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Abstract

Spatially explicit livestock disease models require demographic data for individual farms or

premises. In the U.S., demographic data are only available aggregated at county or coarser

scales, so disease models must rely on assumptions about how individual premises are dis-

tributed within counties. Here, we addressed the importance of realistic assumptions for this

purpose. We compared modeling of foot and mouth disease (FMD) outbreaks using simple

randomization of locations to premises configurations predicted by the Farm Location and

Agricultural Production Simulator (FLAPS), which infers location based on features such as

topography, land-cover, climate, and roads. We focused on three premises-level Suscepti-

ble-Exposed-Infectious-Removed models available from the literature, all using the same

kernel approach but with different parameterizations and functional forms. By computing the

basic reproductive number of the infection (R0) for both FLAPS and randomized configura-

tions, we investigated how spatial locations and clustering of premises affects outbreak pre-

dictions. Further, we performed stochastic simulations to evaluate if identified differences

were consistent for later stages of an outbreak. Using Ripley’s K to quantify clustering, we

found that FLAPS configurations were substantially more clustered at the scales relevant

for the implemented models, leading to a higher frequency of nearby premises compared to

randomized configurations. As a result, R0 was typically higher in FLAPS configurations,

and the simulation study corroborated the pattern for later stages of outbreaks. Further,

both R0 and simulations exhibited substantial spatial heterogeneity in terms of differences

between configurations. Thus, using realistic assumptions when de-aggregating locations

based on available data can have a pronounced effect on epidemiological predictions,

affecting if, where, and to what extent FMD may invade the population. We conclude that

methods such as FLAPS should be preferred over randomization approaches.
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Author summary

When modeling the spread of infectious livestock diseases such as foot-and-mouth disease

(FMD), the distance between premises is an important aspect. In the U.S., locations of

premises are not available, forcing modelers to make assumptions about their coordinates.

Such assumptions can be more or less crude and will impact the conclusions drawn from

the model. To investigate the impact of such assumptions, we modeled outbreaks of FMD

within the cattle population of the U.S. under two assumptions about premises locations.

Their position was either randomly distributed within counties or informed by a state-of-

the-art method developed specifically to simulate realistic locations of agricultural opera-

tions. We found that the higher degree of spatial clustering of premises associated with

more realistic assumptions about locations leads to a substantially higher risk of out-

breaks. Our results also show that the amount with which the risk is under-estimated by

randomizing locations is unevenly distributed across the landscape. Together, these find-

ings show a clear support for using informed methods to determine the spatial locations

of premises and highlight the importance of spatial clustering when modeling FMD-like

diseases.

Introduction

Quantitative models for infectious livestock diseases are powerful tools for preparing and

responding to disease incursions. Kermack and McKendrick’s Susceptible-Infectious-

Removed (SIR) framework [1] and its extensions remain a foundation for disease modeling,

but the increase in computational power over the recent decades has promoted the use of sto-

chastic simulation modeling [2]. These simulation approaches can address specific policy

questions and incorporate important deviations from the mass-action mixing assumption of

the differential equation system of Kermack and McKendrick. For example, contacts that

mediate transmission between premises are typically distance-dependent [3–5]; infections

occur at a higher rate between nearby premises. Additionally, differences in transmission rates

depending on premises types and sizes can have a pronounced effect on the course of an epi-

demic [6]. Consequently, the reliability of epidemiological models may depend heavily on the

accuracy of information about premises distribution and demography.

Outbreaks of livestock diseases may be economically costly [7,8], impact animal and

human health [9,10], and have severe consequences for affected communities [9,11]. Efficient

control of emerging outbreaks can mitigate these consequences [12], and insights gained

through modeling can be valuable. Through a mathematical description of the transmission

process, modeling can aid disease preparedness and support policy decisions (e.g. by compar-

ing control scenarios or identifying geographic hotspots of particular concern). Yet, the reli-

ability of infectious disease models depends on their underlying assumptions and applicability

to the focal system.

The United States (U.S.) livestock industry (Fig 1A and 1B) is dominated by cattle, with

more than 900,000 premises and approximately 103 million animals [13,14]. In 2015, the

industry accounted for USD$78.2 billion in cash receipts [15]. An outbreak of a transboundary

animal disease such as foot and mouth disease (FMD) would have severe economic impacts on

the industry, particularly due to disruption in trade [7]. Stakes are high for policy decisions,

yet modeling efforts to promote disease preparedness are challenged by limited demography

data. Premises-level data describing location, animal inventory, and premises type is not
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uniformly collected for the U.S. livestock industries due to stakeholder concerns regarding

implementation cost as well as confidentiality and security of collected information [16,17]. A

voluntary system maintained by the U.S. Department of Agriculture currently contains

approximately 25% of the estimated 1.4 million livestock and poultry premises in the U.S. [18].

The most comprehensive inventory of U.S. livestock demography is provided by the

National Agriculture Statistics Service (NASS), which conducts surveys of the livestock and

poultry industries and provides demographic data describing animal inventory and number of

premises aggregated at the county level. Thus, there is an absence of detailed information

about the spatial distribution of the premises, prompting livestock disease modelers to assume

either randomly distributed premises [19] or mass-action mixing [20] within counties. How-

ever, there may be problems associated with such assumptions. Based on spatial patterns

found in other countries, premises are expected to be clustered at spatial scales finer than the

sizes of the counties [5,21].

As such, conclusions drawn from crude approximations about premises locations may be

misleading. When premises are clustered, there is a higher frequency of short distances

between premises compared to when locations are random. Disregarding such clustering may

under-predict transmission when distance-dependent transmission rates are assumed. On the

other hand, clustered premises distributions could cause the disease to remain within a cluster,

effectively trapping the infection process and leading to more contained outbreaks. Modeling

studies in the U.K. suggest that using land-cover maps to impute locations improves the pre-

dictive accuracy of epidemiological models [22], but randomized premises locations may be

sufficient for identifying optimal control [21]. However, compared to the U.K., the U.S. is

more geographically heterogeneous, and the large spatial scale allows for more heterogeneous

clustering patterns across the continent.

