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Abstract

Understanding the gating mechanism of ion channel proteins is key to understanding the

regulation of cell signaling through these channels. Channel opening and closing are regu-

lated by diverse environmental factors that include temperature, electrical voltage across

the channel, and proton concentration. Low permeability in voltage-gated potassium ion

channels (Kv) is intimately correlated with the prolonged action potential duration observed

in many acidosis diseases. The Kv channels consist of voltage-sensing domains (S1–S4

helices) and central pore domains (S5–S6 helices) that include a selectivity filter and water-

filled cavity. The voltage-sensing domain is responsible for the voltage-gating of Kv chan-

nels. While the low permeability of Kv channels to potassium ion is highly correlated with the

cellular proton concentration, it is unclear how an intracellular acidic condition drives their

closure, which may indicate an additional pH-dependent gating mechanism of the Kv family.

Here, we show that two residues E327 and H418 in the proximity of the water cavity of

Kv1.2 play crucial roles as a pH switch. In addition, we present a structural and molecular

concept of the pH-dependent gating of Kv1.2 in atomic detail, showing that the protonation

of E327 and H418 disrupts the electrostatic balance around the S6 helices, which leads to a

straightening transition in the shape of their axes and causes dewetting of the water-filled

cavity and closure of the channel. Our work offers a conceptual advancement to the regula-

tion of the pH-dependent gating of various voltage-gated ion channels and their related bio-

logical functions.

Author summary

The acid sensing ion channels are a biological machinery for maintaining the cell func-

tional under the acidic or basic cellular environment. Understanding the pH-dependent

gating mechanism of such channels provides the structural insight to design the molecular

strategy in regulating the acidosis. Here, we studied the voltage-gated potassium ion
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channel Kv1.2 which senses not only the electrical voltage across the channels but also the

cellular acidity. We uncovered that two key residues E327 and H418 in the pore domain

of Kv1.2 channel play a role as pH-switch in that their protonation control the gating of

the pore in Kv1.2 channel. It offered a molecular insight how the acidity reduces the ion

permeability in voltage-gated potassium channels.

Introduction

Electrical signals in neurons are generated by sequential gating of several voltage-gated ion

channels on their cell membranes. The opening and closing of these channels are not only sen-

sitively controlled by membrane potentials in general, but also respond to the intra- and extra-

cellular conditions, such as chemicals [1, 2], mechanical pressure [3], temperature [4], and

proton concentrations [5]. Among these channels, the voltage-gated potassium channels (Kv)

are selectively permeable to potassium ions and repolarize the membrane potential in response

to depolarizing voltage [6]. The molecular mechanisms underlying this potassium ion-selectiv-

ity and voltage-dependent gating of the Kv channels have been extensively studied [7–11].

However, the molecular mechanism of pH-dependent gating in Kv channels is less well-under-

stood, although it has been revealed that the potassium ion permeability is inhibited by the

high proton concentration in acidosis [12]. The low permeability in the Kv channels is inti-

mately correlated with the prolonged action potential duration observed in acidosis diseases

such as cardiac arrhythmias.

These Kv channels have a tetrameric structure composed of four homo-subunits surround-

ing an ion-transporting pore, with each subunit containing six membrane-spanning α-helices

called S1–S6. They are spatially separated from a voltage-sensing domain-containing S1–S4

and a central pore domain-containing S5–S6 that includes a P-helix (Fig 1A). These two

domains are connected by an S4–S5 helical linker [13]. The pore domain contains a potassium

ion-selective pathway and gates spanning the cell membrane. The narrowest part (extracellular

side) on the pore in the channels is the “selectivity filter”, whereas the opposite part (intracellu-

lar side) of the filter on the pore is the “water-filled cavity” (Fig 1B). The gating of the Kv chan-

nels is structurally determined by whether the water-filled cavity is wetted or dewetted.

