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Abstract

Plant-pathogenic Xanthomonas bacteria secrete transcription activator-like effectors

(TALEs) into host cells, where they act as transcriptional activators on plant target genes to

support bacterial virulence. TALEs have a unique modular DNA-binding domain composed

of tandem repeats. Two amino acids within each tandem repeat, termed repeat-variable dir-

esidues, bind to contiguous nucleotides on the DNA sequence and determine target speci-

ficity. In this paper, we propose a novel approach for TALE target prediction to identify

potential virulence targets. Our approach accounts for recent findings concerning TALE tar-

geting, including frame-shift binding by repeats of aberrant lengths, and the flexible strand

orientation of target boxes relative to the transcription start of the downstream target gene.

The computational model can account for dependencies between adjacent RVD positions.

Model parameters are learned from the wealth of quantitative data that have been gener-

ated over the last years. We benchmark the novel approach, termed PrediTALE, using

RNA-seq data after Xanthomonas infection in rice, and find an overall improvement of pre-

diction performance compared with previous approaches. Using PrediTALE, we are able to

predict several novel putative virulence targets. However, we also observe that no target

genes are predicted by any prediction tool for several TALEs, which we term orphan TALEs

for this reason. We postulate that one explanation for orphan TALEs are incomplete gene

annotations and, hence, propose to replace promoterome-wide by genome-wide scans for

target boxes. We demonstrate that known targets from promoterome-wide scans may be

recovered by genome-wide scans, whereas the latter, combined with RNA-seq data, are

able to detect putative targets independent of existing gene annotations.

Author summary

Diseases caused by plant-pathogenic Xanthomonas bacteria are a serious threat for many

important crop plants including rice. Efficiently protecting plants from these pathogens

requires a deeper understanding of infection strategies. For many Xanthomonas strains,

such infection strategies depend on a special class of effector proteins, termed transcription
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activator-like effectors (TALEs). TALEs may specifically activate genes of the host plant

and, by this means, re-program the plant cell for the benefit of the pathogen. Target

sequences and, consequently, target genes of a specific TALE may be predicted computa-

tionally from its amino acids. Here, we propose a novel approach for TALE target predic-

tion that makes use of several insights into TALE biology but also of broad experimental

data gained over the last years. We demonstrate that this approach yields a higher predic-

tion accuracy than previous approaches. We further postulate that a strategy change from

a restricted search only considering promoters of annotated genes to a broad genome-

wide search is feasible and yields novel targets including previously neglected protein-cod-

ing genes but also non-coding RNAs of possibly regulatory function.

This is a PLOS Computational Biology Methods paper.

Introduction

Many crop plants including rice can be infected by Xanthomonas bacteria causing disease in

the affected plants, which results in substantial yield losses. Many strains of Xanthomonas
oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) express a specific type

of effector protein called transcription activator-like effectors (TALEs). TALE proteins func-

tion as transcription factors in infected host cells [1], and contain a nuclear localization sig-

nal, a DNA-binding domain, and an activation domain. The DNA-binding domain consists

of tandem repeats that bind to the promoter of plant target genes. Each repeat consists of

approximately 34 highly conserved amino acids (AAs), except for the amino acids at posi-

tion 12 and 13, which are termed repeat variable diresdue (RVD) and are responsible for

DNA specificity. The repeat domain forms right-handed superhelical structure, while the

RVD is situated within a loop accessing the DNA [2, 3]. Each RVD binds to one nucleotide

of the target box [4, 5], where amino acid 13 binds to the sense strand and amino acid 12 sta-

bilizes the repeat structure. Hence, the specificity of each TALE is determined by its RVD

sequence. In addition, most known target boxes are directly preceeded by a ‘T’, while ‘C’ and

‘A’ occur with decreasing frequencies, which is also referred to as “position 0” of the target

box.

Some repeats deviate from the common length of 34 AAs and have, for this reason, been

termed aberrant repeats. Aberrant repeats may loop out of the repeat array when a TALE

binds to its DNA target box and by this means allow for increased flexibility, also binding to

frame-shifted target boxes [6].

Different Xoo and Xoc strains express different repertoires of TALEs, where a single strain

may host up to 27 TALEs [7–10].

Naturally occurring TALEs may activate susceptibility (S) genes that are responsible for

bacterial growth, proliferation and disease development, but also disease resistance (R) genes

[1].

The names of TALEs and TALE classes are based on the nomenclature introduced by the

tool AnnoTALE [11]. TALEs are clustered according to the similarity of their RVD sequence

and divided into classes.

Target boxes upstream of all known major virulence targets are located in forward orien-

tation relative to the transcription start site (TSS). Recently, target boxes of TALEs have been

reported to be also functional in reverse orientation relative to the transcription start site

(TSS) of their target gene [12, 13]. However, reverse binding seems to be rather an exception
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than a general rule [13]. Accurate predictions of target boxes of TALEs are important for

studying naturally occurring TALEs and determining their virulence targets, but also for

the identification of target and off-target sequences of artificially designed TALEs. Over the

last years, several tools have been designed for the in-silico prediction of TALE target boxes

based on the RVD sequence of a given TALE and, subsequently, for the identification of tar-

get genes.

The TALE-NT suite includes “Target Finder”, a tool for predicting target boxes of TALEs

based on their RVD sequence. It is available as online or command line application (http://

tale-nt.cac.cornell.edu/) [14, 15]. In Target Finder, predictions are based on a position weight

matrix calculated from frequencies of naturally occurring RVD-nucleotide associations. The

user can choose whether the target box should start with nucleotide T or C.

Talvez is another prediction tool that uses PWMs to model RVD-nucleotide interactions

[16]. It differs from Target Finder in deriving specificities of rare RVDs from those of com-

mon RVDs with the same 13th amino acid. Target sequences may only begin with nucleo-

tide T or C, with a lower score assigned in the case of cytosine. In addition, Talvez may

explicitly model that mismatches are tolerated to a larger degree if these are located near

the C terminus [17]. Users of Talvez can choose between web-based and command line

applications.

TALgetter [18] uses a local mixture model to predict TAL target sequences. The specificities

were learned from 267 pairs of TALEs and target sites with qualitative information whether

the pair is functional or not. According to Streubel et al. [19], the efficiencies of different

RVDs are non-identical. The TALgetter model adapts a similar concept using an importance

term, which is learned independently from the specificity of each RVD. TALgetter is imple-

mented within the Java framework Jstacs [20], and is available as online and command line

program.

In the web tool SIFTED [21], specificity data from a large-scale study using protein-binding

microarrays (PBMs) were used for training model parameters. For this purpose, 21 TALEs

constructed exclusively from the most common four RVDs (NI, HD, NN, NG) were designed

and their binding specificity measured on� 5,000-20,000 DNA sequences per protein using

PBMs. However, we will not consider SIFTED in the remainder of this manuscripts, as the

SIFTED web server is currently unavailable and the limited set of RVDs included into SIFTED

does not cover the entire spectrum of those occurring in natural TALEs.

Predictions of all of these approaches still comprise a substantial number of false positive

predictions, whereas some of the known target genes cannot be detected by these approaches.

During the last years, several quantitative studies of TALE binding and transcriptional activa-

tion have been published. The studies included quantitative analyses of target gene activation

by TALEs spanning naturally occurring RVDs [19, 22], specificities at position 0 of target

boxes [23], complete exploration of all possible combinations of amino acids at RVD positions

[24, 25], and systematic analyses of those RVDs frequently used in designer TALEs [21].

In this paper, we aim at developing a novel approach for modelling TALE target specificities

based on these quantitative data. This approach, called PrediTALE, explicitly captures putative

dependencies between adjacent RVDs, dependencies between the first RVD and position 0 of

the target box, and also includes positional effects of mismatch tolerance. In contrast to previ-

ous approaches, model parameters are adapted by minimizing the difference between predic-

tion scores and quantitative measurements for pairs of TALEs and target boxes. Like previous

approaches, PrediTALE also predicts target boxes in reverse strand orientation relative to the

TSS, but applies a small penalty term in this case, following the assumption that functional

reverse target boxes are rather rare in planta. PrediTALE is the first approach to account for

aberrant repeats when predicting TALE targets.

PrediTALE: new perspectives on TALE targeting
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Materials and methods

Training data

Pairs of TALEs and putative target boxes were collected from systematic, quantitative experi-

ments reported in [19, 22–25]. Data were further processed as detailed in S1 Text. Data were

grouped by TALE, and the global weight was computed as the maximum assay value for the

current TALE divided by the maximum assay value reported for all TALEs with the same 13th

AA at any position in the current assay. Target values were computed as the assay value of the

current pair of TALE and target box divided by maximum assay value over all tested target

boxes for the current TALE.

While the normalization of target values has a mostly technical background as it simplified

the selection of initial values during numerical optimization of our model (see below), the defi-

nition of global weights influences the optimization result. The choice of global weights has

been motivated by the observation that some TALE architectures (e.g., those with long succes-

sions of identical RVDs, or 12th AAs not occurring in nature) show a generally lower activity

than others, which also affects the influence of measurement noise and, hence, the reliability

of assay values. With the choice of global weights proposed here, the influence of such TALEs

on the final optimization result is reduced, while such TALEs do not need to be completely

removed from the training set.

As detailed in S1 Text, PBM experiments from [21] were filtered for apparent data quality,

normalized log-intensities were used as target values, and global weights were defined uni-

formly for all putative target boxes from a common PBM experiment.

