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Abstract

Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the

occurrence and development of diseases. Identifying the association between circRNAs

and diseases plays a crucial role in exploring the pathogenesis of complex diseases and

improving the diagnosis and treatment of diseases. However, due to the complex mecha-

nisms between circRNAs and diseases, it is expensive and time-consuming to discover the

new circRNA-disease associations by biological experiment. Therefore, there is increasingly

urgent need for utilizing the computational methods to predict novel circRNA-disease asso-

ciations. In this study, we propose a computational method called GCNCDA based on the

deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to pre-

dict the potential disease-associated circRNAs. Specifically, the method first forms the uni-

fied descriptor by fusing disease semantic similarity information, disease and circRNA

Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-

disease associations. The FastGCN algorithm is then used to objectively extract the high-

level features contained in the fusion descriptor. Finally, the new circRNA-disease associa-

tions are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier.

The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78%

sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with

different classifier models, feature extraction models and other state-of-the-art methods,

GCNCDA shows strong competitiveness. Furthermore, we conducted case study experi-

ments on diseases including breast cancer, glioma and colorectal cancer. The results

showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction

scores were respectively confirmed by relevant literature and databases. These results sug-

gest that GCNCDA can effectively predict potential circRNA-disease associations and pro-

vide highly credible candidates for biological experiments.
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Author summary

The recognition of circRNA-disease association is the key of disease diagnosis and treat-

ment, and it is of great significance for exploring the pathogenesis of complex diseases.

Computational methods can predict the potential disease-related circRNAs quickly and

accurately. Based on the hypothesis that circRNA with similar function tends to associate

with similar disease, GCNCDA model is proposed to effectively predict the potential asso-

ciation between circRNAs and diseases by combining FastGCN algorithm. The perfor-

mance of the model was verified by cross-validation experiments, different feature

extraction algorithm and classifier models comparison experiments. Furthermore, 16, 15

and 17 of the top 20 candidate circRNAs with the highest prediction scores in disease

including breast cancer, glioma and colorectal cancer were respectively confirmed by rele-

vant literature and databases. It is anticipated that GCNCDA model can give priority to

the most promising circRNA-disease associations on a large scale to provide reliable can-

didates for further biological experiments.

Introduction

As a new type of endogenous non-coding RNA, circular RNA (circRNA) has a closed-loop

structure without a 5’and 3’polyadenylated tails [1–3]. As early as 1971, researchers discovered

the viroids genome composed of single-stranded closed RNA molecules in potatoes [4]. In

1979, Hsu et al. [5] observed the presence of circRNA in the cytoplasm of eukaryotic cells by

electron microscopy. In 1995, the researchers [6] found that the mouse sperm determinant

gene Sry has circular transcription during transcription. But these findings did not attract

much attention of researchers at the time. Until 2012, Salzman et al. [7] reported about 80 cir-

cRNAs for the first time with the help of high-throughput sequencing technology. Since then,

a large number of circRNA molecules have been identified.

With the rapid development of bioinformatics and the continuous innovation of high-

throughput sequencing technology, a large number of endogenous circRNA have been found

in eukaryotic cells. CircRNA has the characteristics of universality, conservativeness, tissue-

specificity and stability. Its unique sequence structure makes it have the functions of micro-

RNA sponge [8], regulators of RNA binding proteins [9] and transcription of parental genes

[10]. In addition, it is involved in the development and progression of diseases such as cancer

[11, 12], diabetes [13], nervous system diseases [14] and atherosclerosis [15]. For example,

Burd et al. [16] found that the expression of cANRIL (circular antisense non-coding RNA in

the INK4 locus) is an antisense transcript of INK4/ARF gene, which can inhibit the expression

of INK4/ARF through specific multi comb family complex, thereby affecting the risk of athero-

sclerosis. Du et al. [17] found that circ-Foxo3, a member of the transcription factor foxo3, is

highly expressed in myocardial samples from elderly patients and rats. It can prevent and repo-

sition ID-1, E2F1, FAK and H1F1a in the cytoplasm and prevent their anti-aging function. By

establishing the HT22 cell model of oxygen-glucose deprivation/reoxygenation (OGD/R), Lin

et al. [18] found that the expression of mmu-circRNA-015947 was higher than that of normal

cells, indicating that the expression of circRNA was involved in OGD/R-induced neuron

injury. Lukiw [19] found that in the hippocampal CA1 region of Alzheimer’s disease (AD),

there is a dysregulation of the miRNA-circRNA system. When the expression of CDRlas

(CiRS-7) decreased or the ability to adsorb microRNA-7 weakened, the expression of miR-7 is

increased and directly leads to down-regulation of ubiquitin ligase an expression in the human
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central nervous system, thereby affecting the normal function of the central nervous system

and causing serious damage to brain tissue. Numerous studies have shown that circRNA can

be a new clinical diagnostic marker or a potential target for human disease treatment. There-

fore, the identification of disease-related circRNA may help to reveal the mechanism of disease

occurrence and development, and further promote the understanding of complex human

diseases.

