
RESEARCH ARTICLE

Delayed feedback embedded in perception-

action coordination cycles results in

anticipation behavior during synchronized

rhythmic action: A dynamical systems

approach

Iran R. RomanID
1,2*, Auriel Washburn1,3, Edward W. LargeID

4,5, Chris Chafe1,

Takako Fujioka1,6

1 Center for Computer Research in Music and Acoustics, Department of Music, Stanford University,

Stanford, United States of America, 2 Stanford Neurosciences Graduate Training Program, Stanford

University, Stanford, United States of America, 3 Department of Computer Science and Engineering,

University of California San Diego, La Jolla, United States of America, 4 Department of Psychological

Sciences, University of Connecticut, Storrs, United States of America, 5 Department of Physics, University of

Connecticut, Storrs, United States of America, 6 Wu Tsai Neurosciences Institute, Stanford University,

Stanford, United States of America

* iran@ccrma.stanford.edu

Abstract

Dancing and playing music require people to coordinate actions with auditory rhythms. In

laboratory perception-action coordination tasks, people are asked to synchronize taps with

a metronome. When synchronizing with a metronome, people tend to anticipate stimulus

onsets, tapping slightly before the stimulus. The anticipation tendency increases with longer

stimulus periods of up to 3500ms, but is less pronounced in trained individuals like musi-

cians compared to non-musicians. Furthermore, external factors influence the timing of tap-

ping. These factors include the presence of auditory feedback from one’s own taps, the

presence of a partner performing coordinated joint tapping, and transmission latencies

(TLs) between coordinating partners. Phenomena like the anticipation tendency can be

explained by delay-coupled systems, which may be inherent to the sensorimotor system

during perception-action coordination. Here we tested whether a dynamical systems model

based on this hypothesis reproduces observed patterns of human synchronization. We sim-

ulated behavior with a model consisting of an oscillator receiving its own delayed activity as

input. Three simulation experiments were conducted using previously-published behavioral

data from 1) simple tapping, 2) two-person alternating beat-tapping, and 3) two-person alter-

nating rhythm-clapping in the presence of a range of constant auditory TLs. In Experiment

1, our model replicated the larger anticipation observed for longer stimulus intervals and

adjusting the amplitude of the delayed feedback reproduced the difference between musi-

cians and non-musicians. In Experiment 2, by connecting two models we replicated the

smaller anticipation observed in human joint tapping with bi-directional auditory feedback

compared to joint tapping without feedback. In Experiment 3, we varied TLs between two

models alternately receiving signals from one another. Results showed reciprocal lags at
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points of alternation, consistent with behavioral patterns. Overall, our model explains vari-

ous anticipatory behaviors, and has potential to inform theories of adaptive human

synchronization.

Author summary

When navigating a busy sidewalk, people coordinate their behavior in an orderly manner.

Other activities require people to carefully synchronize periodic actions, as in a group

rowing or marching. When individuals tap in synchrony with a metronome, their taps

tend to anticipate the metronome. Experiments have revealed that factors like musical

expertise, the presence of a synchronizing partner, auditory feedback, and the sound travel

time, all systematically affect the tendency to anticipate. While researchers have hypothe-

sized a number of potential mechanisms for such anticipatory behavior, none have suc-

cessfully accounted for all of the effects. Previous research on coupled physical systems

has shown that when one system receives input from a second system, plus its own

delayed signal as input, this causes system 1 to anticipate system 2. We hypothesize that

the tendency to anticipate is the result of delayed communication between neurons. Our

work demonstrates the ability of delay-coupled physical systems to capture human antici-

pation and the effect of external factors in the anticipation tendency. Our model supports

the theory that delayed communication within the nervous system is crucial to under-

standing anticipatory coordinative behavior.

Introduction

In social settings, people must coordinate actions in order to carry out fundamental activities

like walking or talking. Some activities require individuals to precisely time repetitive actions

such as dancing, rowing, or music making, resulting in synchronization with external informa-

tion, shared among a group of individuals. This kind of perception-action coordination is also

sometimes called sensorimotor synchronization, because it is considered to depend on com-

munication between the sensory and motor areas of the nervous system [1]. The simplest form

of synchronization happens when individuals tap in synchrony with an isochronous stimulus.

In doing so, individuals’ actions on average tend to slightly precede the stimulus, resulting in a

mean negative asynchrony between the stimulus onsets and corresponding taps. This negative

mean asynchrony has been observed consistently in the literature. Anticipation is observed

when humans tap with an isochronous stimulus with inter-onset-intervals (IOIs) ranging

from 300ms to 4800ms [2]. However, the asynchronies vary widely and can be positive, on

average, for an individual tapping with IOIs longer than 2000ms [2]. For IOIs greater than

2000ms, asynchronies may show a bimodal distribution; some taps precede the stimulus while

others follow it, with longer IOIs resulting in more taps that follow the stimulus and fewer that

precede it [3]. The anticipation tendency is influenced by musical experience, as tap timing in

musicians is closer to the stimulus than that in non-musicians for IOIs between 1000ms and

3500ms [4]. When the IOI is greater than 5000ms, more taps occur after the stimulus than

before the stimulus, suggesting that people are more reactive upon hearing the next beat [5].

Similarly, when synchronizing with the beat underlying complex surface rhythms (e.g., synco-

pation), the mean asynchrony shifts to the positive side [6–8] (see [9] for a review). Collec-

tively, these results indicate that the anticipation tendency depends not only the IOI, but also,

the expertise level, complexity of the rhythms and the task requirements.

Dynamical model of perception-action coordination
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Two or more people can also perform coordinated rhythmic behavior. For example, two

musicians may alternate taps to maintain a common stable tempo. To achieve coordination,

they must employ an interactive and adaptive strategy and adjust their tap timing based on

their own timing as well as their partner’s. The asynchrony of one person tends to copy the

previous asynchrony produced by their partner [10–11]. This tendency is not observed when

one of the partners cannot hear the actions of the other, indicating that the auditory feedback

between synchronizing partners can affect their ability to coordinate [12]. It appears that in

the presence of auditory feedback, coordination is not affected by the presence or absence of

other non-auditory information [10,13]. Another factor that affects auditory information in

coordination is transmission latency (TL), which refers to a delay between the time at which

an event occurs and the time when the associated auditory information is available. TLs are a

result of the transmission of information across a physical distance separating two synchroniz-

ing individuals [14]. Analogous latencies can be observed when musicians at remote locations

play music together over the internet. One study has examined the effect of the TL between

two individuals trying to alternately clap a rhythm [14]. The authors observed that stable syn-

chronization is achieved with small TLs (10-20ms), while musicians collectively speed up for

TLs shorter than 10ms, and slow down for latencies longer than 20ms [14].

Different models try to explain how neural computations give rise to anticipation and coor-

dination. Researchers have proposed that the anticipation results from the combination of

information from different modalities, based on differences in the axonal distances between

the hand, the ear, and the brain [15–16]. For example, the sensory accumulation model [17]

proposes that the time difference in central-peripheral signal communications between the

auditory and motor systems may be responsible for the anticipation; it takes less time for pac-

ing stimuli to travel from the ear to the auditory cortex compared to the time it takes a signal

to travel from the fingertips to the brain and vice versa. As a result, taps precede external audi-

tory signals so somatosensory and auditory information will coincide at the level of the central

nervous system. One prediction of the sensory accumulation model is that louder stimuli will

result in smaller anticipation. Białuńska, Bella, & Jaśkowski tested this theory behaviorally, and

found that the prediction was not confirmed, indicating that other sensorimotor mechanisms

must be involved [18]. Another model proposes perceptual underestimation of IOIs [19]. This

predicts that anticipation should be reduced when periodic stimuli are subdivided into equi-

distant strong and weak beats [20–22]. However, due to conflicting results, an integrative and

convergent explanation is still yet to be established (see [23] for a review).

Mechanisms underlying generalized anticipatory behavior beyond the simple anticipatory

phenomena have recently been of interest. Dubois [24] has identified two main theories as to

how anticipatory behavior arises. The first one is called ‘weak anticipation theory’, proposing

that anticipation occurs as the result of inferences produced by internal models. Specifically,

this theory argues that because the brain generates representations of likely future events based

on external information, anticipation is the result of the brain’s eagerness to confirm the cor-

rectness of these representations [25–26]. The second perspective is termed ‘strong anticipa-

tion theory’, which suggests that anticipation results from the homeostatic coupling of

information between an organism and its environment. Stepp and Turvey [27] note that, in its

original Latin meaning, anticipation refers to the act of “following a path before.” Accordingly,

anticipation must involve not only correctly predicting another model’s actions but also realiz-

ing that prediction with one’s own actions [27]. Stepp and Turvey also explained that homeo-

static mechanisms can keep an anticipating organism in a proactive state [27]. One can see

that a major drawback of the weak anticipation theory is that it cannot explain how some phys-

ical systems anticipate, even without the ability to carry out inference (e.g., laser semiconduc-

tors and electronic circuits) [28–29]. In contrast, strong anticipation theory can explain

Dynamical model of perception-action coordination
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anticipation as a theoretical framework that generalizes across physical systems [27]. The pres-

ent study is aimed at exploring how the strong anticipation theory could further explain vari-

ous results in rhythmic coordination in an integrative manner, including anticipatory

synchronization, by conducting computational simulations.

Specifically, ‘anticipatory synchronization’ in strong anticipation emerges from the coupling

between a ’response’ system and a ’driver’ system (e.g., stimulus input) wherein the response

system also receives delayed feedback about its own activity. One of the major strengths of the

strong anticipation approach is that it accounts for anticipatory phenomena beyond human

behavior, and that collectively all such phenomena can be modeled as coupled dynamical sys-

tems [27,28–29]. There are parallels between a dynamical system with delayed feedback and the

delayed communication between different areas in the sensorimotor system of humans carrying

out synchronization. Synchronization requires communication between auditory, premotor

and motor brain areas [30–32], which involves delayed transmission of neural information.