Bacterial growth conditions

Xanthomonas oryzae pv. oryzae (Xoo) strains PXO83, PXO142 and ICMP 3125T were culti-

vated in PSA medium at 28˚C.

Plant growth conditions & inoculation

Oryza sativa ssp. japonica cv. Nipponbare was grown under glasshouse conditions at 28˚C

(day) and 25˚C (night) at 70% relative humidity (RH). Leaves of 4-week-old plants were infil-

trated with a needleless syringe and a bacterial suspension with an OD600 of 0.5 in 10 mM

MgCl2 as previously described [26].

RNA-seq data

Rice cultivar Nipponbare leaves were inoculated with Xoo strains PXO83, PXO142, ICMP

3125T, or MgCl2 as mock control in five spots in an area of approx. 5 cm using a needleless

syringe. Two leaves of three rice plants each were inoculated for each strain and control,

respectively. 24h later, samples were taken, frozen in liquid nitrogen, and RNA prepared.

Three replicates of this experiment were done on separate days and subjected to RNAseq anal-

ysis, separately. Stranded libraries were sequenced on an Illumina HiSeq 2500 instrument

(Eurofins Genomics) as 100 bp single-end reads

RNA-seq data 48h after inoculation with different Xoc strains (BLS256, BLS279, CFBP2286,

B8-12, L8, RS105, BXOR1, CFBP7331, CFBP7341, CFBP7342), and mock controls [9] were

downloaded from Gene Expression Omnibus available under accession number GSE67588.

RNA-seq data were adapter clipped using cutadapt (v1.15) [27] and quality trimmed using

trimmomatic (v0.33) [28] with parameters “SLIDINGWINDOW:4:28 MINLEN:50”. Tran-

script abundances were computed by kallisto [29] using parameters “–single -b 10 -l 200 -s 40”

PrediTALE: new perspectives on TALE targeting
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and the cDNA sequences available from http://rice.plantbiology.msu.edu/pub/data/

Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.cdna.

Differentially expressed genes relative to the respective control samples were determined by

the R-package sleuth [30].

For the Xoo strains and the respective mock control, replicates have been paired during

library preparation and sequencing. Hence, the replicate was considered as an additional

factor when computing p-values of differential expression for the Xoo samples but not for

the Xoc samples. Differential expression was aggregated on the level of genes using the

parameter target_mapping of the sleuth function sleuth_prep(), and b-value, p-value, and

Benjamini–Hochberg-corrected q-value were recorded. The b-value reported by sleuth

when applying a Wald test is actually a biased estimator of the log-fold change. However, as

this is a more commonly understood term, we refer to the b-value as “log-fold change” in

the remainder of this manuscript. Gene abundances, and sleuth outputs with regard to dif-

ferential expression are provided as S1 and S2 Tables, respectively. RNA-seq reads were also

mapped to the rice genome (MSU7) to obtain detailed information about transcript cover-

age. To this end, adapter clipped and quality trimmed reads were mapped using TopHat2

v2.1.0 [31], and the resulting BAM output files were processed in further analyes described

below.

Model

Let r = r1r2. . .rL denote the RVD sequence of length L of a TALE, where rℓ 2 {AA, . . ., YY,

A�, . . ., Y�} denotes a single RVD, and rℓ,12 and rℓ,13 denote the 12th and 13th AA of that RVD,

respectively. Let x = x0x1. . .xL denote a putative target box of length L + 1 of that TALE, where

xℓ 2 {A, C, G, T} and x0 denotes the nucleotide bound by the zero-th, cryptic repeat.

The general idea of the model proposed here is to model the total binding score of a puta-

tive target box x given the RVD sequence r of a TALE as a sum of contributions of i) binding

to the zero-th repeat, ii) binding to the first RVD, and iii) binding to the remaining RVDs,

where the latter two terms may be weighted by an additional, position-dependent but

sequence-independent term.

sðxjr; θÞ ¼ m0ðx0jr1; θ0Þ þm1ðx1jr1; θ1; θmÞ � pð1jθpÞþ

XL

‘¼2

mðx‘jr‘� 1; r‘; θmÞ � pð‘jθpÞ
ð1Þ

Here, θ = (θ0, θ1, θm, θp) denote the sets of real-valued parameters of the term for binding to

the zero-th, first, and remaining repeats, and the position-dependent term, respectively.

The term m0(x0|r1, θ0) for binding to the zero-th repeat may depend on the first RVD on

the TALE, since dependencies between zero-th and first repeat have been observed before

[23]. However, our knowledge about such dependencies is limited to the data presently avail-

able and, hence, we limit the RVDs for which a dependency is considered to a set R0. Our data

regarding systematic, quantitative analyses of the base preference of the zero-th repeat is lim-

ited in general, although it is widely assumed that position 0 in target boxes of natural TALEs

is preferentially T and less frequently C. We include this prior knowledge into a-priori parame-

ters px0
.

m0ðx0jr1; θ0Þ ¼ px0
þ y0;x0

þ dðr1 2 R0Þ � y0;x0 jr1 ð2Þ

In this paper, we set R0 ¼ fHD;NN;NG;NI;NSg and πT = log(0.6), πC = log(0.3), πA =

πG = log(0.05).
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The term m1(x1|r1, θ1, θm) for binding to the first repeat depends on the 13th AA r1,13 of the

first RVD r1, but may be extended by additional terms that either model a general dependency

on the complete first RVD (including the 12th AA), and/or a separate base preference for a

given 13th AA at the first position. Again, this modularity allows us to adapt the model to the

resolution of data available, since a substantial part of RVDs is only covered by the systematic

but limited data reported in [24, 25].

m1ðx1jr1; θ1; θmÞ ¼ ym;x1 jr1;13
þ dðr1 2 R1Þ � ym;x1 jr1

þ

dðr1;13 2 R2Þ � y1;x1 jr1;13

ð3Þ

In this paper, we set R1 ¼ fHD;NN;NG;HG;NI;NKg and R2 ¼ fD;N;G; Ig.
The term m(xℓ|rℓ−1, rℓ, θm) for binding to the remaining repeats again depends on the 13th

AA rℓ,13 of the current RVD rℓ, but may be extened by additional terms that either model a

dependency on the complete RVD (with parameters shared with the correponding term used

for the first RVD), and/or the complete RVD rℓ at the current repeat and the 12th AA rℓ−1,12 at

the previous repeat:

mðx‘jr‘� 1; r‘; θmÞ ¼ ym;x‘jr‘;13
þ dðr‘ 2 R1Þ � ym;x‘jr‘þ

dðr‘; r‘� 1 2 R3Þ � ym;x‘ jr‘;r‘� 1;12

ð4Þ

In this paper, we set R3 ¼ fHD;NN;NG;NIg.
Finally, we define the position-dependent term as a mixture of two logistic functions and a

constant term, where the logistic functions depend on the relative distance of ℓ from the start

and end of the putative target box, respectively:

pð‘jθpÞ ¼
eyp;1

P3

j¼1
eyp;j

1

1þ e� yp;a;1
‘
Lþyp;b;1ð Þ

þ

eyp;2
P3

j¼1
eyp;j

1

1þ e� yp;a;2
L� ‘
L þyp;b;2ð Þ

þ
eyp;3

P3

j¼1
eyp;j

ð5Þ

The parameters θp,a,1 and θp,a,2 denote the slopes, and θp,b,1 and θp,b,2 denote the location

parameters of the logistic functions.

The implementation of this model is available from the Jstacs github repository (cf. section

“Availability”) in package projects.tals.linear.

Learning parameters

The training data D ¼ ðt1; . . . ; tNÞ comprise tuples ti = (ri, xi, vi, wi, gi) of TALE RVD sequence

ri, target box xi, target value vi, global weight wi and group gi (cf. sections “Data” and “Model”).

Given the current parameter values θ, we may further compute for each pair of TALE and tar-

get box, the corresponding model score si = s(x|ri, θi). The goal of the learning process is to

adapt the parameter values θ such that the differences between computed scores si and target

values vi becomes minimal. However, despite the normalization of target values described in

section “Data”, target values from different experimental setups (represented by the groups gi)
may live on different scales. Hence, we allow the learning process to linearly transform the

computed scores si before comparing them to the target values. The total error between target

value and prediction score is defined as

Eðθ; D; βÞ ≔
XN

i¼1

wi � ðf ðsðxijri; θÞjgi; βÞ � viÞ
2

ð6Þ
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where

f ðsijgi; βÞ ¼ exp ðba;gi
Þ � si þ bb;gi

; ð7Þ

β = (βa,1, βb,1, . . ., βa,G, βb,G), ba;gi
and bb;gi

are group-specific scale and shift parameters, respec-

tively, and G is the total number of groups in the data set D.

In addition, we use an L2 regularization term on the model parameters θ to avoid overfitting

and explosion of parameter values:

L2ðθÞ ≔ l � jjyjj
2 ð8Þ

where the regularization parameter λ is set to 0.1 in this paper.

The number of model parameters for the different terms varies greatly, depending on the

number of conditions (e.g., 12th AA of previous RVD, separate parameters for individual

RVDs). This regularization also has the effect that more complex dependency parameters

assume values considerably different from 0 only if the modeled specificity cannot be captured

by the less complex sets of parameters.