In Kv1.2 channels, as in the other members of the non-inactivating ion channel family,

ionic currents flow in response to the applied depolarized voltage and are maintained until the

end of depolarization. Kv1.2 channels maintain the closed conformation at polarized (resting)

potentials or the open conformation at depolarized potentials. A permeability of ion channels

is defined by the ionic currents per surface area. The appearance of ionic currents is induced

by the opening transformation of the channels with wetting water cavity. On the other hand,

the disappearance of ionic currents is accompanied by the closing transformation of the chan-

nels with dewetting cavity [7]. Previous experimental work at depolarized voltage showed that

the permeability of Kv1.2 channels to potassium ions gradually decreases as the pH changes

from 7.5 to 4.5 (midpoint at around 5.3), whereas pH-independent zero permeability appeared

at resting voltage [12]. This implies that the protonation of some titratable residues make the

channels resist the transition from closed to open conformations against depolarized voltage.

Here, we report our observations from an all-atom molecular dynamics (MD) simulation.

We found that the voltage-gated Kv1.2 ion channel has dual-functionality due to protonation

of the conserved residues E327 and H418 situated near the water cavity on the intracellular

side because it induces the gating transition of the pore domain from an open to closed posi-

tion under acidic conditions. We characterized the structural role of the two determinant
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residues E327 and H418 in the gating of Kv1.2 channels, which can be protonated under a rea-

sonable acidic condition, as demonstrated in the previous experimental study [12]. We suggest

the molecular and structural mechanism underlying the acid-induced low permeability of

Kv1.2 channels by uncovering the mechanism under acidic conditions.

Fig 1. Schematic illustration of the Kv channel structure. (A) A cartoon model of a subunit of the Kv channel

showing the voltage-sensing domains (VSDs) (S1–S4) in yellow, the S4–S5 helical linker in green, the S5 helix in cyan,

the P-helix in pink, and the S6 helix in blue. (B) Two opposite subunits of the pore domain of the Kv channel are

represented by ribbons. The other two subunits have been omitted. The selectivity filter is shown in purple, and the

water cavity is located below the water cavity. The hinge region in S6 helix is highlighted in red.

https://doi.org/10.1371/journal.pcbi.1007405.g001
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Results

Identification of the key acid-responding residues in Kv1.2

To identify the key residues that might be protonated under acidic pH and resting voltage con-

ditions, that is, from pH 7.5 to around pH 5.3, we attempted to estimate the pKa values of the

titratable residues in Kv1.2 channels with closed conformations. The Kv1.2 channel is inacti-

vated with zero permeability in the resting voltage [12]. Thus, physiologically the default state

of the Kv1.2 channel is an inactivated state with the pore closure. Nevertheless, the unproto-

nated wild-type (named WildUnP) conformation provided by PDB 2R9R [14] was in the open

conformation. Therefore, we needed to generate the closed structure of Kv1.2 channel from

the opened structure either by applying the resting voltage (about -60mV) or the acidic pH to

an initial opened structure. We, however, noted that our MD simulation was done only with

the pore domain of the channel while the voltage sensing domain (VSD) of the channel is nec-

essary to induce such conformational change subject to the application of the resting voltage.

In our setting of MD simulation, we therefore applied the strong acidic condition (namely pro-

tonating E327/H418/E420) to an initial opened structure in order to obtain the closed state in

the physiological condition for Kv1.2 pore domain. Here, we considered the pore domains

(residue numbers: 312–421) that are responsible for the gating of the Kv1.2 channel, excluding

the voltage-sensing domains. Based on the representative structural ensembles of the closed

conformations in forth trajectory (S5E Fig), the pKa values of the titratable residues in the

channel were estimated (Fig 2A) [15]. The pKa values of both E327 in the A- and D-chain and

H418 were around 6.0, which means that these two residues can be protonated under the

above acidic conditions. Here, pKa of E327 residues were seemed to reside in the 2-fold sym-

metry whereas pKa of H418 residues remained in the 4-fold symmetry. The closed conforma-

tions of the channel, considered for our pKa estimations, were shown to maintain 2-fold

symmetry near the water cavity, while the other parts of the channel were remained in 4-fold

symmetry (Upper panels of Fig 3A). Presumably, the pKa of E327 residues sensitively reacted

to the structural change near the water cavity with 2-fold symmetry rather the pKa of H418

residues. Multiple sequence alignment for Kv1 subfamily proteins showed that almost residues

are conserved (Fig 2B). Among these conserved residues two residues E327 and H418 are

located near the water-filled cavity, and many charged amino acids are distributed around

E327 and H418. Since the protonation of E327 and H418 residues could affect the conforma-

tional transition of the pore domain of the Kv1.2 channel, we decided to investigate the effect

of protonation of the E327 and H418.