Recent years have seen a rise in computational methods that predict missing or withheld

information about the U.S. livestock industry based on the information that is available. One

such method is the Farm Location and Agricultural Production Simulator (FLAPS) [23],

which uses the county-level premises size distributions provided by NASS in combination

with environmental, geographical, and anthropogenic predictors (e.g. climate, topography,

land-cover, and roads) to predict explicit premises locations. While not a true depiction of U.

S. livestock premises, FLAPS offers the most detailed predictor of the premises distribution

across the country, and validation efforts have shown a high correlation between predicted

and existing premises locations [23].

Fig 1. Spatial distribution of premises (A) and head (B) at the county level of the U.S. cattle population based on NASS [13,14] data common to all ten FLAPS

realizations. Using California as an illustrative example, panel C shows how location randomization within counties (right) changes the spatial distribution of

premises relative to the realistic assumptions used in FLAPS (left).

https://doi.org/10.1371/journal.pcbi.1007641.g001
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In this study, we aimed to answer a simple yet crucial question for spatially explicit livestock

modeling in countries where information on demography is limited: do realistic predictions

about premises locations matter? To answer this, we used spatial distributions of premises as

predicted by FLAPS, and landscapes where the premises’ locations were randomized within

their respective counties, together with three implementations of previously published FMD

models. The models all shared the same premises-level, kernel-based structure that was first

developed for the 2001 FMD outbreak in the UK [4] and are referred to by the first name of

the original publications, Brand [19], Hayama [3] and Tildesley [24]. Using these models, we

performed two different analyses to evaluate the importance that detailed premises locations

would have for the dynamics of a potential FMD outbreak within the U.S cattle population.

The first was an analytical approach where we calculated the basic reproductive number, R0,

for disease transmission in the two landscape configurations, allowing us to compare the risk

of an FMD outbreak across the U.S. under different assumptions about spatial clustering and

analyze the effect of within-county clustering on risk dynamics. The second approach was to

perform stochastic simulations of FMD outbreaks which enabled us to investigate the effect of

realistic spatial clustering for the later stages of outbreaks.

Results

Characterization of the spatial distributions of premises and quantification

of clustering

In the U.S., reliable, national-scale data on the spatial distribution of cattle and premises with

cattle are not available at a finer scale than the individual county (Fig 1A and 1B). Thus, ten

simulated distributions were generated with FLAPS [23], representing populations of premises

with realistic degree of spatial clustering. For each of these realizations, a matching distribution

was generated by randomizing each premises’ location within its county (Fig 1C). We refer to

these sets as FLAPS and random configurations (available as S1 Dataset and S2 Dataset). Spa-

tial clustering within these populations was quantified at the landscape level for different spa-

tial scales r using Ripley’s K [25], denoted Kr. We also used a variation of Ripley’s K, denoted

Kr
w, that promotes quantification of average clustering of premises in each county w for spatial

scales r, and we let K̂ r
w denote the arithmetic average of Kr

w across the ten realizations of each of

the two configurations. Overall, spatial clustering was higher in FLAPS configurations com-

pared to randomized configurations (Fig 2). The difference was most pronounced at shorter

distance scales, with the relative difference in clustering, Kr,FLAPS/Kr,Rand., three times higher at

1 km and dropping off to imperceptible differences (between 0.989 and 1.007 relative differ-

ence depending on realization) at 40 km (Fig 2D). To evaluate clustering differences at spatial

scales at which we would expect FMD transmissions to be likely, we defined r̂ for each of the

three FMD models as the distance where the transmission kernel had dropped to 5% of its

value at distance d = 0. The shapes and functional forms of the transmission kernels are two of

the major differences between the models that were used and controls how the risk of trans-

mission relates to the distance between premises (Fig 3A). Consequently, the largest relative

difference in clustering was observed at the scale most relevant to the Hayama kernel (̂r = 1.4

km), followed by the scale of Tildesley (̂r = 6.6 km) and Brand (̂r = 30.4 km). Fig 2A–2C also

reveals substantial geographical heterogeneity regarding how the realistic assumptions about

premises locations included in FLAPS affects spatial clustering at the county level. In large

counties, typically in the western U.S., clustering at the scales relevant for the three imple-

mented models was substantially higher in the FLAPS configurations than the randomized.

For the Hayama scale, there were also substantial differences in small counties in the central

states, a pattern found also for the Tildesley scale, however with less intensity.

Spatial clustering and and foot-and-mouth disease modeling in the United States

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007641 February 20, 2020 4 / 22

https://doi.org/10.1371/journal.pcbi.1007641


Basic reproductive number, R0

The basic reproductive number, R0 is the expected number of secondary cases following infec-

tion of a given premises i (Ri) and is derived analytically based on the assumptions of a given

model. Using the geometric mean of Ri across the premises of county w in the ten realizations

of each of the configurations, we evaluated the effect of clustering on the risk that an introduc-

tion of the pathogen into w leads to an actual outbreak. With the original parameterizations of

the models we found that for most counties R̂w was low (Fig 4), indicating that an outbreak

is generally not expected, should FMD be introduced at a random premises. To provide an

illustration of an alternative parameterization with a higher risk we also performed the same

calculations with the models’ infection rates increased by a factor of five. Regardless of parame-

terization, the R0 estimates showed substantial variation, both among premises within configu-

ration sets and between configuration sets (see figures S1 Fig and S2 Fig for analyses using

Fig 2. Landscape-level clustering. (A-C) Relative change in county level clustering, K̂ w, when going from randomized configuration to FLAPS for spatial scale r̂
where the respective kernel functions had fallen by 95% of H(0). (D) Landscape-level relative change in clustering measured as Ripley’s K at different radii when

going from randomized configuration to FLAPS. The panel shows ten nearly indistinguishable lines, each indicating the difference between one FLAPS realizations

and its randomized counterpart.

https://doi.org/10.1371/journal.pcbi.1007641.g002
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minimum and maximum R0 per county instead of the geometric mean). Clustering had a

marked effect on the outbreak risk; R̂w based on FLAPS configurations were higher than ran-

domized for most counties with 80.3%, 99.3% and 98.0% increase for the Brand, Hayama and

Tildesley models respectively. For the same models, 2.8%, 15.0% and 9.2% of the counties’ R̂w

increased to twice or more in the FLAPS configurations.