The final objective function is then to minimize sum of the error term Eðθ; D; βÞ and the

regularization term L2(θ) with respect to the parameter values:

ðθ�; β�Þ ¼ argmax
ðθ;βÞ

Eðθ; D; βÞ þ L2ðθÞ ð9Þ

This objective function is implemented in class MSDFunction in package projects.
tals.linear. Parameter optimization is performed by a gradient-based quasi-Newton

method as implemented in class de.jstacs.algorithms.optimization.Opti-
mizer of the Jstacs library [20]. As the objective function is not convex, we start the

optimization from 50 independent, random initializations and finally choose the set of locally

optimized parameters that achieves the minimum value of the objective function.

The final parameters θ� of the trained model may then be used to determine prediction

scores of previously unseen pairs of TALEs and putative target boxes, whereas the value of β�

is discarded after optimization.

Prediction of TALE target boxes

For predicting putative TALE target boxes for a given TALE with RVD sequence r of length L,

we follow a sliding window approach scanning input sequences x1, . . ., xN. Input sequences

could, for instance, be promoter sequences of annotated genes but also complete chromo-

somes. Each sub-sequence xi,ℓ, . . ., xi,ℓ+L then serves as input of the model to compute the

corresponding score s(xi,ℓ, . . ., xi,ℓ+L|r, θ�). To allow for a rough comparison of scores,

even between TALEs of different lengths, we normalize this score to the length of the input

sequence, i.e., we compute a normalized score as s0(xi,ℓ, . . ., xi,ℓ+L|r, θ�) ≔ s(xi,ℓ, . . ., xi,ℓ+L|r,
θ�)/(L + 1).

For scanning promoter sequences, we also provide an option for penalizing predictions of

the reverse complementary strand, relative to the orientation of the downstream gene. Specifi-

cally, a small constant c is subtracted from all prediction scores s0 on the reverse complemen-

tary strand. Throughout this paper, we use c = 0.01.

The scanning process explicitly accounts for aberrant repeats, which may loop out of the

repeat array [6]. To this end, we search for putative target boxes with all repeats present in the

repeat array, but also all combinations of aberrant repeats removed from the RVD sequence.

Due to the normalization of scores by the number of repeats, predictions based on these modi-

fied RVD sequences can still be ranked in a common list.

PrediTALE: new perspectives on TALE targeting
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In addition, we provide a box-specific p-value as a statistical measure for the significance of

target box predictions. Those p-values may either be computed from a dedicated background

set of sequences or from a random sub-sample of the scanned input sequences. In either case,

scores are computed for the sub-sequences given the current RVD sequences, then a Gaussian

distribution is fitted to those score values, and the p-value for a given score is determined from

that Gaussian distribution. While the Gaussian distribution does not perfectly fit the true dis-

tribution of score values, it allows for computing p-values with high resolution (as opposed to

just using percentages of the scores themselves) and even for score values larger than any of

the scores in the random sample. Using this procedure, the mapping from scores to p-values is

monotonic, i.e., a larger prediction score results in a smaller p-value. Scanning promoters of a

large number of genes for putative target boxes results in a multiple testing problem, and users

may choose to apply a correction method of their choice controlling for family-wise error rate

or false discovery rate. As a rough guideline under the assumption that promoters of tens of

thousands genes are scanned for target boxes, p-values below 10−6 may be promising candi-

dates for further inspection.

Genome-wide predictions and filtering

We use PrediTALE for genome-wide prediction in the genome of Oryza sativa Nipponbare

(MSU7, http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_

dbs/pseudomolecules/version_7.0/all.dir/all.chrs.con). We make predictions for each TALE of

3 Xoo strains and 10 Xoc strains. In order to confirm that the predicted target boxes might

indeed be bound by the respective TALE, we use the above-mentioned RNA-seq data to deter-

mine if there are differentially transcribed regions around a putative target box. For each of the

top 100 predictions, we search ± 3000 bp around the predicted site for regions of at least 400

bp that are differentially expressed. Specifically, we count the number of mapped reads for

each 400 bp window in replicates of treatment and control. Counts are then normalized rela-

tive to the total number of reads within each library, and replicates are averaged separately for

treatment and control. Here, we consider a region as differentially expressed if the mean nor-

malized number of reads after infection (treatment) is at least 2-fold larger than the mean nor-

malized number of reads in the control experiment. If several, adjacent 400 bp regions meet

this criterion, those are joined to a common, longer region.

This procedure is implemented in a tool called DerTALE. As input, DerTALE expects geno-

mic positions, i.e., the position of predicted target boxes, and BAM files of mapped reads for

replicates of treatment and control. Region width, thresholds and averaging methods may be

adjusted by user parameters.

For each predicted target box, a profile output is generated if there is at least one differential

expressed region with a minimum length of 400 bp that does not overlap the target box, or if it

overlaps, the differential region starts or ends at most 50 bp upstream or downstream of the

target box.

The obtained profiles may be visualized using an auxiliary R script. In addition to the pro-

file data, this R script requires annotations data of already known transcripts in gff3 format.

By this means, users may then investigate whether the predicted binding site may activate the

transcription of a gene that has not been annotated yet. Here, we use the MSU7 annotation

(http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/

pseudomolecules/version_7.0/all.dir/all.gff3).

For differentially expressed regions without annotated MSU7 transcript, we searched for

similar sequences using blastx of NCBI BLAST+ version 2.7.1 ftp://ftp.ncbi.nlm.nih.gov/blast/

executables/blast+/LATEST/ and choose the non-redundant protein sequence (nr) database.
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In cases, where we did not receive a convincing hit, we additionally compared sequences with

blastn against the reference RNA sequences (refseq_rna) database.

Implementation and scanning speed-up

For scanning large input sequences, e.g., complete genomes of host plant species, an acceptible

runtime is essential. Since the parameters at each position of the proposed model depend on

the RVD sequence of the TALE of interest but do not include dependencies between different

nucleotides of a putative target box, we may convert the model given a fixed TALE RVD

sequence into an position weight matrix (PWM) [32, 33]. This allows for a quick computation

of prediction scores that may be formulated as the position-wise sum of values stored in the

TALE-specific PWM model. We further speed-up the scanning process by pre-computing

indexes of overlapping k-mers in the same manner as proposed for the TALENoffer applica-

tion earlier [34].

Evaluation of prediction results

We compare the performance of the approach presented in this paper to those of established

tools for predicting TALE target sites, namely Target Finder [14], Talvez [16], and TALgetter

[18], based on RNA-seq data after inoculation with different Xoo and Xoc strains described

above.

To this end, we collect the promoter sequences of all transcripts based on the MSU7

assembly and gene models [35] available from http://rice.plantbiology.msu.edu/pub/data/

Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/. We

consider as promoter the sequence spanning from 300 bp upstream of the transcription start

site to 200 bp downstream of the transcription start site or the start codon, whichever comes

first, as proposed before [18]. We then run each of the tools using default parameters on the

extracted promoter sequence providing the RVD sequences of the TALEs present in the

respective Xanthomonas strain (cf. S1 Data). Predictions in promoters of different transcripts

belonging to the same gene are merged by considering only the prediction yielding the best

prediction score.

Assessment of prediction performance based on in-planta inoculation experiments with

Xanthomonas strains harboring multiple TALEs has the inherent complications that i) putative

target genes cannot be attributed to one specific TALE based on the RNA-seq data alone and

ii) genes showing increased expression after inoculation may either be regulated directly by a

TALE binding to their promoter or indirectly via other, regulatory target genes. Hence, we

define true positives as those genes that have a predicted target box in their promoter and are

also up-regulated after inoculation with the respective Xanthomonas strain relative to control

as derived from RNA-seq data. By contrast, we cannot clearly define false negatives, since

genes that are up-regulated after inoculation but do not contain a predicted target box in their

promoter could be indirect target genes. False positives, in turn, would be genes with a pre-

dicted target box in their promoter that are not up-regulated after Xanthomonas inoculation.

A further issue hampering performance assessment by standard methods like receiver oper-

ating characteristic (ROC) [36] or precision-recall (PR) curves [37, 38] is that for two of the

tools considered (Target Finder and Talvez), none of the reported prediction scores is compa-

rable between different TALEs, especially TALEs of different lengths. Hence, we decide to use

varying cutoffs on the number of predicted target genes per TALE to establish a common

ground for comparing all four approaches.

Following these considerations, we collect for each of the four approaches the number of

true positive predictions (TPs) for cutoffs on the number of predictions per TALE from 1 (i.e.,
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the top prediction) to 50. We then plot for each approach the number of true positives against

this cutoff to obtain a continuous picture of its prediction performance. In addition, we collect

for the same cutoffs the number of TALEs with at least one predicted target gene among the

true positives.

The area under these curves may serve as a further measure of general prediction perfor-

mance in analogy to, for instance, the area under the ROC curve.

Finally, we compare the TPs at distinct cutoffs (1, 10, 20, 50) between the four tools. For

a specific cutoff, we collect the TPs (or, in analogy, number of TALEs with at least one

predicted target) for each of the four tools. Statistical significance of the differences in

observed TPs is then assessed by a Quade test [39] using the quade.test function in R

[40] and pairwise comparisons are performed by the post-hoc test implemented in function

quadeAllPairsTest of the PMCMRplus R-package [41].

