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Abstract

MicroRNAs are conserved, endogenous small RNAs with critical post-transcriptional regula-

tory functions throughout eukaryota, including prominent roles in development and disease.

Despite much effort, microRNA annotations still contain errors and are incomplete due

especially to challenges related to identifying valid miRs that have small numbers of reads,

to properly locating hairpin precursors and to balancing precision and recall. Here, we pres-

ent miRWoods, which solves these challenges using a duplex-focused precursor detection

method and stacked random forests with specialized layers to detect mature and precursor

microRNAs, and has been tuned to optimize the harmonic mean of precision and recall. We

trained and tuned our discovery pipeline on data sets from the well-annotated human

genome, and evaluated its performance on data from mouse. Compared to existing

approaches, miRWoods better identifies precursor spans, and can balance sensitivity and

specificity for an overall greater prediction accuracy, recalling an average of 10% more

annotated microRNAs, and correctly predicts substantially more microRNAs with only one

read. We apply this method to the under-annotated genomes of Felis catus (domestic cat)

and Bos taurus (cow). We identified hundreds of novel microRNAs in small RNA sequencing

data sets from muscle and skin from cat, from 10 tissues from cow and also from human

and mouse cells. Our novel predictions include a microRNA in an intron of tyrosine kinase 2

(TYK2) that is present in both cat and cow, as well as a family of mirtrons with two instances

in the human genome. Our predictions support a more expanded miR-2284 family in the

bovine genome, a larger mir-548 family in the human genome, and a larger let-7 family in

the feline genome.
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Author summary

While the computational prediction of microRNA loci from high-throughput sequence

data is well-studied, challenges persist in defining the minimum number of reads required

for a locus to be evaluated, as well as in defining the precursor span. We present a new

method, “miRWoods”, which has greater recall of known microRNAs, while also achiev-

ing as good or better overall performance. Our approach uses improved duplex-based

methods of precursor detection and a pair of random forest layers that sensitively detect

mature products and precursors. We trained our model on data from human, and con-

firmed that it can successfully be applied cross-species by evaluating predictions for the

mouse genome. We then applied our approach to new sequencing data mapped to the

under-annotated genomes of cow and cat. We were able to use miRWoods to improve

annotations for cat and cow microRNAs, and found novel microRNAs in human and

mouse, and identified errors in current annotations.

Introduction

MicroRNAs (miRNAs, miRs) are a highly-conserved class of small endogenous RNA mole-

cules that are involved in post-transcriptional gene silencing by acting as a guide RNA for the

RNA-induced silencing complex (RISC). The biogenesis of microRNAs begins with the gener-

ation of a primary transcript (pre-miR), which folds into a structure containing one or more

~70-nt hairpins. These hairpin precursors (pre-miRs) are cut at the base by Drosha [1]. After

export from the nucleus, the loop of the hairpin is cut by Dicer. The resultant double-stranded

RNA duplex is unwound to produce two mature ~22-nt microRNAs (miRs), named 50 and 30

after the arm of the hairpin from which they derive. Typically, only one of the mature micro-

RNAs is incorporated into RISC, and the other microRNA is degraded and designated miR-

star or miR�. The seed sequence at positions 2–8 of RISC-bound mature microRNAs binds to

complementary sequences in the 30 untranslated regions (UTRs) of mRNAs.

Initially discovered through genetic screens in C. elegans [2], the advent of deep sequencing

data has enabled the high-throughput discovery and annotation of novel microRNAs. Most

microRNA prediction approaches begin by aligning size-selected deep sequenced RNA (small

RNA-seq) reads to the genome, and then the identification of overlapping aligned reads, “read

stacks”. These read stacks correspond to mature microRNA products, as well as other

sequenced fragments including microRNA offset RNAs (moRs) [3], hairpin loops, and spuri-

ous RNA fragments. The RNA secondary structures for the genomic sequences surrounding

the read stacks are predicted and reads overlapping predicted hairpin structures are analyzed

for arrangements consistent with microRNA processing. The prediction methods vary in the

specifics of how the data are processed, and relevant features are quantified, as well as what

classification techniques are used. Methods employing this strategy include miRTRAP [4], the

software upon which miRWoods was built, along with miRDeep [5], the improved miRDeep2

[6] and other variants [7, 8], miReap [9], and miRAnalyzer [10].

Several challenges remain in the computational prediction of microRNAs. Current

approaches have strengths and weaknesses; while some approaches focus on higher precision

at the expense of false negatives, others focus on higher recall at the expense of false positives.

Most approaches require a minimum number of mapped reads at a given locus, meaning that

many valid lowly expressed microRNAs are missed. Also, hairpin precursor detection is chal-

lenging because slight changes in the boundaries can shift the secondary structure prediction

away from the hairpin. Our analysis of the predictions from available methods identifies many
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cases that partially overlap with or are shifted from annotated loci, and mistake 50 for 30 mature

miRs.

These remaining challenges to microRNA discovery motivated us to create miRWoods, a

microRNA discovery pipeline using stacked random forests with an improved method for

determining hairpin precursor span (Fig 1). The miRWoods pipeline consists of a mature

product random forest (MPRF) for mature product detection, and a hairpin precursor random

forest (HPRF) for hairpin precursor identification. For, balancing precision versus recall, we

tuned miRWoods to optimize F-score, which is the harmonic mean of precision and recall.

We trained and tuned miRWoods on well-annotated human data sets, evaluated cross-species

performance using mouse data and used the pipeline to subsequently identify novel micro-

RNAs in the feline and bovine genomes.

Results

Overview of strategy behind miRWoods

Because current approaches impose a threshold for the read abundance for a locus to be evalu-

ated as a putative microRNA, many low-abundant miRs are missed. To avoid this, we have

added a machine learning classifier to identify read stacks that are plausible mature microRNA

loci, thereby enabling miRWoods to detect microRNAs with a single read. This RF evaluates

read abundance-related features in the context of other features to classify plausible mature

products (Table 1). To avoid the sensitive-dependence on precursor span for secondary struc-

ture prediction, we examine several putative precursors for each read stack, including one

derived from the boundaries of the optimal duplex between the read stack and surrounding

genomic region (duplex-focused spans) and those derived from the boundaries with other

products (product-focused spans). Through extensive feature-engineering, we have added sev-

eral novel features to help classify the microRNA precursors, which are listed in Table 2.

Finally, we have tuned parameters of our model to optimize F-score, the harmonic mean of

precision and recall, to result in improved performance that doesn’t sacrifice precision, and

recalls 10% more annotated microRNAs on average.

Stacked random forest approach

As with other microRNA discovery tools, miRWoods begins by analyzing genomic loci where

small RNA reads mapped. A distinguishing feature of miRWoods is the use of an additional

RF layer (the MRPF) to classify reads stacks as plausible mature microRNAs rather than rely

only on the number of reads mapping to that genomic locus. The features used in the MRPF

are summarized in Table 1. The MRPF also leverages basic sequence features previously

shown to be effective in detecting precursors such as GC-content and dinucleotide frequencies

[10–14]. In addition, we introduce some novel features such as the duplex energy between the

read stack’s most frequent read sequence and the surrounding genomic locus. This quantity is

distinct from miR:miR� duplex energy because the input is a read stack, and miR/miR� desig-

nations have not been assigned at this point. Also included are the observed frequencies of 50

read ends relative to the most abundant position.

