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Abstract

Dynamic communication and routing play important roles in the human brain in order to facil-

itate flexibility in task solving and thought processes. Here, we present a network perturba-

tion methodology that allows investigating dynamic switching between different network

pathways based on phase offsets between two external oscillatory drivers. We apply this

method in a computational model of the human connectome with delay-coupled neural mas-

ses. To analyze dynamic switching of pathways, we define four new metrics that measure

dynamic network response properties for pairs of stimulated nodes. Evaluating these met-

rics for all network pathways, we found a broad spectrum of pathways with distinct dynamic

properties and switching behaviors. We show that network pathways can have characteris-

tic timescales and thus specific preferences for the phase lag between the regions they con-

nect. Specifically, we identified pairs of network nodes whose connecting paths can either

be (1) insensitive to the phase relationship between the node pair, (2) turned on and off via

changes in the phase relationship between the node pair, or (3) switched between via

changes in the phase relationship between the node pair. Regarding the latter, we found

that 33% of node pairs can switch their communication from one pathway to another

depending on their phase offsets. This reveals a potential mechanistic role that phase off-

sets and coupling delays might play for the dynamic information routing via communication

pathways in the brain.

Author summary

A big challenge in elucidating information processing in the brain is to understand the

neural mechanisms that dynamically organize the communication between different

brain regions in a flexible and task-dependent manner. In this theoretical study, we pres-

ent an approach to investigate the routing and gating of information flow along different

pathways from one region to another. We show that stimulation of the brain at two sites

with different frequencies and oscillatory phases can reveal the underlying effective
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connectivity. This yields new insights into the underlying processes that govern dynamic

switches in the communication pathways between remote sites of the brain.

Introduction

Over the past decades it has been shown that the brain, facing a specific task or not, exhibits

well-structured functional connectivity [1–5]. This has been specifically investigated for rest-

ing-state networks [6–9], but also for other networks when the brain is performing different

tasks [8, 10]. These findings lead to the idea that networks of dynamically coupled neural pop-

ulations reflect an inherent functional organization of the brain which is optimized to perform

a wide range of tasks it encounters frequently [11, 12]. If faced with a task that requires syn-

chronization between brain areas not typically coupled at rest, this organization has to be

altered temporarily in order to perform that task efficiently [13–15].

One mechanism that has been proposed for such dynamic re-organization is top-down sup-

pression of distractor areas (or task-irrelevant areas) by a slow, oscillatory rhythm compared

to the neural rhythm at which the signal is being processed [16–18]. While this suppression

mechanism acts on individual nodes in the network, dynamic re-organization by changes

in the phase relationships could act directly on the edges of the network by modulating the

effective connectivity between nodes [19–21]. Here, we focus on the latter and consider the

dynamic re-organization as a self-organizing property of the network that flexibly adapts

functional coupling to changes in extrinsic stimulation. According to the communication-

through-coherence theory [19, 20], the phase relationship between two neural oscillators

affects their success in communication. A neural population which tries to establish communi-

cation with other target populations at a certain frequency is more successful if the signals

arrive at the excitable phase of the target populations. In other words, successful communica-

tion between two neural oscillators is reflected by their amount of entrainment. The functional

coupling pattern that arises from this process could be temporarily altered by advancing or

slowing down the phase of each of the neural oscillators. This way, changes in phase relation-

ships between brain areas could serve as a mechanism for the re-organization of effective

connectivity.

Within a complex network like the human brain, multiple structural pathways exist

between most pairs of nodes given a sufficiently high spatial resolution. Since functional cou-

pling patterns are established via synchronization along such pathways, we set out to identify

general principles of how these pathways interact with each other during synchronization pro-

cesses. Several studies have placed emphasis on the importance of information transmission

delay for synchronization processes as well as its role in the formation of functional clusters in

the brain [5, 20, 22–32]. In their fundamental work on the dynamic implications of discrete

delays in networks of rate-based neurons, Roxin and colleagues were able to demonstrate that

the incorporation of delays enriches the dynamic repertoire of the system, allowing for various

periodic and aperiodic behaviors [33, 34]. Using connectome models composed of delay-cou-

pled Kuramoto oscillators, Petkoski and colleagues showed that delay distributions in hetero-

geneously coupled networks can influence whether nodes tend to synchronize in phase or

anti-phase [32]. Furthermore, Gosh and colleagues showed in a connectome model of coupled

Fitz-Hugh Nagumo systems that the incorporation of realistic network delays allowed the

noise-driven model to show a dynamic repertoire similar to experimentally reported dynamics

of resting-state functional connectivities [35]. Here, we investigate the interplay between cou-

pling delays and synchronization phase offsets in a model of the human connectome. In the
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case of two delay-coupled neural oscillators, a tight relationship between their optimal phase

relationship and coupling delay can be expected [20]. Given a complex network with multiple

communication pathways between node pairs, this raises the question of whether the set of

active communication pathways depends on the phase offset between the nodes. Finding a dif-

ference in this set of utilized communication pathways over varying phase offset strongly

implies that communication pathways express preferences for the phase relationship between

the nodes they connect. These preferences will be influenced by the time delays of the commu-

nication pathways, which are determined by axonal signal transmission delays as well as rise

and decay properties of the post-synaptic response. Here, we focus on the former and assume

the latter to be relatively homogeneous across the cortico-cortical connections considered in

our model, since they all resemble glutamatergic synaptic connections. In particular, we pre-

dict that two brain regions trying to communicate at a certain frequency with a given phase

offset will use only a fraction of their available communication paths. Furthermore, we predict

the selection of communication paths to be influenced by their interaction time delays and the

phase offset at which the communication is initially attempted.