In addition, we obtain promoter sequences of five plant species to test PrediTALE for

pathosystems beyond Xanthomonas oryzae—rice. To this end, we download genome

sequences and gene annotations from phytozome (https://phytozome.jgi.doe.gov) for cassava

(Manihot esculenta, v7.0, [42]), sweet orange (Citrus sinensis, v1.1, [43]), cotton (Gossypium
raimondii, v2.1, [44]), and from solgenomics (https://solgenomics.net) for tomato (Solanum
lycopersicum, ITAG3.20, [45]) and pepper (Capsicum annuum CM334, v1.55, [46]). For these

plant species, we consider as promoter the sequence from 300 bp upstream of the annotated

transcription start site to the start codon to be less dependent on the exact annotation of tran-

scription start sites.

Availability

PrediTALE is available as a web-application based on Galaxy at http://galaxy.informatik.uni-

halle.de. Both PrediTALE and DerTALE are available as command line application from

http://jstacs.de/index.php/PrediTALE and have also been integrated in AnnoTALE 1.4.

Source code is available from https://github.com/Jstacs/Jstacs in packages projects.
tals.linear, projects.tals.prediction, projects.tals.training,

and projects.tals.rnaseq, where also provide an XML representation of the trained

model at projects.tals.prediction.preditale_quantitative_PBM.xml.

The parameters of the PrediTALE model will be adapted as additional training data become

available in the future, while we will preserve a history of PrediTALE models to assure repro-

ducibility. PrediTALE and DerTALE will also be maintained as part of the AnnoTALE suite.

Results/Discussion

Benchmarking PrediTALE against previous approaches

In this section, we benchmark the predictions of PrediTALE against those made by one of the

previous approaches, namely Target Finder [14], Talvez [16], and TALgetter [18].

To this end, we consider different Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas
oryzae pv. oryzicola (Xoc) strains for which we have an experimental support of up-regulated

genes in Oryza sativa after infection based on RNA-seq data. Specifically, we consider the Xoo
strains ICMP 3125T, PXO142 and PXO83 with in-house RNA-seq data available, and the Xoc
strains B8-12, BLS256, BLS279, BXOR1, CFBP2286, CFBP7331, CFBP7341, CFBP7342, L8

and RS105 based on public RNA-seq data [9]. For the TALEs from the repertoires of these

three Xoo and ten Xoc strains, we determine target gene predictions for each of the previous

approaches and for PrediTALE. Predicted target genes are ranked by the corresponding pre-

diction scores of the different approaches per TALE.
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First, we study the overlaps between the sets of predicted target genes per approach to inves-

tigate how strongly predictions are affected by conceptual differences of these approaches. In

Fig 1A, we show Venn diagrams of predicted target genes for the three Xoo strains based on

the top 20 predictions per TALE, while the corresponding diagrams for the ten Xoc strains are

available as S1 Fig. In general, we observe a substantial number of unique predictions for each

of the four approaches, but especially for Talvez and PrediTALE. By contrast, the overlapping

predictions between all four approaches amount to less than a quarter of the total predictions

per approach. This demonstrates that prediction results strongly depend on the employed

approach. However, prediction accuracy cannot be assessed without an experimental knowl-

edge about genes that are up-regulated in planta upon Xanthomonas infection.

RNA-seq data for the three Xoo strains including previously unpublished data for PXO83,

have been collected 24 hours after infection. Collection at this early time point has the advan-

tage that the number of secondary targets, i.e., genes that are up-regulated as a secondary effect

of direct TALE targets with regulatory function, should still be low. However, as the infection

might not be fully established, yet, the variation between replicates and, hence, the number

of significantly differentially expressed genes based on standard FDR-based criteria is rather

low (cf. Table A in S2 Text). As we aim at sensitivity for the benchmark study, i.e., we want to

avoid predictions to be erroneously counted as false positives, we consider genes as differen-

tially up-regulated if they obtain an uncorrected p-value below 0.05 and are at least 2-fold up-

regulated in this case, which results in 43 (PXO142) to 107 (ICMP 3125T) differentially up-reg-

ulated genes.

In case of the ten Xoc strains, RNA-seq data have been recorded 48 hours after infection.

Here, infection should be fully established, but we expect a substantial number of secondary

targets to be up-regulated already. Hence, we resort to rather standard thresholds with a FDR-

corrected q − value< 0.01 and log fold change greater than 2 in this case. Notably, this still

Fig 1. Venn diagrams of predictions of the four approaches considered. (A) For each Xoo strain and each approach,

we consider the set of target genes obtained as the union of the top 20 predictions per TALE. For Xoo ICMP 3125T

harboring 17 TALEs, this results in a total number of 340 raw predictions per approach, where the actual number in

the diagram may be slightly lower if two TALEs are predicted to target the same gene. For Xoo PXO142 (19 TALEs),

we obtain 380 raw predictions and for Xoo PXO83 (18 TALEs), we obtain 360 raw predictions per approach. (B) Venn

diagrams of the subsets of genes from sub-figure A that are also up-regulated according to RNA-seq data.

https://doi.org/10.1371/journal.pcbi.1007206.g001
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results in a larger number of differentially up-regulated genes (cf. Table B in S2 Text) than for

the Xoo strains with numbers between 202 (CFBP2286) and 672 (L8).

Given these up-regulated genes as a ground truth, we may now count predictions of TALE

target boxes in promoters of up-regulated genes as true positives, and predictions without

observed up-regulation as false positives. In Fig 1B, we plot Venn diagrams of the true positives

among the top 20 predictions of all four approaches. Notably, we find that the intersection of

the predictions of all four approaches constitutes (one of) the largest set(s) in each of the three

Venn diagrams. Among the predictions that are unique to one of the four approaches, we con-

sistently find the largest number of true positive predictions for PrediTALE, which indicates

the utility of our novel approach. Turning to the ten Xoc strains (S2 Fig), we again find the

same tendency with regard to the predictions overlapping among all four approaches. How-

ever, the number of true positives among the unique predictions shows a less clear picture

with a slight advantage towards Talvez, while predictions of PrediTALE often overlap with

TALgetter and/or Target Finder. Together, the Venn diagrams for the Xoo and Xoc strains also

illustrate why it is generally beneficial to complement in silico TALE target predictions with

experimental data about gene regulation.

The results presented so far strongly depend on the thresholds of the ranks of the target pre-

dictions but also on the thresholds applied to the RNA-seq data. To address the former prob-

lem, we aim at an assessment of target predictions over all rank thresholds, while we will

handle the latter by separate evaluations applying different criteria to the RNA-seq data.

As detailed in section “Evaluation of prediction results”, standard performance measures

like the area under the ROC curve [36] or the area under the precision-recall curve [37, 38] are

inappropriate under this setting. Briefly, we cannot attribute an up-regulated gene to a specific

TALE from the TALE repertoire of the strain under study. In addition, genes that are up-regu-

lated in the RNA-seq experiment might also be due to secondary effects of TALE targets, due

to general plant response to the bacteria, or due to other classes of effector proteins. Thus, we

may not consider up-regulated genes without a matching prediction of a TALE target box in

their promoter as false negatives. Hence, we decide to compare the performance of different

approaches by means of the number of true positive predictions at different rank cutoffs, i.e.,

considering the top N predicted target genes of each approach.

In Fig 2, we plot the number of true positives for the three Xoo strains and each of the four

approaches against the total number of predictions per TALE, considering only the highest-

Fig 2. Performance evaluation on the level of target genes for three Xoo strains. For each approach, we plot the number of predicted target genes that are also up-

regulated in the infection (true positives, TPs) against the number of predicted target sites per TALE. In the legends, we further report the areas under the curves after

the name of the individual approaches.

https://doi.org/10.1371/journal.pcbi.1007206.g002
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ranking prediction up to 50 target predictions per TALE, which we consider a reasonable cut-

off under the scenario of manual inspection. In addition, we compute the area under this

curve as an overall performance statistic across all rank cutoffs. For all three Xoo strains, we

find that PrediTALE dominates the other three tools for rank cutoffs of 5 and above. For lower

rank cutoffs, the ranking of tools is less clear, but PrediTALE still yields—for instance—the

largest number of true positive predictions on rank 1 for two of the three strains. In the rank-

ing with regard to the area under the curve (AUC), we find that PrediTALE again yields the

best overall performance among all four approaches.

We take a different perspective on prediction results by assessing prediction performance

on the level of TALEs. Specifically, we count the number of TALEs with at least one true posi-

tive target prediction for the same rank cutoffs as before. Again, PrediTALE identifies targets

for a larger number of TALEs than the other approaches for the majority of rank cutoffs (Fig

3). However, we see notable differences between the different Xoo strains, where PrediTALE is

able to identify putative targets for 10 of the 17 TALEs of ICMP 3125T, but only for 7 out of 19

TALEs for PXO142 and for 7 out of 18 TALEs for PXO83. As ICMP 3125T has also been the

strain with the largest number of differentially up-regulated genes (cf. Table A in S2 Text), the

lower number of TALEs in PXO142 and PXO83 with a predicted target might be due to a dif-

ferent progression of the Xanthomonas infection.

We further summarize the data behind Figs 4 and 3 in Tables C and D in S2 Text, where we

also report the average ranks of the four approaches across all three Xoo strains.

For sake of completeness, we also evaluate the four approaches for differentially up-regu-

lated genes after Xoo infection based on the same FDR-based thresholds as for the Xoc experi-

ments (S3 and S4 Figs).