Importantly, using FLAPS as opposed to randomized configurations increased the propor-

tion of counties with an R̂w above one, i.e. where an outbreak is expected if the pathogen is

introduced. The effect varied among models and parameterizations, ranging from a propor-

tional increase of 5.6% for the Brand kernel with transmission rate × 5, to 191.2% for the

Hayama kernel with transmission rate × 5. For the parameterization without increase to trans-

mission rate both the Hayama and Tildesley kernels lacked any counties with R̂w over one,

regardless of landscape configuration. For the Brand kernel, the increase due to landscape con-

figuration using the original transmission rate was higher (20.2%) than for the parameteriza-

tion using the increased transmissibility.

Fig 3. Functional forms of the distance kernel H as a function of the distance in kilometers (A), and transmissibility (T) and susceptibility (S) as functions of herd size

(n, panel B). To enable comparison, the kernels have been scaled (for the purpose of this plot only) so that H(0) = 1.0.

https://doi.org/10.1371/journal.pcbi.1007641.g003
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The effect of realistic assumptions about spatial clustering modeled with FLAPS varied

among U.S. counties, and across all models. There was a substantial fraction of counties where

the FLAPS configurations resulted in an R̂w of more than an order of magnitude than their

randomized counterpart. These differences between configurations were positively correlated

with the area of the county (S3 Fig) and followed the same geographical pattern as differences

in terms of clustering. However, in particular with the Hayama model, there was also a sub-

stantial increase in R̂w in small, centrally located counties.

In the supplement we show that there was little variation across the ten different FLAPS-

realizations (S4 Fig).

Outbreak simulations

Stochastic simulations with each of the three models were performed by seeding infection at

one premises 1,000 times in each county. The seeded premises was selected at random for each

replicate, and the outbreak was simulated until 100 premises were infected, or the outbreak

Fig 4. Frequency and spatial distributions of R̂ w and relative difference in R̂ w between FLAPS and random configurations. Geometric mean Ri across the premises

of each county w for FLAPS (R̂ FLAPS
w ) and randomized (R̂ Rand:

w , dashed) and configurations (left). Frequency distribution of the proportional difference in R̂ w between

configurations shown by the black line in histograms (left) and its spatial distribution is illustrated by the maps. The proportional difference shown by the black

histogram is independent of the increase applied to the transmission rate.

https://doi.org/10.1371/journal.pcbi.1007641.g004
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died out. We chose to end simulations at this cut-off in order to reduce computational times

and allow a larger amount of replicates. In the supplemental material we show that based on

seedings in a subset of counties (one per state), most simulated outbreaks that reached 100

infected premises also reached much larger number of infected premises (>10,000), indicating

that the cut-off of 100 premises is an appropriate proxy for large outbreaks (S5 Fig).

Because R̂w was typically below one for most counties when using the original parameteri-

zations of the models, only a minority of the replicates generated secondary infections. This

posed a problem for analyzes of later stages of the outbreaks, and we therefore focus on simula-

tions where the transmission rate was amplified by a factor five to investigate if differences in

R̂w translated to differences in outbreak simulations. Based on these simulations, we found

that the frequency of large outbreaks (>100 premises) was substantially higher in the FLAPS-

generated configurations compared to the random configurations (Table 1; S1 Table for the

subset of simulations�10,000 infected premises, S1 Appendix for an analysis of the maximal

outbreak size). The general spatial pattern of the increase in outbreaks reaching 100 infected

premises when using FLAPS over random landscapes matched that of the corresponding

increase in county-level clustering (Fig 5).

A linear regression showed that the probability of reaching at least two infected premises

(including the index case) in the simulations was strongly related to the R̂w of the seeded

county, as shown by an R2 value of between 0.93 and 0.95 for the different kernels (S6 Fig).

The explanatory power of R̂w of the seeded county to predict outbreaks reaching at least ten

infected premises was somewhat lower in comparison (R2 between 0.65 and 0.78) and for 100

infected premises fell to between 0.34 and 0.56.

To test the effect of clustering and configuration on the risk of obtaining large outbreaks,

we performed a logistic regression for each of the three kernels with the Bernoulli trial of reach-

ing 100 cumulative infected premises or not as the dependent variable. Out of the predictors in

the logistic regression, we found that clustering of the county with the seeded premises was the

factor most important to explain the probability of a large outbreak. The logistic regression

showed that for all three kernels, removing clustering as a predictor variable resulted in the larg-

est decrease in explanatory power (Tjur’s coefficient of discrimination, see “Simulations” in the

methods section) by far compared to the full model (Table 2). The detailed results from the

logistic regression can be found among the supplementary materials (S2 and S3 Tables). In the

supplementary material we show that the number of time steps needed to reach 100 infected

premises was similarly affected by clustering and landscape configuration (S4 Table). Figures

summarizing the results from the outbreak simulations and the analyses without amplified

transmissibility are presented in the supplementary material (S7–S11 Figs).

Discussion

Applied epidemiological modeling is challenged by limited data, either because information is

withheld due to confidentiality concerns or because the data has not been collected. In the

Table 1. The proportion of simulated outbreaks that reached 100 infected premises. Each combination of kernel, transmissibility scale factor and spatial premises dis-

tribution is based on 30,490,000 seeded outbreaks.