To test these hypotheses, we investigate cortico-cortical communication processes via a

computational whole-brain network model of delay-coupled, oscillating nodes. We introduce

a set-up with two oscillatory drivers to probe the network for changes in interactions between

the stimulated pair of nodes. Importantly, our stimulation approach relies on the entrainment

of the given pair of nodes to oscillate at the same frequency, but with a certain phase lag relative

to each other. While Fig 1A illustrates the overall extrinsic stimulation setup, Fig 1B visualizes

why it is necessary to stimulate at different phase lags between the stimulation signals. In par-

ticular, Fig 1B shows that even in the absence of any interaction through the network, there is

the externally induced trivial coherence between the two stimulated nodes. Thus, the coher-

ence is measured for many different stimulation phase offsets and the measurement with the

lowest coherence is chosen as the baseline. Any deviation in the coherence from this baseline

can be attributed to induced changes in the coupling between the two stimulated nodes

through the network. As indicated in Fig 1C and 1D, this may happen due to a switching in

the communication pathways. Comparing the coherence along different pathways over differ-

ent stimulation phase offsets then reveals the phase preferences for different routes. We

Fig 1. Illustration of the stimulation methodology and different possible outcomes. (A) The stimulation at the two

nodes could potentially activate different paths (blue or red) in the network. (B) The simultaneous stimulation at the

two nodes could induce a trivial coherence (green) between the two nodes even in the absence of any interaction

between the two nodes through the network. (C) In this example a stimulation with no phase offset induces a network

interaction between the two stimulated nodes through path 1 (blue). (D) In contrast, when stimulating with a phase

offset of π another path is activated (red).

https://doi.org/10.1371/journal.pcbi.1007551.g001
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speculate that these differences in phase preferences at different pathways could act as a switch-

ing and gating mechanism used by the brain to establish communication between remote

brain areas when needed. Our method allows the investigation of these mechanisms by prob-

ing the network for these dynamic switches in communication pathways.

Computational model

Our computational model (Fig 2) is based on the widely used Jansen-Rit neural mass model

[36] which employs a mean-field approach to model the interaction between a pyramidal cell

population (green), an excitatory interneuron population (blue), and an inhibitory interneu-

ron population (red), as illustrated with the relevant equations in the Figure. The function

σ(V) transforms the average membrane potentials to average firing rates via a parameterized

sigmoid (depicted in cyan). The standard parametrization originally proposed by Jansen and

Rit reflects cortical oscillatory activity in the alpha frequency band. These parameters were

chosen based on experimental findings in the neuroscience literature and are reported in the

Materials and Methods section. Since the aim of this article is the investigation of the effect of

pathway time delays on neural synchronization processes and not the effect of information

processing delays at the node level (arising from time constants of cell membranes, synapses

etc.), we decided to use this standard parametrization for each node in our network [36]. For

the purpose of investigating networks of extrinsically perturbed Jansen-Rit models, the follow-

ing two extensions were added: First, we coupled multiple Jansen-Rit nodes via delayed,

weighted connections between their pyramidal cell populations (depicted in yellow). In our

model this pyramidal cell population is interpreted as a lumped representation of all projection

cells within a modeled brain area, whereas the excitatory and inhibitory interneuron popula-

tions describe local feedback loops of that pyramidal cell population. We avoid the original

layer-specific (infragranular, granular, and supragranular) interpretation offered by Jansen

and Rit [36] because inter-areal connectivities would be subject to layer-specific profiles [37]

which would be hard to estimate reliably for a whole-brain network model. Note that this

Fig 2. Neural mass model with external stimulation. A schematic of the neural mass model showing the interactions

between the three neuronal populations (pyramidal cells, excitatory interneurons, inhibitory interneurons). Each post-

synaptic potential is modeled using two differential equations (average membrane potentials V and average synaptic

currents I. Several of these neural mass models are interacting through a connectivity matrix (yellow). The external

perturbation (purple) modulates the average membrane potential of pyramidal cells at 2 nodes in the network.

https://doi.org/10.1371/journal.pcbi.1007551.g002
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approach is in accordance with previous simulation studies of networks of multiple coupled

Jansen-Rit models that employed pyramidal to pyramidal cell coupling as well [38–42]. Sec-

ondly, weak external drivers were applied at two stimulation sites influencing the average

membrane potential of the pyramidal cells with phase offset Δφ between the two drivers

(depicted in purple). By applying the stimulation to the pyramidal cells, it enters at the same

population which also receives the network input. It can, thus, either be conceived as input of

a neural origin not explicitly incorporated in our model or as an extrinsic input that mainly

affects the excitability of the pyramidal cells.

Results

We will first present our results of the simulations in simple networks of only 2 or 3 nodes.

Specifically, we show how the coherence between a pair of stimulated nodes depends on the

transmission delay of their connections and on the relative phase offsets between the two stim-

ulation signals. Subsequently, we move on to a model of the cortico-cortical synchronization

processes within a single hemisphere of the human brain. Cortico-cortical coupling strengths

and delays were informed by an approximation of the human connectome obtained from dif-

fusion tensor imaging (DTI) data. Additionally, we fit the model to match functional connec-

tivities calculated from electroencephalography (EEG) recordings. In this model, we show how

the coherence between stimulated nodes changes over phase lags and how this effect relates to

the connectedness and distance of the nodes. In a final step, we identify the pathways responsi-

ble for the interaction between the stimulated nodes, analyze their phase lag preferences and

identify cases of phase-related switching between pathways. For all simulations, we use the

computational model defined in the previous section.

Simple models with 2 or 3 nodes

The idea behind the extrinsic stimulation approach can be well explained using a simple toy-

model of 2 directly coupled Jansen-Rit nodes, where each node is stimulated with a fext = 11

Hz sinusoidal signal with strength cext = 0.1 mV. Fig 3 shows the coherence between the driven

nodes for systematic changes in the phase offset between the stimuli and the distance between

the coupled nodes. While uni-directionally coupled nodes can have preferences for any stimu-

lation phase offset, as shown in Fig 3A, bi-directionally coupled nodes are more susceptible for

stimulation at in- or anti-phase (see Fig 3B). The latter is in line with other studies that showed

neural synchronization of remote, delay-connected neurons or neural populations to typically

appear at in- or anti-phase [31, 32, 43]. This shows that the communication between coupled

pairs of nodes can be modulated by stimulation and that communication pathways can have

characteristic stimulation phase offset preferences, depending on their length [44].

To quantify the modulation of communication, we define the pathway-synchronization-

facilitation (PSF), measuring for a given pair of weakly stimulated network nodes ki and kj
how their interaction is dependent on specific phase offsets:

PSFðki; kjÞ ¼ max0�Dφ�2pðcohðki; kj;DφÞÞ ð1Þ

� min0�Dφ�2pðcohðki; kj;DφÞÞ; ð2Þ

where coh(ki, kj, Δφ) is the coherence between network nodes ki and kj for stimulation phase

offset Δφ. The PSF is high for node pairs if their coherence is high for one stimulation phase

offset and low for another, i.e., the relative phase of the stimulation at the two sites matters

strongly. The PSF curves in Fig 3A and 3B show that in both cases there is a PSF effect
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(PSF> 0) and in the case of bi-directionally coupled nodes the strength of this effect depends

on the distance between the nodes.