As the number of detected circRNAs increases, multiple databases have been created to

store information on circRNAs, such as Circ2Traits [20], circBase [21], deepBase [22] and Cir-

cNet [23]. Furthermore, researchers have gradually collected circRNA-disease associations

supported by experiments and established databases, such as circR2Disease [24], circRNADb

[25], circRNADisease [26] and Circ2Disease [27]. The accumulation of these data provides an

opportunity for computational methods to predict potential circRNA-disease associations. For

example, Xiao et al. [28] proposed an integrated computational framework called MRLDC to

identify disease-associated circRNAs based on the hypothesis that circRNAs with similar func-

tions are usually associated with similar diseases, and vice versa. Yan et al. [29] developed the

DWNN-RLS method using Regularized Least Squares of Kronecker product kernel to predict

circRNA-disease associations. In the experiment, this method achieved AUC of 0.8854, 0.9205

and 0.9701 in 5-fold CV, 10-fold CV and LOOCV, respectively. Fan et al. [30] proposed the

KATZHCDA model for predicting circRNA-disease associations based on a heterogeneous

network constructed by disease phenotype similarity, circRNA expression profiles and Gauss-

ian interaction profile kernel similarity. As a result, KATZHCDA reached the AUC values of

0.7936 and 0.8469 in 5-fold cross-validation and LOOCV, respectively. Although the above

models play important roles in the development of circRNA-disease association prediction

computational methods and have achieved fruitful results, they are limited by certain prob-

lems: (1) the existing data are derived from incompletely related biological information, which

cannot fully describe the complex association between circRNA and disease. (2) The experi-

mentally verified circRNA-disease associations are limited in number and have some noise

information, which easily leads to many false negative associations predicted by the model.

The purpose of this study is to propose a new computational model to predict the potential

circRNA-disease associations in an attempt to overcome these problems. The proposed model

GCNCDA has the following advantages: (1) Comprehensive use of disease semantic similarity

information, disease GIP kernel similarity information, circRNA GIP kernel similarity infor-

mation and known circRNA-disease association information to accurately predict potential

circRNA-disease associations. (2) The advanced features of circRNA-disease associations are

extracted by the deep learning FastGCN algorithm to reduce false negative associations and

improve model performance. In the 5-fold cross-validation experiment on the benchmark

dataset, GCNCDA achieved an AUC value of 90.90%. The results of comparative experiments

show that GCNCDA is superior to other competing models and can effectively predict poten-

tial circRNA-disease associations. Furthermore, case studies show that GCNCDA can identify

new circRNA-disease associations, which are validated by the latest literature and databases. It

is worth noting that the performance of GCNCDA is underestimated due to experimentally

verified limitations on the number of circRNA-disease associations.

Results and discussion

Evaluation criteria

In this study, we used the 5-fold cross-validation (5-fold CV) method to evaluate the perfor-

mance of the model. This method can not only reduce over-fitting to a certain extent but also

obtain as much effective information as possible from limited data [31]. More concretely, we
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first randomly divide the initial dataset into five sub-data sets. When the method is executed, a

separate sub-data set is reserved for validating the model and the other four sub-data sets are

used to train the model. This process is repeated 5 times until each sub-data set is verified once

and only verified once. Finally, the average results of these 5 times are used as the performance

indicators of the model. General evaluation criteria are used in this study to evaluate the per-

formance of GCNCDA, including accuracy (Accu.), Sensitivity (Sen.), precision (Prec.),

F1-Score (F1) and Matthews Correlation Coefficient (MCC). They are defined as:

Accu: ¼
TPþ TN

TP þ TN þ FP þ FN
ð1Þ

Sen: ¼
TP

TP þ FN
ð2Þ

Prec: ¼
TP

TPþ FP
ð3Þ

F1 ¼
2TP

2TPþ FPþ FN
ð4Þ

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð5Þ

Here, TP means true positive, TN means true negative, FP means false positive, and FN

means false negative. Furthermore, we also plot the Receiver Operating Characteristic (ROC)

[32, 33] curves of the 5-fold CV generated by GCNCDA and calculate their average area under

the ROC curve (AUC) [34].

Model performance evaluation

In the experiment, GCNCDA is implemented on the benchmark dataset circR2Disease to eval-

uate its ability to predict potential circRNA-disease associations. The detailed results of 5-fold

CV are summarized in Table 1. As can be seen from the table, GCNCDA achieved an average

accuracy of 91.20% and a standard deviation of 0.74%, of which the accuracy of 5-fold experi-

ments was 91.86%, 91.19%, 90.85%, 90.17% and 91.95%, respectively. In terms of accuracy,

sensitivity, precision, F1-Score, Matthews correlation coefficient and area under ROC curve,

GCNCDA obtained 92.78%, 90.03%, 91.33%, 82.55% and 90.90%, with standard deviations of

3.03%, 2.37%, 0.78%, 1.60% and 0.81%, respectively. Fig 1 plots the ROC curve generated by

GCNCDA using 5-fold CV on the circR2Disease dataset. From the experimental results, we

Table 1. Results of 5-fold CV generated by GCNCDA on circR2Disease dataset.