Random FLAPS

Kernel Transm. x 1 Transm. x 5 Transm.x 1 Transm.x 5

Tildesley 0.00003 0.14809 0.00252 0.21220

Hayama 0.00000 0.02483 0.00041 0.09530

Brand 0.04176 0.54205 0.05377 0.57805

https://doi.org/10.1371/journal.pcbi.1007641.t001
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absence of exact information regarding premises demography and contact patterns, modelers

have to extrapolate from available information and make assumptions about spatial distribu-

tions [19,22,26]. Here we considered potential for FMD transmission within the U.S. cattle

industry, where publicly available demography data are aggregated to the county level. Small-

scale spatial clustering can have a pronounced effect on epidemiological invasions [5,27], sug-

gesting that realistic assumptions about farm locations within counties could have important

implications for epidemiological predictions. This has, however, never been comprehensively

addressed.

Fig 5. Differences in probability of large outbreaks. Transmissibility x5. County-level proportional change in

number of replicates that reached 100 infected premises when using FLAPS compared to randomized configurations.

Grey indicates counties where no replicate reached 100 infected in either FLAPS simulations or randomized

simulations or both. Results are based on kernel parameterizations with five-fold increase in transmissibility.

https://doi.org/10.1371/journal.pcbi.1007641.g005
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The absence of large-scale outbreaks in the U.S. prevents us from addressing predictive

accuracy in terms of the ability to reproduce observed dynamics. We may however investigate

the added value of techniques that estimate detailed premises locations by comparing simu-

lated epidemics on such premises populations to simulations using cruder estimates of prem-

ises distributions. Here, we focused on premises configurations generated by FLAPS, which

predicts spatially explicit premises locations and premises sizes based on survey data, environ-

mental variables and anthropogenic factors, and compared R0 and simulated outbreaks to con-

figurations where locations were randomized within counties. At present, FLAPS provides the

most detailed and, arguably, realistic depiction available of the entire U.S. cattle farm and feed-

lot population.

At scales relevant for the implemented models, spatial clustering was substantially higher in

FLAPS configurations compared to randomized counterparts. For instance, the KFLAPS/KRand

ratio of around three found at 1km in Fig 2D indicates that premises have on average three

times as many farms within a 1km radius in FLAPS configurations. However, differences

between configurations exhibited large variation among counties, with some counties exhibit-

ing differences between configuration types of more than two orders of magnitude at the scales

relevant for the Hayama and Tildesley kernels (Fig 2A–2C).

The observed differences in spatial clustering between configurations translated into differ-

ences in terms of disease transmission. Across the three implemented models, county-level

reproductive number, R̂w was generally larger for FLAPS configurations compared to their

randomized counterparts (Fig 4). The geographic pattern of differences in R̂w corroborated

with differences in local clustering, and R̂w was considerably higher for FLAPS configurations

Table 2. Coefficient of discrimination (CoD) and relative change in CoD (ΔCoD) as predictors are removed from logistic regression models predicting the probabil-

ity of reaching 100 infected premises. The predictors are the county-level clustering at a spatial scale relevant for the kernel, Kr̂
w (Clustering), the type of configuration

(random or FLAPS, Landsc. conf.), the logarithm of the average premises size in the seeded county, ln �nw (Avg. prem. size), the logarithm of the number of premises in the

seeded county (N. prem.), ln Nw and the logarithm of the premises size of the seeded premises, lnni (Seeded size). The model coefficients for these predictors as well as nine

additional binary predictors indicating which out of ten different realizations of the landscape configuration are found in the supplementary material (S2 Table and S3

Table).

Transmissibility x1 Transmissibility x5
Removed variable CoD ΔCoD CoD ΔCoD

Brand None (full model) 0.373 0.000 0.533 0.000

Clustering 0.153 0.590 0.274 0.486

Landsc. conf. 0.370 0.008 0.532 0.001

Avg. prem. size 0.370 0.008 0.526 0.012

N. prem 0.372 0.003 0.532 0.002

Seeded size 0.365 0.022 0.519 0.026

Hayama None (full model) 0.117 0.000 0.329 0.000

Clustering 0.014 0.876 0.174 0.470

Landsc. conf. 0.119 -0.020 0.329 -0.001

Avg. prem. size 0.115 0.014 0.329 -0.001

N. prem 0.113 0.033 0.327 0.006

Seeded size 0.112 0.041 0.318 0.034

Tildesley None (full model) 0.128 0.000 0.438 0.000

Clustering 0.027 0.790 0.263 0.399

Landsc. conf. 0.129 -0.009 0.437 0.001

Avg. prem. size 0.112 0.131 0.405 0.075

N. prem 0.128 0.003 0.438 0.000

Seeded size 0.116 0.100 0.400 0.086

https://doi.org/10.1371/journal.pcbi.1007641.t002
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for many counties, in particular for the Hayama and Tildesley kernels. Also, calculations based

on FLAPS configurations had a pronounced effect on the proportion of counties with R̂w >1.

This suggests that using realistic assumptions about spatial locations are important to evaluate

if and where FMD outbreaks are expected following introduction.

However, R̂w does not directly estimate the transmission risk beyond the initial stage of an

outbreak, and we used simulations to explore the risk of large outbreaks, here defined as at

least 100 infected premises. A priori expectations regarding the effect of increased clustering

for the progression of an outbreak are not straightforward. Two conflicting processes could be

proposed: 1) the disease may get stuck in a local cluster, thus decreasing the risk of large out-

breaks, or 2) the higher frequency of nearby farms promotes higher rates of transmission also

for later stages of the outbreak. The patterns illustrated by Fig 5 shows that the latter process

prevailed over the former in our simulations; only for a handful of counties was the risk of an

outbreak reaching 100 infected premises higher for randomized configurations. This general

increase in the risk of outbreaks reaching 100 infected premises, together with the support for

such outbreaks to commonly grow even larger (S5 Fig), clearly shows that the increased clus-

tering imposed by realistic assumptions regarding spatial locations increases the risk of large

outbreaks.