The HRPF also uses several novel features, summarized in Table 2. Novel features include

11 “overlap” features, correpsonding to the degree of overlap between different identified

products (e.g. 5’ moR, 5’ miR, loop, 3’ miR). We also introduced several features describing

destabilizing structures, such as bulges and loops, and several features describing the regions

duplexed with the most abundant product. We also analyzed what features were most impor-

tant for miRWoods, and summarized feature importance in S1 Fig. We found that the fre-

quency of reads in the start position of the read stack and the duplex energy to be highest in

Sensitive and accurate detection of microRNAs with miRWoods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007309 October 9, 2019 3 / 29

https://doi.org/10.1371/journal.pcbi.1007309


importance for the MPRF (S1A Fig). We found that the decision value from the MPRF, the

reads per million in the sense and anti-sense strands, the product base pairing, and the duplex

Fig 1. Outline of miRWoods Pipeline. After aligning to the genome, overlapping reads are grouped together to form read stacks. Read stacks are

scored used Mature Product Random Forest (MPRF), to predict a set of putative mature microRNAs. Products which meet the minimum threshold

score for the MPRF are combined with the surrounding region to form hairpins and each hairpin is folded. Hairpins are scored using the Hairpin

Random Forest (HPRF) and a set of final predictions are generated which meet the minimum threshold for the HPRF score.

https://doi.org/10.1371/journal.pcbi.1007309.g001
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energy to be the most important features for the HPRF (S1B Fig). Because the value of some

features showed correlation, we also examined feature importance for RFs trained with corre-

lated features removed. We identified features with an R^2 greater than or equal to 0.5 (S1

Table), and removed the feature with the highest importance for each correlated pair. We did

see an increase in feature importance for some features in the HRPF, such as totalSenseRPM,

dupLoopDistance, ARV, wARV, dupPBP, and afh (S2 Fig). We also examined the change in

importance when correlated features are removed (S3A and S3B Fig). In some cases, features

gained the importance after removal of their correlated partner. Other cases, such as

“dupLoopDistance” and “dupPBP” showed a substantial increase in importance despite not

having correlated features removed. We do not observe a significant decrease or consistent

change in performance with the most correlated features removed (S3C Fig).

We examined the role of read-abundance on the performance of miRWoods. The histo-

grams of true positive predictions from miRWoods, miRDeep2, and miREAP demonstrate

that miRWoods correctly identifies more single-read miRs (S4A–S4F Fig). We observed that

consistently in both predictions trained and tested in human (same-species) and trained on

human, tested on mouse (cross-species), miRWoods consistently makes more valid positive

predictions for loci supported by only one read (S4G Fig). While these predictions illustrate

the power of miRWoods, in practice any single-read predictions are not proof and would

require further validation. We analyzed effect of removing read-abundance-related features

and found that while performance does reduce with the removal of these features (S4H Fig),

the overall greater performance on low-abundance loci demonstrates that these features do

not impair performance.

Accurate mapping of hairpin precursor span

Proper identification of hairpin precursor span is critical for microRNA prediction, because

methods typically rely on secondary structure prediction, which can significantly depend on

the defined window. The labeling of 50 vs 30 products requires accurate identification of the

hairpin precursor. We imposed stringent requirements for predictions for the hairpin span of

a locus to be considered a true positive when compared to miRBase annotations. Predicted

loci where the hairpin folded in the wrong direction and/or overlapped less than 50% of the

annotation were counted as false predictions. To address these stringent criteria, we developed

an approach that focuses on strong miR/miR� duplex energy, rather than secondary structure

of the hairpin. While most approaches focus on the predicted structure in a region around the

most abundant product (i.e. major product), our duplex-focused method selects the span of

hairpin regions using the optimal duplex pairing with the most abundant product (Fig 2A).

Alternatively, product-focused spans covering the major product and any product 4 nt or

Table 1. Features used in the mature products random forest (MRPF).

fivePrimeHet 50-heterogeneity of product reads

medianLength Median length of product reads

gcContent GC content of product sequence

aa,ac,ag,at,ca,cc,cg,ct,ga,gc,gg,gt,ta,tc,tg,tt (16

features)

product dinucleotide frequencies

r7,r6,r5,r4,r3,r2,r1,s0,f1,f2,f3,f4,f5,f6,and f7 (15

features)

read abundance 7 nt downstrem to 7 nt upstream product start

position

WFC Wooton-Federhen Complexity of product sequence

Duplex Energy Minimum free energy of product duplex with surrounding

genomic region.

https://doi.org/10.1371/journal.pcbi.1007309.t001
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more away from the major product are also considered. Each of these options are considered

as putative loci, and evaluated in subsequent steps. We found that miRWoods uses the duplex-

Table 2. Features used in the hairpin products random forest (MRPF).

Name Description Reference

mfe minimum free energy of hairpin fold 14, 11�, 13�, 4, 10,

1, 12

pbp frequency of paired bases of miR 11, 4�, 8

urf fraction of unique reads to total adjusted reads for locus 34, 8

gcContent GC content of locus sequence 11, 10

totalSenseRPM Adjusted reads per million (ARPM) in the sense strand 12�, 4�

loopSize length of the loop in nucleotides. 10, 12

maxBulge longest bulge appearing in the region of the hairpin spanning the miR and miR� 10�, 12

tapd total displacement of sense to anti-sense products 8

aapd average displacement of sense to anti-sense products 8

ahc average number of hits to the genome for the major product 8

afh average 5’-heterogeneity of major product reads 8

sameShift Amount of offset between products on the same arm 8

bothShift maximum amount two products are offset on opposite arms 8

Dinucleotide frequencies (16

features)

precursor dinucleotide frequencies 12

maxInteriorLoop Length of largest interior loop spanning the miR and miR� 12

intLoopSideDiff Difference in length of of interior loop branches in miR/miR� 12

OPA Frequency of the most abundant overlapping product

Duplex Energy Duplex energy of major product and surrounding region.

foldDupCmp Similarity between dotbracket sequences from RNAduplex and RNAfold

dupPBP base pairing density of region duplexing the major product

dupLoopLength Length of biggest bulge or interior loop in region duplexing the major product

APV The average variance of read counts for distinct reads for all products

wAPV The average variance of read counts for distinct reads weighted across products

ARV The average variance of start positions for reads on each product

wARV The average variance of start positions for reads weighted by product size

mpLoopDistance distance of the miR from the loop

dupLoopDistance distance of the miR� from the loop

totalOverlap The sum of the amounts of overlap between each pair of overlapping reads.

totalRelativeOverlapAmount sum of each overlap multiplied by the abundance ratio of the smaller to larger product

averageOverlapAmount sum of each overlapping product multiplied by the frequency of reads of the smaller product within the

hairpin

innerLoopGapCount number of times 3 or more unbound nucleotides appears in the loop region

totalAntisenseRPM Adjusted reads per million (ARPM) in the anti-sense strand

maxUnboundOverhang The largest length of unpaired nucleotides on either side of the miR

numOffshoots number of additional hairpins formed on or across from the miR or miR�

dupSize The size of the region duplexed by the miR product

neighborCount The number of regions of contiguous read loci within 1000 nucleotides of the precursor

RFProductAvg Decision value returned by the random forest in the product phase

Product counts (8 features) The fraction of the product relative to the total for the hairpin

Product overlaps (11 features) Overlaping lengths for individual products within the locus (e.g. “miRmoR5pOverlap” the overlap between

miR and moR on 50 arm).

�References with an asterisk use a variant of the described feature.

https://doi.org/10.1371/journal.pcbi.1007309.t002
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focused span an average of 88.4% of the time in its final predictions for all human sets (S2

Table).