Test set Accu. (%) Sen. (%) Prec. (%) F1 (%) MCC (%) AUC (%)

1 91.86 88.97 94.16 91.49 83.83 90.93

2 91.19 93.10 89.40 91.22 82.45 90.54

3 90.85 92.52 89.47 90.97 81.74 91.24

4 90.17 91.95 88.96 90.43 80.38 89.80

5 91.95 97.39 88.17 92.55 84.33 92.00

Average 91.20±0.74 92.78±3.03 90.03±2.37 91.33±0.78 82.55±1.60 90.90±0.81

https://doi.org/10.1371/journal.pcbi.1007568.t001
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can observe that GCNCDA performs well and can effectively predict the potential disease-

related circRNAs.

Comparison of different classifier models

To evaluate the impact of the Forest PA classifier on the overall performance of GCNCDA, we

compared different classifier models in this experiment. Specifically, when constructing differ-

ent classifier models, we keep the other parts of the model unchanged, including the composi-

tion of descriptors and feature extraction, and only replace the Forest PA classifier with state-

of-the-art Support Vector Machine (SVM) and Random Forest (RF) classifiers, respectively.

The SVM model and the RF model are thus constructed and implemented on the circR2Di-

sease dataset using 5-fold CV. Table 2 lists the results of the 5-fold CV experiments performed

by these two models. Fig 2 shows a comparison of 5-fold CV ROC curves of different classifier

models on the circR2Disease dataset. For the convenience of visual comparison, we display

these results in the form of a histogram. As can be seen from Fig 3, GCNCDA achieved the

best results in accuracy, sensitivity, F1, MCC and AUC, and achieved the third result in preci-

sion, but only 2.75% lower than the best result. From the overall performance point of view,

GCNCDA is better than SVM model and RF model. This result indicates that the Forest PA

classifier is suitable for GCNCDA model and contributes to the improvement of the model

performance.

Fig 1. ROC curves of 5-fold CV obtained by GCNCDA on circR2Disease dataset.

https://doi.org/10.1371/journal.pcbi.1007568.g001
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Comparison of different feature extraction algorithms

In order to evaluate the effect of the FastGCN feature extraction algorithm on the overall per-

formance of GCNCDA, we compared different feature extraction algorithm models in this

experiment. Similar to the experiment with different classifiers, when we construct different

feature extraction algorithm models, the other parts of the model are unchanged, including the

composition of the descriptors and classifier. Only the Auto Covariance (AC) [35] and fast

Fourier transform (FFT) [36] extraction algorithms are used instead of the FastGCN

Table 2. Results of 5-fold CV generated by SVM model and RF model on circR2Disease dataset.

Test set Accu. (%) Sen. (%) Prec. (%) F1 (%) MCC (%) AUC (%)

1 86.10 78.62 91.94 84.76 72.87 84.30

2 86.78 77.93 94.17 85.28 74.56 85.54

3 87.46 83.67 90.44 86.93 75.12 88.49

4 87.12 83.22 90.51 86.71 74.50 87.96

5 87.25 88.24 87.10 87.66 74.48 88.50

SVM Model 86.94±0.53 82.34±4.20 90.83±2.58 86.27±1.21 74.31±0.84 86.96±1.92

1 88.14 82.07 92.97 87.18 76.73 87.37

2 90.17 84.83 94.62 89.45 80.72 89.08

3 91.19 87.07 94.81 90.78 82.64 90.41

4 89.15 87.92 90.34 89.12 78.34 88.85

5 89.26 87.58 91.16 89.33 78.59 89.54

RF Model 89.58±1.15 85.89±2.46 92.78±2.01 89.17±1.29 79.41±2.30 89.05±1.11

GCNCDA 91.20±0.74 92.78±3.03 90.03±2.37 91.33±0.78 82.55±1.60 90.90±0.81

https://doi.org/10.1371/journal.pcbi.1007568.t002

Fig 2. Comparison of ROC curves obtained by different classifier models in 5-fold CV on circR2Disease dataset.

https://doi.org/10.1371/journal.pcbi.1007568.g002

PLOS COMPUTATIONAL BIOLOGY Prediction of circRNA-disease associations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007568 May 20, 2020 6 / 19

https://doi.org/10.1371/journal.pcbi.1007568.t002
https://doi.org/10.1371/journal.pcbi.1007568.g002
https://doi.org/10.1371/journal.pcbi.1007568


algorithm. The AC model and the FFT model are thus constructed and implemented on the

circR2Disease dataset using 5-fold CV. Table 3 summarizes the results of the 5-fold CV

obtained by the two models. Fig 4 shows a comparison of 5-fold CV ROC curves of different

feature extraction models on the circR2Disease dataset. Similarly, we used a histogram to visu-

ally compare the results of the three models. As can be seen from Fig 5, GCNCDA achieved

the best results in all the evaluation criteria, including accuracy, sensitivity, precision, F1,

MCC and AUC. The experimental results show that the FastGCN algorithm can effectively

Fig 3. Comparison of results of different classifier models on circR2Disease dataset.

https://doi.org/10.1371/journal.pcbi.1007568.g003

Table 3. Results of 5-fold CV generated by AC model and FFT model on circR2Disease dataset.