The results of our analyses were based on a range of published FMD kernel models. The Til-

desley kernel is derived from the U.K. 2001 outbreak and has been modified to fit with U.S.

conditions of a single state (Pennsylvania) [24]. The Hayama kernel, which was originally fit-

ted to a Japanese outbreak, was used without modification beyond the implementation of a

fixed infectious period, which was necessary for the R0 calculations. The Hayama kernel repre-

sents a case of steep decay of transmission rate with distance, which may be unrealistic for U.S.

conditions, where premises are spatially separated by larger distances. Conversely, the Brand

kernel corresponds to an assumption of disease transmission over large spatial scales. As there

has not been an FMD outbreak in the U.S. in recent years, there is no outbreak data to parame-

terize models from. Consequently, parameter values for any U.S. FMD model are currently

well-educated guesses at best. Thus, neither of the models implemented here are meant to pro-

vide meticulous expectations with respect to the risk or extent of FMD outbreaks in the U.S.

and for this purpose, the results should be interpreted with caution. However, our aim was not

to make predictions about FMD outbreaks in the U.S. but to analyze the effect of spatial clus-

tering for such predictions. Because our results are based on a range of kernels that differ in

terms of transmission rates (including the increase by a factor 5), distance dependence, effect

of premises size, and infective period, the conclusions of our study are robust to a wide range

of assumptions for FMD-like diseases in the U.S.

Several patterns were consistent across models, with realistic spatial locations, as predicted

by FLAPS, generally increasing clustering at scales relevant for all three models. These differ-

ences translated into increased R0 and higher frequency of large outbreaks and rapid spread,

especially in large, western counties. Dispersed randomly, distances between premises are

often too large to promote disease spread, but when clustered to regions that permit livestock

production, premises locations allow for frequent transmission. The Brand kernel implements

the slowest decay of transmission rate with distance (Fig 3), and it is not surprising that the

effect of FLAPS on clustering—and subsequently R0 and simulated outbreak risk—was the

lowest for this kernel (Fig 2; Fig 4, top panels). With increased spatial coverage of the kernel,

the effect of local spatial configuration decreases. However, the general pattern, with a substan-

tial effect of realistic spatial configuration is robust across the implemented kernels.

Our analysis is the first to consider the epidemiological implications of realistic spatial clus-

tering of premises for the entire U.S. It corroborates theoretical findings from previous studies
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that spatial clustering of premises is essential for estimating epidemics [5,27]. Across models,

the logistic regression analysis (Table 2, S2 & S3 Tables) identified clustering as an essential

factor for the probability of large outbreaks. It should be noted that although the regression

shows no particular effect of the variable landscape configuration, this does not mean the land-

scape configuration has no effect on the probability of reaching 100 infected premises. That

effect is captured in the variable Kwr̂ (clustering), which is the explicit county-level clustering,

and consequently landscape configuration only captures differences between the configuration

types driven by other factors than county-level clustering. Instead, the regression analysis pin-

points the important of accurate depiction of spatial clustering of premises.

Tildesley et al. [21] showed that randomization of premises locations within counties is suf-

ficient to address control strategies such as optimal ring culling. Here we instead focused on

risk mapping and conversely found that small scale aggregation patterns can matter. Our

study also differed from the set-up of Tildesley et al. in one important aspect. The result of Til-

desley et al. were based on re-fitting the epidemic parameters to outbreak data on randomized

locations. This approach is not possible for epidemiological modeling in populations without

recent outbreaks like the U.S. In these instances, the transmission process has to be inferred

from outbreaks in other countries [28].

Our results have important consequences for risk assessment for FMD and other livestock

disease where local spread is a major pathway. The effect of realistic premises clustering intro-

duced by FLAPS shows distinct spatial trends, with differences between configuration types

most pronounced in large counties in the west. As such, it is not just the magnitude of risk that

differs between FLAPS and randomized locations, but also the relative risk across the U.S. The

use of randomized locations would substantially underestimate the risk of secondary infections

in states like Arizona, California and New Mexico, likely due to relatively high spatial cluster-

ing of premises in these areas in the FLAPS configurations that is lost in the randomization

process (Fig 2A–2C).

Epidemiological modeling offers powerful tools for contingency planning and may aid pol-

icy makers to evaluate risk and allocate resources for surveillance. Our study convincingly

shows the potential importance of spatial patterns beyond randomization within counties. The

lack of available data describing premises locations, inventories, and type have prompted

computational methods to predict premises locations [23,29,30] and contact patterns [31,32]

from limited available data. Other studies have provided methods to withhold identities of

farmers when demography data is presented [33]. This approach is promising, but the effect

on epidemic prediction remains unclear, and there is currently no expected change regarding

the availability of detailed information on the spatial distributions of livestock premises in the

U.S. Approaches such as FLAPS strive to include important realism based on landscape fea-

tures, environmental conditions and anthropogenic factors associated with premises locations.

The problem of lacking data on spatial distributions of farm animal populations is not con-

strained to the U.S. Models similar to, or striving to solve the same issues as, FLAPS have been

developed for various geographical regions and animal species such as cattle farms in Australia

[34], poultry in China and the U.S. [29, 35], as well as various livestock in Europe and Africa

[36, 37]. The existence of these models alone indicates that the problem with missing spatial

data is also present in a larger context outside of the U.S, and although such models are not

always developed mainly with epidemic modeling in mind, our study show that they can

potentially play an important role for that in addition to other purposes.

Our results suggest that in the absence of true demographic data, methods such as FLAPS

that realistically predict clustering patterns should be preferred over simple randomization of

premises locations when modeling livestock diseases.
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Methods

Premises populations

The analyses were based on two sets of premises populations, each with ten realizations of spa-

tial configurations of the beef, dairy and feedlot premises populations of the 48 states and 3049

counties of the contiguous U.S. In the first set, each realization of spatial configuration was

generated as a stochastic realization of the FLAPS model. Briefly, the FLAPS model disaggre-

gates NASS county-level premises data by imputing missing data, predicting the geographic

distribution of individual farms based on a probability surface, and simulating populations of

animals on each farm [23]. The FLAPS probability surface was generated using logistic-regres-

sion and ten predictors that were fit to a national sample of presence or absence of livestock

premises (n> 10,000 for each of the beef, dairy and feedlot populations). Verification indicates

that FLAPS accurately imputes and simulates NASS premises data with a 0.03% error at the

individual farm-to-county level. Thus, these configurations do not represent a true depiction

of the U.S. premises population, but they account for realistic spatial configurations, including

spatial clustering below the county level and are expected to accurately represent the number

and size distribution of premises at the county level.