Fig 2. Improved hairpin precursor Span identification. a miRWoods generates several potential hairpin precursor spans from each product that

passes through the MPRF. Duplex-focused spans take the region between the product and the optimal duplex and product-focused spans take the

region between the product and other products greater than 4 nt away. Hairpins are selected based on HPRF score. b The miRBase annotation for

hsa-mir-4721 crosses over an intron boundary. miRWoods corrects the annotation by recognizing a second read stack and produce precursor span

that perfectly matches an intron, suggesting mir-4721 is a mirtron. c The miRWoods prediction for mmu-let-7c-2 in mouse is consistent with the

miRBase annotation, while the best miRDeep2 prediction, albeit below the default signal-to-noise threshold, only partially overlap with the miRBase

annotation.

https://doi.org/10.1371/journal.pcbi.1007309.g002
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The percentage of predictions that matched an annotation well enough to be considered a

valid hairpin precursor was computed for miRWoods, miRDeep2 and miReap and summa-

rized in Table 3. miRWoods predictions used the proper fold an average of 99.1% of the time

for human samples and 99.9% of the time for mouse samples. miReap was able to predict the

proper fold 98.2% of the time for human and 97.8% of the time for mouse. miRDeep2 was able

to predict the proper fold 98.9% of the time for Human and 97.7% of the time for mouse. In

some examples, miRWoods corrects errors in the miRBase annotations. In Fig 2B we show the

current annotation for hsa-mir-4721. While miRWoods predicts a hairpin precursor that

directly matches with intron splice junctions (a mirtron), the miRBase annotation only over-

laps one mature product. Similarly, S5A Fig shows hsa-mir-6860, which miRWoods predicts

to be a half-mirtron and the current miRBase annotation does not. In both cases the miR-

Woods predicted hairpin span lines up with the intron splice site, even though miRWoods

does not use splice junction locations in its predictions, thereby providing independent sup-

port to the predictions. In other examples, such as mmu-let-7c-2, the miRDeep2 hairpin span

is offset, assigning the 50 product as the 30 product (Fig 2C). A similar scenario is observed for

hsa-mir-431 (S5B Fig).

Evaluation of prediction performance

A summary of all small RNA deep sequencing data sets is provided in S3 Table. The repertoire

of expressed microRNAs can vary considerably between tissue types in the same organism;

therefore, we tested miRWoods against different cell types and conditions. We tested miR-

Woods on 9 samples from 4 small RNA sequencing experiments and provide performance

metrics compared to other methods in Table 4. We compared the performance of miRWoods,

miRDeep2, and miReap on several small RNA data sets from human and mouse downloaded

from GEO [15]. In each evaluation, the same RF models trained on human data were tested on

small RNA data collected from different tissues including human MCF-7 total cell content

(GSE31069), MCF-7 cytoplasmic fractions (GSE31069), human cancer cell lines (GSE16579),

human normal liver (GSE21279), as well as cross-species tests on mouse brain, embryo, testes,

ovary, and whole newborns (GSE20384). Because microRNA expression can vary from tissue

to tissue, all programs were evaluated against the expressed miRs for that data set with at least

one read aligned. miRWoods recalled on average 10% more annotated miRs, and obtained

greater F-scores except in the case of mouse embryo where the F-sore was 0.312 for

Table 3. Percentage of predicted hairpin spans matching miRBase annotation. The method with the highest percent for a particular sample are presented in bold.

miRWoods miRDeep2 miReap

library total percent (%) total percent (%) total percent (%)

human MCF-7

(total cell)

450 98.901 318 98.452 430 98.398

humam MCF-7

(cytoplasm)

452 98.69 314 99.054 428 97.717

human liver 385 99.483 318 99.375 413 98.804

human cell lines 736 99.325 532 98.519 228 97.854

mouse brain 405 100 330 98.214 370 98.143

mouse embryo 486 99.59 412 98.329 398 97.073

mouse newborn 419 99.762 335 97.384 179 97.283

mouse ovary 282 100 243 97.2 237 98.75

mouse testes 293 100 269 97.464 260 97.744

https://doi.org/10.1371/journal.pcbi.1007309.t003
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miRWoods compared to 0.313 for miRDeep2. Higher F-scores were obtained for all sets when

miRWoods was compared with miREAP.

For a detailed summary of all microRNAs evaluated, both novel and annotated, along with

expression levels across all samples, see S4 Table. Remarkably, miRWoods performed better

on cross-species tests on mouse data compared to tests on human data (S6 Fig), providing jus-

tification for its application to other mammalian genomes when trained on human. Typically,

miRWoods has a greater number of false positives and fewer false negatives than miRDeep2

when compared to miRBase annotations (Fig 3A).

We tuned thresholds for expression level, proportion of negative samples, and decision val-

ues threshold on a separate dataset from what RFs were trained on (see Methods, S7 Fig). A

summary of the data sets and values resulting from the tuning experiment is provided in S5

Table.

The decision value threshold that has been tuned to optimize the F-score for the identifica-

tion of valid loci correlates well with decreased expression in Dicer knockdown MCF-7 cells

(Fig 3B, S8A and S8B Fig). On average, the novel predictions of miRWoods show a greater

decrease in the cytoplasm of Dicer knockdowns compared to novel predictions from miR-

Deep2 and miREAP (Fig 3C) and on par in total cell content (S8B Fig). We calculated p-values

for each of these comparisons using two-sample t-tests and found that novel predictions in

cytoplasm from miRWoods and miREAP had a significant reduction in Dicer-knockdown

expression compared to miRBase. Novel predictions in total cell content for all programs

showed a significant reduction in Dicer-knockdown expression compared to miRBase (S6

Table). Similarly, empirical cumulative distribution functions (ECDFs) of the fold change in

Dicer knockdowns compared to wild type show a greater proportion of novel predictions

highly depleted in Dicer knockdowns (S8C and S8D Fig). Examples of novel predictions found

to be reduced in expression in Dicer mutants include hsa-Novel35, hsa-Novel28, hsa-Novel23,

hsa-Novel65, has-Novel92, and hsa-Novel99 (S9 Fig).

One advantage of miRWoods over the other methods is that it prints a score for each geno-

mic locus evaluated, whether or not it is predicted to be a microRNA. Therefore, the output is

amenable to creating precision-recall (PR) curves [16], such as Fig 3D and 3F. The area under

the PR curve (AURPC) evaluates the performance of the prediction, and has the advantage

over Receiver Operator Characteristic (ROC) curves [17] of not being overwhelmed by the

large number of true negatives associated with genome-wide microRNA prediction. We pres-

ent PR curves for predictions in mouse, with an average AUPRC of 70.3. Comparisons with

Table 4. Comparison of performance of miRWoods compared to miRDeep2 and miReap. The method associated with the highest F-score for a particular sample are

presented in bold.

miRWoods miRDeep2 miReap

library precision recall F-score precision recall F-score precision recall F-score

human MCF-7 (total cell) 0.727 0.501 0.296 0.839 0.354 0.249 0.42 0.478 0.223

human MCF-7 (cytoplasm) 0.7 0.511 0.295 0.86 0.355 0.251 0.476 0.484 0.24

human liver 0.871 0.447 0.295 0.898 0.369 0.262 0.446 0.48 0.231

human cell lines 0.627 0.586 0.303 0.834 0.424 0.281 0.264 0.182 0.108

mouse brain 0.849 0.569 0.341 0.951 0.463 0.312 0.397 0.52 0.225

mouse embryo 0.694 0.567 0.312 0.898 0.481 0.313 0.205 0.464 0.142

mouse newborn 0.836 0.559 0.335 0.931 0.447 0.302 0.312 0.239 0.135

mouse ovary 0.953 0.603 0.369 0.96 0.519 0.337 0.798 0.506 0.31

mouse testes 0.91 0.579 0.354 0.944 0.532 0.34 0.324 0.514 0.199

https://doi.org/10.1371/journal.pcbi.1007309.t004
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miRDeep2 show that miRWoods has greater false positives, but fewer false negatives (Table 4,

Fig 3E–3G, S10 Fig). Comparisons with miREAP show that miRWoods has a lower false posi-

tive rate, and a higher F-score on average (Table 4, S11 Fig). Overall, miRWoods shows equal

or greater F-score than both miRDeep2 and miReap for all data sets (Table 4).

Many of the “false positive” microRNA predictions are actually novel predictions of valid

miRs. Despite how complete the human microRNA annotation is, we were able to identify 682

potential novel loci in the human data sets. We found that many of our novel predictions,

despite not being annotated, had homology to known miRs in other species. In some cases,

miRWoods identified more instances of known miR families. For example, there are 72

known precursors from the mir-548 family in the human genome annotated by miRBase.

miRWoods was able to identify an additional 34 novel members of the mir-548 family (S12

Fig), suggesting this family could be larger than previously thought.