Moreover, it has been suggested that these delays inherent within the human sensorimotor sys-

tem may act like ones in coupled dynamical systems with delayed feedback inputs [28,31–32],

supporting the strong anticipation theory. If this holds true, a low-dimensional dynamical sys-

tems model could explain anticipation in perception-action coordination.

To simulate periodic perception-action coordination, we use an oscillator described by Eq

(4) (see model definition in the methods section). This oscillator can synchronize with periodic

external stimuli, a feature that has been exploited by a model capable of beat tracking in com-

plex musical rhythms [8,34]. The oscillator’s periodic activity phase-locks with external peri-

odic stimuli close to its fundamental frequency and also at integer-ratio relationships [33].

In contrast to the models previously described by Large and colleagues using a network of

coupled oscillators [8,33–34], our model consists of a single oscillator. To simulate periodic

synchronization, we add delayed recurrent feedback to this single oscillator. Such delayed

recurrent feedback is essential for a model of synchronization, as no neural process is instanta-

neous [31]. We refer to our model as the Strong Anticipation in Periodic Perception Action

(SAPPA) model (see model definition in the methods section). Below we describe three simu-

lation experiments (see Fig 1) based on published data corresponding to three distinct behav-

ioral studies.

In our first experiment, we use the SAPPA model to reproduce the data from a study in

which musicians and non-musicians synchronized their tapping with an isochronous metro-

nome across a wide range of tempi, representing the simplest form of synchronization task [4]

(Fig 1A). Specifically, we hypothesize that the delayed recurrent feedback in the SAPPA model

would result in an increasing anticipation tendency for the longer stimulus periods. Addition-

ally, the smaller anticipatory tendency observed in musicians compared to non-musicians’

anticipatory tendency would be achieved by reducing the amplitude of the delayed recurrent

feedback.

In our second experiment, we reproduce the data from a study in which two musicians

alternately tapped to a metronome [12]. We are specifically interested in the data from two

tasks where musicians tapped at every second metronome beat alone (Fig 1B and 1C) or alter-

nated this tapping with another musician as a duet (Fig 1D and 1E). In both cases, their perfor-

mance was measured in two conditions, with and without auditory feedback from tapping.

The results show a smaller anticipatory tendency, in both solo and duet settings, when musi-

cians heard their own taps compared to when they did not. We hypothesized that the lack or

presence of non-delayed feedback in our model can simulate auditory feedback conditions,

affecting the size of the anticipation.

In our third experiment, we reproduce behavioral data from duet performance with TLs

(varying from 3ms to 78ms for different trials) where two musicians alternately clapped the

Dynamical model of perception-action coordination
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same rhythmic pattern without a metronome [14] (Fig 1F). Latencies longer than 20ms caused

the musician starting the pattern to lag the musician finishing the pattern, while latencies

shorter than 10ms caused the musician starting the pattern to clap ahead of the other musi-

cian’s last clap. This resulted in the collective tempo gradually slowing down for the longer TLs

and speeding up for the shorter ones. We hypothesized that our model’s anticipation would be

affected by longer TLs, resulting in lag between two synchronizing SAPPA models and a slow-

ing tempo.

Perception-action coordination tasks capture how external and internal factors affect syn-

chronization. The strong anticipation hypothesis explains synchronization with dynamical sys-

tems receiving external stimuli and delayed recurrent feedback. Our interest is to test whether

a mathematical model of strong anticipation can be configured for solo and duet settings to

perform a variety of synchronization tasks, and if so whether it could explain behavioral pat-

terns observed in human data. This would demonstrate that the strong anticipation hypothesis

accounts for complex biological phenomena like perception-action coordination.

Results

Experiment 1: Individual tapping in synchronization with an isochronous

stimulus

We simulated the model to represent an individual tapping with an isochronous stimulus (see

Fig 1A), resulting in an anticipatory tendency. Fig 2A shows the linear regression we per-

formed on the human data described by Repp and Doggett [4]. We stimulated our model with

a periodic external sinusoid and measured its anticipation (see model definition and parameter

analysis in the methods section) with respect to the external sinusoid. In order to observe the

relationship between anticipation and stimulus period length, we optimized our model param-

eters (see parameter analysis in the methods section) to simulate the anticipation shown by

musicians and non-musicians, as a function of IOI [4]. In Experiment 1, a single SAPPA

model was stimulated by an external sinusoid while also receiving its own non-delayed activity

as input. The range of oscillatory frequencies tested in Experiment 1 ranged from 0.29Hz to

1Hz (see the methods section for a full description of the model parameters and experimental

conditions). This contrasted with Experiments 2 and 3, where the same model was stimulated

differently, at a smaller set of frequencies.

Fig 1. Illustration of the synchronization tasks and corresponding simulation experiments. (A) The task simulated in

Experiment 1, in which a person synchronizes with a metronome (top). Illustration of our simulation, in which our model

synchronizes with an external sinusoidal stimulus (bottom). (B) The first task simulated in Experiment 2, in which one musician taps

to every other metronome beat while listening his or her own taps (top). Illustration of our simulation in which a SAPPA model

synchronizes with an external sinusoidal stimulus (bottom). Blue colored part of the model’s activity indicates that the model is

receiving its own non-delayed activity as input in addition to the external sinusoid, and gray colored part indicates that the model

only receives the external sinusoid as input. (C) The second task simulated in Experiment 2. This task is the same as the first one

described in (B), except that the musician did not hear his or her own taps (top). Illustration of our corresponding simulation

(bottom). The gray lines indicate that the model only receives the external sinusoid as input. (D) The third task simulated in

Experiment 2, in which two musicians alternately tap with a metronome while listening to their own taps and the other musician’s

taps (top). Illustration of our simulation where two models synchronize with an external sinusoidal stimulus (bottom). Blue and red

colored parts of the model’s activity indicate the time window where the model’s non-delayed activity is used as input for both

models in addition to the external sinusoid, while grayed part indicates the time window when the model receives the non-delayed

activity of the other model in addition to the external sinusoid as input. (E) The fourth task simulated in Experiment 2. This task is

the same as the third one described in (D), except that the musicians did not hear their own or each other’s taps (top). Illustration of

our corresponding simulation (bottom). The grayed cycles indicate that the models only receive the external sinusoid as input. (F)

The task simulated in Experiment 3, in which two musicians clapped a rhythm alternately (top). Illustration of our simulation where

two models oscillate while alternately receiving each other’s activity as input (bottom). Blue and red cycles indicate the model whose

activity is received by both models as input, while gray cycles indicate that the model’s activity is not received as input by either

model. TL stands for transmission latency.

https://doi.org/10.1371/journal.pcbi.1007371.g001
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We ran our simulations for stimuli with periods of 1000, 1250, 1500, 1750, 2000, 2250,

2500, 2750, 3000, 3250, and 3500ms. The SAPPA model always had a recurrent feedback delay

with length of 222ms. To simulate the musician and non-musician data, the SAPPA model

had D = 0.05 and D = 0.36, respectively, where the parameter D is the amplitude of the delayed

recurrent feedback in the SAPPA model (see model definition and parameter analysis in the

methods section). Using the same recurrent feedback delay length, we were able to make the

slope of the anticipation, as a function of IOI, more negative by increasing the amplitude of D.

Fig 2B shows how our simulated anticipatory tendencies align with the line of regression on

the behavioral data for musicians and non-musicians in the study by Repp and Doggett [4].

Fig 2C uses the SAPPA model to predict how behavioral data would look if musicians and

non-musicians carried out the same task only listening to the metronome and not receiving

auditory feedback about their taps. Under this condition, the SAPPA model predicts that the

asynchrony in musicians and non-musicians would become more negative, compared to

when they received auditory feedback about their taps.

In this simulation, the following parameters were used: A = -0.5 (non-delayed feedback

amplitude), τ = 0.222 seconds (delay length), and D = 0.05 and D = 0.36 (delayed feedback

amplitude) for the musician and non-musician SAPPA models, respectively. The stimulating

sinusoid had an amplitude of 1, while A = -0.5. This means that the model was forced more

strongly by the external sinusoidal stimulus than by its own activity and that the SAPPA model’s

phase-locking behavior was determined by the phase of the external sinusoid. Also, since recur-

rent feedback terms were negative (A = -0.5), the delayed recurrent feedback shifted the phase of

F in a negative direction with respect to exp(i2π fs t). This means that the SAPPA model’s actions

were more aligned with F ¼ expði2p fs tÞþAz
jexpði2p fs tÞþAzj

, thus resulting in reduced anticipation compared to

when F = exp(i2π fs t) (see the methods section for a thorough description of the model’s dynam-

ics, parameters, and discussion of how different model components interact with each other).

Fig 2. Dynamical systems model of anticipation when musicians and non-musicians synchronize with an isochronous stimulus. (A) The anticipation (mean values

with error bars representing the standard error of the mean) in musicians and non-musicians tapping with an isochronous metronome while listening their own taps.

The regression lines for the mean values are also shown. (B) The anticipation obtained when the musician (green dots) and non-musician (yellow dots) SAPPA models

were stimulated by an external sinusoid while also receiving their own non-delayed activity as input (A = -0.5; see model definition in the methods section). (C) The

anticipation obtained when the musician (gray-green dots) and non-musician (gray-yellow dots) SAPPA models were only stimulated by an external sinusoid and did

not receive their own non-delayed activity as input (A = 0; see model definition in the methods section). In all simulations τ = 0.222 seconds. The D parameter

differentiates the musician and non-musician models. The same regression lines for the behavioral data are shown in both (A), (B) and (C) for comparison purposes (see

Supplementary S1 Fig for the model’s behavior with a square wave input).

https://doi.org/10.1371/journal.pcbi.1007371.g002

Dynamical model of perception-action coordination

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007371 October 31, 2019 7 / 32

https://doi.org/10.1371/journal.pcbi.1007371.g002
https://doi.org/10.1371/journal.pcbi.1007371


Experiment 2: Interpersonal synchronization during alternating paced

tapping with or without auditory feedback

Experiment 1 showed that our model can capture the anticipation observed in musicians and

non-musicians in a simple metronome tapping task. Next, we examined how the SAPPA

model could perform the more complex tasks in the study by Nowicki and colleagues [10].