The second set of configurations consisted of ten realization of premises where locations

were randomized within their respective county (Fig 1C). The exact number and type (i.e.

beef, dairy, feedlot) of premises varied slightly between each FLAPS realization, and to obtain

equivalent sets for comparison, we based the ten realizations of the randomized set on the

FLAPS realizations to maintain all aspects of the premises population except for their location.

We refer to the two sets of spatial premises distributions as FLAPS and random configurations,

and each with ten realizations. It should be noted that the random configuration is only ran-

domized in terms of their location within counties (i.e., we did not modify the estimated popu-

lation sizes at each premise).

The ten FLAPS realizations and their corresponding random realizations included an aver-

age of 104,065,955 (103,930,597–104,177,356) calves and adult cattle distributed over an aver-

age of 812,703 premises (811,627–814,274). These numbers correspond well with the most up-

to-date estimate of 103 million head [13] and the total number of premises in the categories

Farms with beef cows, Farms with milk cows and Farms with cattle on feed presented in the

2012 U.S. NASS Census of Agriculture [14], which is currently the most recent census. How-

ever, compared to the category Farms with Cattle and Calves in the same publication, the

FLAPS realizations underestimate the total number of premises by roughly 100,000. FLAPS

simulates these three production types separately, but they were here combined into an all-

encompassing depiction of the U.S. cattle premises demography.

The simulated populations of premises are available as supplementary material (S1 Dataset,

S2 Dataset).

Spatial clustering

As a measure of configuration-wide deviation from spatial homogeneity at different distance

scales we calculated Ripley’s K [25]. Ripley’s K provides a statistic to determine if a set of points

on a plane (e.g. a given spatial configuration of premises) follows a homogenous spatial distri-

bution or not and is defined as

KðrÞ ¼ l� 1N � 1
X

i2P

X

j 2 P;

j 6¼ i

Iðdij < rÞ: ð1Þ
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where λ is the density of premises (premises per m2) within the landscape, P is the set of all N
premises, dij is the distance between premises i and j, r is the distance scale of interest and I is a

function that evaluates to one if dij is less than r and zero otherwise. Ripley’s K can be inter-

preted as the average density of points within the area πr2 of each focal point, averaged across

all points in the landscape and expressed relative to the average density of the entire landscape.

This landscape-level measure of K was calculated for each FLAPS realization and its random-

ized counterparts across a gradient of spatial scales r = 100, 100.1, . . ., 101.9, 102.0 (Fig 2D).

Additionally, in order to also quantify the degree of clustering of the premises within each

county, we calculated a modified version of K, where instead of calculating the average relative

density across all premises in the landscape, we calculated the average density across the prem-

ises within county w, denoting this subset of premises Pw, as

KwðrÞ ¼ l
� 1Nw

� 1
X

i2Pw

X

j 2 P

j 6¼ i

Iðdij < rÞ: ð2Þ

Epidemic models and kernels

We considered a premises-level Susceptible-Exposed-Infectious-Removed (SEIR) model

framework commonly applied to fast spreading infectious diseases such as FMD [3,4,38–40].

In this framework, the rate of transmission, λij, between infectious premises i and susceptible

premises j over time period δt (here expressed in days) is determined by the transmissibility

and susceptibility of the premises as well as a kernel function, H, describing how the transmis-

sion rate varies with between-premises distance dij as

lij ¼ SðnjÞTðniÞHðdijÞdt: ð3Þ

Functions T and S scale the transmissibility and susceptibility respectively based on the

premises sizes of ni and nj, respectively. Given this rate, the probability that transmission

occurs between infectious premises i and susceptible premises j can be discretized over the

time interval of δt days by:

pij ¼ 1 � e� lij : ð4Þ

Following infection, the premises enters the exposed (E) class, a latent stage where it is

infected but not yet infectious. After the exposed period, the premises transition into the infec-

tious (I) class, and its entire cattle population is considered infectious. This simplifying

assumption is often justified by the high infectiousness and rapid within-herd spread of FMD-

like diseases [19,41]. After the infectious period, the premises transitions into the removed (R)

class, where it can neither infect other premises nor become infected.

Due to the lack of recent FMD outbreaks in the U.S., there are no outbreak data to fit mod-

els to. Therefore, our approach was to implement a set of published kernels that encompasses a

substantial range of assumptions, thereby investigating the effect of spatial clustering under a

range of plausible scenarios. We identified three kernel models available from the literature

that model the transmission process with the general form of Eq (3) but implement different

functional forms and/or parameterizations of S, T, and H. They also vary in infectious and

latency periods. Parameters and functional forms are presented in Table 3, and Fig 3 shows the

shapes of the kernel functions H (panel A) and the relationship between herd size and S and T
(panel B).
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The first kernel model was obtained from Brand et al. [19]. This study implemented several

similar kernels, and we selected the one with the largest spatial range of H to obtain a case of

transmission over large distances.

The second kernel was obtained from Hayama et al. [3] and was developed for and found

to provide a good fit to the FMD outbreak of Japan in 2010. We made one alteration to fit with

the general framework of our study. In the original model by Hayama et al. [3] infectious prem-

ises did not recover after a fixed time period but were considered infectious until culled, and the

time between infection and culling is expressed as a function of the amount of simultaneously

infected premises. To allow for an analytical solution for R0, we instead set the infectious period

to a fixed number of 16 days, which is an intermediate value of the range used in [3].