Test set Accu. (%) Sen. (%) Prec. (%) F1 (%) MCC (%) AUC (%)

1 86.44 93.24 82.14 87.34 73.55 85.39

2 85.08 90.67 81.93 86.08 70.52 85.83

3 81.36 86.71 77.50 81.85 63.23 81.78

4 85.76 90.13 83.54 86.71 71.67 85.74

5 91.95 97.95 87.20 92.26 84.54 93.16

ACModel 86.12±3.81 91.74±4.18 82.46±3.48 86.85±3.71 72.70±7.69 86.38±4.15

1 73.90 76.32 73.89 75.08 47.72 73.59

2 75.93 75.52 75.00 75.26 51.83 76.38

3 74.24 68.94 81.02 74.50 49.46 73.96

4 78.64 76.92 75.19 76.05 56.80 79.21

5 78.19 82.35 76.83 79.50 56.41 76.74

FFT Model 76.18±2.19 76.01±4.78 76.38±2.80 76.08±1.99 52.44±4.07 75.98±2.29

GCNCDA 91.20±0.74 92.78±3.03 90.03±2.37 91.33±0.78 82.55±1.60 90.90±0.81

https://doi.org/10.1371/journal.pcbi.1007568.t003
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extract the advanced features of the fusion descriptor, thus helping to improve the perfor-

mance of the model. In addition, from the comparison experiments of different classifiers and

extraction algorithms, we can also see that the FastGCN algorithm is more helpful to the per-

formance improvement of the model than the Forest PA classifier. This suggests that the

FastGCN algorithm is the key to the GCNCDA model and plays an important role in predict-

ing potential disease-associated circRNAs.

Fig 4. Comparison of ROC curves obtained by different feature extraction models in 5-fold CV on circR2Disease.

https://doi.org/10.1371/journal.pcbi.1007568.g004

Fig 5. Comparison of results of different feature extraction models on circR2Disease dataset.

https://doi.org/10.1371/journal.pcbi.1007568.g005
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Comparison with other existing methods

At present, some researchers have established models for predicting circRNA-disease associa-

tions based on the benchmark dataset circR2Disease, including DWNN-RLS [29],

KATZHCDA [30], PWCDA [37], GHICD [37] and RWRHCD [37]. To evaluate the perfor-

mance of GCNCDA, we compared it to the 5-fold CV AUC results of these models. Table 4

summarizes the 5-fold CV AUC scores generated by the various models on the same bench-

mark dataset circR2Disease. From the table we can see that GCNCDA is outperforms other

existing methods. This indicates that the GCNCDA model, which uses the FastGCN algorithm

to extract circRNA and disease fusion information features and combines the Forest PA classi-

fier, can effectively improve the predictive performance of circRNA-disease associations.

Case studies

To demonstrate the capability of GCNCDA to predict new disease-associated circRNAs based

on known circRNA-disease associations, the performance of GCNCDA was further evaluated.

Specifically, all known circRNA-disease associations in benchmark dataset Rþ were used to

train GCNCDA, and the remaining unknown circRNA-disease associations were considered

candidates for testing. All candidates were then ranked based on GCNCDA predictive scores

in diseases including Breast Cancer, Glioma, and Colorectal Cancer. Finally, the predicted dis-

ease-circRNA associations were confirmed by searching the latest published literature and cir-

cRNA-disease databases.

Breast cancer is one of the most common malignant tumors in the world, and its incidence

has been increasing since the late 1970s. There is increasing evidence that circRNAs can be

used as effective biomarkers for the diagnosis of breast cancer. Therefore, we chose breast can-

cer for testing to verify the predictive ability of GCNCDA. The prediction results are shown in

Table 5, from which we can see that 16 of the top 20 candidates with the highest prediction

scores were confirmed by relevant literature and datasets. For example, the hsa_circ_0007534

Table 4. The 5-fold CV AUC scores generated by the various models on the same benchmark dataset circR2Disease.

Methods GCNCDA DWNN-RLS KATZHCDA PWCDA GHICD RWRHCD

AUC 90.90 88.54 79.36 89.00 72.90 66.60

https://doi.org/10.1371/journal.pcbi.1007568.t004

Table 5. The top 20 breast cancer related candidate circRNAs.

Breast Cancer

Rank circRNA Evidence Rank circRNA Evidence

1 hsa_circ_0007534 PMID:29593432 11 hsa_circ_0006528 circRNAdisease

2 circHIPK3/hsa_circ_0000284 PMID:27050392 12 hsa_circ_0001785 unconfirmed

3 hsa_circ_0001982 circRNAdisease 13 circGFRA1/hsa_circ_005239 PMID:29037220

4 circPVT1/hsa_circ_0001821 PMID:27928058 14 hsa_circ_0002874 circRNAdisease

5 hsa_circ_0093859 PMID:29593432 15 circMED13 PMID:29221160

6 hsa_circ_0092276 circRNAdisease 16 hsa_circ_0047905 unconfirmed

7 hsa_circ_0001313/circCCDC66 PMID:28249903 17 hsa_circ_0085495 circRNAdisease

8 hsa_circ_0108942 circRNAdisease 18 hsa_circ_0043256 unconfirmed

9 hsa_circ_0003838 circRNAdisease 19 hsa_circ_0005402 unconfirmed

10 circFoxo3/hsa_circ_0006404 PMID:26657152 20 circDENND4C PMID:28739726

https://doi.org/10.1371/journal.pcbi.1007568.t005
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with the highest prediction score was confirmed by Zhou et al. [38], which can suppresses the

migration and invasion of breast cancer cells line MCF-7 by down-regulating targeting RFC3.

