RAINBOW when evaluated by −log10(p) (a,b,e,f in S2 Fig). However, if

the detection power was evaluated by −log10(pa), RAINBOW showed as great a power as sin-

gle-SNP GWAS (c,d,g,h in S2 Fig). Contrary to the results for QTN1 and QTN2, the detection

power of all the GWAS methods for the repulsion scenario was greater than for the coupling

scenario (S2 Fig).

Recall, precision and F-measure

The characteristics of each GWAS method were evaluated by the recall, precision and F-mea-

sure means (Fig 2). For the mean of recall, the HGF methods and SKAT showed higher values

Fig 1. The detection power of each GWAS method. Boxplot of the detection power evaluated by −log10(p) and −log10(pa). a-d: The results for the “coupling”

scenario. e-h: The results for the “repulsion” scenario. a,b,e,f: The results evaluated by −log10(p) with the scale on the vertical axis aligned in these four figures. c,d,g,h:

The results evaluated by −log10(pa) with the scale on the vertical axis aligned in these four figures. a,c,e,g: The results evaluated by the unit of the causal SNP or

haplotype block itself. b,d,f,h: The results evaluated by the unit of the regions within the extent of LD. The abbreviation of each method is as follows. R: RAINBOW. SS:

Single-SNP GWAS. H2k-H4p: HGF methods. The numbers in the method names correspond to the numbers of the groups they assume. The last letters of the

methods are “k” or “p”. “k” corresponds to the k-medoids method and “p” corresponds to UPGMA method for the grouping method. SK: SKAT.

https://doi.org/10.1371/journal.pcbi.1007663.g001
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than RAINBOW and single-SNP GWAS for both scenarios (Fig 2). However, the haplotype-

based GWAS methods other than RAINBOW showed low precision. That is, these methods

may cause too many false positives. In contrast, RAINBOW and single-SNP GWAS showed

higher precision than the remainders, and RAINBOW showed the highest precision among all

the scenarios. From the results for the three summary statistics, RAINBOW also showed the

highest value for F-measure among the methods. In particular, for the repulsion scenario, the

recall of RAINBOW was also higher than that of single-SNP GWAS, which resulted in the

large difference of F-measure between these two methods (Fig 2b). A similar tendency was

also confirmed when changing the criterion of how to determine the threshold for the Bonfer-

roni’s correction [58] for the significance level α = 0.01 (S3 Fig).

To compare the three summary statistics of the two scenarios in more detail, these values

for each QTN were also calculated (S4 Fig). For both scenarios, RAINBOW showed the highest

recall for QTN1 and QTN2 among the methods (a, b in S4 Fig). In particular, RAINBOW out-

performed the other methods in all summary statistics for QTN1 and QTN2 for the repulsion

scenario. However, it showed lower recall for QTN3 than the other methods (c, d in S4 Fig). In

particular, the recall of RAINBOW for QTN3 was 0 for the coupling scenario (c in S4 Fig). In

addition, the three summary statistics of QTN3 for the repulsion scenario were greater than

those for the coupling scenario in almost all the methods (c, d in S4 Fig). Regarding these

results, a similar trend was confirmed even when changing the criterion of how to determine

the threshold for the Bonferroni’s correction for the significance level α = 0.01 (S5 Fig).

AUC for regions around causals

To evaluate how the causal itself can be detected by GWAS without relying on the LD, the

AUC means for regions around the causals (QTN1 and QTN2) were compared (Fig 3). The

Fig 2. Recall, precision and F-measure of each GWAS method. Bar plot of the mean of each summary statistic for 100 simulation results. The red bars show the

results for recall, the green bars show the results for precision, and the blue bars show the results for F-measure. a: Results for the coupling scenario. b: Results for the

repulsion scenario. The abbreviations of each method are the same as those of Fig 1.

https://doi.org/10.1371/journal.pcbi.1007663.g002
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mean of AUC was almost the same when using all simulation results or using only the cases in

which QTN1 and QTN2 were detected, although the value of the latter was slightly larger than

that of the former in some methods. The results show that RAINBOW outperformed the other

methods in both models (Fig 3). Especially, the AUC mean of the single-SNP GWAS method

in the repulsion scenario was much smaller than that in the coupling scenario, while RAIN-

BOW was able to maintain a high AUC even in the repulsion scenario (Fig 3b).