The third kernel was used by Tildesley et al. [24], who implemented a kernel model fitted to

the 2001 United Kingdom (U.K.) FMD and modified it to model FMD outbreaks in Pennsyl-

vania. The kernel H is non-parametric and is defined as a look-up table with infection risks at

binned distances, derived from contact tracing during the U.K. 2001 outbreak. To fit with the

larger distances of the U.S., Tildesley et al. [24] added a parameter to increase the kernel’s rela-

tive width in relation to the U.K. kernel. We used the same parameter in this study, choosing a

value (β = 4.0) from the range analyzed in the original study that yielded a width falling in

between the Brand and Hayama kernels (Fig 3A). As stated in the work by Tildesley et al. [24],

increasing the width of the kernel in this manner also increases the total magnitude of trans-

mission, so in order to preserve the original volume under the function, the resulting kernel

was scaled by an additional parameter (α = 0.0625).

Computing the Basic reproductive number, R0

The basic reproductive number, R0, is the expected number of secondary cases following infec-

tion of premises i during its infectious period in a population of entirely susceptible premises

[42]. To obtain a premises level R0, we computed the sum of the pairwise probabilities of i
infecting any other premises j belonging to the set of all premises P. We denote R0 of premises

i, Ri, given by

Ri ¼
X

j 2 P;

j 6¼ i

pij; ð5Þ

where pij is given by Eq (4) exchanging δt for the infectious period of the kernel used. The

premises level Ri was calculated for every premises in each of the 20 realizations. In order to

Table 3. Kernel parameters and functional forms. Infectious period refers to the number of days that an infected premises is infectious (i.e. can transmit the pathogen

to another premises), and exposed period refers to the number of days between date of transmission and becoming infectious. For the Tildesley kernel, HUK represents the

nonparametric kernel fitted to the U.K. 2001 FMD outbreak [4].

Kernel Susceptibility Transmissibility Infectious period (days) Exposed period (days) Reference

Brand S(n) = n0.2 T(n) = n0.2 5 4 [19]

Hayama S(n) = ln n T(n) = ln n 16 2 [3]

Tildesley S(n) = 5.7n0.41 T(n) = 0.00082n0.42 5 4 [24]

Kernel functional form α β γ

Brand HðdijÞ ¼ 0:115agðbÞðb
2
þ d2

ijÞ
� g=2 190.99 20.0 5.0

Hayama HðdijÞ ¼ a 1þ
dij
b

� �� g
7.4e-4 0.58 2.47

Tildesley HðdijÞ ¼ aHUK
dij
b

� �
0.0625 4.0 -

https://doi.org/10.1371/journal.pcbi.1007641.t003
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identify spatial differences in expected outbreak risk levels, we calculated the geometric mean

Ri, for each county w, across all ten FLAPS or randomized realizations. Thus, we obtained a

single measure of the basic reproductive number of the pathogen at the county-level for each

configuration, which we denoted R̂w. We chose the geometric mean over the arithmetic mean

as the epidemic process is better described as a multiplicative rather than an additive process.

Simulations

For each of the three kernels, numerical simulations were performed with 1000 replicates per

county and landscape realization, totaling 30,490,000 outbreak simulations per landscape type

(FLAPS or randomized) and kernel. Each simulated outbreak was seeded with a single infec-

tious premises, which was picked randomly within the focal county. The simulations had a

temporal resolution of δt = 1 day and were run until they either died out or (to keep simula-

tions time at a manageable level) reached 100 cumulative infected premises. This cutoff was

assumed to suffice to evaluate the risk of large outbreaks based on the typically bimodal behav-

ior during the early stage of the simulations; either the outbreak takes off and spreads to a large

number of premises, or it dies out soon after seeding. To verify that 100 premises was a reliable

proxy for even larger outbreaks, we also ran equivalent outbreak simulations that were allowed

to continue until they died out, regardless of number of infected premises, albeit only seeding

in a subset of counties. This stratified subset consisted of one county per contiguous state,

selected as the county with the median number of premises for the state. The initial simula-

tions resulted in very few outbreaks taking off, making comparison between configurations

difficult due to lack of data. Therefore, we also performed a set of simulations where the trans-

mission rate (λij) between the premises was increased by a factor of five. This resulted in sub-

stantially more outbreaks taking off, making it possible to assess differences between

randomized and FLAPS configurations.

The simulations were performed using the FMD simulation algorithm published by Sell-

man et al. [43] (where the C++ code is made available), in which the population of premises is

subdivided into a grid structure that enables a reduction in the computational complexity of

the numerical simulation. This approach speeds up the calculations without adding any

approximations beyond the temporal discretization of the epidemic process, which was already

present in the implemented models.

To test the effect of clustering and configuration on the risk of obtaining large outbreaks,

we performed a logistic regression for each of the three kernels with the Bernoulli trial of

reaching 100 cumulative infected premises or not as the dependent variable. For explanatory

variables, referred to in italics, we used the logarithms of the average premises size and the

number of premises in the county in which the outbreak was seeded (avg. prem. size, and N.

prem.), the logarithm of the premises size of the seeded premises (seeded size) and a binary var-

iable indicating if the configuration used was FLAPS or randomized (landscape configuration).
Additionally, the clustering of the county of the seeded premises was also included as an

explanatory variable (clustering). Because the effect of clustering at various spatial scales on

outbreaks will depend on the choice of kernel, this clustering was calculated with the distance

at which the respective kernels had fallen to 0.05 of the value evaluated at d = 0, or in other

words, the distance at which the magnitude of the kernel had fallen by 95%. We denote this

distance r̂ , and determined it to be at 30.4, 1.4 and 6.6 km for HBrand, HHayama and HTildesley,

respectively, and we denote the county-level Ripley’s K evaluated at this distance as Kwr̂ . From

this we derived the scale-independent, variance stabilized measure Lwr̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Kr̂

wp
� 1

p
� r̂ which

is what was used in the regression analysis as a measure of county-level clustering [44]. Finally,

to capture the residual variance between landscape realizations, a binary variable indicating
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which of the ten realizations that was used was also included in the model as a random effect

(real. 1–10). All the explanatory variables were standardized to have a mean of zero and unit

variance prior to the analyses.