Protonation of E327 and H418 induces closure of Kv1.2

We performed atomistic MD simulations of the central pore domain in the Kv1.2 channel for

both a Ep327/Hp418 state (here, “p” indicates the protonation; details of our MD simulations

are provided in the Supplementary Information) and WildUnP (as a control group). Starting

from the initial open conformation of the central pore domain in the Kv1.2 channel, five tra-

jectories of MD simulations for each of a WildUnP and a Ep327/Hp418 state were run for 2 μs,

and the conformational ensembles of the central pore domain in the Kv1.2 channel were sam-

pled (Fig 3A) [16]. The number of water molecules in the cavity implicates that the closed con-

formations were sampled in Ep327/Hp418 (Fig 3B and S3 Fig), but not in WilldUnP [17]. This

result demonstrates that the protonation of E327 and H418 destabilizes the charge interaction

network of R326, E327, and H418 under acidic condition. As a result, it induces conforma-

tional change from open to close form (Fig 3B and 3C).
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Structural and molecular mechanisms of the pore closure of Kv1.2

Based on the structural ensembles collected from our MD simulations, we quantified the struc-

tural alterations between the open and close form of Kv1.2 channels. The PVP

(P405-V406-P407) motif which is located in the middle of H6 (Fig 1B) is flexible and acts as a

hinge [17, 18]. This flexible hinge allows the change of kinked angle during channel gating.

Fig 2. pKa estimates of H418 and acidic residues and two key residues in the Kv1.2 channel. (A) The pKa estimates of H418 and

the acidic residues in the pore domain of the closed Kv1.2 channels. (B) Multiple sequence alignment for the pore domains of the rat

Kv1 subfamily. The cylinders above the sequences denote the secondary structural information of the four helical segments. The two

key conserved residues E327 and H418 are highlighted in yellow and bold font. (C) Bottom and side views of the close pore domain

of the Kv1.2 channel. The four subunits are represented by different colors in the ribbon diagram. The magnified view shows the key

residues E327 and H418 and their neighbors in the inner helical bundle, which are represented by the licorice and Cα balls.

https://doi.org/10.1371/journal.pcbi.1007405.g002
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Fig 3. Pore closure due to protonation of the two key residues E327 and H418 in the Kv1.2 channel. (A) The structures of the

open and closed Kv1.2 channel. Here, the ribbons represent the pore domain of Kv1.2 channels, the blue spheres denote water

molecules, and the gray spheres denote potassium ions. The upper panel illustrates the bottom view of the open and closed

conformations. The lower panel shows the wetted and dewetted water cavity in the channel. Both the two opposite subunits and

lipid molecules have been omitted from the lower panel. (B) The time evolution of the number of water molecules in the water
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We studied how inter-subunit interaction (R326, E327, and H418) affect the channel gating

(Fig 4A). We used two structural determinants that can distinguish the open conformation

from the closed conformation of the pore in Kv1.2 channels, namely, the R326–H418 inter-

subunit distance defined by the nearest inter-atom distances in these two residues (the bottom

view in Fig 4A) and the dihedral angle extended by the positions of the Cα atoms in four resi-

dues (L393, L400, V408, and Y415) on the S6 helix (yellow ball of the side view in Fig 4A) as a

measure of the kinked angle of S6. The dihedral angle determines whether the S6 helix is bent

or straight [18].

The Supplementary Information in S1C, S1D, S3C and S3D Figs shows the time evolution

of the values of the R326–H418 inter-subunit distance and the dihedral angle from the struc-

tural ensembles collected in the last 500 ns time window of our MD simulations, which dem-

onstrates the effects of the protonation of E327 and H418. The R326–H418 distances in the

Ep327/Hp418 state of the Kv1.2 channels become longer and the distance distribution is much

broader compared with those of the WildUnP, for which the most frequent distances are

around 6 Å (Fig 4B). The drastic increase in the R326–H418 distances in the Ep327/Hp418

state is due to the repulsive Coulomb interaction between R326 and Hp418. The distribution

of the dihedral angles extended by L393, L400, V408, and Y415 on the S6 helix of the WildUnP