Glioma is one of the most common primary intracranial tumors, accounting for approxi-

mately 30% of all brain tumors and central nervous system tumors, and 80% of all malignant

brain tumors. Table 6 lists the top 20 glioma related candidate circRNAs predicted by

GCNCDA with the highest scores, 15 of which were confirmed by relevant literature and data-

sets. For example, Barbagallo et al. [39] identified CDR1-AS as the downstream target of miR-

671-5p in human glioblastoma multiforme (GBM) by combining in silico and in vitro

approach, which participated in the biopathological changes of GBM cells. This result is con-

sistent with our prediction of the candidate with the second highest score.

Colorectal cancer is one of the common types of cancer in women, and its morbidity and

mortality are among the highest in the world. According to statistics, colorectal cancer patients

are widely distributed, especially in economically developed regions. We summarize in Table 7

the top 20 circRNAs predicted by the GCNCDA with the highest scores related to colorectal

cancer, of which 17 were confirmed by relevant literature and datasets. For example, circ-

KLDHC10 with the highest predicted score was confirmed by Yan et al. [40], and its expres-

sion level in cancer serum was significantly higher than that in the normal control group,

Table 6. The top 20 glioma related candidate circRNAs.

Glioma

Rank circRNA Evidence Rank circRNA Evidence

1 hsa_circ_0004214 PMID:28622299 11 hsa_circ_0008717 unconfirmed

2 CDR1-AS PMID:26683098 12 circ_FKBP8 circRNADisease

3 circ_COL1A2 circRNADisease 13 hsa_circ_0000177 circFunbase

4 circ_SPTAN1 circRNADisease 14 hsa_circ_0007385 unconfirmed

5 circETFA PMID:26873924 15 hsa_circ_0000284/circHIPK3 PMID:30057315

6 hsa_circ_0015758 circFunbase 16 hsa_circ_0024108 unconfirmed

7 cir-ITCH/hsa_circ_0001141 PMID:29887952 17 hsa_circ_0001649 PMID:29343848

8 circ_RIMS1 circRNADisease 18 circ_SMARCA5 PMID:26873924

9 hsa_circ_0000936 circFunbase 19 hsa_circ_0051172 unconfirmed

10 circ_ZNF148 PMID:26873924 20 hsa_circ_0001982 unconfirmed

https://doi.org/10.1371/journal.pcbi.1007568.t006

Table 7. The top 20 colorectal cancer related candidate circRNAs.

Colorectal Cancer

Rank circRNA Evidence Rank circRNA Evidence

1 circ-KLDHC10 PMID:26138677 11 hsa_circ_0014717 PMID:29571246

2 hsa_circ_0020397 circRNADisease 12 hsa_circ_0007534 PMID:29364478

3 hsa_circ_0000504 circRNADisease 13 hsa_circ_0003707 unconfirmed

4 hsa_circ_0001649 PMID:29421663 14 hsa_circ_0000284 PMID:27050392

5 has-circ_0006174 circRNADisease 15 hsa_circ_0048232 circRNADisease

6 hsa_circ_0074930 circRNADisease 16 hsa_circrna_104700 circRNADisease

7 circ_HIPK3 PMID:29549306 17 hsa_circ_0007031 unconfirmed

8 hsa_circ_0000069 circRNADisease 18 circ-ZNF609/hsa_circ_0000069 PMID:30570857

9 hsa_circ_0084021 circRNADisease 19 hsa_circ_0008797 unconfirmed

10 hsa_circrna_103809 circRNADisease 20 hsa_circ_0000567 PMID:29333615

https://doi.org/10.1371/journal.pcbi.1007568.t007
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which indicates that circ-KLDHC10 is enriched and stable in exosomes and can be a promis-

ing biomarker for cancer diagnosis.

Materials and methods

Method overview

In this study, we propose a computational method called GCNCDA to predict potential cir-

cRNA-disease associations. The execution process of GCNCDA is divided into the following

steps, and its framework is shown in Fig 6. Specifically, we first construct the disease semantic

similarity matrix and disease Gaussian interaction profile (GIP) similarity matrix according to

disease semantic similarity network and circRNA-disease adjacency matrix. Then, according

to circRNA similarity network and circRNA-disease adjacency matrix, construct the circRNA

GIP similarity matrix. Next, the disease similarity matrix and circRNA similarity matrix are

fused by the fusion strategy to get a unified numerical descriptor. In the fourth step, we use the

FastGCN algorithm of deep learning to effectively extract the high-level features of the fusion

data and generate the most expressive descriptor. Finally, we feed the extracted high-level fea-

tures into Forest PA classifier to accurately predict the potential association between circRNAs

Fig 6. The framework of GCNCDA to predict potential circRNA-disease associations.

https://doi.org/10.1371/journal.pcbi.1007568.g006
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and diseases. From the execution process of GCNCDA, we can see that the computational

resources of model are mainly consumed in the feature extraction stage using FastGCN, so the

overall computational complexity of the GCNCDA is O(N3).