This task was carried out by solo musicians and also by musician duets. In the solo task, musi-

cians tapped every other beat in synchrony with a metronome while hearing their own taps

(feedback-on, Fig 1B) or only hearing the metronome (feedback-off, Fig 1C). In the duet task,

pairs of musicians alternately tapped with a metronome while hearing their own and the part-

ner’s taps (feedback-on, Fig 1D) and also while only hearing the metronome (feedback-off, Fig

1E). The same model and parameters used in Experiment 1 were used in Experiment 2, except

for the f term, which was varied in Experiment 1 but was always 1Hz in Experiment 2, match-

ing the frequency of the stimulating external sinusoid. Another major difference was the way

in which the model was stimulated. Similar to Experiment 1, each SAPPA model in Experi-

ment 2 was constantly stimulated by an external sinusoid. However, in Experiment 2 in the

solo condition with feedback-on, the model received its own non-delayed activity as input

only during half of each cycle. Moreover, in Experiment 2 in the duet condition with feed-

back-on each model received its own non-delayed activity as input during one half of each

cycle and the other model’s non-delayed activity during the other half of the cycle. Finally, in

Experiment 2 in the feedback-off condition, the models were only stimulated by the external

sinusoid (see the methods section for a full description of the model parameters and experi-

mental conditions).

Fig 3A shows that the anticipation exhibited by musicians when solo-tapping on every

other beat to an isochronous metronome was larger without auditory feedback from their own

taps. The results of our solo-tapping simulations for the musician and non-musician SAPPA

models are illustrated in Fig 3B and 3C, respectively (the SAPPA models used in this simula-

tion have the same parameters found in Experiment 1; see the methods section for details

about how we carried out this simulation of the solo task). We observed that the SAPPA mod-

el’s anticipation was smaller when the model did receive its non-delayed activity as input, com-

pared to when only receiving the external sinusoid as input. While no study has yet

investigated non-musicians’ asynchronies in this solo-tapping task, our non-musician SAPPA

model predicts that non-musicians’ asynchronies would be larger than musicians’ asynchro-

nies. Our SAPPA model also predicts that, similar to musicians, the non-musicians’ asynchro-

nies will be smaller when individuals can hear their own taps along with the metronome,

compared to when they only hear the metronome.

Fig 1D and 1E show the duet behavioral task, which consists of two musicians tapping in

alternation by each synchronizing with every other beat of an isochronous metronome. Fig 3D

shows that, similar to the solo task results, the anticipation in musicians for the duet task was

larger when they could not hear their own or the partner’s actions. The results of our duet-task

simulations with the musician and the non-musician SAPPA model are illustrated in Fig 3E

and Fig 3F, respectively (the SAPPA models used in this simulation have the same parameters

found in Experiment 1; see the methods section for details about how we carried out this simu-

lation of the duet task). We observed that the SAPPA model’s anticipation was smaller when

models alternatingly received each other’s non-delayed activity as input, compared to when

they only received the external sinusoid as stimulus. No study has yet investigated non-musi-

cians’ asynchronies in this duet-tapping task, but we can use the non-musician SAPPA model

to make predictions. Compared to anticipation in musicians, the SAPPA model predicts that

anticipation in non-musicians would be larger. The SAPPA model also predicts that, similar to

Dynamical model of perception-action coordination
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Fig 3. The effect of auditory feedback on anticipation when musicians synchronize with an isochronous metronome alone or with a musician partner. (A)

Behavioral measurements when a single musician taps every other beat in synchrony with a metronome for the feedback-on and feedback-off conditions (mean

asynchronies with error bars representing the standard error of the mean). (B) The musician SAPPA model’s anticipation when synchronizing with an external

sinusoid, while receiving (feedback-on) or not receiving (feedback-off) its non-delayed activity as input every other beat. (C) The non-musician SAPPA model’s

anticipation when synchronizing with an external sinusoid, while receiving (feedback-on) or not receiving (feedback-off) its non-delayed activity as input every other

beat. Dotted contours around circle data points indicate that this is a prediction that can be tested with behavioral data from non-musicians. (D) Behavioral

measurements when two musicians tap every other beat in synchrony with a metronome for feedback-on and feedback-off conditions (mean asynchronies with error

bars representing the standard error of the mean). (E) The anticipation when two musician SAPPA models synchronize with an external sinusoid, while alternating

(feedback-on) or not receiving at all (feedback-off) each other’s non-delayed activity as input every beat. (F) The anticipation when two non-musician SAPPA models

Dynamical model of perception-action coordination
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musicians, the non-musician anticipation will be smaller when pairs of individuals can hear

each other’s alternating taps along with the metronome, compared to when they only hear the

metronome.

Experiment 3: Interpersonal synchronization during rhythm-clapping

alternation in the presence of transmission latencies

In Experiment 2 we coupled pairs of SAPPA models to simulate the flow of auditory informa-

tion between partners performing a paced alternating tapping task. Here we conduct another

simulation for the data described by Chafe and colleagues [14], by further extending our

model and task configuration. Their study examined how TLs between duet partners affected

synchronization while they alternately clapped a rhythmic pattern (see Fig 1F). The two novel

features in their task were that they added TLs to the information exchange between duet part-

ners who performed the task in two different rooms, and that they used a rhythmic pattern for

alternating clapping instead of single-beat alternation. The same model and parameters used

in Experiments 1 and 2 were used in Experiment 3. The main differences were, again, the way

in which the model was stimulated and the oscillatory frequency. In contrast with Experiments

1 and 2, the SAPPA models in Experiment 3 were never stimulated by an external sinusoid.

Instead, pairs of oscillators (f = 1.5Hz) stimulated each other in an alternating fashion every

cycle (see the methods section for a full description of the model parameters and experimental

conditions).

In the results by Chafe et al. [14], for TLs smaller than 10ms, the musician starting their

rhythm showed a tendency to slightly lead the musician finishing a turn. With TLs greater

than 10ms, the musician starting their turn lagged the musician finishing a turn. A similar pat-

tern of behavior was observed as a result of TLs between the two oscillators. Fig 4A illustrates

our simulations with two oscillators that alternated cycles based on which oscillator served as

the ‘active’ one. The colored background indicates the oscillator whose activity was used as the

input for both oscillators (see the methods section for more details about how we carried out

this simulation). In the example shown in Fig 4A, the oscillator initiating its active cycle tended

to lag the endpoint of the other oscillator as a result of the TL. In human data, these asyn-

chrony measures grew as a function of TL, as shown in Fig 4B. Fig 4C and 4D show our simu-

lations with musician and non-musician SAPPA models, respectively, where the lag between

coupled models showed a growth similar to the one observed in the behavioral study. The

main difference between the behavioral data (Fig 4B) and our simulations (Fig 4C and 4D) is

that in our simulations TLs smaller than 10ms did not result in positive values. No existing

studies have addressed how non-musicians perform in this task. Our non-musician SAPPA

model predicts that, compared to musicians, the effect of TLs on non-musician synchroniza-

tion behavior will be similar to that observed for musicians, indicating that TLs consistently

affect synchronization between two clapping individuals, independent of musical expertise.

Discussion

Delayed recurrent feedback results in anticipatory tendencies during paced

periodic action

Our model shows that asynchronies become smaller when the length of the recurrent feedback

delay is shortened (see parameter analysis in the methods section). This is a result of the fact

synchronize with an external sinusoid, while alternating (feedback-on) or not receiving at all (feedback-off) each other’s non-delayed activity as input every beat. Dotted

borders around data points indicate that this is a prediction that can be tested by collecting behavioral data from non-musicians.

https://doi.org/10.1371/journal.pcbi.1007371.g003
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that z and z(t—τ) become maximally aligned as τ shrinks. Consistent with the observations by

Ciszak and colleagues [35], our simulations show that the phase difference between z and z(t—
τ) is what causes anticipatory behavior. This behavior is similar across different types of exter-

nal periodic inputs (for example, see Supplementary S1 Fig for the model’s behavior when the

external input is a square wave instead of a sinusoid). It is interesting to consider whether the

Fig 4. The effect of transmission latencies on the anticipation of pairs of musicians alternatively clapping a rhythm. (A) Illustration of the dynamics observed

during our simulations in the presence of a TL between two synchronizing SAPPA models. The alternating blue and red background colors indicate which model’s

activity is used as input to both models. The arrows show the end points of cycles for both models. Note how the passive model lags the active model in turn at the end of

the cycle, due to the presence of the TL. (B) The lead and lag between musicians (measured as the percentage of a 90 bpm beat) as a function of TLs (mean values with

error bars representing the 95% variance), with the linear regression on the behavioral data. (C-D) The lead and lag between pairs of musician (C) and non-musician

(D) models, with the linear regression from the behavioral data (B) for comparison purposes.

https://doi.org/10.1371/journal.pcbi.1007371.g004
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observed phase difference between z and z(t—τ) is similar to the communication delays that

exist in the physiology of the sensorimotor system. In principle, today’s imaging techniques

can support the quantification of actual conduction delays between neurons located in the

auditory cortex, the basal nuclei, the cerebellum, premotor and motor cortex, as well as

extremities and effectors (e.g., fingers). For example, high resolution neuroimaging methods

and the physical models of axonal conduction delays may allow for the estimation of these

delays through integration over populations [36]. However, these areas contain vast numbers

of neuronal connections which likely differ from each other in their functional pathways.

Thus, detailed estimation of these delays at microscopic levels may not easily translate to mac-

roscopic representation of neuronal population behaviors. Given that the recurrent feedback

delay length is arbitrarily set in our model, the recurrent feedback delay length described here

should be considered a representation of the potential function of neural transmission delays

in a collective fashion.

Experiment 1: Individual tapping in synchronization with an isochronous

stimulus

In the SAPPA model Eq (5), a larger D increases the amplitude of the delayed recurrent feed-

back. These different amplitudes have an effect on the anticipatory mechanisms of the model.