To extend this idea to communication via indirect pathways, we investigated synchroniza-

tion between 2 nodes connected only indirectly via a third intermediate node. We used bi-

directional couplings for both connections and both end nodes were stimulated as described

previously. As can be seen in Fig 3C and 3D, the interaction between the two weakly stimu-

lated nodes not only depended on the length of the connection, but mostly on the relative

Fig 3. Simulations with 2 or 3 nodes. Red edges indicate the connections for which the distance was varied. Color

indicates the coherence between the two driven nodes. The pathway synchronization facilitation (PSF) values are

shown at the bottom of each panel. (A) Nodes with direct uni-directional coupling. (B) Nodes with direct bi-

directional coupling. (C) Nodes with indirect (via a third node) bi-directional couplings. The intermediate node was

placed at 25% of the total connection distance, while the overall distance between the outer nodes was varied. (D)

Nodes with indirect bi-directional couplings where the overall distance was kept at 160 mm, while the intermediate

node was positioned at varying positions along the connection. Parameters used in all panels: v = 2.6 m/s, cnet = 14, and

Cmj = 0.1 if there is a connection from node m to node j or 0 otherwise.

https://doi.org/10.1371/journal.pcbi.1007551.g003
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position of the third node on the indirect path. Thus, phase lag preferences of pathways con-

necting two target nodes arise primarily from the distance between intermittent nodes along

the pathway. In a heterogeneous network like the connectome, we hence expect to find node

pairs connected by pathways with distinct phase lag preferences. Depending on the stimulation

phase offset at the target nodes, we expect to be able to induce a switch in the pathway the

nodes employ to entrain each other.

Connectome model without atimulation

As shown in the previous section, the coherence in a network of only three nodes can already

exhibit very complex dependencies on the stimulation phase offset. To extend our analysis to

network communication patterns in the case of a complex network with multiple competing

pathways, we used a model of 33 delay-connected nodes, representing one hemisphere of the

human connectome [30]. The structural connectivity matrix was obtained from DTI-based

tractography data as described in the Materials and Methods section. Fig 4A shows the sparse

connectivity matrix Cmj used to connect the 33 regions and Fig 4B the corresponding average

fiber lengths Lmj between region pairs. These two matrices are used for connecting the differ-

ent populations of excitatory pyramidal cells (green in Fig 2) in a delay-coupled network of a

single hemisphere.

For the same 33 regions, EEG resting-state recordings from the same subjects were used to

calculate pairwise coherences in the 10 Hz range as shown in Fig 4C. To resemble this empiri-

cal resting-state functional connectivity, we used a grid-search over the two remaining free

parameters that were not defined in [36]: the global scaling of the connection weights cnet and

the global velocity v that is used to scale the distance data resulting in pair-wise signal trans-

mission delays. We simulated the 33 connected neural-mass-models and processed the time-

series of the pyramidal cells in the same way as the EEG data, i.e. we band-pass filtered the

Fig 4. Pairwise measures of connectivity and distance between all 33x33 region pairs. (A) Structural connectivity

matrix Cmj with all connections smaller than 0.1 set to 0. (B) Inter-regional average fiber distances Lmj in mm. (C)

Functional connectivity matrix derived from coherence of EEG data bandpass-filtered around 10 Hz. (D) Correlation

between the empirical and the simulated functional connectivity matrices for different global velocities v and global

connection strengths cnet. Encircled in red is the parameter set chosen for all subsequent connectome model

simulations. (E) Functional connectivity derived from coherence of neural mass model simulations bandpass-filtered

around 10 Hz. (F) Power-spectral densities of 3 representative network nodes.

https://doi.org/10.1371/journal.pcbi.1007551.g004
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time series at 10 Hz, applied the Hilbert transform, and calculated the pair-wise coherence.

This yielded a 33 x 33 functional connectivity matrix which we compared to the empirical

functional connectivity by calculating the Pearson correlation coefficient.

The selection of parameters was based on the rationale to match the functional connectivity

observed in the network model as well as possible to empirical EEG-based functional connec-

tivity from human subjects. By fitting the velocity, we ensured that our pathway delays reflect

realistic, empirically observed timescales of cortico-cortical interactions (Fig 4D). We selected

the parameters cnet = 14 and v = 2.6 m/s for subsequent analyses which show a high correlation

to the empirical functional connectivity (r = 0.64, p< .0001). Notice that this correlation is

comparable with values of other bottom-up models reported in the literature [30, 45], which is

remarkable considering that we set a substantial amount of structural connections to 0. The

simulated functional connectivity using these selected parameters is shown in Fig 4E. A com-

parison of these different connectivity matrices (Fig 4A, 4B, 4C and 4E) revealed that the

empirical functional connectivity correlated more strongly with the inter-regional fiber dis-

tances (rCB = −0.70) than with the structural connectivity (rCA = 0.55), while the simulated

functional connectivity correlated more strongly with structural connectivity (rEA = 0.78) than

with the inter-regional fiber distances (rEB = −0.71).

As a last analysis of the unperturbed network, we evaluated the power spectral density of

each network node (Fig 4F). All 33 nodes showed a frequency peak around 11 Hz.

Connectome model with stimulation

Based on this model of cortical activity, we used the stimulation approach to investigate how

pathways facilitate synchronization between network nodes at certain phase lags between the

nodes. Specifically, we weakly stimulated different pairs of cortical regions with varying phase

offsets between the two stimulation signals while measuring the coherence between the stimu-

lated nodes at each phase offset. As argued above, finding differences in the coherence over

stimulation phase offsets would indicate phase-specific communication modulation between

the stimulated nodes. Before analyzing PSF effects in the connectome model, it was necessary

to determine the optimal stimulation frequency and strength for this model, because complex

synchronization patterns can arise in networks of delay-coupled non-linear elements [33],

especially when perturbed extrinsically [41]. This was performed in two steps. First, we deter-

mined the optimal frequency by extrinsic stimulation of a single network node. Second, we

determined the optimal stimulation strength by stimulation of two network nodes at that

frequency.