Novel microRNA predictions in the feline genome

We next sought to predict microRNA loci in species with limited microRNA annotations,

including the feline and bovine genomes. We ran miRWoods on small RNA samples isolated

from muscle and skin tissue for 3 different cats. Currently, there are two studies of feline

microRNAs that we are aware of. In one study, Sun et al. did an analysis with miREAP in the

context of the mink enteritis virus (MEV) [18]. In a more recent study, Laganà et al. identified

feline microRNAs with miRDeep2 in a multi-tissue cohort [19]. miRWoods identified 495

microRNA loci, with 293 of them having significant homology to microRNA precursors from

miRBase. Among the miRWoods predictions, 198 overlapped with the microRNA found in

Sun et al., and 213 overlapped with microRNAs found in Laganà et al., and 215 were newly dis-

covered (Fig 4A).

Expression of three novel microRNAs in feline skin and muscle were examined by qPCR

and normalized expression relative to 2 control miRs with low variability across our tissue

samples, miR-25 and miR-191 (Fig 4B and 4D, S13 Fig). These examples included a novel

member of the miR-133 family, with enriched expression in muscle that was validated by

qPCR (Fig 4B) and a predicted structure that strongly matches expectations for microRNAs

(Fig 4C). We also identified a novel miR with no homology to known miRs, with a statistically

significant tissue-specific enrichment based on a voom analysis [20], including some more

abundant in muscle (Fig 4B–4E). In addition, we validated two predicted miRs previously

described by Laganà et al that we determined to be significantly differentially expressed. As

predicted, fca-mir-1-1 was more abundant in muscle whereas fca-mir-205 was abundant in

skin (S13 Fig). Overall, our analysis of the expression of our predicted microRNAs identified

71 differentially expressed miRs using a voom FDR of 0.05, with 33 enriched in muscle, and 38

enriched in skin tissue.

Several known and novel let-7 family precursors were found within clusters including mul-

tiple let-7 miRs. For example, we found a cluster on chromosome D4 containing fca-let-7f and

Fig 3. Evaluation of miRWoods performance. a Euler diagrams comparing predictions from miRWoods and miRDeep

with annotations from miRBase for human MCF-7 cytoplasmic extract b A scatterplot comparing the miRWoods decision

value to the log fold change in Dicer knockdown cells compared to wild-type cells. c Scatter-boxplot comparing the log fold

change for Dicer knockout to wild type for unprocessed read regions, miRBase annotations, and predictions from

miRWoods, miRDeep, and miReap for MCF-7 (cytoplasmic fraction). Black dots indicate predictions that are unique to this

method. d Precision-recall (PR) Curve and AUPRC of miRWoods predictions for human including MCF-7 (total cell

content), MCF-7 (cytoplasmic fraction), cell lines, and liver. e Euler Diagrams comparing predictions from miRWoods and

miRDeep with annotations from miRBase for human liver. f Precision Recall Curve and AUPRC of miRWoods predictions

for mouse tissues including brain, embryo, newborn, testes, and ovaries sets. g Euler Diagrams comparing predictions from

miRWoods and miRDeep2 with annotations from miRBase for mouse ovary.

https://doi.org/10.1371/journal.pcbi.1007309.g003
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two novel let-7 miRs denoted fca-let-7-Novel2 and fca-let-7-Novel3 (Fig 5A). The predicted

novel miRs (Fig 5B and 5C) have predicted secondary structures with similar bulges and/or

internal loops observed in other let-7 family members including fca-let7f (Fig 5D). A phyloge-

netic tree of known and novel let-7 miRs shows comparable sequence similarity, although not

necessarily correlated with proximity of the genomic loci (Fig 5E).

Feline microRNAs were found within 51 clusters, 28 overlapped with the 31 previously

described [19]. In addition to the two previously-identified feline-specific precursors within

cluster 14, miRWoods identified one additional feline-specific precursor tagged as fca-

Novel45. Cluster 2 covers an intron within the ARHGEF10L gene and contains two more

novel feline-specific miRs (fca-Novel10 and fca-Novel13.) Cluster 3 contains fca-mir-30c-1,

and two novel mir-30 homologs antisense to one another within an intron on the NFYC gene

(S7 Table)

Novel microRNA predictions in the bovine genome

For the bovine genome, there are 811 known microRNA precursors producing 881 mature

microRNA annotations, compared to 1187 precursors for mouse and 1881 for human, which

generate 2045 and 2813 mature products, respectively.

Fig 4. miRWoods predictions in the feline genome. a Euler diagram of the predictions from miRWoods with predictions from Sun et al. (2014) and Lagana et al.
(2017). b The expression in skin and muscle for miR-133-Novel-3p c Hairpin for mir-133-Novel precursor. d The expression in skin and muscle for Novel110-3p. e

Hairpin for Novel110 precursor. f Scatterplot of average muscle expression vs average skin expression for each mature microRNA.

https://doi.org/10.1371/journal.pcbi.1007309.g004
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We used miRWoods to predict bovine microRNA loci using small RNA-seq samples from

10 bovine tissues including corium from the hoof (corium feet), dental pulp, oral papillae,

penis, retina, iris, optic nerve, brain stem, bone marrow, and submandibular lymph node. We

selected tissues that were highly diverse and whose microRNA profiles had not been examined

before. Our pipeline identified a set of 810 predicted microRNA loci. Among these, 409 were

already in the miRBase R21 Bos taurus annotations, 91 had homology to microRNA annota-

tions in cow and other species, and 310 were novel predictions with no known homology.

Overall, miRWoods identified 401 novel bovine microRNAs. In addition, clustering of

microRNA loci revealed 76 clusters, including 63 known and 13 novel clusters (S7 Table).

Cluster 19 contained two bovine-specific half-mirtrons, (bta-Novel68 and bta-Novel71),

within the PLD2 gene. A bovine specific mirtron (bta-Novel210) and another half-mirtron

(bta-Novel212) were found within theMCAM gene on cluster 53. Another bovine specific

half-mirtron (bta-Novel208) was found on cluster 44 with bta-mir-140 on theWWP2 gene.

Fig 5. Novel let-7 microRNAs in the feline genome. a RNA-seq of cluster containing fca-let7-Novel2, fca-let7f, and fca-let7-Novel3 for each skin and muscle sample

from Felis catus. b Hairpin structures for fca-let7-Novel2, c fca-let7-Novel3, and d fca-let7f. e Phylogenetic tree of let-7 miRs including those previously found by Lagana

et al. (2017).

https://doi.org/10.1371/journal.pcbi.1007309.g005
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Fig 6A shows an Euler diagram comparing miRBase annotations to miRWoods predictions

for bovine samples. To test the validity of the novel predictions, we performed RT-qPCR on

available samples, and normalized expression relative to 5 control miRs with low variability

across our tissue samples. After normalization, expression levels for control miR-7 are com-

pared with RT-qPCR (Fig 6B). Strong correspondence between small RNA-seq and RT-qPCR

are observed for 2 of the tested microRNAs (Fig 6C and 6D), suggesting that the mature prod-

uct was detectable with both methods in the tissue it was expressed. Expression was observed

for all tested novel bovine miRs using RT-qPCR, validating the expression of these predicted

mature products (Fig 6E).

Novel Predictions in the Bovine miR-2284 Precursor Family

The miR-2284 family has previously been found to be expressed in tissues relevant to the

immune system but gene targets are currently unknown [21]. Within the mir-2284 family,

miRWoods predicted 29 known and 68 homologous precursors. Of the 68 homologous pre-

cursors, only 35 fit the criteria of having the same seed region as other miRs. Removing the

seed requirement, 33 additional mir-2284 family precursors were identified. Unique reads

were found in 51.5% of homologous precursors and 37.00% of already annotated precursors.

Hierarchical clustering was performed on mir-2284 family microRNAs based on their normal-

ized expression profiles and a heat map was generated (Fig 7A). Despite having a shared

homology, expression of the microRNAs in the mir-2284 family are highly diverse in the tis-

sues assayed, but show greatest expression in submandibular lymph node (SLN). Interestingly,

this is consistent with prior studies of this family that observe greatest expression in bovine

immune cells [22] given recent studies of the immunosuppressive properties of SLNs [23]. A

phylogenetic tree was created to show all annotated and newly predicted miRs in the mir-2284

family (Fig 7B).