D is divided by the frequency f in Hz. As f becomes smaller, D
f becomes exponentially larger.

Hence, the delayed recurrent feedback is amplified as a function of the stimulus interval,

which in turn results in the growing anticipation. Physiologically, this means that the D
f param-

eter could indicate the amplitude of neural activity that one processes in addition to the exter-

nal stimulus. This amplitude becomes larger as the stimulus becomes slower.

Our model was able to reproduce the mean anticipatory dynamics of musicians and non-

musicians tapping with IOI periods between 1000ms and 3500ms. This was due to the smaller

D that made the musician SAPPA model anticipation curve have a less negative slope as a

function of stimulus period length, compared to the larger D that resulted in a more negative

slope of non-musician SAPPA model. Since the amplitude of the delayed recurrent feedback

in the non-musician SAPPA model is overall larger compared to the musician SAPPA model,
D
f makes the delayed recurrent feedback grow more in amplitude as a function of longer stimu-

lus period. As discussed above, directly relating this D parameter to the real neural processes

might be difficult because it captures the cumulative effect of multiple interacting neural delay

processes [37]. What we can say is that the larger D value in the non-musician model causes

larger amplitudes in the oscillators compared to the musician model.

We assumed that a linear regression on the behavioral data could fairly characterize the

anticipatory dynamics observed in musician and non-musician data (Fig 2A). This assumption

is a limitation: anticipatory timing does not grow indefinitely as a function of IOI. Experiments

where humans synchronize taps with a metronome of IOIs longer than 3500ms show that

some taps precede the stimulus while others follow it, reducing the mean asynchrony [3], or

even showing mean positive asynchronies for IOIs greater than 5000ms [5]. Hence, the rela-

tionship between metronome IOI and human asynchronies are clearly non-linear. Non-linear-

ities are a common feature in systems with delayed recurrent feedback [38]. As a result, our

model’s behavior is non-linear, a feature that is more obvious in our simulation of non-musi-

cian anticipation than musician anticipation (Fig 2B and 2C). These non-linear features could

be used to expand the SAPPA model by making it show positive asynchronies in simple tap-

ping tasks, like people do when stimulated by IOIs greater than 5000ms [5]. Because of these

non-linear features, the SAPPA model has potential to explain both positive and negative asyn-

chronies observed when people tap with metronomes of different IOI lengths.
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Behavioral studies have consistently shown that anticipation when tapping with a metro-

nome differs between musicians and non-musicians [2,4–5]. Our model offers an explana-

tion as to what underlying mechanisms could give rise to these differences. Here, only the D
parameter was different between our musician and non-musician models, with D being

smaller in the musician model. Moreover, the simulation in Fig 2C predicts that the anticipa-

tion will be larger for both musicians and non-musicians synchronizing with a metronome

without listening their own taps, compared to when they listened their own taps (Fig 2A and

simulation in Fig 2B). This prediction made by the SAPPA model could be tested by collect-

ing empirical evidence from musicians and non-musicians. Furthermore, by changing its

parameters, our model allows us to make even more predictions, beyond the ones made in

Fig 2C.

Compared to the musician model, the larger D parameter in the non-musician model could

be equivalent to a scenario where non-musicians listen to their internal processes more than

musicians. In other words, in the non-musician’s brain the strength of internal feedback is

larger compared to the musician’s brain, resulting in processing of an internal signal in addi-

tion to processing of external stimuli or behavioral adjustments. In this analysis we focused on

the D parameter, but the β parameter in the SAPPA model would have had a similar effect (see

model definition in the methods section for a full description of the model parameters).

Electrophysiological findings from investigations on cortical oscillatory amplitude support this

observation. Compared to resting conditions, non-musicians listening to music show larger

oscillatory amplitudes only in the delta band (between 0.5Hz and 4Hz) [39], which overlaps

with the frequency range of stimuli tested in our Experiment 1. In contrast, musicians listening

to music show synchrony in a more diverse set of neural oscillation frequencies, including

delta and gamma (greater than 30Hz) bands [39]. Our model’s D parameter could be inversely

proportional to the number of neural oscillation frequency bands observed when listening to

music compared to resting conditions. Other neuroscientific research regarding the question

of how musical expertise affects synchronization indicates that, compared to non-musicians,

musicians show enhanced executive function and activation of the supplementary motor area

[40], are better able to imitate hand gestures [41], and show greater connectivity between pre-

motor and striatal brain areas during beat perception [42]. Hence, musical expertise affects

synchronization. Further, Riley and colleagues [43] hypothesize that behaviors involving preci-

sion, like perception-action coordination, rely on synergy formation, which is associated with

a reduction of the degrees of freedom that a person has to handle cognitively during a task.

Through training, synergies associated with synchronization may be greater in musicians than

in non-musicians. The D parameter in the SAPPA model could be understood as related to the

number of degrees of freedom that a person has to handle during perception-action coordina-

tion, since D had a smaller value in the musician SAPPA model compared to the non-musician

SAPPA model.

Our model lacks variability in its behavior when synchronizing with an isochronous stimu-

lus. When people tap with an isochronous stimulus, a mean negative asynchrony is observed

with a large variability around it [9]. This means that some people may exhibit mean positive

asynchronies (e.g. reaction to the stimulus rather than anticipating). The current SAPPA

model can only describe the mean anticipatory tendency observed when averaging data across

individuals. Variability in the SAPPA model could be achieved with simulations where the D
parameter is varied using a gaussian distribution centered around the D values we found for

musicians and non-musicians. Bååth [3] used mixed gaussian distributions to simulate the

anticipation variability seen in the behavioral experiments similar to those in Repp and Dog-

gett [4]. Using gaussian distributions to add variability to the SAPPA model would also allow

models of individual participants to have different parameters. One could test whether the
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SAPPA model’s D parameter is related to individual’s oscillatory power or years of musical

training. The SAPPA model is currently unable to explain anticipatory tendencies or positive

asynchronies observed outside the IOI range between 1000ms and 3500ms. Future investiga-

tions should test the SAPPA model for anticipation outside the IOI range we investigated in

this study. When tapping with IOIs longer than 3500ms, people may show mean positive asyn-

chronies, while mean negative asynchronies are observed when tapping with IOI lengths

shorter than 1000ms [5]. We already discussed in the previous paragraphs that the SAPPA

model’s non-linearities could explain the positive asynchronies observed for IOIs longer than

3500ms. Although beyond the scope of the current investigations, we did observe that for IOIs

shorter than 1000ms, the SAPPA model shows a negative asynchrony, consistent with behav-

ioral data.

Experiment 2: Interpersonal synchronization during alternating paced

tapping with or without auditory feedback

In the solo and duet conditions, our musician SAPPA model showed less anticipation when

musicians tap every other metronome beat hearing their own actions compared to when only

hearing a metronome. When the SAPPA model synchronizes with its own non-delayed activ-

ity in addition to the external sinusoid, the input F is the sum F ¼ expði2p fs tÞþAz
jexpði2p fs tÞþAzj

(as shown by Eq

(7) in model definition in the methods section). The smaller anticipation when F ¼
expði2p fs tÞþAz
jexpði2p fs tÞþAzj

as opposed to when F = exp(i2π fs t) (i.e. only the external sinusoid) is caused by

the instantaneous phase shift that F suffers when z gets subtracted from the external sinusoid

exp(i2π fs t), causing F and z to be more phase-aligned. In contrast, when only synchronizing

with an external sinusoid, the delayed recurrent feedback D
f z t � tð Þ (see Eq (5) in model defi-

nition in the methods section) linearly adds with F = exp(i2π fs t), resulting in a delayed phase

shift, causing F and z to be less phase-aligned.

We simulated anticipation using the musician and the non-musician SAPPA models. As

shown in Fig 3, the musician SAPPA model was able to show smaller anticipation in the feed-

back-on compared to the feedback-off condition in both solo and duet tasks. While the task by

Nowicki and colleagues [10] has not yet been tested with non-musicians, our simulations pre-

dict that the non-musician anticipation will generally be larger than the musician anticipation

observed across tasks and conditions. We speculate that this prediction is highly likely, because

it has been previously reported that non-musicians’ asynchronies are larger than musicians’

asynchronies [4]. By collecting data from non-musicians carrying out this task one could test

the validity of our model’s predicted behavior.

Currently, the SAPPA model does not include modules that represent variabilities over

time across individuals in a sample population. This means that it is limited in its ability to

explain long-range temporal dynamics. Hence, anticipatory dynamics are limited to a local

time scale. Incorporating noise in our model is beyond the scope of the work we present here,

because the nature of noise as well as its sources and mechanisms remain largely unknown. As

previously discussed, Bååth [3] has modeled the noise associated with anticipation in the sim-

plest metronome tapping task using a mixed gaussian distribution. To our knowledge, no

studies have demonstrated how neural mechanisms and their intrinsic noise might be related

to synchronization phenomena and anticipation. Variations in the environment and task

requirements are also likely to add different types of noise that influence the overall system

behavior. To effectively simulate different noise sources, it would be necessary to first study

the distributions and mechanisms underlying variability in human adaptive behavior,

using a large corpus of empirical data. Additionally, when quantifying how noise affects
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synchronization at local and global time scales, researchers should carefully consider that asyn-

chronies tend to fluctuate on long-range time scales, which can affect the interpretation of

behavioral data analysis and computational models [44].

Because the two musicians in the duet task tapped every other beat in alternation, the result-

ing interpersonal synchronization was anti-phase. Recent studies have used the HKB model

[45] (further discussed in the general discussion subsection below) to explain anti-phase inter-

personal synchronization [46–48]. The SAPPA model and the HKB models are both able to

explain anti-phase synchronization and anticipation at different phase relationships. Future

investigations could analyze similarities and differences between these models when they syn-

chronize with external periodic stimuli.