Although it has been shown that TALEs may activate transcription in both strand orienta-

tions relative to the transcription start site (TSS) of target genes [12, 13], a preference for the

forward orientation has been postulated [13]. This is reflected by the strand penalty of Predi-

TALE, but no similar parameter exists for the previous approaches. Hence, above comparison

might be perceived as partially unfair in favor of PrediTALE. For this reason, we repeat the

benchmarking after restricting the predictions of all four approaches to a forward orientation

relative to the TSS (S5 and S6 Figs). While the restriction to the forward strand has an effect on

the number of target genes and TALEs with at least one true positive target, PrediTALE still

yields an improved performance compared with the previous approaches over a wide range of

rank cutoffs and, hence, achieves the largest AUC value of the four approaches in all cases.

Fig 3. Performance evaluation on the level of TALEs for three Xoo strains. For each approach, we plot the number of TALEs with at least one predicted target gene

that is also up-regulated in the infection against the number of predicted target sites per TALE.

https://doi.org/10.1371/journal.pcbi.1007206.g003
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Fig 4. Performance evaluation on the level of target genes for 10 Xoc strains. For each approach, we plot the number of predicted target

genes that are also up-regulated in the infection (true positives, TPs) against the number of predicted target sites per TALE.

https://doi.org/10.1371/journal.pcbi.1007206.g004
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For the ten Xoc strains, we find an improved prediction performance for PrediTALE as

well. On the level of true positive target genes (Fig 4), PrediTALE yields the largest number of

true positives for a rank cutoff of 1 for seven of the ten Xoc strains (cf. Table I in S2 Text). We

also find an improved performance for the majority of the remaining rank cutoffs and Xoc
strains. This improvement is especially pronounced for strains Xoc BLS279, CFBP7331,

CFBP7341, and L8, whereas PrediTALE performs similar to or slightly worse than at least one

of the previous approaches for Xoc CFBP7342 and RS105. For the remaining strains (B8-12,

BLS256, BXOR1, CFBP2286), the improvement by PrediTALE is either rather small or mostly

restricted to rank cutoffs of 20 or larger. This is also reflected by the areas under the curves,

where PrediTALE yields the largest areas for B8-12, BLS256, BLS279, BXOR1, CFBP2286,

CFBP7331, CFBP7341, L8, and also RS105, but nor for CFBP7342. Results are largely similar

on the level of TALEs with at least one true positive predicted target (S7 Fig), where Predi-

TALE yields the largest area under the curve for the same strains.

To obtain a more condensed overview on the results for the Xoc strains, we finally com-

pute the average performance ranks across all ten Xoc strains for each of the four approaches

and fixed rank cutoffs of 1, 10, 20, and 50, and for the area under the curve both on the level

of target genes and on the level of TALEs (Table 1 and Table I and J in S2 Text). For all rank

cutoffs and the area under the curve, we observe that PrediTALE yields the best average rank

with values betwen 1.1 and 1.5. We further assess the statistical significance of differences

between the different tools by a Quade test, and the pairwise differences between tools by

the associated post-hoc test (see Methods). This assessment is partly limited by the fact that

pairs of Xoc strains may have identical TALEs in their TALEomes, which also means that the

performance values of those strains are not truly independent. However, we did not find a

clear relationship between the similarity of performance values obtained for the different

strains and the similarity of the corresponding TALEomes. For this reason, we consider this

dependency rather mild and favor this limited statistical assessment over the complete lack

of it.

Consistent with the previous observations, we find that PrediTALE never performs signifi-

cantly worse then any of the three previous approaches, whereas in many cases it performs

significantly better, often with p-values below 0.001 in the post-hoc test. Notable exceptions

Table 1. Testing the significance of differences in prediction performance.

measure TF Tg Tv PT Quade Tg/TF Tv/TF Tv/Tg PT/TF PT/Tg PT/Tv

Genes R1 1.8 3.1 2.4 1.5 �� — - +++ ++

Genes R10 3.6 2.5 1.6 1.5 ��� + +++ + +++ +

Genes R20 3.3 2.1 2.9 1.3 ��� +++ + +++ ++ +++

Genes R50 2.3 3 3 1.1 �� +++ +++ +++

Genes AUC 3.1 2.8 3 1.1 ��� +++ +++ +++

TALEs R1 1.8 3.1 2.4 1.5 �� — - +++ ++

TALEs R10 3.5 2.1 1.6 1.5 ��� + +++ ++ +++ +

TALEs R20 3.5 1.8 2.6 1.2 ��� +++ + - +++ +++

TALEs R50 2.6 2.6 2.8 1.4 �� ++ ++ +++

TALEs AUC 3.4 2.6 2.8 1.1 ��� ++ + +++ +++ +++

TF: Target Finder; Tg: TALgetter; Tv: Talvez; PT: PrediTALE. For each tool and each measure (TALEs/Genes; rank cutoff), we report the average performance rank per

tool, the significance of the Quade test (�:< 0.05; ��:< 0.01; ���:< 0.001), and the significance of the pairwise comparison in a post-hoc test. Here, ‘+’ and ‘-’ indicate that

the first tool has gained a significantly better or worse performance than the second one, respectively. The number of symbols encodes the significance level in analogy

to the Quade test.

https://doi.org/10.1371/journal.pcbi.1007206.t001
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are a rank cutoff of 1, where PrediTALE does not perform significantly different from Target

Finder, a rank cutoff of 10, where PrediTALE does not perform significantly different from

Talvez, and on the level of TALEs, a rank cutoff of 20, where PrediTALE does not perform sig-

nificantly different from TALgetter.

Repeating the same analysis for varied q-value threshold (S8 and S9 Figs, Table K, L, and M

in S2 Text), for varied log fold change threshold (S10 and S11 Figs, Table N, O, and P in S2

Text), and for predictions restricted to the forward strand relative to the TSS (S12 and S13

Figs, Table Q, R, and S in S2 Text), benchmarking results are essentially similar to our previous

findings. One notable exception is the Quade test for rank 1 predictions restricted to the for-

ward strand (Table S in S2 Text), which is no longer significant. This means that none of the

approaches studied yields significantly better rank 1 predictions than any other under this

scenario.

Although the focus of this manuscript is on target predictions for TALEs from X. oryzae
strains, PrediTALE may as well be applied to TALEs from other Xanthomonas species. To

illustrate this, we perform promoterome-wide scans for putative target boxes of TALEs from

five additional Xanthomonas species and corresponding host plants for which virulence

targets have been published previously. We find the known targets of these five TALEs on

rank 1 or 2 of the corresponding PrediTALE predictions (Table 2 and S6 Table). Interest-

ingly, the top prediction of PrediTALE for AvrBs3 in pepper is a different target (transcrip-

tion factor bHLH137, CA06g21040) than the well described target (transcription factor

UPA20, CA03g22700) [47].

Summarizing the benchmark studies, we find i) that PrediTALE produces several unique

predictions that might not have been considered based on previous approaches, ii) although

low in absolute terms, the number of true positives among these predictions is often larger

than for the previous aproaches, and iii) an assessment of the performance of PrediTALE

across a wide range of rank cutoffs demonstrates that in most of the cases the application of

PrediTALE yields a larger number of true positive target predictions than any of the three pre-

vious approaches. However, we also observe true positive predictions of one of the previous

approaches that would be missed by PrediTALE. A general recommendation would be to

use the union of the predictions of all four tools when aiming for sensitivity, i.e., to recognize

as many true positives as possible. Aiming at precision instead, i.e., maximizing the fraction

of true positives in the predictions considered, our results indicate that using either only

PrediTALE predictions or predictions in the intersection of all four approaches would be

recommended.

Evaluating different aspects of the PrediTALE model

Having established that PrediTALE often yields an improved performance compared with

previous approaches, we investigate in the following, which aspects of the PrediTALE model

Table 2. Known virulence targets of five strains from different Xanthomonas species and the ranks among the PrediTALE predictions in the promoteromes of their

host plant species for the corresponding TALEs.

Species/strain Host plant TALE Target gene (ID) Rank

X. axonopodis pv. manihotis Xam668 Cassava TAL20Xam668 MeSWEET10a [48] (Manes.06G123400.1) 2

X. citri subsp. malvacearum XcmH1005 Cotton Avrb6 GhSWEET10 [49] (Gorai.008G209000) 2

X. gardneri Tomato AvrHah1 bHLH3 [50] (Solyc03g097820) 1

X. citri subsp. citri Xcc306 Sweet orange pthA4 CsLOB1 [51] (orange1.1g026556m) 1

X. euvesicatoria Pepper AvrBs3 UPA20 (bHLH TF) [47] (CA03g22700) 2

https://doi.org/10.1371/journal.pcbi.1007206.t002
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contribute to which extent to the performance of the full PrediTALE model. To this end, we

first consider a baseline model for which we define the sets R0, R1, R2 and R3 as empty sets,

and set the position-dependent term p(ℓ|θp) to a uniform distribution. Starting from this base-

line model, we then individually restore each individual set and the position-dependent term

to its original value, and record the difference in the observed performance. Reciprocally, we

consider the full model and determine the difference of its performance to a model where only

one of the individual sets is defined as empty or the position-dependent term is set to uniform.

In Fig 5, we present the results of this analysis, again considering the number of TALEs with at

least one true positive prediction based on the top 20 predictions per TALE, while the respec-

tive results with regard to the total number of true positive target genes are shown in S14 Fig.

As a reference, we also include the difference in performance of the full model compared with

the baseline model.

We find that the results of the two perspectives (adding a feature to the baseline model vs.

completing the full models) are contradictory. While some of the features even reduce perfor-

mance when added to the baseline model (separate specificities for position 1, R2; specificities

for individual RVDs, R1), all features increase performance either on the level of TALEs or tar-

get genes when completing the full model. The specificities at position 0 dependending on the

first RVD (R0) are a notable exception. Here we observe an improvement of performance in

either case, which is also substantially greater than for any of the other features.