Since our main analysis will focus on coupling effects through different network paths

between two stimulated nodes, we aimed to find the stimulation frequency at which the extrin-

sic stimulation has a high penetration depth into the network (as measured by the mean coher-

ence to all network nodes). Notice that the stimulation frequency with the optimal network

penetration depth may not necessarily coincide with the optimal stimulation frequency to

entrain the stimulated network node. To determine the optimal stimulation frequency, we

stimulated a single region in our network with a stimulus of varying frequency (4-30 Hz) and

strength (0.03-4 mV) while evaluating the mean coherence between the stimulus and all nodes

in the network. As Fig 5A shows, this average coherence to the full network shows a strong

peak at 11 Hz, which is the intrinsic frequency of the unperturbed network (see Fig 4F). The

mean coherence of the stimulation signal to the stimulated node and its direct neighbours can

be observed in Fig 5B, while the coherence to only the stimulated node can be observed in Fig

5C (always averaged over simulations in which the extrinsic stimulation was applied to each of

the 33 regions). The latter reflects the well-studied relationship between a driver and an

Probing neural networks for dynamic switches of communication pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007551 December 16, 2019 8 / 23

https://doi.org/10.1371/journal.pcbi.1007551


oscillator described by the so-called Arnold tongue [46], except that this coherence to the stim-

ulated node was higher at driving frequencies that are different to the intrinsic network fre-

quency of 11 Hz (see Fig 5C). This reflects the competition between entrainment via the

extrinsic stimulation and via the network. At the intrinsic frequency of the network (11 Hz)

and its harmonics, the driver has to compete with the network in entraining the stimulated

node at a certain phase relationship. This competition decays with the deviation of the driving

frequency from the networks’ intrinsic frequency and its harmonics. Thus, the Arnold tongue

of a single driven node embedded in the connectome model shows coherence peaks shifted

away from its intrinsic frequency. However, as can be seen in Fig 5B, entrainment of the direct

neighbours of the stimulated node is still strongest at the networks’ intrinsic frequency, which

explains the mismatch between the optimal stimulation frequency for penetrating the network

(Fig 5A) vs. entraining a single node (Fig 5C). To ensure that the network is not pushed into a

fully synchronized state by the extrinsic perturbation, we also evaluated the Kuramoto order

parameter of the network (see Fig 5D). This metric reflects the level of synchronization in the

network, with a value of 1 implying full synchronization and a value of 0 implying a fully asyn-

chronous state. As can be seen in Fig 5D, the Kuramoto order parameter varies between 0.1

and 0.25 across extrinsic stimulation parametrizations and expresses a relatively low value in

this range for an 11 Hz driver. Based on these results, we set the frequency of our stimulus to

11 Hz, at which the network (and not only the directly stimulated node) was most susceptible

for entrainment by an external stimulation, but was not driven into a fully synchronized state.

Fig 5. Stimulation parameter evaluation in the connectome with a single driver. All panels show averaged results

that were obtained by first placing the stimulus at each of the 33 regions individually and finally averaging over these

different stimulus locations. (A) Average coherence between the stimulus and the full network for varying stimulus

strength and frequency. Each region was stimulated and the average coherence between the stimulation signal and

each network node was calculated. (B) Average coherence between the stimulus and all direct neighbors of the

stimulated region. (C) Coherence between the stimulus and the stimulated region. (D) Kuramoto order parameter of

the network for each stimulation strength and frequency.

https://doi.org/10.1371/journal.pcbi.1007551.g005
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In a second step, we stimulated pairs of nodes with 11 Hz stimuli. We varied the stimulus

strength (0.25—1 mV) and the relative phase offset between the stimuli (0 − 2π) while evaluat-

ing the coherence between the stimulated nodes. All other parameters were chosen to be the

same as for the previous simulation. The variability in the coherence between stimulated

region pairs that we observed over stimulation phase offsets (as depicted for 2 example region

pairs in Fig 6A and 6B) shows that the stimulated region pairs interacted with each other and

that the interactions expressed a characteristic profile of phase offset preferences. As can be

seen in Fig 6A and 6B, the variance of the coherence over phase offsets depended on the stimu-

lation strength. Based on visual inspection of the coherence patterns of 20 different region

pairs, we chose our stimulus scaling to be cext = 0.5 mV, leaving the variance of the post-synap-

tic potential of the neural masses in a biologically plausible range and such that the external

driver is relatively weak in comparison to the internal network dynamics (the membrane

potential fluctuations of a single Jansen-Rit node are in the order of 1-10 mV). This gave us the

final set of global model parameters which were used throughout all subsequent simulations

and are reported in Table 1.

To statistically confirm the variance in the coherence between stimulated region pairs over

phase offsets, we ran simulations with subsequent stimulations of each possible node pair in

Fig 6. Pairwise stimulation with different phase offsets in the connectome. (A & B) Coherence between two

stimulated nodes for varying stimulation strength and phase offset. A and B correspond to two different example node

pairs that were stimulated to demonstrate the variability in phase lag preferences expressed by different node pairs.

Panels (C-F) show the Pathway Synchronization Facilitation (PSF) on a logarithmic vertical axis with red areas

indicating 95% confidence intervals and blue boxes indicating 1 standard deviation. (C) Dependence of PSF effect on

shortest path length between the node pairs. (D) Correlation between PSF effect and summed connection lengths

along the shortest pathway between the stimulated nodes (calculated from matrix Lmj). (E) Correlation between PSF

effect and the inverted connection strength between the stimulated nodes, which is measured as the Dijkstra distance

based on the inverted connection strengths 1/Cmj. (F) Dependence of the PSF effect on the number of paths

connecting the stimulated nodes.

https://doi.org/10.1371/journal.pcbi.1007551.g006

Table 1. Optimized model parameters.

Param. Value Interpretation

cnet 14 global connection strength scaling

v 2.6 m/s global velocity scaling

fext 11 Hz extrinsic stimulation frequency

cext 500 μV amplitude of extrinsic stimuli

https://doi.org/10.1371/journal.pcbi.1007551.t001
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the network. Again, we varied the phase offset between the two stimuli (16 equally spaced

phase offsets between 0 and 2π) and evaluated the coherence between the stimulated nodes for

each phase offset. Subsequently, those coherences were used to calculate the PSF for each

region pair as defined in Eq (1). Using a one-sample t-test, we found the PSF effect to be signif-

icantly larger than zero (mean = 0.10021, CI = [0.092875, 0.10755], t = 26.8268, p< .0001).

Hence, we were able to show with our extrinsic stimulation approach that pathways facilitated

synchronization between cortical nodes and that the facilitatory strength depended on the

phase lag between the region’s average PSPs.