Experiment 3: Interpersonal synchronization during rhythm-clapping

alternation in the presence of transmission latencies

In the simulations in Experiment 3, two types of delay affected synchronization dynamics

between coupled dynamical systems. The first one existed in the SAPPA model, as self-ref-

erential recurrent feedback delay in Eq (5), which resulted in anticipation (see model defini-

tion and parameter analysis in the methods section). The second one, TL, was introduced as

the external informational delay in the communication between two oscillators, which is

extrinsic to Eq (5). Our simulations integrate these two separate delays to explain how inter-

nal and external feedback in our model affect synchronization. Experiment 1 results showed

that the first delay resulted in the anticipation, while the second delay can cancel the antici-

patory behavior, resulting in disrupted synchronization. Our simulation results show that

TLs similarly affected the synchronization of the musician and non-musician SAPPA mod-

els (Fig 4C and 4D). This suggests that TLs affect synchronization independent of musical

expertise. Future experiments can test our model’s prediction of non-musician behavior by

collecting data when non-musicians carry out the task introduced by Chafe and colleagues

[14].

In Experiment 3, pairs of oscillators (f = 1.5Hz) stimulated each other in an alternating fash-

ion every cycle. There was no external sinusoid stimulating the oscillators in this experiment

(see setup, procedures and measurements in the methods section for a complete description).

One caveat to our current model, is the fact that it cannot explain the positive values observed

in existing human behavioral data (Fig 4C and 4D). In the experiment by Chafe and colleagues

[14], pairs of participants synchronized in the absence of the natural TL over air (due to wear-

ing headphones), and in the presence of artificial TLs of fixed length. In the real world, syn-

chronizing individuals have to always cope, at least, with the TL associated with sound

travelling in air. We speculate that humans cope with such TLs by overestimating the fre-

quency of their actions (i.e. a faster frequency), to make their actions reach the other partici-

pant on time. In the experiment by Chafe and colleagues [14], when neither air-travelling

sound TL nor artificial TL existed, participants actions anticipated each other. The anticipa-

tion, indicated by positive values in the behavioral data in Fig 4B, is likely caused by musicians’

expectation of the TL implicit in the transmission of sound in air, which is effectively removed

when the TL is very small (<10ms). Our model is naïve to the TL of sound travelling in air,

and thus it was not affected in the same way by TLs smaller than 10ms. In the SAPPA model,

the relationship between TL and the natural frequency of the oscillator can only be achieved

by adding a bias that makes the SAPPA model complete its cycles before the driving stimulus

(another SAPPA model in Experiment 3) completes a cycle. The f term, which is a constant

dictating the natural frequency of the SAPPA model’s oscillatory behavior in units of hertz

(see Eq (5) in the model definition in the methods section), can be altered to explain the
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positive values in Fig 4B:

f̂ ¼ f þ D ð1Þ

Here, in Eq (1), a positive offset Δ (positive real value bias) can be added to compensate for the

effect of the transmission of sound through air. This Δ term would make the SAPPA model’s

frequency term slightly faster compared to the external stimulus, resulting in the positive val-

ues observed in Fig 4B for TLs smaller than 10ms. Fig 5 shows our model’s resulting behavior

when f is modified as described in Eq (1).

The behavior in Fig 5 is the result of the frequency detuning introduced in Eq (1). Previous

studies show that frequency detuning and delayed coupling between synchronizing HKB sys-

tems (see the General discussion below for more information about the HKB model) result in

anti-phase solutions that are less stable than in-phase activity [32,49]. The behavioral data by

Chafe and colleagues [14] supports these observations, since musicians performed the same

clapping rhythm in-phase, in an alternating fashion. As the transmission delay grew, in-phase

synchronization became harder for pairs of synchronizing musicians. To cope with different

TL lengths, musicians had to re-adjust the frequency of their actions every cycle to continue

in-phase, but very long TLs made in-phase synchronization impossible.

Humans may overestimate the frequency of their actions when synchronizing with each

other to cope with sound air travel TLs. The SAPPA model does not overestimate its fre-

quency, and in the lack of the TL associated with sound air travel, one must manually detune

the SAPPA model’s f term to result in overestimation. Once this is done the two coupled

SAPPA models successfully express the effects of external and internal delays and their interac-

tions in a succinct and integrative manner. Our model can be useful to predict stability of in-

phase and anti-phase behavior. Moreover, the SAPPA model could predict how synchroniza-

tion phenomena like anticipation could be affected by technologies involving TLs, like the

ones used for internet-based music performance.

General discussion

The SAPPA model reproduced anticipatory timing during synchronization at different fre-

quencies, for different rhythms, and in tasks of differing complexity. In Experiment 1 we simu-

lated anticipation for isochronous rhythms at a wide range of frequencies, showing the larger

negative asynchrony observed in non-musicians compared to musicians (Fig 2A and 2B). The

only difference between the musician and the non-musician model was the D parameter,

which controls the amplitude of the delayed recurrent feedback and was larger in the non-

musician model. In terms of neural underpinnings, the D parameter could be inversely pro-

portional to the number of different neural oscillation frequency bands observed when musi-

cians and non-musicians listen to music, compared to resting conditions [39]. Additionally, in

Experiment 1 we used our model to predict how the asynchrony would change in an experi-

mental condition where musicians and non-musicians listen and tap with a metronome with-

out hearing their own taps. The model predicts that the asynchrony would grow for both non-

musicians and musicians, but the non-musicians’ asynchrony would be larger (Fig 2C). Using

the musician model and parameters used in Experiment 1, in Experiment 2 we simulated

musicians’ solo and duet synchronization with a metronome in feedback-on and feedback-off

conditions. We reproduced behavioral data showing that musicians’ asynchronies are larger in

the feedback-off condition compared to the feedback-on condition in both solo and duet syn-

chronization settings (Fig 3A, 3B, 3D and 3E). The smaller asynchrony is caused by a phase

shift in the stimulus F when z gets subtracted from the external sinusoid exp(i2π fs t) (see

model definition in the methods section). Furthermore, using the non-musician model from
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Experiment 1 we predicted how non-musicians would perform in this task, projecting overall

larger asynchronies compared to musicians, as well as larger asynchronies in the feedback-off

condition compared to the feedback-on condition within the non-musician group (Fig 3C and

3F). Finally, using the same model and parameters from Experiments 1 and 2, we demon-

strated that the model synchronizes like pairs of musicians do in the presence of a fixed TL

and the absence of a metronome stimulus (Figs 4B, 4C and 5A). We explained that the total

absence of TL causes humans to speed up their actions, allowing events to be properly timed

when sound air travel is considered. Also, using the non-musician model we predicted how

pairs of non-musicians would be affected by a fixed TL when synchronizing with each other

(Figs 4D and 5B). Our experiments use a musician and non-musician model to successfully

reproduce anticipatory timing for different rhythmic stimuli and different tasks, while also

making predictions about what not-yet-existing behavioral data in musicians and non-musi-

cians would look like. These simulations reproduce timing characteristics previously observed

in behavioral studies, and demonstrate that complex tasks can be performed by the same

model by only modifying the stimuli and their frequency.

In the absence of time delays, oscillatory synchronization (e.g., Eq 4) offers only one limited

set of explanations for anticipation: the frequency of the oscillation is faster than the frequency

of the stimulus [50], underestimation of stimulus period [19], and frequency detuning [51]; f

Fig 5. The effect of modified f (Eq (1)) on our model’s simulation in Experiment 3 where pairs of musicians alternatively clapping a rhythm in the

presence of transmission latencies. The lead and lag between pairs of musician (A) and non-musician (B) models, measured as the percentage of a 90 bpm

beat as a function of TLs, with f modified as described in Eq (1). The linear regression on the behavioral data from Fig 4B is shown for comparison purposes.

https://doi.org/10.1371/journal.pcbi.1007371.g005
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> fs. As we see it from a dynamical systems point of view, there are two problems with this

explanation. The first is that it is an explanation that requires an explanation: What causes the

underestimation of tempo? Secondly, time delays are ubiquitous in the brain and nervous sys-

tem, thus “adding” time delays to a neural model is not really an adding anything, it is only

being more realistic. Neural conduction delays have been conclusively established and mea-

sured, and recurrent feedback is equally well-established. Finally, delayed recurrent feedback

causes an oscillator with frequency f to oscillate at a frequency faster than f. Delayed recurrent

feedback causes frequency detuning, thus we could say it causes a perceptual underestimation

of IOI. Moreover, oscillatory synchronization has intrinsic frequency detuning features (see

Large [52] for a theoretical overview of frequency detuning between oscillators).

A large body of literature has studied the dynamics of coordination in a variety of contexts

(see [9,23] for reviews). Currently, there are two main views about the neural mechanisms that

underlie anticipatory timing. Some researchers have proposed that anticipation results from

combining somatosensory and auditory modalities because axonal distances between the

hand, the ear, and the brain differ [15–16]. Axonal delays are fixed and the combination of

somatosensory and auditory input is likely carried out by assimilation areas of the brain in a

bottom-up fashion. While the combination of different sensory modalities can explain the neg-

ative phase relationship between human taps and a metronome in principle [17–18], this the-

ory fails to explain many of the key findings, including the fact that anticipation increases with

longer metronome periods in the IOI range between 1000ms and 3500ms (see the review of

the tapping literature by Repp [9]). The length of time that it takes for the brain to incorporate

multiple sensory modalities is likely fixed, so it can only affect the phase relationship between

action and stimulus by a constant value, predicting a constant anticipation across different

tempi, which is not consistent with behavioral data.

Other researchers explain that anticipation, in general, is the result of neural computations

carried out in progressive stages that result in representations [53]. These representations can

be about past, present, and future states of the external world. Hence, this view would explain

that anticipatory timing emerges from a system’s need to fulfill its representations about the

likely future state of the external world [54]. What makes these two views similar is the fact

that they see anticipation as the result of a series of staged neural computations that give rise to

a representation that is either misaligned with the external stimulus or fulfilled prematurely.