Kv1.2 channels has a distinct peak at around 130˚, indicating that the S6 helix is bent (the dot-

ted black line in Fig 4C). On the other hand, the protonation of both E327 and H418 gives rise

to a secondary peak around 245˚ in their distribution, indicating that the S6 helix is straight-

ened (the solid red line in Fig 4C). The increase in the R326–H418 distance is closely corre-

lated with the increase in the dihedral angle extended by L393, L400, V408, and Y415 on the

S6 helix and is well captured by the heat map of the ensemble population along the two axes of

each quantity (Fig 4D). The heat map in the Ep327/Hp418 state revealed that the increase in

the R326–H418 inter-subunit distance straightened the S6 helix. The change in the degree of

the dewetting in the cavity of the Kv1.2 channels is also closely correlated with the straighten-

ing of the S6 helix. This close correlation is demonstrated in the heat map of the ensemble pop-

ulation along the two axes of the dihedral angle and in the number of water molecules in the

cavity (Fig 4E).

Overall, Hp418 was electrostatically pushed by R326 at the end of the S6 helix under acidic

conditions. This changed the shape of the S6 helix from bent to straight. Therefore, the

straightening of the S6 helix is a robust indication of pore closure in the potassium channel

Kv1.2 [19–21]. Here, we suggest that the repulsive Coulomb interaction of the inter-subunits

triggered by the protonation of the two key residues E327 and H418 is the molecular mecha-

nism of the pore closure in the Kv1.2 channels, together with both the increase in the inter-

subunit distance and the straightening of the S6 helix.

Altering the conformation of Kv1.2 through protonation or mutation

The conformation of the Kv1.2 channel was further probed by examining the changes in the

inter-subunit interactions among R326, E327, and H418 and the intra-subunit interaction

between K312 and E420. We were able to modify the charge states of these residues through

protonation or mutation. First, we modified the inter-subunit interaction by changing the

cavity of the WildUnP or Ep327/Hp418 states of the Kv1.2 channel. The five individual plots in each state represent the simulation

results from each trajectory of our MD simulations. In addition, the red horizontal line separates the wetted state from the dewetted

state of the water cavity. (C) The distributions of the number of water molecules in the water cavity. The left region with fewer water

molecules corresponds to the dewetting condition, whereas the right region with many water molecules corresponds to the wetting

condition.

https://doi.org/10.1371/journal.pcbi.1007405.g003
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Fig 4. Straightening of the S6 helix due to protonation of the two key residues E327 and H418 in the Kv1.2 channel. (A) The

detailed structures of the open (left panels) and closed (right panels) Kv1.2 channels. The upper panel illustrates the distance

between the R326 and H418 residues. For the open conformation of the pore, the distance between E327 and H418 is 7.6Å, whereas

it is 14.7Å for the closed conformation. In addition, the lower panel shows the S6 helix when it is bent (black dotted line) or straight

(solid red line). Here, two neighbor subunits are displayed using purple and cyan color, respectively, while the other subunits have

been omitted. (B) The probability distribution curves for the inter-subunit distances between the R326 and H418 residues of the
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charge state of H418 to Hp418 (S2 Fig) or H418R (S6 Fig) which resembled the weak acidic

condition. Second, we broke the inter-subunit interactions by changing to Ep327/Hp418 (S3

Fig) or E327A/H418R (S7 Fig) which resembled the strong acidic condition. Third, we modi-

fied the intra-subunit interaction by changing the charge state of E420 to Ep420 (S4 Fig) or

E420A (S8 Fig). The protonation or mutation of E420 weakens the charge interaction between

E420 and K312. It destabilized the open conformation of the Kv1.2 channel and induced con-

formational change from open to closed. Additionally, these effect on K312, which located in

the S4-S5 linker, could propagate to the VSD throughout the S4 helix. Finally, we broke both

the inter- and intra-subunit interactions by changing to Ep327/Hp418/Ep420 (S5 Fig) or

E327A/H418R/E420A (S9 Fig) which resembled stronger acidic condition.