With the PSF effect established, we continued by investigating its dependence on certain

features of the underlying structural connectivity graph. For this purpose, we searched for all

possible pathways between each pair of stimulated nodes based on the structural connectivity

matrix reported in Fig 4A. Since every stimulated pair of nodes was connected by at least one

path via at most 6 edges, we restricted the search to pathways including 6 edges at maximum.

With these pathways at hand, we started out by evaluating how the PSF effect changed with

increasing network distance. An analysis of variance showed that the effect of shortest path

length (minimum number of edges seperating a pair) on log(PSF) was significant, F(5,521) =

75.22, p< .0001. As can be seen in Fig 6C, we observed the trend that the PSF effect decreases

with the number of nodes separating the stimulated nodes. Furthermore, as depicted in Fig

6D, this trend was supported by a significant correlation between the PSF effect and the length

of the shortest pathway between the stimulated nodes (r = -0.57, p< .0001), a measurement

that is strongly related to both interregional distance and minimal number of separating edges.

Thus, we conclude that there is a tendency for a decrease in the interaction of stimulated node

pairs with increasing network distance, which can be measured either as the number of inter-

posed edges or as the summed up length of the edges of the shortest pathway connecting the

nodes.

Next, we investigated the dependence of the PSF effect on the connectedness between the

stimulated nodes. In this regard, we characterize the connectedness either by the connection

strength along the shortest path (evaluated in Fig 6E) or by the number of different pathways

connecting the two nodes (evaluated in Fig 6F). In the first case, we found a high correlation

between the Dijkstra distance, calculated from the inverted connection strengths 1/Cmj, and

the PSF (r = -0.73, p< .0001) which is depicted in Fig 6E. This confirms previous findings of

the dependence of the (directed) interactions between delay-coupled oscillators on their con-

nection strength [29, 32].

In the second case (Fig 6F), we measure the connectedness by the number of different

pathways connecting the two nodes. It was necessary to limit this analysis to include only

pathways with up to 6 edges, because of the combinatorial growth of the number of possible

pathways with more edges. In other words, considering pathways with more edges could lead

to scenarios in which node pairs show a large number of connected paths, even though those

pathways all have to pass through many intermediate nodes and might not contribute to the

interaction of these nodes through the network at all. Thus, to render this measure of con-

nectedness less noisy, we decided to exclude paths with more than 6 edges. An analysis of

variance showed that the effect of the number of connecting paths (only counting paths

with 5 edges or less, and all nodes with more than 5 connecting paths were pooled into one

level) on log(PSF) was significant, F(5,501) = 7.42, p < .0001. Together, these results (Figs 6

and 3) reveal how the variance of the interaction of network nodes over different phase lags

(as measured by the PFS) depends both on the strength and delay of their connecting

pathways.
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Evaluation of pathway activation

To identify, how different pathways between stimulated node pairs contribute to the PSF

effect, we next aimed to quantify how much a particular pathway was involved in the node

interaction at a given phase offset. For this analysis, we define the pathway activation (PA) for

a pathway through n nodes ki with i = 1‥n at a phase offset Δφ as the product of the pairwise

coherences between neighboring pathway nodes:

PAðk1‥kn;DφÞ ¼
Y

i¼1;::;n� 1
ðcohðki; kiþ1;DφÞÞ: ð3Þ

In other words, if communication fails at any point along a pathway, leading to a reduced

coherence between the involved nodes, this is considered to be a bottleneck for the informa-

tion flowing through that pathway. This is similar to the definition of efficiency of neural com-

munication via communication pathways provided in [21]. Thus, for the remainder of this

article, we will use changes in information flow and changes in pathway activation inter-

changeably. Furthermore, this metric ensures that short pathways are preferred over longer

pathways, since the coherence is bound to the interval between 0 and 1.

We evaluated the pathway activation (PA) for all pathways of up to n = 5 nodes connecting

a given pair of stimulated nodes for all stimulation phase offsets. Doing this for each stimulated

node pair, we found different classes of pathway interactions: Some pairs show only a very

small selectivity for the stimulation phase offset (Fig 7A), while other node pairs were con-

nected by paths with PA values with a strong dependence on the phase offset (Fig 7B and 7C).

Moreover, some of these node pairs switched their interaction between different pathways

depending on the stimulation phase offset. This is shown in Fig 7C, while the pathways

between which the switching occurs are visualized in Fig 7D and 7E.

There are several alternative ways to define the pathway activation. A similar analysis like in

Fig 7 was performed with a definition of pathway activation that is weighted with the average

connection strength along the path and is shown in supporting material S2 Fig. A second alter-

native is to calculate the minimum of all coherence values along the path instead of the product

of coherence values. In this way, the communication through a pathway is only constrained by

the path segment with the lowest coherence. The results using this definition are shown in sup-

porting material S3 Fig. Both alternative definitions of the pathway activation did not change

the overall results in a qualitative way, meaning that using any of these alternative definitions

there are always all three types of node pairs in the network: 1) pairs with no phase selectivity

in their strongest pathway (like in Fig 7A), 2) pairs with phase selectivity without switching

(like in Fig 7B), 3) pairs with pathway switching (like in Fig 7C).

To further analyze how the communication via specific pathways depends on the stimula-

tion phase offset, we define the pathway phase selectivity (PPS) of a pathway P1 similar to the

PSF as

PPSðP1Þ ¼ maxDφðPAðP1;DφÞÞ � minDφðPAðP1;DφÞÞ; ð4Þ

Pathways with relatively constant PA values for all stimulation phase offsets have a low PPS

(example in Fig 7A), while pathways with a high variation in the PA values have a high PPS

(example in Fig 7B and 7C). In general, the metric is bound to the interval between 0 and 1.

The evaluation of PPS values for all node pairs results in the distribution shown in Fig 7F.

The activation of pathways with a PPS close to 0 is very hard to influence with phase offsets

between the nodes at their ends. However, the further the PPS grows towards 1, the more sen-

sitive the PA is towards changes in these phase offsets. As indicated by the long tail of the PPS

Probing neural networks for dynamic switches of communication pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007551 December 16, 2019 12 / 23

https://doi.org/10.1371/journal.pcbi.1007551


distribution, a significant amount of pathways in the connectome model show such phase

preferences.