In contrast to these two theories, our model, inspired by the strong anticipation hypothesis,

offers a different explanation based on a dynamical systems approach where the properties of

the model and its interaction with the external stimulus and surrounding active systems are

mathematically described as constrained by universal physical laws [27]. Stephen and Dixon

[55] have described that strong anticipation can happen at local and global temporal scales,

where local strong anticipation occurs between systems continuously coupled and global

strong anticipation is more complex, involving multi-scale interactions (see [56–57] for a thor-

ough discussion of global vs local strong anticipation). The SAPPA model is a clear example of

local strong anticipation. All of these observations make the SAPPA model a parsimonious

and simple one, whose behavior is the result of interactions with external stimuli, instead of

internal representations.

It is noteworthy that other researchers have already built models that could explain and pre-

dict human rhythmic coordination behavior by using general physical principles. An impor-

tant one is the HKB model, which uses a simple equation to explain the possible phase

relationships between two coupled oscillatory systems in many contexts, including human

intra- and inter-personal synchronization [32]. Because of its focus on relative phase [58], the

HKB model is flexible, parsimonious, and a powerful tool to explain and predict periodic

human motor behavior [59]. By changing two parameters in a single equation, the HKB model
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is able to explain transitions between anti-phase (180˚) and in-phase (0˚) coordination when

one person taps both index fingers together [59] or two people swing their feet in tandem [59]

at different frequencies. Its full potential has not yet been exploited, since recent bifurcation

analyses revealed that the HKB model comprises previously unreported dynamical regimes

that could explain an even wider range of human synchronizing behaviors beyond in-phase or

anti-phase regimes [49], including squash [60] or butterfly stroke swimming [61]. Although

the HKB model has been widely used to explain synchronization behavior, it lacks an explana-

tion of the neurophysiological and biophysical principles that drive synchronization [62].

Some exceptions exist though, since studies have attempted to make the HKB model a more

biologically plausible one by explaining how neural connectivity delays affect its behavior [31–

32]. While these results are still focused on in-phase and anti-phase phenomena, the added

delay allows the HKB model to make predictions about split-brain patients lacking certain

modalities of delayed neural cross talk [31] or factors that favor in-phase vs anti-phase stability

[32].

Recently a few more models have been proposed that specifically attempt to account for

anticipatory synchronization. The first one is the ADaptation and Anticipation Model

(ADAM) [63]. ADAM uses phase and period correction to carry out adaptive and anticipatory

synchronization with a periodic stimulus that may contain tempo changes [63]. The second,

more recent model is proposed by Bose, Byrne and Rinzel [64] proposed as a neuromechanis-

tic model of musical rhythm that, similar to ADAM, corrects its phase and period to find the

beat in a periodic stimulus. This neuromechanistic model counts 40-Hz gamma-band oscil-

latory cycles to quantify how well the model’s beat generator aligns with an external stimulus.

Beat synchronization is achieved due to the beat generator’s plasticity, which is informed by

the gamma-rhythm count. Both ADAM and the more recent neuromechanistic model com-

pute information from an external stimulus using error correction and extrapolation, and

therefore are examples of weak anticipation models. Two other earlier models proposed mech-

anisms that explained synchronization behaviors. One of them was described by Caceres [65],

which used an oscillator described by Large and Kolen [66] for rhythm tracking and genera-

tion. Caceres compared his model’s performance with a memoryless model by Gurevich and

colleagues [67], providing evidence that oscillators are better at anticipating musical rhythms

than memoryless methods [65]. Mates and colleagues proposed that sensorimotor synchroni-

zation is influenced by the maximal capacity of temporal integration, which was estimated to

be around 3 seconds [2]. This explains why stimuli with IOIs of length greater than maximal

capacity of temporal integration cause greater incidence of reactive responses (i.e. after the

stimulus onset) and less anticipation compared to stimuli with shorter IOIs.

The SAPPA model is a strong anticipation model because it computes its current state from

its physical properties, not through inference [24,27]. Together with the strong anticipation

hypothesis and oscillator modeling, our model’s architecture and internal feedback delays

could shed light on physical principles of neural mechanisms that underlie anticipation in

human behavior. However, it would be useful to further explore these existing models possibly

combined with our approach, for scenarios when actions and intentions require substantial

temporal deviations from simple integer-ratio based temporal organizations.

Our model is inspired by previous neuroscientific studies and theories explaining how peri-

odic signals like music are processed in the brain. The canonical model of oscillation incorpo-

rated in our work has previously been used to explain how people perceive the beat in

complicated rhythms [8] and how the brain entrains to simple and complex auditory rhythms

signals [8,68]. Hence, the SAPPA model’s Hopf oscillator has been previously used to theorize

about brain mechanisms, specifically concerned with the auditory system, rhythm perception,

and neural oscillations [8,68]. In our model’s architecture, there are specific components
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inspired by neuroanatomy and functional units in the human brain involved in synchroniza-

tion behavior and anticipation. The SAPPA model encodes stimuli in a way that is analogous

to what occurs in the auditory cortex in conjunction with timing processing carried out in the

basal nuclei and the cerebellum. Additionally, the SAPPA model simulates the looped commu-

nication between basal nuclei, sensory areas, and the motor cortex and peripheral systems, all

of which are fundamental for synchronization to occur [15,16]. It is important to note that our

model works at the level of the oscillatory neural populations, not at the level of single neuron

activity. Evidence shows that single neuron dynamics give rise to oscillatory activity at the level

of neural populations [69]. Regarding the timing processing, neuromagnetic data by Fujioka

and colleagues [70] have shown that listening to an isochronous beat causes periodic ampli-

tude modulation of beta-band (around 20Hz) oscillatory brain activity in the motor and audi-

tory cortices. Furthermore, when beats are accentuated into stereotypical metric patterns, like

waltz rhythms, the beta-band predicts the beginning of groupings [71]. Findings show that

beta-band oscillations are not only associated with sensorimotor functions [72–73] but also

the anticipation of event timing [74–75]. Using oscillators to explain neural activity is a low-

dimensional approximation of the cortical dynamics observed during synchronization. How-

ever, as discussed at the beginning, these high-level representations may be far from micro-

scopic information transactions between neuronal populations.

The model we presented in this paper is general, flexible and parsimonious. As long as the

behavior and external factors follow oscillatory patterns, the SAPPA model could simulate the

outcome. It uses a canonical model of oscillatory dynamics and shows anticipatory behavior

following the general principles of the strong anticipation theory. This makes our model a tool

to simplify our understanding of how delayed communication within the human sensorimotor

system results in synchronization.

Notably, we used the same model across three different experiments that simulated three

different behavioral studies published by different groups at different times. These three behav-

ioral studies employed a variety of tasks and measures, yet, our model was able to capture the

behavioral patterns and effects observed across all studies. This demonstrates the versatility

and generalizability of our model’s architecture. Our experiments focused on simulating tasks

in the context of music because we wanted to test our model in ecologically plausible condi-

tions. The results we presented show that our model can explain human musical behavior,

which makes it a tool for the prediction of ecologically-valid anticipation in experiments

beyond the ones we discussed here. Our work supports the strong anticipation theory, making

new predictions about human behaviors that have not been tested yet. Moreover, our model

could aid technologies that assist synchronized action-making in teletherapy with TLs. A bet-

ter theoretical understanding about how TLs and anticipation interact could lead to a system

that dynamically calibrates TLs to help synchronization between humans interacting over the

internet. Additionally, knowing how an individual’s neural delays affect synchronization could

serve as a biomarker for rehabilitation in personalized medicine [76–77]. Finally, our model

could be used to improve telecommunications for synchronized action and have implications

in other fields like network music performance and robotics.

Methods

Model definition

Theoretical background. Negative phase relationships between two systems, such as

anticipation, have been observed in the behaviors of coupled dynamical systems like external-

cavity diode lasers [78] and FitzHugh–Nagumo systems [79]. The following equations by Voss

[80–81] and Ciszak et al. [35] express the general framework of an anticipatory dynamical
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system with delayed feedback:

_x ¼ hðxÞ ð2Þ

_y ¼ gðyÞ þ ðx � ytÞ ð3Þ

Eq (2) describes the stimulus x, which has dynamics defined by the function h. Eq (3) describes

a system y with dynamics defined by the function g. In Eq (3), the subscript τ indicates delayed

behavior of the system y. This yτ term is referred to as delay-coupling [81–82]. A negative

phase relationship between y and x is observed when y receives x and its own delayed activity

yτ as inputs, as described in Eq (3). Importantly, if yτ is removed from these equations, the

anticipatory behavior of y in relationship to x is no longer observed [82].

Because the SAPPA model simulates periodic synchronization, we used a canonical Hopf

oscillator model that allows for synchronization with periodic external stimuli [33]. In contrast

to the original model described by Large and colleagues [33], the SAPPA model does not con-

sist of a network of oscillators, but a single oscillator shown in Eq (4).

1

f
_z ¼ z aþ i2pþ b1jzj

2
þ

�b2jzj
4

1 � �jzj2

 !

þ F ð4Þ

In Eq (4), z is the state of the oscillator, and α, β1 and β2 are parameters that control the

dynamics of the oscillator while f determines the frequency of oscillation. � is a parameter that

controls the degree of higher-order nonlinear activity in the oscillator and F is a stimulus.

These dynamics allow a single oscillator to show stable oscillatory activity, even after it is no

longer being stimulated, hence showing “memory” [50]. Finally, similar to other strong antici-

pation models, this model can explain behaviors observed in non-biological systems like Wil-

son-Cowan networks [33], musical pitch recognition [83], and beat tracking [8].

The SAPPA model. Eq (5) shows our model, which is the Hopf oscillator in Eq (4) with

β1 = β, β2 = 0, � = 0, and an additional delayed feedback term.