Read abundances showed a tendency for mir-2284 and mir-2285 precursors to favor a sin-

gle (opposite) side of the precursor. The abundance of each microRNA for the mir-2284 and

mir-2285 precursors within the mir-2284 precursor family was examined (Fig 7C) For anno-

tated microRNA precursors, 82.05% of mir-2284 loci had the most abundant read on the 5p-

side, and 89.36% of mir-2285 had the most abundant read on the 3p-side. Similarly, for our

predicted microRNAs with homology to this family, 73.91% of mir-2284 examples had the

most abundant read on the 5p-side, and 88.89% of mir-2285 examples had the most abundant

read on the 3p-side.

Discovery of novel miR families

We found that 11 novel predictions in human were within clusters of annotated microRNAs,

and 39 novel predictions in new clusters. Of the 9 potential miR families which matched the

criteria found in the methods section one contained a snoRNA and was removed. Of the

remaining candidate miR families two had miRs which were found across species. We identi-

fied a novel miR family with two instances in the human genome; one example was a mirtron

in an intron of LAMA5, and the other a half-mirtron in an intron of CHD3 (Fig 8A–8E). Both

of the examples in human were observed to have no expression in Dicer knock-out cells (Fig

8A and 8B). We observed a strong level of similarity in predicted secondary structures of the

two examples observed in human (Fig 8C and 8D). We compared these introns across several

mammalian species and observed patterns of conservation that suggest an ancestral divergence

of these two mirtrons rather than a more recent duplication (Fig 8E). We found another novel

miR family with an example in both the bovine and feline genomes, but not observed in

mouse or human (Fig 8F–8G). Strikingly, both of these miRs (bta-Novel5 and fca-Novel70)
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were found within the same intron of TYK2 in cow and cat genomes (Fig 8F and 8G), and

both examples showed nearly identical hairpin precursor sequences (Fig 8H and 8I). We did

not observe this miR in human or mouse data sets, and we also observed greater sequence

divergence of this intron in human and mouse (Fig 8J). A list of all identified putative novel

families identified by miRWoods is presented in S8 Table.

Fig 6. Novel microRNA predictions in the bovine genome. a Euler diagram comparing miRWoods predictions in

the cow genome with miRBase annotations. b Scatterplot and best fit line comparing the normalized RT-qPCR

expression and RNA-seq for the control miR bta-miR-7. c Scatterplot and best fit line comparing the normalized RT-

qPCR expression and RNA-seq for a novel predicted miR with enriched expression in brain stem. d Scatterplot and

best fit line comparing the normalized RT-qPCR expression and RNA-seq for a novel predicted miR with enriched

expression in corium feet. e Heat map of RT-qPCR expression expression values over tissues examined.

https://doi.org/10.1371/journal.pcbi.1007309.g006
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Fig 7. mir-2284/mir-2285 family miRs in Bos taurus. a A heat map for the expression of annotated and novel mir-2284/mir-2285 family miRs. b A

phylogenetic tree for the bta-2284/bta-2285 family. Variants of bta-mir-2284 appear in red and variants of bta-mir-2285 appear in blue. Colors for novel

predictions appear lighter than those for annotated predictions. c Abundance of miRs for the 50 and 30 sides of the mir-2284/mir-2285 family. The 50 product

tends to show greater expression in the mir-2284 family while the 30 product shows greater expression in the mir-2285 family.

https://doi.org/10.1371/journal.pcbi.1007309.g007
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Discussion

Our study demonstrates that despite a long history of microRNA discovery tools and annota-

tions, there is still room for improvement. Despite the maturity of microRNA annotations for

the human genome, our approach was still able to find novel human miRs. We have identified

several miRs with annotated positions shifted from the correct location, and that have been

resolved with miRWoods.

The inclusion of the duplex-focused method in miRWoods improved hairpin precursor

span identification over the other programs. Not only did miRWoods match the miRBase hair-

pin precursor annotation more often, in some instances miRWoods predictions corrected the

miRBase annotation. Splice junction boundaries for the mirtron and half-mirtron examples

provide evidence for the validity of the miRWoods duplex method because the optimal precur-

sor span closely corresponds to the splice junctions, as expected given mirtron biogenesis

mechanisms [10] despite the fact that these hairpin boundaries were computed without the

use of intron annotations. Similarly, Boruta feature-importance analysis showed that the

duplex energy was more important than the minimum free energy of the hairpin. These obser-

vations support the idea that the thermodynamic stability of intermediate RNA duplex formed

by miR and miR� may serve important roles in microRNA function, consistent with previous

studies showing this affects efficient loading into Argonaut [24]. We also found that the dis-

tance between the miR� sequence and the loop have a greater importance than that of the

major product and the loop. Future work is needed to determine the relative importance of

stable mature miR:miR� duplex formation compared to stable stem-loop formation in micro-

RNA biogenesis.

We demonstrated in this study that miRWoods is capable of correctly identifying micro-

RNA loci with only one read more than other programs. Although this displays the strength

the miRWoods approach, in practice users should seek further evidence to support the validity

of any novel miRs only supported by one read.

Predictions from miRWoods consist of 215 potential novel microRNA annotations for cat

and 417 novel candidates for cow. These findings support the expectation that these organisms

have comparable number of microRNAs to human and mouse, but are currently less-well

annotated due to greater research focus on human and mouse. Future work could expand miR

annotation in feline and bovine further by sequencing other tissues, as well as identifying regu-

latory targets for miRs in specific tissues.

Finally, our approach is able to identify more examples of known families, suggesting that

they are larger than previously thought. While these large families retain sequence similarity at

the hairpin-level, they are often the result of seed shifting and mismatches, suggesting a wide

range of potential gene targets. Predictions using miRWoods showed an expansion in the

number of microRNAs within the mir-548 family in human, and the mir-2284 family in the

bovine genome. These families are often defined in terms of homology to the hairpin sequence

rather than the seed [25]. We observed several mutations within the seed region of mir-2284

family miRs that result in the complex phylogeny, and which indicate that a much wider range

Fig 8. Novel microRNA families identified by miRWoods. a hsa-novel-8 is a mirtron predicted for both MCF-7 sets where

expression was decreased in the Dicer knockdown sets. b hsa-Novel-185 is a mirtron predicted within the human cell lines set

and the MCF-7 (cytoplasmic fraction) set. It also shows reduced expression in the Dicer knockdown version of the MCF-7 set. c

The structure of hsa-novel-8. d The structure of hsa-Novel-185. e Phylogeny comparing the LAMA5 intron and CHD3 intron for

several mammals. f Novel miR predicted in bovine genome in an intron of TYK2. g novel predicted miR in the feline genome in

the same intron of TYK2 h structure of novel feline miR. i structure of novel bovine miR. Eight nucleoties were removed from the

5’ end, and two were added to the 3’ end to match the feline hairpin precursor boundaries. j A phylogeny comparing the TYK2

intron in several mammals.

https://doi.org/10.1371/journal.pcbi.1007309.g008
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of genes may be targeted by this family than currently accepted. The fact that we observed

miR-2284 family members to be differentially expressed across diverse tissue types supports

the idea that this family expanded and sub-functionalized in various tissues. As noted previ-

ously, the widespread genomic distribution of the primate-specific mir-548 family supports

the hypothesis that it may have been evolutionarily derived from transposable elements [26].

Similarly, mir-2284 family may be more expansive than previously thought, and the observed

diversity of sequence and expression supports the hypothesis that this family has shaped rumi-

nant evolution [25].

Methods

Ethics statement

All bovine tissues were harvested from animals that were already scheduled to be slaughtered,

and collected immediately after slaughter. All slaughter operations were performed under

USDA-FSIS supervision in accordance with the Humane Slaughter Act (1978), the Federal

Meat Inspection Act (1906), and using a percussive captive bolt stunner. The feline tissue sam-

ples were obtained through the biobank at the Carlson College of Veterinary Medicine at Ore-

gon State University. Tissues had been banked for research purposes with owner consent and

approval of the institutional animal care and use committee.