With 60,980,000 seeded outbreaks per kernel, assessing significance is not meaningful

[45]. Instead, we evaluated the importance of each variable by first performing regression anal-

yses with the full set of explanatory variables included and, subsequently, five additional

regression analyses, each with one parameter removed. In order to compare the resulting

models we calculated Tjur’s coefficient of discrimination (CoD), a measure of goodness of fit

suitable for logistic regression [46]. For logistic regression, the CoD is an analogue of the ubiq-

uitous coefficient of determination (R2) of linear regression models and ranges from 0 to 1.

The relative difference in CoD between the full and the reduced model, denoted ΔCoD =

(CoDreduced−CoDfull)/CoDfull, quantifies how goodness of fit is reduced when the focal parame-

ter is excluded. Thus, ΔD provides an estimate of the importance of the removed parameter to

explain the risk of a large outbreak.

To determine the effect clustering had on the speed with which the outbreaks developed,

we performed two linear regression analyses for each kernel using the same set of predictors as

for the logistic regression but with time step at which 10 and 100 infected premises were

reached as dependent variable respectively. These results are presented in the supplementary

material S4 Table.

Analyses were performed using C++ and Python with NumPy [47], pandas [48], scikit-

learn [49] and matplotlib [50].

Supporting information

S1 Fig. Frequency and spatial distributions of minimum premises-level R0 for each county,

Rw,min and relative difference in Rw,min between FLAPS and random configurations. Mini-

mum Ri across the premises of each county w for FLAPS (RFLAPS
w;min ) and randomized (RRand:

w;min,

dashed) and configurations (left). Frequency distribution of the proportional difference in Rw,

min between configurations shown by the black line in histograms (left) and its spatial distribu-

tion is illustrated by the maps. The proportional difference shown by the black histogram is

independent of the increase applied to the transmission rate.

(TIFF)

S2 Fig. Frequency and spatial distributions of maximum premises-level R0 for each county,

Rw,max and relative difference in Rw,max between FLAPS and random configurations. Maxi-

mum Ri across the premises of each county w for FLAPS (RFLAPS
w;max) and randomized (RRand:

w;max,

dashed) and configurations (left). Frequency distribution of the proportional difference in

Rw,max between configurations shown by the black line in histograms (left) and its spatial dis-

tribution is illustrated by the maps. The proportional difference shown by the black histogram

is independent of the increase applied to the transmission rate.

(TIFF)

S3 Fig. R0 difference vs county area. Proportional change in R̂FLAPS
w compared to R̂Rand:

w against

county area showing that larger counties see a bigger change in R̂w. R2-values for the linear

regression are Brand (A): 0.56, p<0.01; Hayama (B): 0.44, p<0.01; Tildesley (C): 0.52, p<0.01.

(TIFF)

S4 Fig. Between-realization difference in Rw. Histograms showing for each county the largest

difference in R̂w from the median R̂w over all ten FLAPS realizations.

(TIFF)
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S5 Fig. Relationship between the proportion of simulations reaching 100 vs 1,000 and

10,000 cumulative infected premises. Each point represents results from 10,000 simulations

of outbreaks starting in one of 48 counties, each being the county with the median number of

premises within its state. Most points are located on the diagonal line, which is expected if an

outbreak that reaches 100 infected premises also reach 1,000 or 10,000 infected premises

respectively.

(TIFF)

S6 Fig. Relationship between configuration effect on geometric mean county level repro-

ductive rate R̂w and proportion of simulations reaching outbreak sizes, l. The figure shows

the ratio between the proportion of simulations reaching l = 2, 10 or 100 cumulative infected

premises in simulations with FLAPS configuration and randomized configurations

(propFLAPS
l =propRand:

l ) plotted against the corresponding county ratio of reproductive number

(R̂FLAPS
w =R̂Rand:

w ). Panels show the results for the three different kernels (Brand, Hayama and Til-

desley) with a linear regression line fit to the log transformed data, R2 and p values in legend.

(TIFF)

S7 Fig. Simulation results. Transmissibility x5, random configuration. Color indicates the

proportion of simulated outbreaks that reach 100 infected premises or more out of 10,000 rep-

licates if outbreak starts in this county. Grey indicates that no outbreak started in the county

reached 100 infected premises.

(TIFF)

S8 Fig. Simulation results. Transmissibility x5, FLAPS configuration. Color indicates the

proportion of simulated outbreaks that reach 100 infected premises or more out of 10,000 rep-

licates if outbreak starts in this county. Grey indicates that no outbreak started in the county

reached 100 infected premises.

(TIFF)

S9 Fig. Differences in probability of large outbreaks. Transmissibility x1. County-level pro-

portional change in number of replicates that reached 100 infected premises when using

FLAPS compared to randomized configurations. Grey indicates counties where no replicate

reached 100 infected in either FLAPS simulations or randomized simulations or both. Results

are based on original kernel parameterizations, i.e. without five-fold increase in transmissibil-

ity.

(TIFF)

S10 Fig. Simulation results. Transmissibility x1, random configuration. Color indicates the

proportion of simulated outbreaks that reach 100 infected premises or more out of 10,000 rep-

licates if outbreak starts in this county. Grey indicates that no outbreak started in the county

reached 100 infected premises.

(TIFF)

S11 Fig. Simulation results. Transmissibility x1, FLAPS configuration. Color indicates the

proportion of simulated outbreaks that reach 100 infected premises or more out of 10,000 rep-

licates if outbreak starts in this county. Grey indicates that no outbreak started in the county

reached 100 infected premises.

(TIFF)

S1 Table. The proportion of simulated outbreaks that reached 10,000 infected premises.

Each combination of kernel, transmissibility scale factor and spatial premises distribution is
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