1

f
_z ¼ z aþ i2pþ bjzj2

� �
þ F �

D
f
z t � tð Þ ð5Þ

Eq (5) in all our simulations has α = 1 and β = -1 to achieve limit cycle behavior with periodic,

unit-magnitude stable and perpetual activity when F = 0 and D = 0. The oscillator has a fixed

frequency determined by the parameter f (in Hz). The computations by this oscillator are neu-

roscientifically inspired. It receives an input F, thus encoding and perceiving an external stim-

ulus [8]. It also receives its own delayed activity with amplitude D and a delay of τ seconds,

simulating the delayed communication in the nervous system between basal-ganglia, cerebel-

lum, premotor cortices, motor cortices, and peripheral muscles at extremities and effectors

(e.g., fingers), which are inherent in the perception-action cycles [15–16]. We expect the

delayed z feedback to result in a negative phase relationship between z and an external stimu-

lus. In the SAPPA model, summarized by Eq (5), we vary the amplitude of the D parameter,

while α and β always have values of 1 and -1, respectively. The value of the variable f is selected

to match the frequency fs of a periodic external stimulus (f = fs). Because z is always unit ampli-

tude, the effect of the delayed recurrent feedback is reduced as D shrinks.

The input F is a sinusoid with a constant frequency fs. Further, if the SAPPA model is to

consider its own behavioral outcome as input (e.g., hearing and feeling one’s own tapping
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feedback), the z activity may be added to the input. Hence, the input F may be:

F ¼ expði2p fs tÞ ð6Þ

F ¼
expði2p fs tÞ þ Az
jexpði2p fs tÞ þ Azj

ð7Þ

F ¼ Az ð8Þ

In Eqs (6) and (7) fs is the constant frequency of the external sinusoid. Unless otherwise noted,

fs and f are the same value (fs = f). Eq (7) normalizes the linear combination of the external

sinusoid exp(i2π fs t) and Az, consistent with behavioral observations of stimulus encoding in

synchronization tasks, where changing the amplitude of the stimulus does not affect synchro-

nization [21].

Parameter analysis

Eq (5) describes z’s derivative over time as the linear combination of three terms: the oscilla-

tor’s current state z, a stimulus F (see Eqs (6), (7), and (8) for the different possibilities), and

the delayed recurrent feedback z(t - τ). Previous studies have investigated how z synchronizes

with a periodic stimulus [43, 45]. For this reason, our parameter analysis focuses on how the

time length τ and amplitude D
f of the delayed recurrent feedback z(t - τ) affect the anticipation

of the SAPPA model.

Throughout this paper, we fixed the parameters α = 1 and β = -1 so that z shows unit-mag-

nitude behavior when F = 0 and D = 0. When only D = 0, z and the external stimulus F have

the same frequency and phase, so anticipation is absent (see Fig 6), independent of which ver-

sion of F is used (remember Eqs (6), (7) or (8) are the three possible version of F). The other

parameter in Eq (5) that can be varied is f, but since it is only a scale factor that affects the

cycling rate of z, its effects will be studied later in Experiment 1. In cases when F = exp(i2π fs t)
−Az, the magnitude of A is another term that can be varied. Hence, the only other terms in Eq

(4) that can be varied are D, and τ.

For this parameter analysis we fixed f = 1 to ignore its scaling effect. We analyzed the effect

of D in the range of values between 0 and 1, which is the dynamic range of z when F = 0 and

D = 0, and also the dynamic range of F, considering all three Eqs (6), (7) or (8). For τ, we ana-

lyzed its effect in the range of values from 0 seconds to 0.5 seconds, because the period associ-

ated with f = 1 is one second and a processing delay with duration closer to the stimulus period

length would not make sense during synchronization. To observe the effect of A, we also tested

A = -1, -0.5, 0, 0.5, and 1, which are all values within the dynamic range of z (when F = 0 and

D = 0) and F (note that when A = 0, Eqs (6) and (7) are the same).

We evaluated the anticipation for all possible combinations of D, τ, and A parameters. At

the beginning of each simulation, the phase of z was initialized to zero. During the first few

sinusoidal cycles, the SAPPA model phase-locked with the external sinusoid in order to

achieve a state of stable synchronization. From a dynamical systems perspective, ‘synchroniza-

tion’ refers to the relationship between one system’s actions as closely adhering to another sys-

tem’s actions [84]. Stable synchronization was observed when the phase difference between

the stimulus sinusoid and the model’s oscillators reached a constant value over time. This sta-

ble mode is known in dynamical systems theory as a steady state. Fig 6D shows how we calcu-

lated the asynchrony between our model’s oscillator z and the stimulus sinusoid. After a

simulation reached a steady state, we first found the timepoints of the peaks for the real part of

the z oscillator and the stimulus sinusoid. Then, we subtracted each stimulus sinusoid’s peak
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Fig 6. Analysis of the effect that different parameters in the SAPPA model have on its anticipation tendency. (A) Illustration of what the

asynchrony between the SAPPA model and the external sinusoidal stimulus can look like, and how it’s measured. (B-F) Analysis of the anticipation
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time from the nearest z oscillator’s peak time. The average peak time difference between the

stimulus sinusoid and the z oscillator over time was considered the model’s mean asynchrony.

Our results are shown in Fig 6. To visualize the results of these simulations, we plotted these

results in matrix form, with the x axis indicating the value of τ, the y axis the value of D, and

the color in the matrix cells indicating the asynchrony. We obtained five matrices, one for each

of the five values of A tested.

Experiment 1: Individual tapping in synchronization with an isochronous

stimulus

Behavioral data for simulation. In the task by Repp and Doggett [4], musicians and non-

musicians tapped in synchrony with an isochronous metronome in a frequency range between

1Hz and 0.29Hz (corresponding to period durations between 1000ms and 3500ms). They

found that the anticipatory tendency increased as a function of metronome period length. Fig

2B shows our models’ anticipation, as well as the linear regression on the behavioral data (Fig

1A in Repp and Doggett [4]). We computed the linear regression lines as the best fit on the

anticipation values for musicians and non-musicians.

Setup, procedures and measurements. Fig 1A shows the human task and a graphical

explanation of our simulation setup that contain the SAPPA model and the input stimulus. In

these simulations, the input F was F = exp(i2π fs t) + Az because our model “listened” to itself

(i.e. received its own instantaneous activity as input). In the parameter analysis section above,

we studied the model’s behavior for a frequency of 1Hz. In the human task simulated in this

experiment, humans tapped with metronomes of period lengths between 3500ms (approx.

0.2857Hz) and 1000ms (1Hz). Hence, we repeated the parameter analysis with f = 0.285 (Fig 7)

to observe the model’s behavior at the other end of the spectrum of stimulus frequencies corre-

sponding to this human task. Remember that f = fs. always, unless otherwise noted.

Model optimization. To identify the model matching the musician and the non-musician

anticipation curves, we identified the set of parameters D, τ, and A that resulted in the best fit

between the simulated model’s anticipation and the slopes of the linear regression for the

behavioral data (Fig 2B). We found that A = -0.5, τ = 0.222 seconds, and D = 0.05 for the musi-

cian SAPPA model and D = 0.36 for the non-musician SAPPA model.

For all experiments that we conducted A = -0.5. This implies that our model’s behavior is

half of the magnitude of the external stimulus exp(i2π fs t), which always has a magnitude of 1,

meaning that the model is forced more strongly by the external sinusoidal stimulus than by its

own activity and that the SAPPA model’s phase-locking behavior will be greatly determined

by the phase of the external sinusoid [50]. In the SAPPA model, all recurrent feedback terms

are negative. That is why A = -0.5 is negative in Eqs (7) and (8), like the delayed recurrent feed-

back term in Eq (5). In Eq (7), z affects the encoding of the external stimulus, shifting the

phase of F in a negative direction with respect to exp(i2π fs t). Behaviorally, this means that

when the SAPPA model listens to itself in addition to the stimulus exp(i2π fs t), its actions will

be more aligned with F ¼ expði2p fs tÞþAz
jexpði2p fs tÞþAzj

, thus resulting in reduced anticipation compared to

when F = exp(i2π fs t).

as a function of D and τ in Eq (5), and A in Eq (7): (B) A = 0, (C) A = -1.0, (D) A = -0.5, (E) A = 0.5, (F) A = 1. In these analyses (B-F) the parameter

f = 1. The numbers in each cell indicate the anticipation (in ms) observed when the SAPPA model synchronized with the external sinusoidal

stimulus. A black cell indicates that the SAPPA model did not synchronize with the external sinusoidal stimulus and hence the asynchronies could

not be computed. In the analyses (B-F), the asynchrony quickly moves away from zero as 0<τ<0.5, especially when D = 1. Additionally, we

explored how different initial conditions affect the model’s asynchrony and discontinuities, described in the Supplementary S2 Fig which contains

the bifurcation diagram for the SAPPA model when D = 1.

https://doi.org/10.1371/journal.pcbi.1007371.g006
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Experiment 2: Interpersonal synchronization during alternating paced

tapping with or without auditory feedback

Behavioral data for simulation. Among the behavioral data shown by Nowicki and col-

leagues [10], we were focused on simulating the results from solo and duet tasks. First, in the

solo task, musicians tapped every other beat in synchrony with a metronome while hearing

their own taps (feedback-on) or only hearing the metronome (feedback-off). This means that

musicians’ tapping behavior had a subharmonic rate with the stimulus rate (i.e., if the stimulus

was presented at 2 Hz, tapping should occur at 1 Hz). As shown in Fig 3A, anticipation was

larger when musicians could not hear their own taps compared to when they did. Second, in

the duet task, pairs of musicians alternately tapped with a metronome while hearing their own

and the partner’s taps (feedback-on) and also while only hearing the metronome (feedback-

off). The anticipation was also larger when musicians could not hear each other in the duet

task, as shown in Fig 3D.

Setup, procedures and measurements. To simulate the feedback-off condition, we

removed the z term in the F input, meaning that the model received input only from the exter-

nal sinusoid F = exp(i2π fs t). To simulate the feedback-on condition, we added the model’s

own z activity to the input F during the second half of every stimulus cycle. Finally, to simulate

the duet task, we connected two SAPPA models, both synchronizing with the same external

sinusoid. One of the SAPPA models exhibited in-phase synchronization with the external

sinusoidal stimulus and the other one synchronized antiphase with respect to the external

sinusoidal stimulus. To achieve in-phase and antiphase synchronization, the sinusoidal stimu-

lus had a positive sign (i.e., F = exp(i2π fs t)) and a negative sign (i.e., F = -exp(i2π fs t)), respec-

tively. To simulate the feedback-on condition, the two synchronizing SAPPA models

alternately received one of the model’s z activity as input during the first half of every stimulus

cycle, and the other model’s z activity during the second half of every stimulus cycle.