Our MD simulations for these 8 variants showed the structural transition from the open to

the closed conformation in the pore of the Kv1.2 channel for at least 1 out of 5 trajectories

(S2E to S9E Figs). The closed conformations of the variants commonly showed both an

increase in the inter-subunit distance (S2C to S9C Figs) and a straightening of the S6 helix

(S2D to S9D Figs), as like as the molecular mechanism of the pore closure of Ep327/Hp418

state. Of the variants, the correlation values between the R326-H418 distance and the dihedral

angles range from 0.64 to 0.89 (S2A to S9A Figs), and the correlation values between the num-

ber of cavity water and the dihedral angles range from 0.49 to 0.78 (S2B to S9B Figs). We were

thus able to control the pore closure of Kv1.2 through the various protonation or mutation,

which corroborated the molecular mechanism regarding the effect of charge-charge interac-

tions on the structure and gating of the pore domain of Kv1.2 channel.

Discussion

We investigated the molecular mechanism underlying the pH-dependent gating of the pore

domain of the Kv1.2 channel protein under intracellular acidic conditions. A decrease in envi-

ronmental pH from 6 to 5 with depolarized voltage causes Kv1.2 to undergo a conformational

change from open to closed [12]. Our pKa estimates indicate that only two amino acids E327

and H418 change their charge states in response to a change in the environmental pH. Thus,

E327 and H418 are proposed as key residues for pH sensing. To assess the role of the key resi-

dues under acidic pH conditions, we performed MD simulations with key protonated residues.

Ep327 and Hp418 highly destabilize the electrostatic interaction. Inter- and intra-subunit

interactions, which consists of K312, R326, E327, H418, and E420, were critically destabilized

by the change in the charge states of these titratable residues. Because the net charge of this

cluster changes from zero to positive (+1, +2, or +3), the intra-subunit interaction

K312-Ep420 weakens and the repulsive force between R326 and Hp418 increases the distance.

This repulsive force pushes the end of S6, leading to its distortion. In our simulation, the chan-

nels are perfectly closed when the two opposite subunits of S6 undergo a conformational

change. Two distorted S6 helices move close together and fill the space previously occupied by

the water. As a result, the closed conformation of Kv1.2 under acidic conditions was induced

by the protonated E327 and H418. We tracked the step-by-step conformational change using

MD simulation. H418R and E327A/H418R mutants undergo a structural change from an

open to closed conformation. Thus, we were able to modulate the conformation of Kv1.2 via

WildUnP and Ep327/Hp418 states. (C) The probability distribution of the dihedral angles, extended by the position of the Cα atoms

in L393, L400, V408, and Y415, for each state. The left half region with the angle smaller than 180˚ corresponds to the bent S6 helix,

whereas the right half and the secondary peak is the straight S6 helix. (D) Ensembles population of log scale for the R326–H418

distances and the dihedral angles. In the right panel for the Ep327/Hp418 state, a high correlation value of 0.84 was detected. (E)

Ensembles population of log scale for the dihedral angles and the number of water molecules in the water-filled cavity. In the right

panel for the Ep327/Hp418 state, a high correlation value of 0.77 was also detected.

https://doi.org/10.1371/journal.pcbi.1007405.g004
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in silico mutation of the key residues. It imply that H418R and E327A/H418R mutants have

low ion permeability, even under the neutral pH condition. With various protonated or

mutated MD simulations, we found that the charge interaction of inter- and intra-subunit

affects the channel gating. However, because of the sampling issues, we are not sure about a

quantitative comparison that which interactions are more important. Therefore, additional in-

vivo or in-vitro experiments are needed for the quantitative comparison.

The molecular mechanism of the voltage-dependent gating of the Kv channels involves dis-

placement of the VSD that regulate the wetting or dewetting of the cavity [7]. The previous

study shows that the S4 helix is the main moving part in the VSD which moved down ~15Å
across the membrane during the deactivation, and the motion of S4 affects the pore domain

through the S4-S5 linker [7]. In our simulation, the intra-subunit interaction between K312

and E420 is affected by the protonation state of E420, so the K312 (locate at the S4-S5 linker)

could restrict the motion of S4 depending on the environmental pH condition. As a result,