Benchmark dataset

In this study, we used the recently established experimentally verified circRNA-disease associa-

tion dataset circR2Disease [24] as the benchmark dataset to evaluate the performance of vari-

ous models. CircR2Disease is a dedicated database and comprehensive platform that collects

disease-related circRNAs from experimental support. The database currently hosts 739 entries

from published literature, including 661 circRNAs, and 100 diseases. The benchmark dataset

can be expressed as:

R ¼ Rþ [ R� ð6Þ

where [ denotes the union symbol in set theory,Rþ represents the positive dataset, which con-

tains 739 circRNA-disease associations with experimentally verified, R� represents the nega-

tive dataset, which contains 739 circRNA-disease associations without experimentally verified.

The circR2Disease dataset can be available on the website http://bioinfo.snnu.edu.cn/

CircR2Disease/.

In the circR2Disease dataset, there were a total of 661 × 100 − 739 = 65361 circRNA-disease

associations without experimental verified. If they are all treated as negative samples, they will

form an unbalanced dataset. In order to avoid bias in the prediction results caused by unbal-

anced data, we solve this problem by reducing the number of negative samples by the down-

sampling method. Specifically, we select 739 negative samples from all negative samples using

random sampling without replacement, and then combine the positive samples to form a dis-

tributed equilibrium dataset. In theory, there may be unconfirmed circRNA-disease associa-

tions in these 65361 negative samples. But in the 739 negative samples we selected, this

probability is much less than 739� (661 × 100 − 739)� 1.13%. Thus, we constructed the data-

set containing 1478 samples in this way, in which the number of positive samples is the same

as that of negative samples. Known circRNA-disease associations and their names obtatined

from circR2Disease database can be seen in Supplementary S1–S3 Tables. The source code

and data of GCNCDA model have been uploaded to https://github.com/look0012/GCNCDA/

for researchers to download and use.

Based on the circR2Disease dataset, we constructed 661 × 100 dimensional adjacency

matrix AM, where 661 represents the number of circRNAs, and 100 represents the number of

diseases. When circRNA c(i) is associated with disease d(i), element AM(i, j) of matrix AM is

assigned a value of 1. Otherwise, it is assigned a value of 0.

Construction of CircRNA similarity model

In this study, we used the Gaussian interaction profile (GIP) kernel similarity to construct the

similarity model of circRNA. Based on the hypothesis that circRNAs with similar function are

often associated with similar diseases, and vice versa, we established the GIP kernel similarity

model of circRNA according to the known circRNA-disease association network. Specifically,

we define the binary vector V(c(i)) to represent the interaction profiles of circRNA c(i). The

dimension of the vector V(c(i)) is 100, which corresponds to 100 diseases in adjacent matrix

AM. When circRNA c(i) is associated with one of 100 diseases, the corresponding bit in vector

V(c(i)) is set to 1. Otherwise, it is set to 0. That is to say, the interaction profiles binary vector V
(c(i)) is the row vector of the row corresponding to circRNA c(i) in the adjacency matrix AM.

Thus, we can get the circRNA GIP kernel similarity GC(c(i), c(j)) of circRNA c(i) and circRNA
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c(j):

GCðcðiÞ; cðjÞÞ ¼ expð� yckVðcðiÞÞ � VðcðjÞÞk2
Þ ð7Þ

where θc is the width parameter, which can be calculated using the normalized original param-

eters of the following formula:

yc ¼
1

n

Xn

i¼1
kVðcðiÞÞk2

ð8Þ

where n is the column number of adjacent matrix AM.

Construction of disease similarity model

The disease similarity model consists of two parts: the disease GIP kernel similarity and the

disease semantic similarity. For the disease GIP kernel similarity, our construction method is

similar to the GIP kernel similarity of circRNA. More concretely, we define a binary vector V
(d(i)) to represent the interaction profiles of disease d(i) according to the adjacent matrix AM
provided by circR2Disease dataset. The dimension of the vector V(d(i)) is 661, which corre-

sponds to 661 circRNAs in adjacent matrix AM. When disease d(i) is associated with one of

661 circRNAs, the corresponding bit in vector V(d(i)) is set to 1. Otherwise, it is set to 0. That

is to say, the interaction profiles binary vector V(d(i)) is the column vector of the column cor-

responding to disease d(i) in the adjacency matrix AM. Through the above definition, we can

calculate the disease GIP kernel similarity GD(d(i), d(j)) of disease d(i) and disease d(j):

GDðdðiÞ; dðjÞÞ ¼ expð� ydkVðdðiÞÞ � VðdðjÞÞk2
Þ ð9Þ

yd ¼
1

m

Xm

i¼1
kVðdðiÞÞk2

ð10Þ

where θd is the width parameter and m is the row number of adjacent matrix AM.

For disease semantic similarity, we construct it through the MeSH database [41–43] from

the National Library of Medicine (NLM). It can be downloaded at https://www.nlm.nih.gov/.