Examples in the repulsion scenario

Of the 100 simulations for the repulsion scenario, there were 7 cases in which QTN1 and

QTN2 were detected only by RAINBOW. These cases were selected to satisfy three conditions

that −log10(pa,R)� 1.5, −log10(pa,O)� 1.2 and the recall for QTN1 and QTN2 equals to 1.

Here, pa,R represents the adjusted p-value of RAINBOW and pa,O represents the adjusted p-

value of all the other methods. Although the same analysis was done for the other methods, no

method satisfied the three conditions described above. One example of these cases (iteration

48) was shown by comparing the four GWAS methods; RAINBOW, single-SNP GWAS, HGF

(the number of groups is 2, the grouping method is UPGMA) and SKAT (Fig 4). The Manhat-

tan plot shows that RAINBOW succeeded in detecting the causal haplotype block (of QTN1

and QTN2) that was not detected by the other methods. Although both QTN1 and QTN2

were also detected by the single-SNP method in one case (iteration 85), the same trend as the

results for iteration 48 was seen for the remaining five results (S6 Fig).

Discussion

As shown in Results section, when −log10(p) was evaluated by the LD block unit for the cou-

pling scenario, RAINBOW did not necessarily outperform the other methods. However, if we

Fig 3. AUC for regions around causals. Bar plot of the mean of AUC for regions around causals. This summary statistic indicates the extent to which the causal itself

can be detected by GWAS without relying on the LD. The red bars show the results for the means of 100 simulation results and the blue bars show the results for the

means of the simulation results whose QTN1 and QTN2 were detected. a: Results for the coupling scenario. b: Results for the repulsion scenario. The abbreviations of

each method are the same as those of Fig 1.

https://doi.org/10.1371/journal.pcbi.1007663.g003
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considered the inflation level of each result and evaluated the results with the −log10(pa),
RAINBOW showed as great a detection power as other methods (Fig 1d), which means RAIN-

BOW succeeded in controlling false positives compared with other haplotype-based GWAS

methods. This can also be seen from the fact that the precision of RAINBOW was much higher

than the other GWAS methods including single-SNP GWAS (Fig 2).

Moreover, −log10(p) of RAINBOW was the highest when evaluated by that of the causal

SNP/haplotype block itself, which implies that RAINBOW can detect causal haplotype blocks

themselves without relying on the LD beyond the scope of the haplotype block. This can also

be confirmed by the results that showed that the AUC for the regions around the causal was

larger in RAINBOW than in any other methods (Fig 3).

In addition, for the repulsion scenario, RAINBOW succeeded in detecting causal haplotype

blocks that were not able to be detected by any other methods including single-SNP GWAS

(Fig 4). This result affected other results that RAINBOW outperformed the other methods

especially when evaluated by the detection power, recall, precision and F-measure in the repul-

sion scenario. This fact suggests that RAINBOW is good for detecting the causal haplotype

block with multiple causal variants. For example, RAINBOW can be applied to the detection

Fig 4. An example of GWAS results for the repulsion scenario. Manhattan plots of 4 GWAS methods (RAINBOW, Single-SNP GWAS, HGF (the number of groups

is 2, the grouping method is UPGMA), and SKAT) for one simulation result of the Repulsion model. The black horizontal dashed lines represent the thresholds

determined by the Benjamini-Hochberg method (FDR = 0.01) for each result of the Repulsion model. The red vertical dashed lines show the positions of QTN1,

QTN2, and the purple ones show the position of QTN3. The red points show −log10(p) of causal SNPs or haplotypes including QTN1 and QTN2, and the purple ones

show −log10(p) of QTN3 or haplotypes including QTN3.

https://doi.org/10.1371/journal.pcbi.1007663.g004
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of genes that have more than one variant. Therefore, for future analysis, RAINBOW can be

used for gene-set GWAS (which regards one gene as one SNP-set) by using gene annotation

information.

The only drawback of RAINBOW is that the detection power for the causal with small

effects (QTN3) was not so high (c,d in S4 Fig). The drawback may be related to the fact that

RAINBOW succeeded in detecting QTN1 and QTN2 well. In other words, RAINBOW cannot

account for the loci of large effects well when testing other loci, and the loci of relatively small

effects may be concealed by these loci of large effects. This drawback, however, can be easily

resolved by using methods that condition the loci of large effects, such as composite interval

mapping for QTL analysis [59, 60] or a multi-locus mixed model for GWAS [61]. For future

analysis, we will implement this function to condition the loci of large effects when testing

other loci of small effects.
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