Tissue samples small RNA sequencing

We examined small RNA samples collected from 10 bovine tissues including submandibular

lymph node (SLN), bone marrow, brain stem, optic nerve, retina and iris of the eye, penis (cor-

pus cavernosum), oral papillae (buccal mucosa), dental pulp, and hoof corium (corium feet)

from three Angus steers collected just after slaughter at the Meat Science laboratory at Oregon

State University. The feline tissue samples were obtained through the biobank at the Carlson

College of Veterinary Medicine at Oregon State University and included normal haired skin

and normal skeletal muscle from three male neutered domestic short hair cats aged 10–13

years. Tissues had been banked for research purposes with owner consent and approval of the

institutional animal care and use committee. RNA was isolated from tissue by chloroform-iso-

propanol extraction. RNA quality was analyzed on a Bioanalyzer 2100 Nano chip (Agilent

Technologies, Santa Clara, CA), with a minimum acceptable RIN of 7. Small RNA sequencing

was performed at the Center for Genome Research and Biocomputing (CGRB) at Oregon

State University (OSU). Libraries were prepared using the Illumina TruSeq small RNA sample

preparation kit (Illumina, San Diego, CA) for library preparation and size-separation by poly-

acrylamide gel electrophorese. Library size was determined with the Bioanalyzer 2100

HS-DNA chip and the KAPA biosystem’s library quantification kit, and libraries normalized

to 2 nM. Multiplexed samples (6/lane) were sequenced with a 50 cycle v3 sequencing kit on an

Illumina HiSeq 3000 sequencer.

The miRWoods pipeline

The miRWoods pipeline consists of two random forests with readily interpretable, biochemi-

cally-motivated features. The pipeline’s two layers correspond to classifiers that recognize dif-

ferent components of the microRNA (Fig 1). The first random forest layer predicts likely

mature miRNAs products. In this way, the first random forest acts to filter out a large number

of loci before precursors are considered, thereby improving accuracy and reducing the overall

runtime. The second random forest layer scores the precursors around the predicted mature

miRNAs and is used to generate the final set of predictions.
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The miRWoods pipeline is perl software largely derived from miRTRAP [4], but with sig-

nificant improvements on speed and memory efficiency, as well as two random forest layers

rather than user-defined thresholds. The pipeline now includes the integration of indexed bam

files for faster read processing, and the RNAfold perl module for rapid secondary structure

prediction. The processing of sequencing data begins with one or more small RNA-seq

FASTQ files. We first trim the reads using cutadapt, which removes 30 adapter sequences and

filters for read quality requiring a PHRED score of 30 or greater [27]. Sequencing data is

mapped to the genome using bowtie [28]. Before sorting and indexing the bam files, we add

additional tags according to samtools specifications describing the number of hits (NH-tags)

to the genome for each read [29], which is used later in the pipeline to normalize expression.

Mature product random forest

The miRWoods pipeline consists of several data-processing steps. Next, after read alignment,

we identify “read regions”, which consist of reads that map to overlapping positions in the

genome. Each of these read regions are evaluated as putative mature microRNA products

based on a number of features calculated from genomic loci and read distributions. Basic fea-

tures for each read region are computed, such as GC-content, dinucleotide frequencies, Woot-

ton-Federhen sequence complexity [30], and the median length of reads mapped to the locus.

Because the function of microRNAs involves the position of seed sequences relative to the 50

end, the 50-heterogeneity is computed for each read region as previously described [31]. In

addition, we compute the number of reads mapping to positions within a fixed offset from the

most abundant product. We also computed the minimum duplex energy between the read

stack’s most frequent read sequence and the surrounding 70bp region. These and other fea-

tures are input into our first random forest, called the “mature product random forest”

(MPRF), which classifies read regions as mature microRNA products or non-miR loci. For a

complete list of computed features, see Supplementary Methods.

Hairpin precursor span optimization

We found that a major source of error in high-throughput microRNA discovery was the pre-

diction of the span (start and end positions) of genomic location of the hairpin precursor, and

therefore we developed a new method of precursor span prediction (Fig 2). While most other

approaches predict secondary structure of the region surrounding a putative mature product,

our approach computes the RNA:RNA duplex energy of the mature products (without the

loop). Each putative microRNA product identified by the MPRF is used to compute the opti-

mal duplex energy between the most abundant product and the surrounding 70bp window

using RNAduplex [10], as depicted in Fig 2A. The region spanning this most abundant read

and the optimal duplex subsequence is then used as a putative hairpin precursor sequence. In

addition, a second method folds between any two products that are separated by 5 nt or more.

Both methods are used and create several secondary structure predictions, all of which are the

basis of a putative hairpin precursor to be input to the next random forest. When the hairpins

are subsequently evaluated in the next step, overlapping hairpins are dropped and only the pre-

dicted hairpin with the highest decision value from that random forest is retained.

Hairpin precursor random forest

The second random forest within miRWoods, called the “hairpin precursor random forest”

(HPRF) is used to evaluate the putative hairpin precursors from 71 features, which provide

scores based on its sequence, structure, and folding energy. Many of the features for the hair-

pin phase come from the original miRTRAP software [4].
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The features for the HPRF can be categorized as sequence features, structural features, and

product-distribution features. Sequence features include dinucleotide frequencies, GC Con-

tent, and sequence complexity over the entire precursor sequence. Structural features include

the minimum free energy returned by RNAfold [32], and the optimal duplex energy of the

most abundant product and hairpin precursor region computed by RNAduplex [33]. The deci-

sion value from the MPRF for the most abundant product within putative hairpin precursors

is also included as a feature.

Expression levels for a locus L are quantified with adjusted reads per million (ARPM),

which are defined by

ARPM Lð Þ ¼
106
P

r�L1=nrP
r�S1=nr

ð1Þ

Total read counts, separately computed for the sense and antisense strands of the precursor,

are first adjusted, meaning when a read r aligns to nr locations in the genome, the read contrib-

utes a fractional count of 1/nr to each location, essentially uniformly distributing the count to

each locus [34]. These calculated values are then normalized for each sample S to parts-per-

million.

The product-distribution features are computed by first naming read stacks as the products

that would be expected in the event of Dicer and Drosha cuts by a previously defined algo-

rithm [4]. A number of features describe the abundance and mapping of reads for each of

these products. The unique read fraction describes the proportion of reads mapping only to

the locus. Various features, such as the 50 heterogeneity, and average hit count were evaluated

for the most abundant mature product. For each of the mature products, several features

describe the relative frequency of reads for miRs, moRs, loop products, and other products

within the precursor. Several other features were created to describe the variance and weighted

variance of reads associated with mature products relative to the most frequent cut variant and

to the hairpin.

Dicer and Drosha tend to make precise cuts to produce well-defined 50 ends of the mature

products for proper functionality. Because of this, several features describe the amount of over-

lap across all products and across each product relative to its surrounding products. In addi-

tion, reads within a product would not be expected to be significantly offset from the product

on the opposite arm of the hairpin, or relative to any moR products on the same arm. There-

fore, features measuring the amount of shift between miR products are included.

A number of features were generated to describe the structure of the predicted hairpin.

Two features, base pair density (fraction of paired nucleotides in predicted structure) within

the major product, and base pair density within the optimal duplexed region. These features

may be different due to bulges being present on one arm of the hairpin but not the other. Fea-

tures for the part of the fold around the miR products include the sizes of the largest bulge, size

of largest internal loop, size difference between the two halves of internal loops, and overhangs

on the major miR product, which are defined as the maximum number of unpaired bases on

either end of the miR. The dupLoopLength feature measures the largest region of unbound

nucleotides on the duplex across from the most abundant miR Product. A dupSize feature is a

measure of the size of the region predicted to duplex with the most abundant product. Since

the duplex is expected to be around the same size as the miR product this feature may help

exclude cases where there are large unpaired stretches on the duplex or most of the major

product is unbound to the duplex. A feature called innerLoopGapCount scores the number of

occurrence of spans of 3 or more unpaired nucleotides in the loop region (i.e. more than one

indicates a multi-branched loop). This feature may help in situations in which there is a
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multiloop or where the loop structure is uncommon to known miR precursors. Additionally, a

feature measuring the size of the hairpin loop is included. We added new features quantifying

the size of the largest bulge in the hairpin structure, which is known to affect Dicer specificity

[35].