The MeSH database gives a rigorous disease classification system that uses a Directed Acyclic

Graph (DAG) to reflect relationships between different diseases. The MeSH dataset can be

seen in Supplementary S4 Table. In DAG, a node represents disease, and an edge represents

the relationship between diseases. Given a disease d whose structure can be expressed as DAGd

= (d, Nd, Ed), where Nd represents the set of diseases associated with d including disease d itself,

and Ed represents the relationship between these diseases. For a disease s within DAGd, its con-

tribution value Dd(s) can be calculated by the following formula:

DdðsÞ ¼ 1 if s ¼ d

DdðsÞ ¼ maxfm � Ddðs0Þjs0 2 children of sg if s 6¼ d

(

ð11Þ

where μ indicates the semantic contribution factor between disease s and its child disease s0.
According to the previous study by Wang et al. [44], we set the semantic contribution factor μ
to the optimal value of 0.5. Thus, by accumulating the contribution values of all children with

disease d, we can get their semantic values DV(d):

DVðdÞ ¼
X

s2Nd
DdðsÞ ð12Þ

In general, the more nodes that are shared between DAGs of different diseases, the more

similar they are. Based on this assumption, we construct the first disease semantic similarity

PLOS COMPUTATIONAL BIOLOGY Prediction of circRNA-disease associations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007568 May 20, 2020 13 / 19

https://www.nlm.nih.gov/
https://doi.org/10.1371/journal.pcbi.1007568


model SV1(d(i), d(j)) of disease d(i) and disease d(j) through the DAG hierarchical relationship

of disease:

SV1 dðiÞ; dðjÞð Þ ¼

P
s2NdðiÞ\NdðjÞ

ðDdðiÞðsÞ þ DdðjÞðsÞÞ

DVðdðiÞÞ þ DVðdðjÞÞ
ð13Þ

In disease semantic similarity model SV1, we mainly consider the hierarchical relationship

of disease DAG, that is, the disease in the same layer in the DAG contributes the same value to

the disease d. However, the number of different diseases in DAGs can also affect the semantic

similarity of disease. The fewer diseases appear in DAGs, the more important they are. There-

fore, we constructed the second method for calculating the disease contribution value based

on this hypothesis:

D0d sð Þ ¼ � log
numðDAGsðsÞÞ
numðdiseasesÞ

� �

ð14Þ

where num(DAGs(s)) denotes the number of DAGs that contain disease s, and num(diseases)
denotes the number of all diseases. Thus, the second disease semantic similarity model SV2(d
(i), d(j)) of disease d(i) and disease d(j) can be calculated as follows:

SV2 dðiÞ; dðjÞð Þ ¼

P
s2NdðiÞ\NdðjÞ

ðD0dðiÞðsÞ þ D0dðjÞðsÞÞ

DVðdðiÞÞ þ DVðdðjÞÞ
ð15Þ

where DV(d(i)) and DV(d(j)) have the same meaning as disease semantic similarity model

SV1, which can be calculated from formula 7.

Multi-source data fusion

In order to make full use of information from different sources, we used the fusion method to

fuse circRNA similarity information and disease similarity information with known circRNA-

disease associations. The fused information can absorb the characteristics of different data

sources, thus describing the complex relationship between circRNAs and diseases more

comprehensively.

For the circRNA, we use the constructed circRNA GIP kernel similarity GR directly to rep-

resent the circRNA descriptor RSim. For the disease, we need to fuse the disease semantic simi-

larity model SV1 and SV2, and disease GIP kernel similarity GD. Since the MeSH database

provides a strict disease association, we use it as much as possible. More specifically, if there is

the semantic similarity between disease d(i) and disease d(j), then the disease semantic similar-

ity is used to construct the descriptor DSim. Otherwise, it is constructed using disease GIP ker-

nel similarity. This construction rule can be described by the following formula:

DSim d ið Þ; d jð Þð Þ ¼

SV1ðdðiÞ; dðjÞÞ þ SV2ðdðiÞ; dðjÞÞ
2

if dðiÞ and dðjÞ has semantic similarity

GDðdðiÞ; dðjÞÞ otherwise

8
<

:
ð16Þ

Finally, we match circRNA similarity RSim with disease similarity DSim based on known

circRNA-disease associations to form a complete fusion descriptor. The fusion descriptor FV(c
(i), d(j)) of circRNA c(i) and disease d(j) can be described as follows:

FVðcðiÞ; dðjÞÞ ¼ ½RSimðiÞ;DSimðjÞ� ð17Þ

where RSim(i) indicates the i row vector of circRNA c(i) in the circRNA similarity matrix
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RSim, and DSim(j) indicates the j column vector of disease d(j) in the disease similarity matrix

DSim.

Feature extraction by fast learning with Graph Convolutional Networks

After getting the fusion descriptors, we used the Fast learning with Graph Convolutional Net-

works (FastGCN) algorithm to extract their features to remove noise information and improve

the performance of the model. FastGCN is an efficient algorithm based on the original GCN

and realized by importance sampling. It interprets graph convolutions as integral transforms

of embedding functions under probability measure. To be specific, FastGCN interprets the

graph vertices as independent and identically distributed (i.i.d.) samples of some probability

distributions, and integrates loss and each convolution layer as vertex embedding functions.

The integrals are then calculated by Monte Carlo approximation to determine the sample loss

and sample gradient. Finally, important sampling is used to reduce the approximate variance.

FastGCN not only eliminates the reliance on test data but also produces a controllable cost for

each batch of computation.