Fig 7. Analysis of the effect that different frequencies in the SAPPA model have on its anticipation. (A) Analysis of the anticipation as a function of D and τ in Eq

(5) when A = -0.5 and f = 1. (B) Analysis of the anticipation as a function of D and τ in Eq (5) when A = -0.5 and f = 0.2857. The numbers in the cells indicate the

anticipation (in ms) observed when the SAPPA model synchronized with the external sinusoidal stimulus.

https://doi.org/10.1371/journal.pcbi.1007371.g007
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We used the SAPPA model and the parameter set determined for musicians’ data in Experi-

ment 1. The simulations of the solo task started with a musician SAPPA model receiving an

external sinusoid of frequency fs = 1Hz (similarly, the SAPPA model’s f = 1Hz). To simulate

the solo task with auditory feedback, we observed the model’s behavior while its own z activity

was added as an additional input during the second half of every stimulus cycle (feedback-on)

(see Fig 1B). This means that, the input alternates between F = exp(i2π fs t) and F = exp(i2π fs
t) + Az at a frequency twice as fast as the external sinusoid, to follow the task design (e.g., lis-

tening to a metronome click, then listening to both a metronome click and own tapping). To

simulate the condition without auditory feedback, the external sinusoid was set as the only

input throughout the simulation (feedback-off, the input was always F = exp(i2π fs t)). This

task design and the corresponding model setup are indicated in Fig 1B and 1C, respectively.

To simulate the duet task indicated in Fig 1D, we paired two models, of which one was

referred to as model 1 and the other as model 2. To simulate the duet condition with auditory

feedback, the input to model 1 was set to F = exp(i2π fs t) ± Az(k), while the input to model 2

was set to F = -exp(i2π fs t) ± Az(k), where |A| = 0.5 and k alternated between 1 and 2 at a rate

twice as fast as the frequency of the external sinusoid, as illustrated in Fig 1D. As stated earlier,

the sign of ± Az(k) depends on whether z indicates recurrent feedback (positive) or the other

model’s activity (negative). To simulate the duet condition without auditory feedback, both

models received only the external sinusoid as input (F was always F = exp(i2π fs t) for model 1

and F = -exp(i2π fs t) for model 2). Fig 1E illustrates the simulation of the condition without

auditory feedback.

The mean asynchrony between the stimulus and the in-phase synchronizing model was

computed in the same manner as Experiment 1, as the difference between the peak of the real

part of the models’ oscillation and the closest peak timepoints in the real part of the stimulus

sinusoid. The mean asynchrony between the stimulus and the anti-phase synchronizing model

was computed as the difference between the peak of the real part of the models’ oscillation and

the closest valley timepoints in the real part of the stimulus sinusoid.

Model optimization. The SAPPA models in this experiment were the same musician and

non-musician models identified in Experiment 1. Therefore, the model architecture used in

this experiment is summarized by Eq (5). Simulations lasted a total of 20 seconds.

Experiment 3: Interpersonal synchronization during rhythm-clapping

alternation in the presence of transmission latencies

Behavioral data for simulation. In the behavioral paradigm used by Chafe and colleagues

[14], two musicians in different rooms alternately clapped a staggered and looping rhythmic

pattern together for an extended period of time. TLs were introduced between the musicians

to simulate transmission delays over the internet when remotely located individuals play

music together. Such latencies via an internet connection typically range from 20ms to 100ms

[85,86]. The rhythmic task consisted of three claps interspaced with periods of relative length

of 1-1-2. The two musicians synchronized and performed the pattern in a staggered manner

with a half pattern overlap; the first musician started the first half of the pattern with doing two

claps (1-1-) alone, and at the third clap (2-), the starting point of the second half of the pattern,

the second musician started the first half of the pattern from the beginning (1-1-). When the

second musician started the second half of the pattern (2-), the first musician returned to the

first half of the pattern (1-1-) and so on. They repeated this without interruption for about 30 s

(see Fig 1F). Before starting, the first musician heard a metronome for six counts. The metro-

nome was randomly set at a tempo of either 86 bpm (beat-per-minute), 90 bpm, or 94 bpm to

avoid habituation effects. The second musician did not hear the metronome and joined after

Dynamical model of perception-action coordination

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007371 October 31, 2019 26 / 32

https://doi.org/10.1371/journal.pcbi.1007371


hearing the auditory outcomes of the starter’s actions for the first half of the pattern. Delivery

of auditory outcome information between subjects was bidirectionally delayed by a TL. For a

given trial, the latency stayed at a constant value. Latencies between 3ms and 78ms were exam-

ined. The results show that with TLs longer than 20ms the two musicians decelerated their

common tempo. For the latencies shorter than 10ms, they accelerated instead. As shown in Fig

4B, the asynchrony between the two musicians at every cycle grew as a function of the TL.

Setup, procedures and measurements. To simulate this paradigm, we used a pair of

musician SAPPA models like the one developed in Experiment 1, and set them up to feed

one model’s z activity as an input to the other at a given cycle, then alternate this input flow

direction (see Fig 1F). The first model is considered to be the initiator and the other, the

joiner. In our simulations, f for both oscillators was set to be a frequency of 1.5Hz, equiva-

lent to 90 bpm. For the sake of simplicity, we did not employ the nearby offsets of this fre-

quency that were used by Chafe and colleagues [14] to mitigate adaptation to a specific

tempo by the subjects. The simulations were also carried out with pairs of non-musician

SAPPA models. Compared to Experiment 1 and Experiment 2 where an external sinusoid

stimulated the SAPPA model, in Experiment 3 pairs of oscillators stimulated each other,

and there was no external sinusoid.

A simulation of the original experiment began by allowing the initiator SAPPA model to

oscillate for one cycle. During this cycle, the initiator received its own z activity as an input

(the input to the initiator was F = Az(1)) and sent its z activity as an input to the joiner (the

input to the joiner was F = z(1)). After receiving an input from the initiator for one cycle, the

joining model continued oscillating one cycle getting its own z activity as an input (the input

to the joiner was F = -Az(2)) and sending its z activity to the initiator (the input to the initiator

is then F = z(2)). In subsequent cycles, the inputs to the two models continued alternating

every cycle which oscillator’s z activity was used as the inputs to both oscillators. At a given

cycle, whichever model’s z activity was used as an input to both models was referred to as the

‘active’ model, while the other one was referred to as the ‘passive’ model. This alternation was

repeated until the simulation had run for 30 seconds to complete a trial. Trials were carried

out in the presence of fixed TLs ranging from 0ms to 78ms between models.

We measured the Lead/Lag relationship between models in the same way as Chafe and col-

leagues [14]. For each participant clapping in turn, the Lead/Lag relationship with respect to

the other participant was measured as:

L ¼ ðað1Þ � bð1ÞÞ þ ðbð2Þ � að2ÞÞ ð9Þ

Where a(1)- b(1) is the time difference in seconds between the first clap of the participant cur-

rently in turn and the last clap of the participant previously in turn. b(2)–a(2) is the time differ-

ence between the first clap of the participant clapping after the current participant in turn and

the last clap of the current participant in turn. L can be expressed as a fraction of a 90 bpm

tempo, as in Chafe and colleagues [14], using the expression: - 90 x L / (60 x 1000), where L (in

ms) gets converted to a fraction of a period corresponding to a 90bpm tempo. If the resulting

value was negative, this meant that the passive oscillator lagged behind the active oscillator. A

positive value suggests the opposite.

Model optimization. The SAPPA model in this experiment was similar to the musician

and non-musician models identified in Experiment 1. Therefore, the model architecture used

in this experiment is summarized by Eq (5). Compared to Experiments 1 and 2, in this experi-

ment these was no external sinusoidal stimulus. Instead, pairs of SAPPA models stimulated

each other.
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Data and software

The software to run the simulations and generate all the figures is available in the github repos-

itory: https://github.com/iranroman/SAPPA

Supporting information

S1 Fig. The SAPPA model’s behavior when the external periodic input is a square wave

instead of a sinusoid. (A) Illustration of what the asynchrony between the SAPPA model and

the external square wave stimulus looks like, and how it’s measured. (B) Analysis of the asyn-

chrony (in ms) as a function of D and τ in Eq (5) when A = -0.5 and f = 1. (C) The anticipation

observed when the musician (green dots) and non-musician (yellow dots) SAPPA models

were stimulated by the external square wave while also receiving their own non-delayed activ-

ity as input (A = -0.5). In all simulations τ = 0.222 seconds. The D parameter differentiates the

musician and non-musician models. The regression lines for the behavioral data originally

shown in Fig 2A are shown for comparison purposes in (C).

(DOCX)

S2 Fig. Analysis of the asynchrony between the SAPPA model and the stimulus as a func-

tion of the recurrent delay τ. Rectangular plots (left panels) show the asynchrony as a function

of τ (in units of seconds) for different values of A while D stays constant (D = 1.0; f = 1.0). Circu-

lar plots (right panels) show the angle of the asynchrony and the magnitude of the SAPPA

model. In the rectangular plots, asynchrony is shown in units of radians, and not in seconds, in

order to match the cyclic dynamic range of the circular plots. In the rectangular plots, gray-

shaded areas indicate regions where the SAPPA model did not synchronize with the stimulus,

and instead mode-locking was observed. Vertical dotted lines indicate values of τ for which cir-

cular plots were calculated. In the circular plots, individual blue lines start from different initial

conditions, all of which arrive to either a red dot (a fixed point) or a red ring (a limit cycle). (A)

A = -1.0 (B) A = -0.5 (C) A = 0.0 (D) A = 0.5 (E) A = 1.0. The limit cycle behavior is observed

when the SAPPA model does not synchronize with the stimulus, and instead the SAPPA model

mode-locks with the stimulus. Note: the circular plots are known as polar plots.

(DOCX)
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