However, this effect may not only be attributed to the specificities at position 0 being

modeled depending on the first RVD. Inspecting the specificity parameters of the full model

(Fig 5C) and comparing these to those of the baseline model, the baseline model with R0

restored, and the full model with R0 set to the empty set (S15 Fig), we find complex interac-

tions among the specificity parameters. As this study has been conducted with a large number

Fig 5. Assessment of different aspects of the PrediTALE model. (A) Comparing the full model to the baseline model using only specificities based on

AA 13 of an RVD and independent parameters for position 0. For each subset of features, we additionally compare the case where i) features are

completing the full model and ii) features are added to the baseline model. We show violin plots of the number of TALE with at least one true positive

target using at most 20 predictions per TALE (cf. Fig 3) including individual points for all Xoo and Xoc data sets. (B) Position distribution of the full

model, which is basically a straight line decreasing only marginally to the end of a sequence. (C) Parameters of the full PrediTALE model represented by

circles filled to a degree proportional to specificity parameters.

https://doi.org/10.1371/journal.pcbi.1007206.g005
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of independent restarts of the procedure optimizing model parameters, this is unlikely

an effect of the optimization getting stuck in local optima. Rather the objective function

(difference between observed quantities and prediction scores) appears to skew some of the

remaining model parameters to achieve its optimum if the model is lacking the conditional

specificities at position 0. Nonetheless, these results indicate that the inclusion of specificities

at position 0 depending on the first RVD is an essential ingredient of the PrediTALE model.

Currently, this aspect is limited by the corresponding training data from [23] and, hence, it

might be a worthwhile perspective to quantitatively investigate this dependency for further

RVDs in the future.

In addition, the specificity parameters of the PrediTALE model may also contain interesting

patterns per se. For instance, we find that base preference at position 0 given RVD “NS” at

position 1 is less clear than for other RVDs, where the known target box of TalC (TalBS1) har-

boring “NS” at position 1 is preceeded by a ‘C’ in the promoter of Os11N3 [52]. The UPA tar-

get box of AvrBs3 in pepper has an ‘A’ at position 1 [4], although the first RVD of AvrBs3 is

“HD”, which complies with the specificity of ‘D’ at position 1 being shifted towards base ‘A’

relative to the general preference of RVDs with AA 13 equal to ‘D’ being ‘C’.

Finally, we consider the position-dependent term of the full model (Fig 5B), and find that

it is much simpler than allowed by the mixture of two logistic functions, corresponding to a

straight, slightly decreasing line. In contrast to the specificity parameters, the position-depen-

dent term seems to be largely independent of the specificity features (cf. S15 Fig).

As all features contribute, at least slightly, to the performance of the full PrediTALE model,

we consider this model in the remainder of this manuscript.

PrediTALE predicts novel putative target genes

As we have seen from Fig 1B, putative target genes with up-regulation after Xoo infection are

often found in the intersection of the predictions of all four approaches. In addition, Predi-

TALE predicts several putative target genes of TALEs from the three Xoo strains that might

have been neglected using one of the previous tools. In the following, we scrutinize the predic-

tions for the Xoo strains with a focus on novel predictions, while we give a complete list of top

20 predictions of all four approaches including the ten Xoc strains in S3 Table.

In Table 3, we collect further information about those target genes including the corre-

sponding log fold change and prediction ranks for all four approaches.

The target genes in the intersections of the predictions of all four approaches comprise sev-

eral well known targets. For instance, Os09g29820 (OsTFX1), a bZIP transcription factor, is

targeted by TALEs from class TalAR with members in all three Xoo strains (S16 Fig) and has

been proposed as a TALE target early [5, 53].

Os01g73890 (TFIIAγ) [5], that has been shown to promote TALE function [54], is targeted

by TalBM2 in ICMP 3125T. In concordance to TalBM class members missing in PXO142 and

PXO83, Os01g73890 shows no up-regulation in these two strains. Os07g06970 (HEN1) has

also been among the first TALE target genes proposed [5] and is targeted by TalAP members

present in all three Xoo strains, but falls below the threshold on the log fold change by a small

margin in ICMP 3125T (S17 Fig). Os01g40290 [5], an expressed protein without annotated

function, Os06g29790 [18], a phosphate transporter, and Os11g26790 [16] (RAB21), a dehy-

drin that has been shown to play a role in drought tolerance related to pathogen infection [55],

have also been predicted in previous studies.

In addition, we find putative target genes in the intersection that have not been reported

before: Os02g06670, a retrotransposon protein, is predicted as a target of TalBA8 and

TalBA2 in ICMP 3125T and PXO83, respectively, whereas PXO142 lacks a TalBA member.
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Nonetheless, Os02g06670 is up-regulated after PXO142 infection, although to a lesser degree

than in the other two strains (cf. S17 Fig). Os02g49350, a plastocyanin-like protein, is strongly

up-regulated only in PXO142 and predicted as a target of TalBH2, where class TalBH is exclu-

sive to PXO142 among the strains studied.

Table 3. Putative TALE target genes that are among the top 20 predictions per TALE for any of the four approaches.

Gene lfc Target Finder Talvez Talgetter PrediTALE annotation

ICMP 3125T

Os04g43730 5.762 TalES1 (9) TalAR13 (19); TalES1

(10)

TalAR13 (564); TalES1 (67) TalAR13 (472); TalES1 (108) OsWAK51

Os02g06670 3.815 TalBA8 (1) TalBA8 (2) TalBA8 (1) TalBA8 (1) retrotransposon protein

Os09g29820 2.819 TalAR13 (2) TalAR13 (1) TalAR13 (3) TalAR13 (2) bZIP transcription factor

Os03g51760 2.734 TalAD22 (21) TalAB16 (407);

TalAD22 (209)

TalAD22 (17) TalAD22 (9) OsFBX109—F-box protein

Os04g05050 2.221 TalAB16 (490) NA TalAB16 (63) TalAB16 (11); TalAH11 (824) pectate lyase

Os01g40290 1.894 TalAA15 (3) TalAA15 (12) TalAA15 (1) TalAA15 (1) expressed protein

Os05g45070 1.704 NA NA TalAO15 (214) TalAF17 (559); TalAO15 (15) harpin-induced protein 1

Os11g26790 1.695 TalAH11 (3) TalAH11 (1) TalAH11 (1); TalAQ14 (559) TalAH11 (1) dehydrin

Os06g03710 1.591 TalES1 (44) TalES1 (81) TalES1 (41) TalES1 (19) DELLA protein SLR1

Os03g03034 1.295 TalAO15 (404);

TalAQ14 (125)

TalAO15 (396);

TalAQ14 (9)

TalAB16 (600); TalAO15

(566); TalAQ14 (15)

TalAB16 (220); TalAO15 (556);

TalAQ14 (32)

flavonol synthase

Os01g73890 1.079 TalBM2 (3) TalBM2 (14) TalBM2 (2) TalBM2 (1); TalET1 (477) transcription initiation factor

IIA gamma

Os10g28240 0.918 TalAR13 (71) TalAR13 (47) TalAR13 (16) TalAR13 (6) calcium-transporting ATPase

Os09g07460 0.746 TalBA8 (88) TalBA8 (17) TalBA8 (48) TalBA8 (22) kelch repeat protein

PXO142

Os02g49350 5.163 TalBH2 (1) TalBH2 (2) TalBH2 (5) TalBH2 (8) plastocyanin-like

Os03g09150 2.530 NA NA TalBK2 (805) TalBH2 (4); TalBK2 (239) pumilio-family RNA binding

Os11g31190 2.514 TalAN15 (681) TalAE16 (530);

TalBH2 (848)

TalAQ15 (660); TalBH2 (144) TalBH2 (3) SWEET14 (nodulin MtN3)

Os09g29820 2.272 TalAR14 (1) TalAR14 (2) TalAR14 (1) TalAR14 (3) bZIP transcription factor

Os03g51760 1.368 TalAD23 (77) TalAD23 (288) TalAD23 (48) TalAD23 (13); TalAS12 (421) OsFBX109—F-box protein

Os01g40290 0.887 TalAA16 (3) TalAA16 (7) TalAA16 (1) TalAA16 (1) expressed protein

Os06g29790 0.833 TalAO16 (17) TalAO16 (11) TalAO16 (3) TalAO16 (4); TalAP15 (799) phosphate transporter 1

Os07g06970 0.824 TalAP15 (1);

TalAQ15 (521)

TalAP15 (1);

TalAQ15 (319)

TalAP15 (1); TalAR14 (563) TalAI17 (889); TalAP15 (1) HEN1

PXO83

Os09g29820 2.82 TalAR3 (1) TalAR3 (2) TalAR3 (1) TalAR3 (5) bZIP transcription factor

Os02g06670 2.74 TalBA2 (1) TalBA2 (2) TalAR3 (996); TalBA2 (1) TalAR3 (83); TalBA2 (1) retrotransposon protein

Os03g51760 1.91 TalAD5 (77) TalAB5 (407);

TalAD5 (288)

TalAD5 (48) TalAD5 (13) OsFBX109—F-box protein

Os04g19960 1.70 NA TalAN3 (668);

TalAP3 (365)