In the next step, we analyzed the relationship of pathway-specific phase preferences (as

shown in Fig 7A–7C) to the phase preferences of the stimulated nodes (as shown in Fig 5C

and 5D). We chose the most active pathway per node pair (averaged over all stimulation phase

offsets) and calculated the phase difference between the stimulation phase offset with the high-

est coherence between the stimulated nodes and the stimulation phase offset with the highest

PA. The histogram of these phase differences is significantly different from uniform, χ2(15,

N = 514) = 155.31, p< .001, and has a peak at 0 (Fig 7G). A similar analysis for the second

strongest pathway (excluding all pathways with overlapping sections with the strongest path),

results in a histogram that differs only slightly from a uniform distribution, χ2(15, N = 514) =

26.82, p = 0.03 (Fig 7H). Hence, we found that the pathway with the strongest PA shows a sim-

ilar phase preference as the coherence between the two stimulated nodes. We take this as

Fig 7. Dependence of path activation (PA) on stimulation phase offset. Panels (A-C) show the PA values (radius)

for different stimulation phase offsets (angle) for example node pairs. Blue corresponds to the pathway with the

strongest overall PA. Red corresponds to the second strongest pathway that has no overlapping segments with the

strongest. Green curves show the strongest of the remaining pathways (with possible overlapping path segments with

the former two). The two arrows in (C) indicate the phase offsets which are used in panels (D-E). (D) Connectome

pathways for stimulation of the node pair shown in (C) at phase offset 1.5π. The two stimulated nodes are shown as

two black dots. The most active pathway at this stimulation phase offset is highlighted with a stronger line width. All

colors correspond to the coherence of nearest neighbours in the connection graph. (E) Similar to (D) but for

stimulation phase offset 0.5π with a different most active pathway. (F) Histogram of pathway phase selectivity. The

values of the strongest paths of examples shown in (A-C) are marked with arrows. (G) Histogram of phase differences

between the stimulation phase offset where the most active pathway has the highest pathway activation and the

stimulation phase offset where the coherence between the stimulated nodes was highest. (H) Similar to (G) but for the

second most active pathway (excluding path overlaps with the most active pathway). (I) Histogram of normalized

pathway switching index between the strongest and second strongest pathways. The values of the node pairs of

examples shown in (A-C) are marked with arrows. The square-root normalization of the PSI transforms back from the

space of multiplied coherence values to the original non-squared coherence space (analogous to a transformation from

variance to standard-deviation).

https://doi.org/10.1371/journal.pcbi.1007551.g007

Probing neural networks for dynamic switches of communication pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007551 December 16, 2019 13 / 23

https://doi.org/10.1371/journal.pcbi.1007551.g007
https://doi.org/10.1371/journal.pcbi.1007551


evidence that the interaction between the nodes through the network is strongly modulated by

this pathway.

Finally, we quantified the process of switching between the strongest and second strongest

pathway per node pair. To this end, we define the pathway switching index (PSI) between

pathways P1 and P2 as

PSIðP1; P2Þ ¼ max
Dφ
ðPAðP1;DφÞ � PAðP2;DφÞÞ ð5Þ

� max
Dφ
ðPAðP2;DφÞ � PAðP1;DφÞÞ; ð6Þ

The PSI is positive if the two pathways switch their activation depending on the stimulation

phase offset, meaning that at one phase offset the first path is more active and at another phase

offset the second path is more active. We found that 33% (170 of 514) of node pairs have a pos-

itive PSI between their non-overlapping strongest and second strongest pathways (Fig 7I).

These results suggest that in this network of 33 nodes of the human connectome many node

pairs have the capacity to switch their communication between at least two different pathways

with a PA characteristic similar to the example shown in Fig 7C.

Discussion

We have carried out a computational study of cortico-cortical synchronization processes that

strongly emphasizes the role of phase relationships for dynamic switches in communication

pathways. In this process, we introduced a novel method to detect network interactions

between pairs of cortical regions via an extrinsic stimulation scheme. Using our method, we

were able to quantify the influence of different pathways on cortico-cortical coupling between

all pairs of 33 brain regions. We could further identify the pathways those region pairs use to

interact with each other. These pathways represent communication channels with distinct pre-

ferred interaction time lags.

One of the main findings of our work is that the pathway activation depends on the phase

lag between the nodes they connect. This finding is in line with the communication-through-

coherence theory that predicts neural communication to depend on oscillatory phase differ-

ences and has received support from various experimental results [20]. In a transcranial mag-

netic stimulation study, Elswijk and colleagues demonstrated the effect of the stimulation on

primary motor cortex to depend on the oscillatory phase of the latter [47]. Similarly, Helfrich

and colleagues found the performance in a visual detection task to be modulated by the phase

of a 10 Hz transcranial alternating current stimulation applied to the parieto-occipital cortex

[48]. Together, these experimental results support the idea of the communication-through-

coherence theory that the effectiveness of neural communication between a source and a target

population is modulated by the oscillatory phase of the latter. In a study using multielectrode

recordings in frontal eye field and area V4 of monkeys, Gregoriou and colleagues were able to

show that neural populations at both recording sites synchronized at characteristic time lags

when processing a stimulus in their joint receptive field [49]. Based on the communication-

through-coherence theory this may be explained by the axonal and synaptic delays of the com-

munication pathways between these two areas, which render synchronization at this time lag

most effective. The work presented in this article contributes to this notion via its systematic

investigation of the dependence between pathway delays and neural synchronization. Our

observation that the synchronization of two brain regions via simultaneous extrinsic stimula-

tion has a preference for particular phase offsets between the two stimulation signals demon-

strates the mechanistic role of phase lags for neural communication within a computational
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model. We were able to extend this finding to individual communication pathways, i.e., we

showed that these pathways can express more or less strong preferences for the phase lag

between the brain regions they connect. Together with the results of our toy-model simula-

tions, which showed a direct dependence of neural synchronization on propagation delays in

various connectivity motifs, this emphasizes the importance of connection delays for pathway

switching. Moreover, it suggests that the effectiveness of information exchange via certain

pathways depends on the phase relationship between the communicating sites.

The functional significance of these phase lag preferences is underlined by our finding that

different pathways may be employed at different stimulation phase offsets between the com-

municating regions. Exploiting this mechanism, brain regions could dynamically switch

between communication pathways by alterations in their phase lags. This flexibility in the

choice of pathways could reflect a major self-organization mechanism of the brain. Specifically,

the processing of transient sensory events may trigger strong phase shifts at certain sites in the

brain that render certain pathways inaccessible due to their inherent delays. Our results sug-

gest that in such a situation, the brain could employ a different set of routes to still enable com-

munication between populations that previously relied on the now inaccessible pathway. As

suggested in [12, 50], flexible switching between different processing pathways could also

allow for the dynamic binding of remote neural representations into different combined repre-

sentations. Both external stimuli and network intrinsic signals could act as phase-resetting

mechanisms at the communicating sites and thus switch from one pathway to another within

a few oscillatory cycles [51].