S4-S5 linker is affected by environmental pH. Since we simulated with the pore domain (resi-

dues 312–421, without VSDs) of Kv1.2, it does not fully reflect the realistic motion of a full

chain of Kv1.2 with VSDs. However, it would be used to understand the effect of the acidic

environment on channel gating of the pore domain. The coexistence of these voltage- and

acid-dependent gating mechanisms in Kv1.2 channels implies that both the voltage-induced

structural pressure and acid-induced structural pressure can simultaneously influence the gat-

ing of the channels. The possibility for this simultaneous action of two different mechanisms

of pore gating was indicated in previous experimental studies of the behavior of the potassium

ion current of Kv1.2 channels that suggested that the acidity competes with the depolarizing

voltage [12]. At a glance, this might be counterintuitive because the neuronal channels were

not able to distinguish the environmental factor that played a role in their own gating. How-

ever, it is worth noting that the time scale for the fluctuation in the membrane potential is on

the order of milliseconds, whereas that of the cellular pH is from seconds to minutes. Thus, the

permeability of potassium ion currents through Kv1.2 channels is not only finely controlled by

the depolarizing voltage in the short time interval but also governed by the acidity in the long

time interval. Our study offers insight into the dual-gating mechanisms of the Kv channels,

which orchestrate both the voltage-dependent and pH-dependent gating mechanisms of dif-

ferent molecular mechanisms.

Methods

All-atom molecular dynamics simulation

We performed MD simulations using GROMACS 5.0 [22] with the CHARMM36 force field

[23]. The initial configurations of the Kv1.2 channel for the MD simulation were generated

using CHARMM-GUI lipid builder [24]. The system consists of a channel protein, lipids (271

POPE in upper and lower leaflets), water molecules (~10,000 TIP3P water molecules). In

order to conduct the simulation under the same ionic conditions in the previous studies [7,

19], we added 0.6M of K+ and Cl- ions. The channel protein is a symmetric tetramer structure

with an open-pore domain (residues 312–421) that is derived from the X-ray crystal structure

of the Kv1.2 channel (PDB code: 2R9R) [14]. The system includes ~71,000 atoms in a rectan-

gular box (100 × 100 × 75 Å) under the periodic boundary condition. The particle-mesh Ewald

(PME) method [25] was applied for assessing long-range electrostatic interactions with a 12 Å
cut-off distance, and potential-based switching functions were used for van der Waals interac-

tions with a 10–12 Å switching range. The position of the hydrogen atoms was restrained by

the equilibrium bond length using the LINCS algorithm [26]. Approximately 5,000 steps of

steepest-descent minimization were conducted. We performed the heating process by
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gradually removing the restraint on lipids and protein over 20,000 steps for the stable 310K

system temperature. An additional 30 ns simulation with a restrained protein backbone was

performed to equilibrate the water cavity position, followed by a production run. The produc-

tion simulations were carried out for 2 μs with a 2 fs time step in NPT ensemble holding a con-

stant particle number (N = ~71,000), pressure (P = 1 bar), and temperature (T = 310 K).

Temperature was controlled by the Nosé–Hoover temperature coupling method [27, 28] with

a tau-t of 1 ps and pressure was maintained by the semi-isotropic Parrinello–Rahman method

[29, 30] with a tau-p of 5 ps and compressibility of 4.5 × 10−5 bar−1. All trajectories were

recorded every 10 ps, and VMD software [31] was used for the visual analysis.

pKa calculation

For pKa estimates of H418 and the acidic residues in the pore domain of the closed Kv1.2

channels, several processes were executed. 1) We extracted 98 ensemble structures of the Kv1.2

channels with pore closure in the last 1 μs time window from our MD simulation for an

Ep327/Hp418/Ep420 state. In our setting of MD simulation the pore domain of Kv1.2 channel

together with explicit membrane lipids, water molecules, and ions were included. 2) In order

to select preferred titration states among all possible titration states in the pH range from 3 to

8, we took advantage of MEAD algorithms [15] to the 10 out of 98 pore closure ensembles

with these options (dielectric constants of a molecular interior region / solvent region were εin

= 6.0, εsol = 80.0, ionic strength was 0.15 mol/l, and the effect of membrane was excluded.). 3)

We selected 765 titration states of the channels that were predominant in the pH range from 3

to 8. For the estimation of pKa values we utilized these 765 titration states and 10 pore closure

structural ensembles from our MD simulation. 4) At each titration state on all 98 ensemble

structures, we calculated the system energies in the implicit water using AMBER force field

99SB [32]. 5) From the titration states of 3) and the system energies of 4), we reconstructed the

partition function, the protonation fractions and estimated pKa values of H418 and the acidic

residues (Fig 2) [33]. Red circles in the figure represent the pKa values when the average ener-

gies (using AMBER force field 99SB) of ensemble structures, 〈E〉, were used to calculate the

protonated fraction as a function of pH for the corresponding titration states. The blue crosses

represent the pKa values when the statistical variance of the energies 〈E〉±0.1σ,〈E〉±0.2σ,. . .,〈E〉
±1σ was considered to reflect the uncertainty of the pKa values due to the structural fluctuation

of ensemble structures.