TalAP3 (588) TalAC5 (1); TalAN3 (846) retrotransposon protein

Os04g05050 1.62 TalAB5 (490) TalAP3 (931) TalAB5 (63) TalAB5 (11) pectate lyase

Os07g06970 1.40 TalAP3 (1) TalAP3 (1); TalAQ3

(512)

TalAP3 (1); TalAR3 (988) TalAP3 (1) HEN1

Os03g03034 1.18 TalAO3 (404);

TalAQ3 (70)

TalAO3 (396);

TalAQ3 (2)

TalAB5 (600); TalAO3 (566);

TalAQ3 (5)

TalAB5 (220); TalAO3 (556);

TalAQ3 (5)

flavonol synthase

For each Xoo strain, we list the gene ID (MSU7) and the log fold change (lfc) in the corresponding RNA-seq experiment. For each of the four approaches, we further list

the TALE(s), for which a gene has been predicted as a target and in parentheses the corresponding prediction rank. An “NA” entry for a combination of gene and

prediction approach indicates that this gene has not been among the top 1000 predictions for any TALE.

https://doi.org/10.1371/journal.pcbi.1007206.t003
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Finally, we find several putative target genes that have been predicted only by a subset of

approaches: For ICMP 3125T, Os04g43730 [56] (OsWAK51) is among the top 20 predictions

for TalES1 only for Target Finder and Talvez. In turn, PrediTALE predicts Os06g03710

(DELLA protein SLR1) as a TalES1 target on rank 19, which appears on later ranks for the

other approaches. Os04g43730 is induced more strongly than Os06g03710 and exclusively

in ICMP 3125T, which renders this the more likely target. Os03g51760 [16] (OsFBX109) is

among the top 20 predictions for TalAD members only for PrediTALE. Due to variations in

their RVD sequence, TALgetter has this in the top 20 predictions only for TalAD22 in ICMP

3125T, but not for the other strains. As Os03g51760 is clearly up-regulated after infection with

any of the three Xoo strains (S17 Fig), this is likely a true TalAD target.

Talvez and TALgetter have Os03g03034, annotated as a flavonol synthase, among their

top 20 predictions for TalAQ members in ICMP 3125T and PXO83, while this gene is

among the top 20 predictions of PrediTALE only for TalAQ3 in PXO83 due to differences in

RVD sequence. In PXO142, TalAQ15 is annotated as a pseudo gene and this pattern is also

reflected by the RNA-seq data. Os03g03034 has been proposed to be a TALE target before

[5, 56].

Os04g05050 [16, 56], annotated as a pectate lyase, is only among the top 20 predictions of

PrediTALE in ICMP 3125T (TalAB16) and PXO83 (TalAB5), whereas this gene is ranked sub-

stantially lower (rank 83) for TalAB8 from PXO142 by PrediTALE as well. From the RNA-seq

data, we find that Os04g05050 is up-regulated in all three Xoo strains, although the level of up-

regulation is lower for PXO142 than for the other two strains.

Os05g45070, annotated as hairpin-induced protein 1, is predicted only by PrediTALE as an

alternative target of TalAO15 in ICMP 3125T and shows clear up-regulation only after infec-

tion with this Xoo strain. Os10g28240 [16], a calcium transporting ATPase, is predicted by

TALgetter and PrediTALE as target of TalAR13 of ICMP 3125T but, on later ranks, also

by the other two approaches, and is up-regulated exclusively after ICMP 3125T infection.

Os09g07460 [16], a kelch repeat protein, is only among the top 20 predictions of Talvez for

TalBA and on later ranks for the other approaches. This gene is up-regulated only in ICMP

3125T, although not strongly.

For PXO142, we find two further putative targets of TalBH2 that are predicted exclusively

by PrediTALE: Os03g09150 (pumilio-family RNA binding) is up-regulated in PXO142 but

also in PXO83, for which it does not appear among the top 20 predictions of any approach.

Os03g09150 has been predicted before as a target of class TalAC [16]. However, PXO142 is

lacking members of class TalAC, while Os03g09150 only appears at later ranks for TalAC5 of

Xoo PXO83. Os11g31190 (Os11N3, OsSWEET14) is a well known target [52, 57], which is pre-

dicted here also for TalBH exclusively by PrediTALE due to its ability to adequately handle the

aberrant repeat [6] of TalBH2. Os11g31190 is also known to be targeted by TalAC members

(previously termed AvrXa7) [53] including TalAC5 in PXO83 and, hence, is strongly up-regu-

lated after PXO83 infection as well. However, in this case all approaches fail to predict this

target due to the large number of mis-matches in the target box [6], even accounting for the

aberrant repeat in TalAC5.

Instead, another retrotransposon protein (Os04g19960 [58]) is the top prediction of Predi-

TALE for TalAC5 from PXO83, which is confirmed by RNA-seq data as this gene is strongly

up-regulated after PXO83 infection but not after infection with one of the other strains.

In summary, we find several novel putative target genes of which three are highly promising

(Os02g49350, Os05g45070, Os03g09150), where two of these (Os05g45070, Os03g09150) are

predicted as targets of the respective TALE classes on high ranks exclusively by PrediTALE.

Recently, we could experimentally validate the targets Os04g43730 (OsWAK51), Os06g29790

(phosphate transporter), Os03g51760 (OsFBX109), Os03g03034 (flavonol synthase), and
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Os04g05050 (pectate lyase) by qRT-PCR using a TALE-less strain (Roth X1-8) complemented

with individual TALEs [56].

Orphan TALEs

We also observe from Fig 3 and S7 Fig that for many strains, neither of the approaches consid-

ered is able to identify a putative target genes for all TALEs present in their TALEome. We

term such TALEs without reasonable target prediction orphan TALEs, and we will discuss

these in more detail in the following.

More precisely, we call a TALE or a TALE class orphan if there is no up-regulated gene

among the top 50 predictions of any of the four approaches. Furthermore, we check if this pat-

tern is consistent for the TALEs from a common TALE class across almost all Xoo and Xoc
strains studied.

We find as orphan the TALE classes present in all three Xoo strains TalAF, TalAI and

TalAN. In addition, TalAG (PXO142, PXO83), TalAL (PXO142), TalAS (PXO142, PXO83),

TalBJ (PXO83), TalCA (PXO83), TalET (ICMP 3125T), and TalDR (PXO142) are orphan

TALE classes in individual Xoo strains. The TALEs from class TalAI and TalDR are trunc-

TALEs that are lacking large parts of the C-terminus including the activation domain and, for

this reason, do not act as transcriptional activators. TruncTALEs have been found to function

as suppressors of resistance mediated by an immune receptor [59].

In the Xoc strains, however, TalAF is not orphan as we find putative target genes among the

top 50 predictions for the class members present in B8-12 and L8. For TalAZ, we find a target

for TalAZ7 from Xoc L8, but not for the other 7 Xoc strains harboring TalAZ TALEs. In addi-

tion, we consider TalCQ1 from BXOR1 and TalCR1 (CFBP7331) and TalCR2 (CFBP7341) as

orphan.

Reasons for orphan TALEs could be manifold. First of all, we cannot be sure that these

TALEs are indeed expressed by the bacteria and are secreted into the host plant cells. Second,

some TALEs might activate target genes slower or to a lesser degree than others and, for this

reason, target gene activation might not be detectable, yet, in the RNA-seq experiments, espe-

cially at the 24h timepoint chosen for Xoo. Third, these TALEs might target specific variants of

boxes in promoters of rice lines that are not represented by the O. sativa Nipponbare reference

genome, or might even target genes in alternative host plants, e.g., grasses in the vicinity of

fields where rice is grown. Fourth, these TALEs might target genes that are missing from the

current gene annotations of rice. Such targets would be neglected by the current approach to

specifically scan promoter sequences of annotated genes for putative TALE boxes. To address

the latter issue, we switch to an alternative approach in the following. Here, we perform

genome-wide scans for putative target boxes instead, and search for differentially expressed

regions in the vicinity of putative target boxes predicted anywhere in the reference genome.

Genome-wide prediction profiles discover potential novel target genes

We perform genome-wide predictions of TALE target boxes in Oryza sativa Nipponbare

(MSU7) for the 256 Xoc TALEs from 10 strains and 54 Xoo TALEs from 3 strains and check

for differentially expressed regions near the predicted target boxes. Differential expression is

based on the mapped RNA-seq data after infection with the respective Xoo and Xoc strains.

Performing genome-wide scans is facilitated by the runtime optimization of the PrediTALE

scanning process described in section “Implementation & scanning speed-up”, and we provide

a comparison of exemplary running times of genome-wide scans for target boxes of all 28

TALEs of strain Xoc BLS256 in Table T in S2 Text.
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After infection with Xoo strains, 14 TALEs are found to have differentially expressed

regions near at least one predicted target box. Table 4 lists the total number of 19 TALE target

boxes together with MSU7 gene annotations overlapping the differentially expressed regions.

Notably, 15 of these targets have already been reported in subsection “PrediTALE predicts

novel putative target genes” when restricting the search to promoter regions of annotated

genes. However, for two genes, target boxes from other TALs were predicted in case of

genome-wide scan. The expression of the pectate lyase precursor (Os04g05050) was up-regu-

lated by TalAB5 according to promotor prediction, but the genome-wide prediction contains

the same gene up-regulated by TalAD22. The same scenario for the phosphate transporter 1

(Os06g29790), which according to promotor predictions is up-regulated by TalAO16 and

TalAP15. However, in the genome-wide scans, a target box of TalAH11 was predicted. The

genome-wide scan i) does not make use of gene annotations, and ii) could be expected to be

more prone to false positive predictions than the restricted search in promoters. Hence, the

fact that many predictions re-occur in the genome-wide scan demonstrates the general utility

of this approach.

