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Abstract

Mathematical models have been used successfully at diverse scales of biological organiza-

tion, ranging from ecology and population dynamics to stochastic reaction events occurring

between individual molecules in single cells. Generally, many biological processes unfold

across multiple scales, with mutations being the best studied example of how stochasticity

at the molecular scale can influence outcomes at the population scale. In many other con-

texts, however, an analogous link between micro- and macro-scale remains elusive, primar-

ily due to the challenges involved in setting up and analyzing multi-scale models. Here, we

employ such a model to investigate how stochasticity propagates from individual biochemi-

cal reaction events in the bacterial innate immune system to the ecology of bacteria and bac-

terial viruses. We show analytically how the dynamics of bacterial populations are shaped

by the activities of immunity-conferring enzymes in single cells and how the ecological con-

sequences imply optimal bacterial defense strategies against viruses. Our results suggest

that bacterial populations in the presence of viruses can either optimize their initial growth

rate or their population size, with the first strategy favoring simple immunity featuring a single

restriction modification system and the second strategy favoring complex bacterial innate

immunity featuring several simultaneously active restriction modification systems.

Author summary

Mathematical understanding of how randomness at the molecular scale, also known as

molecular noise, ultimately affects the fate of organisms and whole populations is widely

recognized as a challenging problem in multi-scale modeling. Here, we develop an analyti-

cal framework for analyzing how the randomness of individual reaction events in single

cells propagates to higher levels of biological organization and affects population and ecol-

ogy scale dynamics. We deploy our mathematical results to study an example from the

ecology of bacteria and bacteriophage viruses. Bacteria defend themselves against viruses

by a simple innate immune system composed of a pair of enzymes. Due to molecular

noise, however, viruses sometimes escape this immunity, causing bacterial populations to

plummet. Noise can also cause the immune system to turn against its own host. By analyz-

ing how such costs and benefits of bacterial immunity balance at the ecological level, we
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Citation: Ruess J, Pleška M, Guet CC, Tkačik G

(2019) Molecular noise of innate immunity shapes

bacteria-phage ecologies. PLoS Comput Biol 15(7):

e1007168. https://doi.org/10.1371/journal.

pcbi.1007168

Editor: Oleg A Igoshin, Rice University, UNITED

STATES

Received: January 31, 2019

Accepted: June 7, 2019

Published: July 2, 2019

Copyright: © 2019 Ruess et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: JR acknowledges support from the

Agence Nationale de la Recherche (ANR, www.

agence-nationale-recherche.fr) under Grants No.

ANR-16-CE33-0018 (MEMIP), ANR-16-CE12-444

0025 (COGEX), and ANR-18-CE91-0002-01

(CyberCircuits). CCG was supported by the HFSP

Young Investigators’ grant (www.hfsp.org/

funding). MP was a recipient of a DOC

Fellowship of the Austrian Academy of Science

http://orcid.org/0000-0003-1615-3282
http://orcid.org/0000-0001-7460-7479
http://orcid.org/0000-0002-6699-1455
https://doi.org/10.1371/journal.pcbi.1007168
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007168&domain=pdf&date_stamp=2019-07-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007168&domain=pdf&date_stamp=2019-07-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007168&domain=pdf&date_stamp=2019-07-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007168&domain=pdf&date_stamp=2019-07-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007168&domain=pdf&date_stamp=2019-07-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007168&domain=pdf&date_stamp=2019-07-15
https://doi.org/10.1371/journal.pcbi.1007168
https://doi.org/10.1371/journal.pcbi.1007168
http://creativecommons.org/licenses/by/4.0/
https://www.agence-nationale-recherche.fr
https://www.agence-nationale-recherche.fr
https://www.hfsp.org/funding
https://www.hfsp.org/funding


predict the optimal parameters for bacterial innate immune systems. While the focus of

this work is on bacteria-phage ecologies, we expect that our results will generally help to

better understand population and ecology scale consequences of stochastic cell fate deci-

sions in diverse biological domains ranging from cell differentiation in developmental

biology to studies of the microbiome and consequences of stochasticity in apoptotic

responses for anti-cancer therapies.