Supporting information

S1 Fig. Simulation results for WildUnP. (A) Ensembles population of log for the R326–H418

distances and dihedral angles, and (B) ensembles population of log scale for the dihedral angles

and number of water molecules in the water-filled cavity. The time evolution of (C) the dis-

tance between R326 and H418 residues, (D) the dihedral angle, and (E) the number of water

molecules in the water cavity from five individual trajectories for WildUnP.

(TIF)

S2 Fig. Simulation results for Hp418. (A) Ensembles population of log for the R326–H418

distances and dihedral angles, and (B) ensembles population of log scale for the dihedral angles

and number of water molecules in the water-filled cavity. The time evolution of (C) the dis-

tance between R326 and H418 residues, (D) the dihedral angle, and (E) the number of water

molecules in the water cavity from five individual trajectories for Hp418.

(TIF)
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S3 Fig. Simulation results for Ep327/Hp418. (A) Ensembles population of log for the R326–

H418 distances and dihedral angles, and (B) ensembles population of log scale for the dihedral

angles and number of water molecules in the water-filled cavity. The time evolution of (C) the

distance between R326 and H418 residues, (D) the dihedral angle, and (E) the number of

water molecules in the water cavity from five individual trajectories for Ep327/Hp418.

(TIF)

S4 Fig. Simulation results for Ep420. (A) Ensembles population of log for the R326–H418

distances and dihedral angles, and (B) ensembles population of log scale for the dihedral angles

and number of water molecules in the water-filled cavity. The time evolution of (C) the dis-

tance between R326 and H418 residues, (D) the dihedral angle, and (E) the number of water

molecules in the water cavity from five individual trajectories for Ep420.

(TIF)

S5 Fig. Simulation results for Ep327/Hp418/Ep420. (A) Ensembles population of log for the

R326–H418 distances and dihedral angles, and (B) ensembles population of log scale for the

dihedral angles and number of water molecules in the water-filled cavity. The time evolution

of (C) the distance between R326 and H418 residues, (D) the dihedral angle, and (E) the num-

ber of water molecules in the water cavity from five individual trajectories for Ep327/Hp418/

Ep420.

(TIF)

S6 Fig. Simulation results for H418R. (A) Ensembles population of log for the R326–H418

distances and dihedral angles, and (B) ensembles population of log scale for the dihedral angles

and number of water molecules in the water-filled cavity. The time evolution of (C) the dis-

tance between R326 and H418 residues, (D) the dihedral angle, and (E) the number of water

molecules in the water cavity from five individual trajectories for H418R.

(TIF)

S7 Fig. Simulation results for E327A/H418R. (A) Ensembles population of log for the R326–

H418 distances and dihedral angles, and (B) ensembles population of log scale for the dihedral

angles and number of water molecules in the water-filled cavity. The time evolution of (C) the

distance between R326 and H418 residues, (D) the dihedral angle, and (E) the number of

water molecules in the water cavity from five individual trajectories for E327A/H418R.

(TIF)

S8 Fig. Simulation results for E420A. (A) Ensembles population of log for the R326–H418

distances and dihedral angles, and (B) ensembles population of log scale for the dihedral angles

and number of water molecules in the water-filled cavity. The time evolution of (C) the dis-

tance between R326 and H418 residues, (D) the dihedral angle, and (E) the number of water

molecules in the water cavity from five individual trajectories for E420A.

(TIF)

S9 Fig. Simulation results for E327A/H418R/E420A. (A) Ensembles population of log for

the R326–H418 distances and dihedral angles, and (B) ensembles population of log scale for

the dihedral angles and number of water molecules in the water-filled cavity. The time evolu-

tion of (C) the distance between R326 and H418 residues, (D) the dihedral angle, and (E) the

number of water molecules in the water cavity from five individual trajectories for E327A/

H418R/E420A.

(TIF)
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