Because microRNA loci tend to cluster together, we incorporated a neighbor count feature,

which is a score tallying the number of neighboring hairpins that occur within 1000 nucleo-

tides of the precursor being analyzed. The neighbor count feature counted all small RNA loci,

including both miR and non-miR loci, and reduced the number of observed false positives.

Training, tuning and model selection

The miRWoods pipeline requires models for both MPRF and HPRF layers that have been

trained on positive examples, which are annotated microRNAs, and negative examples, which

are loci containing read regions not overlapping annotated microRNAs. The training data for

the MPRF is produced by a script that collects loci based on the overlap of the products with

the mature microRNAs in miRBase annotations, with X-fold more negative examples than

positives for some input X. The training data for HPRF is created by using hairpins with the

best overlap of the known hairpin annotation.

Our strategy for tuning the thresholds of miRWoods focused on three parameters: the deci-

sion value ŷHPRF for the hairpin random forest output, the expression level threshold Eth in

units of ARPM, and the proportion X of negative loci used in stratified sampling. To determine

these thresholds, we trained and tested on different small RNA deep sequencing data sets. We

selected four large data sets from sequencing read archives (SRA) from diverse tissues and

developmental stages. We trained on one of the data sets, which produced optimal RFs. We

then applied this to a second data set and computed F-scores for different ŷHPRF, Eth, and X
parameters, and chose the set of parameters that gave the highest F-score.

Our strategy for training and tuning models was to train with one data set, tune on another,

and ultimately select final models were chosen based on the highest F-Score when tested on a

test set. Two sets of models were trained using either tonsillar B-cell populations from

GSE23090 or human cerebellum, heart, kidney, and testis tissue from GSE40499 (S7A Fig).

The frontal cortex data was excluded from the GSE40499 set to make read counts in tissues

more balanced. Each of the two resulting models were tuned using a grid-search for the ŷHPRF,
Eth, and X parameters to optimize F-score when evaluated on either cancer cells from

GSE18381 and GSE20592 or stem cells from GSE65706 and GSE62501; therefore, four tuning

experiments were performed, corresponding to the four arrows in S7A Fig. Afterwards, mod-

els tuned using the cancer cell sets were validated using the stem cell sets and vice versa. The

model resulting in the highest F-score from the test set was chosen for all remaining tests.

Plots of the F-score as a function of each of the tuned parameters are presented in S7B–S7D

Fig. In each training experiment the stratified sampling for the product model was set such

that the negative set would be equal in size to the positive set. This was to allow as many prod-

ucts as possible to enter the hairpin phase while still filtering out enough that the resulting

folds could be generated in reasonable amount of time.

The model with the highest F-score resulted from training on the set of tonsillar B-cell pop-

ulations (GSE23090) and tuning on human melanoma cells (GSE18381) and human normal

and cancerous cervical cells (GSE20592) when validated against stem cell sets (GSE65706).

Tuning through a grid search resulted in an optimum decision value of 0.28, an ARPM of 0.11,

and a 1:25 ratio of positive to negative training data used in stratified sampling.
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Comparisons with other tools

miRWoods was compared with miRDeep2 and miReap in the prediction of microRNA loci

from small RNA sequence data in well-annotated genomes. The data used were MCF-7 cell

cytoplasmic and total-cell extract from GSE31069, human cancer cell lines from GSE16579,

healthy human liver samples from GSE21279, and mouse brain, embryo, newborn, testes, and

ovary from GSE20384. For miRDeep2 the FASTQ files were combined and the program was

run with the same settings as previously published [6].

We ran miReap with default parameters. FASTQ files were combined into a FASTA file

with its reads collapsed. Reads were aligned with bowtie using the same settings used for miR-

Woods. However, because miRWoods uses quality scores and miReap does not, the allowable

error outside of the bowtie alignment seed was changed from 50 to 80 to allow for at least 2

mismatches. Bowtie considers the default value of a mismatch without quality scores present

to be 40 (see Supplementary Methods).

In order to provide a comparison of the three pipelines, a separate set of scripts was used to

determine accuracy. For each pipeline being tested a common set of functions was used to

score each prediction as a true positive or false positive. We imposed more stringent require-

ments for true positives than most previous studies that require just overlap with annotated

microRNAs. Predicted hairpins where the precursor folded in the wrong direction and only

partially overlapped the annotation were named “overlaps” and scored as false positives. Addi-

tionally, precursors on the antisense strand of an annotation were named false positives

because there is uncertainty whether they are really active as miR precursors.

A set of custom-made scripts was also developed to find homology for novel predictions

from each of the three pipelines. Mature products from precursors that did not overlap anno-

tations were searched with BLAST to the database of mature microRNA found in miRBase

[36]. Mature products were named homologous if they had the same seed region and an E-

value less than 0.05 when compared with a miRNA in the database.

The sensitivity, specificity and F-scores were used to compare each of the three pipelines.

The F-score was used to evaluate performance for two reasons. First, different mapping and fil-

tering methods result in variable numbers of precursors being expressed. Because the F-score

does not rely on a tally of the number of true negatives, it is better for comparisons. Second,

the type of data being analyzed will tend to be very unbalanced with far more non-miRs than

miRs, which leads to an inflated accuracy.

Dicer knockdown comparisons

The differences in microRNA expression between wild-type cells and cells in which Dicer had

been knocked down were compared across pipelines. Small RNA samples collected from total

cell content and cytoplasmic fraction for this test came from the series GSE31069 downloaded

from GEO. For each pipeline a set of predictions was generated for both wild-type samples. In

each case, the log fold change was computed for each novel prediction comparing the expres-

sion of the wild-type cells versus cells in which Dicer had been knocked down. A pseudocount

of 0.015 ARPM was used to avoid taking the log of zero.

Validation of bovine and feline microRNA predictions

Novel microRNA predictions were evaluated with homology to known microRNAs from

other species and validated by qPCR. We validated the expression of the novel miRs with the

highest decision value using qPCR across the tissues we examined.

Feline microRNAs. Feline RNA samples were reverse transcribed with the HiSpec Buffer

system of the miScript II RT kit. We performed qPCR in 96 well plates with the ABI
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StepOnePlus using cDNA generated from 2.5 ng total RNA, miScript Primer assays, and miS-

cript SYBR Green PCR mix combined in 25 μL reaction volumes. Cycling followed manufac-

turer’s instructions. Melt Curve analysis was performed to insure single product generation

and the average of all primer efficiencies was 1.8. Of the four potential reference genes selected

from feline sequencing data, two, miR-25 and miR-191, were found to be stable across tissues

and the average of CT values was used to normalize expression.

Bovine microRNAs. RT was performed using the miScript II RT Kit and qPCR was per-

formed in a HT7900 ABI system in 384-well plate using the Custom miScript Primer Assay

and miScript SYBR Green PCR Kit, following the manufacturer-instructions with a 4-fold

dilution of cDNA prior qPCR. We performed normalization using internal control genes

(ICGs) or reference genes as indicated by the MIQE guideline [37]. It has been proposed and

demonstrated that the use of ICGs for normalization for miRs qPCR provides a more accurate

measure of expression than other methods, such as normalization with 5S RNA, U6 snRNA,

or total RNA [38]. In order to identify the best ICGs to normalize the novel miRs, we selected

predicted miRs with low-variability and similar levels in expression across various tissues, as

previously performed [38]. The miRs selected for bovine were miR-7, bta-miR-32, bta-

miR494, bta-miR-1388, bta-miR-2431, bta-miR-2483, and bta-miR-6520; Final qPCR data for

bovine were analyzed using LinRegPCR to account for efficiency of amplification [39]. Bovine

qPCR data from the tested internal control miRs were normalized using geNorm to determine

the M- and V-values [40]. bta-miR-7 had a M-value >1.5 and was therefore not used for nor-

malization but rather as a positive control, while the most stable miR pair was miR-494 and

miR-6520 (M = 0.98). The most stable normalization was obtained by using the 6 most stable

miRs with a final V-value of 0.245. The normalization factor was calculated by geNorm as the

geometrical mean of the most stable miRs.