In our study, we considered the case of simultaneous, sinusoidal stimulation of two net-

work nodes with a relative phase offset between the stimulation signals. In the following, we

discuss how such a phase offset could arise in a biological network without external stimula-

tion. On the one hand, a network internal stimulation could originate from a common neural

driver that projects to several target sites with slightly different delays. Our results suggest

that such delays could favour some communication pathways between these target sites over

others. Thus, the common neural driver would not only be able to project its information to

its target sites, but also choose certain pathways via which information about the input is pro-

cessed. Given different neural drivers that project to the same target sites with distinct delays,

different routes for integrating the information could be associated with the driving delays.

On the other hand, the stimulation could also originate from an external sensory stimulus. In

this scenario, different features of the stimulus are processed along different neural pathways

that will converge along the sensory hierarchy. Our results suggest that the convergence of

these pathways is sensitive to differences in the processing delays across pathways. Differ-

ences in processing delays could for example arise from variations in the prominence of cer-

tain stimulus features for which a certain pathway is sensitive. Depending on the prominence

of the feature, the neural responses would be more or less synchronized which directly trans-

lates to differences in the processing delay further up the processing hierarchy [21]. Alterna-

tively, the feature prominence could affect the processing delay by advancing the phase of an

oscillation, by increasing the oscillation frequency, or by reducing the time to entrain other

oscillators [20, 21]. This has for example been demonstrated for neural signal transmission

between primary and secondary visual cortex in macaque monkeys [52]. Along these lines,

Voloh and Womelsdorf provide a convincing overview with respect to different experimental

scenarios in which stimulus-triggered phase resets lead to re-organizations of functional net-

works [53].

Different scenarios could be imagined in which input-dependent changes in the phase of a

specific node affect the pattern of active output pathways of that node. One example would be

the scenario described in [19, 20], where two bottom up neural drivers encoding different
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stimuli try to entrain a target population at different phase lags. While our results suggest that

entrainment at different phase lags could affect the pathways along which the winning stimu-

lus is processed further, this scenario of competing input stimuli is not explicitly considered in

this study. Thus, future work could investigate pathway switching due to transient inputs

delivered at different phases of the ongoing oscillations. To this end, a major challenge will be

the required online read-out of the phase of the source node to correctly time the input. This

scenario would allow to further test our proposal of dynamic switching of communication

pathways in both computational models and experimental setups. A potential candidate for

the latter would be brain stimulation studies, employing for example transcranial stimulation

or optogenetics in combination with online recordings of neural activity [54, 55]. For a review

on how such phase shifts can be induced in models of single cells and networks of interconnec-

ted cells, see [54].

We would like to propose two further future directions along which our line of research

could be extended and at the same time, address two important simplifications in our model.

First, we only considered discrete delays in our model, resembling average lengths of DTI-trac-

tography based cortico-cortical tracts. However, from experimental studies it is known that

long-range interactions in cortex express less sharp delay profiles [56]. Indeed, computational

studies have found that the variance of delay distributions affects synchronization properties

of delay-coupled systems in various ways [57, 58]. Thus, a systematic study of how stimulus

phase-dependent effects on cortical routing (as reported in this study) may change with the

variance of distributed delays could shed light on the validity of our results for biologically

more realistic delay-coupling profiles.

Another simplification of our study concerns the Jansen-Rit model we used to represent

the cortical dynamics at each of our network nodes. This model was developed to describe

dynamics of average membrane potential fluctuations in three interconnected cell popula-

tions. However, the model equations have not been derived from a single cell representation

of such a network [36]. As such, the model provides limited information about the underly-

ing single cell states, such as the within-population synchronization degrees. This means that

the model does not allow investigating the dependence of its synchronization with other net-

work nodes on the degree of neural synchronization within its underlying neural popula-

tions. However, how strongly the excitability of a population varies within its oscillatory

cycle clearly depends on this degree of within-population synchronization [20]. Recently

developed mathematical descriptions of the macroscopic dynamics of networks of spiking

neurons have overcome these problems and allow deriving the synchronization of the neural

population directly from its mean-field description [59]. Unfortunately, models of cortical

microcircuits have yet to be developed for these novel mean-field descriptions. With such

models at hand, it would be feasible to investigate interactions between within- and between-

population synchronization processes at a macroscopic scale and to investigate whether com-

munication pathways in delay-connected networks express similar phase preference profiles

as we found in this study.

Taken together, our results suggest a potential mechanism the human brain might have

developed to use the physiological constraints imposed by coupling delays to its computational

advantage. We have laid out several future directions of research that could help to advance

and confirm these findings. From an experimental point of view, the stimulation method

applied in our computational model could guide the development of brain stimulation proto-

cols to probe dynamic switching between communication pathways in the brain. Additionally,

our stimulation method and graph metrics are applicable in future theoretical studies charac-

terizing the dynamic properties of network graphs.
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Materials and methods

In the following, we present the detailed parameters of the neural mass model, the pre-process-

ing of the structural connectivity, and the functional connectivity.

Neural mass model

In the Jansen-Rit model, signal transmission between cell populations is realized via a convolu-

tion of average pre-synaptic firing rates with a post-synaptic response kernel. These convolu-

tion operations are mathematically described by the coupled ordinary differential equations in

Fig 2 (each line describes a synaptic convolution operation) and turn pre-synaptic firing rates

into post-synaptic potentials. The simple exponential form of the response kernel is in line

with empirically measured post-synaptic responses [60] and provides a sufficient approxima-

tion of synaptic response time scales for our purposes. To translate post-synaptic responses

back into firing rates, an instantaneous sigmoidal transform is used as shown in Fig 2 which

introduces non-linearity to the model behavior.

The parameters of the neural mass model are shown in Table 2.