Introduction

One of the major challenges in biology is to understand how interactions between individual

molecules shape living organisms and ultimately give rise to emergent behaviors at the level of

populations or even ecosystems. At the very bottom of this hierarchy, inside single cells, inter-

acting biomolecules such as DNA or proteins are often present in small numbers, giving rise

to intrinsic stochasticity of individual reaction events [1, 2]. As a result, genetically identical

organisms occupying identical environments can express different phenotypes [3, 4] and make

different decisions when presented with identical environmental cues [5, 6]. This molecular
noise is known to be the cause of biologically and medically important traits of bacteria such as

persistence in response to antibiotics [7, 8] and competence during acquisition of heterologous

DNA [9]. However, while its causes and consequences are relatively well-studied at the organ-

ismal level [10–13], how molecular noise propagates to higher scales of biological organization

to affect the ecology and evolution of organisms remains mostly unknown [4]. Recently it has

been shown that ecosystems can follow surprisingly deterministic trajectories despite the prev-

alence of stochastic events [14, 15], yet these trajectories could themselves be strongly influ-

enced by molecular noise. Thus, the extent to which ecological interactions are affected by

molecular noise, and the extent to which these ecological consequences feed back to reshape

individual traits, remain to be explored.

Perhaps the most prevalent biological systems in which molecular noise is thought to play

an important role are restriction-modification (RM) systems [16]. Present in nearly all pro-

karyotic genomes [17], RM systems are a highly diverse class of genetic elements. They have

been shown to play multiple roles in bacteria as well as archaea, including regulation of genetic

flux [18] and stabilization of mobile genetic elements [19], but have most frequently been

described as primitive innate immune systems due to their ability to protect their hosts from

bacterial viruses [20]. When a virus (bacteriophage or phage) infects a bacterium carrying a

RM system, the DNA of the phage gets cleaved with a very high probability, thus aborting the

infection. With a very small probability, however, the phage can escape and become immune

to restriction by that specific RM system through epigenetic modification, leading to its spread

and potentially death of the whole bacterial population in absence of alternative mechanisms

of phage resistance [21, 22]. Thus, in the context of RM systems, molecular noise occurring at

the level of individual bacteria can have profound ecological and evolutionary consequences.

Because RM systems are ultimately based on only two very well characterized enzymatic activi-

ties (restriction and modification) [23], they represent a simple and tractable biological system

in which we can investigate propagation of effects of molecular noise across different scales of

biological organization.

Here, we mathematically model the action of RM systems from individual molecular events

occurring inside a single cell, through individual bacteria competing in a population, to inter-

actions between populations of bacteria and phages in a simple ecological setting, as shown

in Fig 1. We demonstrate that, by imposing a tradeoff between the efficiency and cost of
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immunity, molecular noise in RM systems occurring at the level of individual bacteria has con-

sequences that propagate all the way up to the ecological scale, and that the ecological conse-

quences in turn imply the existence of optimal bacterial defense strategies against phages.

Methods and results

Self-restriction in single cells and in growing populations

RM systems consist of two enzymes, a restriction-endonuclease R, that recognizes and cuts

specific DNA sequences (restriction sites), and a methyl-transferase M, that recognizes

the same DNA sequences and ensures that only invading phage DNA can be cut by the

Fig 1. Effects of molecular noise at different scales of biological organization. In single cells (green shade), stochastic activity of restriction-

modification enzymes (R—red, M—blue) may inadvertently lead to full methylation of invading phage DNA in a process known as “phage escape”

from the bacterial immunity, resulting in direct consequences at the ecological scale (blue shade). Also, stochastic activity of the same enzymes may

lead to accidental cutting of bacterial DNA in a process known as “self-restriction,” resulting in lowered bacterial growth rate at the population

level (red shade). Trade-offs between self-restriction and phage escape at the ecological scale in turn influence R and M enzyme activities in

surviving cells, thereby optimally balancing the efficiency and cost of immunity.

https://doi.org/10.1371/journal.pcbi.1007168.g001
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endonuclease while the bacterial DNA remains methylated and protected. However, since

chemical reactions occur stochastically, RM systems can produce errors and fully methylate

invading phage DNA before it is cut and degraded (phage escape, typically occurring with a

probability ranging between 10−2 and 10−8) [24, 25]. Similarly, it is possible that newly repli-

cated restriction sites on the bacterial DNA, which are originally unmethylated, are acciden-

tally cleaved instead of methylated (self-restriction) [26].