Hierarchical clustering

Hierarchical clustering was performed for the expression of known and novel mir-2284/mir-

2285 family miRs in bovine. Expression was normalized by computing z-scores, subtracting

the mean and dividing by the standard deviation across tissues.

Identification of clusters

Clusters were identified by locating sets of precursors with genomic positions within 10 kbp of

each other. Prior to detecting clusters using novel predictions, the set of annotated microRNAs

were grouped into clusters. This was done first because if novel microRNAs fell within a cluster

of annotated microRNAs it may count as further evidence that that microRNA is real. After

the clusters of annotated miRs were identified, novel microRNAs were grouped into new clus-

ters or incorporated into clusters of annotated microRNAs.

Identification of novel miR families

In order to search for novel miR families, the sequences of each novel miR was blasted to a set

containing a combination of the novel miRs found using miRWoods and the set of all known

miRs from miRBase. Family membership requires a perfectly matching seed sequence, both

products were on the same arm for each hairpin, and a BLAST E-value less than or equal to 0.5

for the mature product. In addition, we excluded examples with top hits that are antisense to

itself and cases with identical mature sequences to prevent inclusion of loci originating from

repetitive regions.
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Supporting information

S1 Methods. Supplementary Methods. A document of providing additional detail for meth-

ods used for miRWoods.

(DOCX)

S1 Fig. Importance of features. a The importance of each feature based on the Boruta analysis

for the mature product random forest (MPRF) b The importance of each feature based on the

Boruta analysis for the Hairpin Random Forest (HPRF).

(TIF)

S2 Fig. Further feature interpretation: Removal of correlated features I. a Boruta analysis of

feature importance for MRPF with correlated features removed. b Boruta analysis for HRPF

with correlated features and the MRPF decision value removed.

(TIF)

S3 Fig. Further feature interpretation: Removal of correlated features II. a Change in fea-

ture importance for MRPF with correlated features removed. b Change in feature importance

for HRPF with correlated features removed.c the F1-score for miRWoods with correlated fea-

tures and MRPF decision value removed compared to the full feature set.

(TIF)

S4 Fig. Abundance-related features. a Distribution of read abundance for correct miRWoods

predictions on MCF7 total cell content. b distribution of read abundance for correct miR-

Deep2 predictions on MCF7 total cell content. c distribution of read abundance for correct

miReap predictions on MCF7 total cell content. d Distribution of read abundance for correct

miRWoods predictions on mouse embryos. e distribution of read abundance for correct miR-

Deep2 predictions on mouse embryos. f distribution of read abundance for correct miReap

predictions on mouse embryos. g bar plot of correct predictions with only one read for all sam-

ples in human and mouse. h F1-score of predictions with size-related features compared to

without.

(TIF)

S5 Fig. Effectiveness of duplex method. a RNAseq for hsa-miR-6860 shows miRWoods pre-

diction covering an additional read stack next to the splice junction, which indicates that hsa-

miR-6860 may be a half-mirtron. b RNAseq for hsa-mir-431 showing predicted folds for miR-

Woods and miRDeep.

(TIF)

S6 Fig. Cross-species performance. Comparison between cross-species F1-score and same-

species F1-score. All of miRWoods evaluations were tested on a single model trained and

tuned on human datasets. The best performance is observed on mouse samples.

(TIF)

S7 Fig. Tuning miRWoods. a Analysis pipelines and corresponding data sets used for train-

ing, tuning, and testing correspond to the paths of the arrows. b Plot of F1-score versus deci-

sion value threshold used in tuning the decision value threshold. c Plot of F1-score versus

ARPM threshold used in tuning the ARPM threshold. d Plot of f1-score versus X in 1:X strati-

fied sampling used to tune the amount of negative (non-miR) loci used in training the HRPF.

(TIF)

S8 Fig. Dicer knockdown data. a Scatter plot for hairpins in the MCF7 (total) set, plotting log

fold change of Dicer knockdown vs wildtype against the miRWoods decision value for
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annotated (red) and novel (blue) hairpins. The vertical line in the plot represents the decision

value cut-off with all miRWoods predicted precursors to the right of it. b Box plot showing the

log fold change of Dicer knockdown vs wildtype of annotated precursors within miRBase and

novel precursors is predicted by each software for the MCF7 (total) set. (c-d) CDF’s for c

MCF7 (Total) and d MCF7 (cytoplasmic) log fold change of Dicer knockdown vs wildtype for

novel precursors.

(TIF)

S9 Fig. Individual Examples of Dicer knockdown. Predicted secondary structures for a hsa-

Novel35, b hsa-Novel28, c hsa-Novel23, d hsa-Nove65, e hsa-Novel92, and f hsa-Novel99. (g-

k) RNAseq for g hsa-Novel35, hsa-Novel28, h hsa-Novel23, i hsa-Novel65, j hsa-Novel92, and

k hsa-Novel99.

(TIF)

S10 Fig. Additional Euler plots comparing miRWoods, miRDeep, and miRBase. Euler

plots for a Human MCF7 (total), b Human cell lines, c Mouse brain, d Mouse embryo, e

Mouse newborn, and f Mouse testes sets.

(TIF)

S11 Fig. Additional Euler plots comparing miRWoods, miReap, and miRBase. Euler plots

for a. Human MCF7 (total), b Human MCF7 (cytoplasmic), c Human cell lines, d Human

liver, e Mouse brain, f Mouse embryo, g Mouse newborn, h Mouse testes and, i Mouse ovaries

sets.

(TIF)

S12 Fig. mir-548 Phylogenetic tree. Phylogenetic tree showing expansion of the mir-548 pre-

cursor family in human. Annotated mir-548 precursors are shown in blue and predicted novel

precursors are shown in green.

(TIF)

S13 Fig. Differential expression analysis of miRs not shown in main text. Expression of fca-

mir-1-1 using a RNAseq and b qPCR validation of differential expression in muscle. (c-d)

Expression of fca-mir-205 using c RNAseq and d qPCR validation of differential expression in

skin.

(TIF)

S1 Table. Feature correlation. A table of correlations between features used by miRWoods.

(XLSX)

S2 Table. Duplex-focused spans. Percentage of cases where duplex method produced span

used in final prediction.

(DOCX)

S3 Table. Data summary. A summary of all of the datasets tested by miRWoods.

(XLSX)

S4 Table. Mature counts. A table of raw counts, adjusted counts, reads per million (RPM),

and adjusted reads per million (ARPM) for all annotated and predicted microRNA over all

test sets.

(XLSX)

S5 Table. Tuning experiments. Summary of data sets and results from the tuning experi-

ments.

(XLSX)
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S6 Table. Dicer knockdown enrichment. P-values computed from comparing the log-fold

change of dicer knockdowns compared to wild-type using a t-test, for the novel predictions of

each method and miRBase.

(DOCX)

S7 Table. Clusters. Clusters of annotated and predicted microRNA for human, mouse, cat,

and cow genomes. miRBase was used as the annotated set for human, mouse, and cow, and

the predictions from Lagana et al. [19] were used as the annotated set for cat. In column B

under cluster_source, an annotated set was named as the source if a cluster of two or more

annotations could be clustered together without miRWoods predictions. Otherwise the cluster

source was called novel.

(XLSX)

S8 Table. Novel families. A list of candidate novel families found after comparing predictions

across all testing sets.

(XLSX)
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