They reflect the standard parametrization proposed by Jansen and Rit for modeling wax-

ing-and-waning cortical alpha oscillations at around 10 Hz [36]. While some of those parame-

ters (such as the connection strength ratios) were informed by experimental findings, others

can be considered free parameters in bio-physiologically plausible ranges. The dynamic depen-

dence of the Jansen-Rit model on its parameters has been investigated in various theoretical

studies [36, 61–63]. For our study, it is important that each network node is kept in an oscillat-

ing dynamic regime in which the oscillation amplitude is sensitive to the network input. Since

the model has several control parameters that can lead to aperiodic network behavior (see [36,

62, 63]), we decided to stick with the standard parametrization proposed by Jansen and Rit

(Table 2) for each node in our network.

Thus, the only model parameter that is varied in our simulations is the average input to the

model arising from the background noise, network interactions and external stimulation. As

shown by Spiegler and colleagues, the Jansen-Rit model undergoes various bifurcations due to

alterations of the input strength that can drive the model into bi-stable periodic or aperiodic

regimes [63]. To investigate whether such undesired states could be entered under the condi-

tions imposed by our simulations, we calculated the minimum and maximum of the average

input a single node may receive in our simulations. Besides the extrinsic stimulation signal,

Table 2. Jansen-Rit model parameters.

Param. Value Interpretation

He 3.25 mV avg. gain of excitatory synapses

Hi 22 mV avg. gain of inhibitory synapses

τe 10 ms lumped time constant of excitatory synapses

τi 20 ms lumped time constant of inhibitory synapses

c1 135 avg. number of contacts from pyramidal cells to exc. interneurons

c2 0.8 � c1 avg. number of contacts from exc. interneurons to pyramidal cells

c3 0.25 � c1 avg. number of contacts from pyramidal cells to inh. interneurons

c4 0.25 � c1 avg. number of contacts from inh. interneurons to pyramidal cells

e0 2.5
spikes

s
maximum scaling of the synaptic gain

r 0.56 mV−1 steepness of the sigmoid function

V0 6 mV value with 50% of max. firing rate

uj 120–320
spikes

s
sub-cortical noise distributed uniformly

https://doi.org/10.1371/journal.pcbi.1007551.t002
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which is centered around 0 mV, there are two rate-based inputs at each node. (1) The sub-cor-

tical noise is modeled by a Gaussian process with a mean of m ¼ 220:0 1

s. (2) The network

input is ranging between 0 1

s and e0c ¼ 100 1

s. Feeding (1) and (2) into a single excitatory syn-

apse with efficacy H = 3.25mV and τ = 0.01s, we find that it produces a synaptic input ranging

between 7.5mV and 10mV. As shown by [63] the Jansen-Rit model expresses a mono-stable

dynamic regime in this input range with a limit cycle being the only stable equilibrium. Varia-

tion of the input strength within this range mainly results in a modulation of the oscillation

amplitude. Thus, the models considered in this study can conceptually be viewed as networks

of (sparsely) coupled non-linear oscillators with discrete time delays.

If not reported otherwise, simulation results reported for those models refer to 16 minutes

of simulated network behavior. We solved the model equations using the Runge-Kutta algo-

rithm of 4th order (RK4) with an integration step-size of 1 ms. An analysis of the influence of

the simulation step size on the accuracy of the simulation can be found in supporting material

S1 Fig.

Structural connectivity and distance estimates

In the first step to building a bottom-up model of cortical activity, we needed to approximate

the structural connections between different brain regions. As mentioned in the introduction,

this can be done via DTI recordings. However, there are several technical limitations of the

extent to which human SC can be approximated based on DTI, one of them being the system-

atic underestimation of inter-hemispheric connections [64, 65]. Thus we decided to restrict

our analysis to the cerebral cortex of a single hemisphere. To this end, we used the same struc-

tural imaging data, pre-processing and probabilistic tracking pipeline as reported by Finger

et al. [30], but restricted subsequent processing to the 33 regions of interest (ROIs) of the left

hemisphere. This data set included diffusion- and T1-weighted images acquired from 17

healthy subjects (7 female, age mean ± s.d. = 65.6y ± 10.9y) with a 3 Tesla Siemens Skyra MRI

scanner (Siemens, Erlangen, Germany) and a 32-channel head coil. The 33 ROIs were regis-

tered individually for each subject based on the ‘Desikan-Killiany’ cortical atlas available in the

Freesurfer toolbox (surfer.nmr.mgh.harvard.edu) [66]. The incoming connections to each

region were normalized such that they summed up to 1. Since we were only interested in syn-

chronization along indirect pathways, we needed some connections in our model to be strictly

0. Otherwise, it would be difficult to exclude potential synchronization along very weak direct

connections. Hence, we chose to set all connections below a strength of 0.1 to zero. Afterwards,

we re-normalized the input to each region such that they summed up to 1. The resulting SC

matrix as well as the pair-wise distances calculated from the average tract lengths are visualized

in Fig 4A and 4B.

Empirical resting-state functional connectivity

Based on those SC and distance information we aimed to build a model of cortical activity able

to reflect empirically observed synchronization behavior. Thus we needed empirical observa-

tions of cortical activity to evaluate our model. For this purpose, we acquired EEG data from

the same 17 subjects as described above. This was done with 63 cephalic active surface elec-

trodes arranged according to the 10/10 system (actiCAP R Brain Products GmbH, Gilching,

Germany) for eight minutes of eyes-open resting-state. Again, data acquisition and pre-pro-

cessing followed the same procedure as reported by Finger et al. [30]. EEG time-series from

the surface electrodes were projected onto the centers of the ROIs via a linear constraint mini-

mum variance spatial beam former [67]. The resulting source-space signals were band-pass fil-

tered at 10 Hz and turned into analytic signals using the Hilbert transform. Subsequently,
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functional connectivity was evaluated as the coherence between all pairs of ROIs [68]. This

resulted in the 33 x 33 functional connectivity matrix that can be observed in Fig 4C in the

main paper and served as optimization target for our model.

Supporting information

S1 Fig. Evaluation of simulation step size. (A) comparison of the timeseries for different step

sizes of the Runge-Kutta integration method. All time series are of the same node that is

embedded in the connectome network of 33 nodes. (B) The correlation matrix between the

timeseries using different simulation step sizes. (C) The correlation between functional con-

nectivity matrices obtained using different simulation step sizes.

(TIF)

S2 Fig. Evaluation of pathway activation with weighting of connection strengths. The pan-

els correspond to Fig 7 in the main text. Please find the detailed panel descriptions there.

(TIF)

S3 Fig. Evaluation of pathway activation using the minimum of the coherence along path

segments instead of the product. The panels correspond to Fig 7 in the main text. Please find

the detailed panel descriptions there.

(TIF)
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