In addition to those targets reported previously, we find three novel target boxes in the

vicinity of differentially expressed regions that overlap annotated genes, including a wound-

induced protein and an oxidoreductase. For TalAO16 from PXO142, we find a differentially

expressed region next to a predicted target box on chromosome 7 with no annotation in

MSU7 (S18 Fig; complete list in S4 Table). For this reason, we extracted the sequence under

Table 4. Genome-wide prediction of Xoo TALE targets with PrediTALE.

TALE Chr Pos. box Gene Annotation PiP

ICMP 3125T

TalAA15 Chr1 22747303 Os01g40290 expressed protein yes

TalAD22 Chr3 29685233 Os03g51760 OsFBX109—F-box protein yes

TalAD22 Chr4 2486797 Os04g05050 pectate lyase precursor TalAB5

TalAH11 Chr6 17129738 Os06g29790 phosphate transporter 1 TalAO16, TalAP15

TalAN14 Chr2 31931460 Os02g52170 expressed protein no

TalAN14 Chr8 19950534 Os08g32160 oxidoreductase, 2OG-FeII oxygenase no

TalAR13 Chr10 14685398 Os10g28240 calcium-transporting ATPase yes

TalAR13 Chr9 18123472 Os09g29820 bZIP transcription factor yes

TalBA8 Chr2 3353526 Os02g06670 retrotransposon protein yes

TalBM2 Chr1 42819000 Os01g73890 transcription initiation factor IIA gamma yes

PXO142

TalAO16 Chr7 22546154 – – NA

TalAR14 Chr5 16047774 Os05g27580 wound-induced protein WI12 no

TalAR14 Chr9 18123472 Os09g29820 bZIP transcription factor yes

TalBH2 Chr11 18174482 Os11g31190 SWEET14 (nodulin MtN3 family) yes

TalBH2 Chr2 30158664 Os02g49350 plastocyanin-like yes

PXO83

TalAC5 Chr4 11130506 Os04g19960 retrotransposon protein yes

TalAP3 Chr7 3434725 Os07g06970 HEN1 yes

TalAQ3 Chr3 1245017 Os03g03034 flavonol synthase/flavanone 3-hydroxylase yes

TalAR3 Chr9 18123472 Os09g29820 bZIP transcription factor yes

Genome-wide prediction of Xoo TALE targets using PrediTALE filtered for differentially expressed regions within 3000 bp surrounding the target box. For each Xoo
strain, we list the TALE name, Chromosome number and position of the target box (Pos. box) in Oryza sativa Nipponbare genome, and the annotated MSU7 Gene ID

and description (if present). In addition, the last column contains the information, whether predictions in promoters (PiP) also report this target.

https://doi.org/10.1371/journal.pcbi.1007206.t004
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the differentially expressed region, and first compared it against the NCBI protein database

‘nr’ using blastx but received no matching result. We additionally compared this sequence

against the NCBI reference RNA sequences (refseq_rna) using blastn, which resulted in a

highly significant hit for XR_001547425.2, a predicted long non-coding RNA.

Upon infection of rice with Xoc strains, differentially expressed regions near at least one

predicted target box were found for 26 of 28 (B8-12), 28 of 28 (BLS256), 25 of 26 (BLS279), 26

of 27 (BXOR1), 22 of 28 (CFBP2286), 19 of 22 (CFBP7331), 19 of 21 (CFBP7341), 18 of 23

(CFBP7342), 27 of 29 (L8) and 19 of 24 (RS105) TALEs. S5 Table lists all genome-wide pre-

dicted targets in the vicinity of differentially expressed regions of these Xoc strains.

In the following, we will discuss two example regions in detail. As discussed in the previ-

ous section, TalAZ appears to be an orphan TALE based on the promoterome-wide scans

for target boxes. However, based on genome-wide scans, we find a differentially expressed

region, which could constitute a target gene of TalAZ, on Chr4 (Fig 6). Only 8 of the 10 Xoc
strains studied have a TalAZ member in their TALEome. The profile plots clearly show that

the region of interest is only differentially expressed after infection with these 8 strains har-

bouring TalAZ members. Performing blast searches of the differentially expressed sequences,

we received a hit for XP_015634381.1, a sulfated surface glycoprotein 185 [Oryza sativa

Japonica Group], which has been added to the IRGSP-1.0 annotation at NCBI but was not

present in MSU7.

As a second example, we consider a putative TalBD target on Chr6. The profile plots (Fig 7)

show differentially expressed regions in all 10 strains. However, a blastx search of the respec-

tive sequences, spanning two larger differentially expression regions, provides no clear result.

Matches include an Auxin-responsive protein IAA22 (Q69TU6.1) and different bromodo-

main-containing factors (XP_006659043.1, XP_025882131.1 XP_015650662.1). As drops in

the coverage profiles and split reads in the mapping indicate the existence of introns within

the differentially expressed regions, we additionally compare the spliced sequence using blastn

against the NCBI reference RNA sequences. The result contains a predicted non-conding

RNA (XR_003242961.1) and different transcript variants of a predicted mRNA, coding for

bromodomain-containing factors (XM_015840709.1, XM_015840708.1, XM_006658980.2,

XM_026026346.1, XM_015795177.2, XM_015795176.2).

In summary, our results demonstrate that genome-wide prediction of target boxes using

PrediTALE enables us to identify novel targets independently of existing gene annotations

including previously missing non-coding RNAs.

Conclusion

Accurate computational predictions of TALE target boxes are required for elucidating viru-

lence targets of TALEs that support bacterial infection of host plants. In this paper, we present

PrediTALE, a novel approach for predicting target boxes based on a TALE’s RVD sequence.

Since the publication of all previous approaches [14, 16, 18], our understanding of mechanisms

and principles of TALE targeting has increased substantially. Specifically, it has been shown

that repeats of aberrant lengths may compensate for frame shifts in target boxes [6], that acti-

vation of gene expression by TALEs binding to the reverse strand is possible, but rare [13]. In

addition, quantitative data about virtually all combinations of AAs at RVD positions have been

collected [19, 21–25]. All these insights have been integrated into PrediTALE either as part of

the model or as training data that are used to adapt model parameters. Here, we demonstrate

that PrediTALE predicts TALE targets with improved accuracy compared with previous

approaches, where ground truth is derived from in-house and public RNA-seq data after Xoo
and Xoc infection. However, our results also confirm that any of the current computational
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approaches suffers from false positive predictions and, hence, experimental support of pre-

dicted targets is essential.

PrediTALE predicts several unique target genes, several of which are highly promising for

further experimental validation. While RNA-seq data supports that these are activated by

TALEs in planta, their importance for the infection process still needs to be investigated.

Previously, predictions have been mostly limited to putative promoter regions of annotated

genes. Here, we consider genome-wide predictions instead, which are feasible due to the

acceptable runtime of PrediTALE, the improved accuracy of target box predictions, and the fil-

tering steps based on RNA-seq data as implemented in DerTALE. We demonstrate that targets

reported from promoterome-wide predictions are also recovered in genome-wide scans, but

we also find differentially expressed regions at loci that do not overlap with annotated genes.

Fig 6. Genome-wide predictions of TalAZ in Oryza sativa Nipponbare profile for 10 Xoc strains in the area of the

TalAZ target box. RNA-seq coverage after inoculation (blue line) is compared with mock control (brown line). In

addition, we show the average of individual replicates of control and treatment are summarized as thick lines. The blue

shaded boxes mark the differentially expressed regions. The arrows under the profiles reflect the MSU7 annotation

within the genomic region. The genomic position of the TALE target box is marked by a vertical blue line.

https://doi.org/10.1371/journal.pcbi.1007206.g006
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These could be either protein-coding genes that are missing from the current annotation, but

also include putative non-coding RNAs, which might have regulatory activity or other func-

tions that foster bacterial infection.

To promote future research in plant-pathogen interactions related to TALEs, we make our

methods available to the scientific community as open-source software tools.

Supporting information

S1 Text. Preprocessing of training data.

(PDF)

Fig 7. Genome-wide predictions of TalBD in Oryza sativa Nipponbare profile for 10 Xoc strains in the area of the

TalBD target box. RNA-seq coverage after inoculation (blue line) is compared with mock control (brown line). In

addition, we show the average of individual replicates of control and treatment are summarized as thick lines. The blue

shaded boxes mark the differentially expressed regions. The arrows under the profiles reflect the MSU7 annotation

within the genomic region. The genomic position of the TALE target box is marked by a vertical blue line.

https://doi.org/10.1371/journal.pcbi.1007206.g007
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S18 Fig. Genome-wide prediction of TalAO16 in Oryza sativa Nipponbare with corre-

sponding RNA-seq data. RNA-seq coverage after inoculation (blue line) is compared with

mock control (brown line). In addition, we show the average of individual replicates of control

and treatment are summarized as thick lines. The blue shaded boxes mark the differentially

expressed regions. The arrows under the profiles reflect the MSU7 annotation within the geno-

mic region. The genomic position of the TALE target box is marked by a vertical blue line.

(PDF)
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Investigation: Annett Erkes, Stefanie Mücke, Maik Reschke, Jens Boch, Jan Grau.

Methodology: Annett Erkes.

Project administration: Jens Boch, Jan Grau.
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