Suppose there is a graph G0 with the vertex set V0 associated with a probability space (V0, F,

P). For the given graph G, it is a subgraph of G0 whose vertices are i.i.d. samples of V0 obtained

from the probability measure P. For the probability space, V0 is used as the sample space, and F
can be any event space. The probability measure P defines a sample distribution. Thus, the

function generalization can be expressed as:

~hðlþ1ÞðvÞ ¼
Z

Âðv; uÞhðlÞðuÞWðlÞdPðuÞ; hðlþ1ÞðvÞ ¼ sð~hðlþ1ÞðvÞÞ; l ¼ 0; . . . ;M � 1 ð18Þ

where the function h(l) represents an embedding function from the lth layer, u and v are inde-

pendent random variables that have the same probability measure P. The embedding functions

of two consecutive layers are correlated by convolution and expressed by an integral trans-

forma, where the kernel Âðv; uÞ corresponds to the (v, u) element of the matrix Â. The loss L is

the expected value of g(h(M)) that is finally embedded in h(M), and can be expressed as:

L ¼ Ev�P½gðh
ðMÞÞðvÞ� ¼

Z

gðhðMÞÞðvÞdPðvÞ ð19Þ

For the lth layer, the t1 i.i.d. sample uðlÞ1 ; . . . ; uðlÞt1 � P is used to approximatively estimate the

integral transformation:

~hðlþ1Þ

tlþ1
vð Þ≔

1

t

Xtl

j¼1
Âðv; uðlÞj ÞhðlÞtl ðu

ðlÞ
j ÞWðlÞ; hðlþ1Þ

tlþ1
vð Þ≔s ~hðlþ1Þ

tlþ1
ðvÞ

� �
; l ¼ 0; . . . ;M � 1 ð20Þ

Here, hð0Þt0 is h(0). Therefore, the loss L is transformed into:

Lt0 ;t1 ;...;tM
≔

1

tM

XtM

i¼1
gðhðMÞtM

ðuðMÞi ÞÞ ð21Þ

Prediction by forest PA classifier

In the experiment, we send the extracted features into the Forest by Penalizing Attributes (Forest

PA) classifier for classification, so as to obtain accurate circRNA-disease association prediction

results. Forest PA is a novel decision forest building algorithm recently proposed by Adnan et al.
[45]. The Forest PA algorithm uses the complete attribute set to generate decision trees by
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imposing penalties on attributes participating in the latest decision tree. Besides, the participating

attributes obtain random weights from the range of weights associated with the respective levels

in the tree, thereby maintaining the decision tree generated by the algorithm with individually

accuracy and diversity. The execution steps of the Forest PA algorithm are as follows:

1. The Forest PA first generates a bootstrap sample Di from the original training data set D.

2. The Forest PA then uses the weight of attributes to generate decision trees from the bootstrap

sample. When choosing the splitting attributes, Forest PA uses the CART algorithm with

merit values, whose value is obtained by multiplying its classification ability with its weight.

3. The incremental values of attribute weights and gradient weight in the latest tree are

updated iteratively. Here, the weights of the attributes appear in the latest tree will be

updated. The weights of attributes that do not appear in the latest tree remain unchanged.

Considering that the weight of attribute is determined by the level λ of test attributes in the

latest tree, if an attribute appears on the root node, their value of λ is 1; if an attribute

appears on the child node, their value of λ is 2. According to the value of λ, the weight of

randomly generated attributes within a Weight-Range WR is defined as follows:

WRl ¼

0:0; e
�

1

l

2

4

3

5; if l ¼ 1

e
�

1

l � 1 þ r; e
�

1

l

2

4

3

5; if l > 1

8
>>>>>><

>>>>>>:

ð22Þ

4. Update weights of the applicable attributes with the corresponding weight increment values

that do not exist in the latest tree.

Conclusion

In this study, we proposed a new computational method called GCNCDA to predict potential

circRNA-disease associations. The method makes full use of the disease semantic similarity,

disease and circRNA GIP kernel similarity, the known circRNA-disease association informa-

tion, and extracts the high-level abstract features from them by deep learning FastGCN algo-

rithm. The cross-validation results show that GCNCDA performs well on the benchmark

dataset circR2Disease. In comparison with different classifier models, feature extraction algo-

rithm models, and other state-of-the-art methods, GCNCDA has exhibited strong competi-

tiveness. Furthermore, we also predicted new circRNA-disease associations based on known

associations. As a result, 16, 15 and 17 of the top 20 candidate circRNAs with the highest pre-

diction scores in disease including breast cancer, glioma and colorectal cancer were respec-

tively confirmed by relevant literature and databases. These experimental results indicate that

GCNCDA is an effective method for predicting circRNA-disease associations and can provide

highly reliable candidates for biological experiments. In future research, we will improve the

FastGCN algorithm to help the model achieve better performance.

Supporting information

S1 Table. The benchmark dataset contains 739 pairs of positive samples and 739 pairs of
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S2 Table. Names of 661 circRNAs involved in known circRNA-disease associations

obtained from CircR2Disease database.
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S3 Table. Names of 100 diseases involved in known circRNA-disease associations obtained

from CircR2Disease database.
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