Inside a single cell, the probability of such self-restriction events depends on the total activ-

ity, r, of all restriction endonuclease molecules R, the total activity, m, of all methylase molecules

M, as well as the bacterial replication rate λ, since λ determines the rate at which new unmethy-

lated restriction sites are generated. To investigate how self-restriction depends on these param-

eters, we model the corresponding biochemical reactions at each individual restriction site on

the bacterial DNA with the stochastic reaction network displayed in Fig 2a (see S1 Appendix

Fig 2. Self-restriction in single cells. (a) Model of the individual-site methylation dynamics. The restriction site can either be doubly-methylated (first circle), hemi-

methylated (second circle), or unmethylated (third circle). Methylation events happen at a rate proportional to the activity m of M. During growth at rate λ, the DNA

and its restriction sites are replicated, with the newly synthesized DNA having no methylation marks; for our model, growth is thus identical to demethylation

reactions denoted in the figure. Restriction is assumed to be lethal (no DNA repair) and can happen when a site is unmethylated at a rate proportional to the activity r
of R, leading to cell death (fourth circle). (b) Distribution of time to self restriction, f(τ), depends on enzyme activities, r and m, for a restriction site that is initially

doubly-methylated. Increasing values of r lead to decreasing expected times to self-restriction for all m (cf. blue vs red). Given r, as m grows large, the site will almost

never be unmethylated and cut, yielding a very broad distribution (green). λ = λref = 1.7 � 10−2 min −1; reference (red) values: mref = 0.05 min−1, rref = 0.1 min−1; “Small”

(“large”) r, m values are 2e-fold lower (e-fold higher) than reference values. (c) Dependence of self-restriction on the initial methylation configuration, pQ (dark

blue = doubly-methylated; blue = hemi-methylated; light blue = unmethylated) at rref, mref.

https://doi.org/10.1371/journal.pcbi.1007168.g002
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Section S.1). The time τS until the first self-restriction event in a given cell—i.e., until that

cell’s death or substantial reduction in growth rate—can be obtained as the time when the first

restriction site is cut, that is as τS = mini2{1,. . .,NS}
τi, for bacterial DNA with NS restriction sites,

where τi, i = 1,. . .,NS are the waiting times for cutting events at individual sites. It can be shown

that all τi follow a phase-type distribution (see [27] and Fig 2b and 2c):

f ðtiÞ ¼ pQ exp ðBtiÞc1; where

B ¼

� ðr þmÞ m 0

l=2 � ðmþ l=2Þ m
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with pQ = [p0 p1 p2] being the initial methylation configuration, i.e., the proportion of restric-

tion sites that are unmethylated (p0), hemi-methylated (p1) and doubly-methylated (p2); see S1

Appendix Section S.1.

Eq [1] allows us to derive the expected time until self-restriction of a single site as

E½ti� ¼ � pQB
� 11; where 1 ¼ ½1 1 1�

>
; ð2Þ

more generally, Fig 2b shows how the distribution of waiting times depends on the restriction

rate r (increasing the probability of the site getting cut when it is unmethylated) and the mag-

nitude of m relative to λ (which decreases the probability that the site is unmethylated in the

first place).

Fig 2c shows that time to self-restriction at a single site depends essentially on an unknown

quantity, the methylation configuration pQ. We will now proceed to show that when we con-

sider an exponentially growing population of bacterial cells, the configuration pQ can no lon-

ger be freely chosen, and has to be determined self-consistently instead. Intuitively, this is

because when the bacterial population is in steady-state growth, new unmethylated sites are

constantly replenished by replication, while cells with more unmethylated sites are simulta-

neously and preferentially being removed, as illustrated in Fig 3a and required by Eq [2].

These two forces, generation of new unmethylated sites and their preferential removal, will

push any initial pQ towards a unique steady state equilibrium.

Mathematically, assuming that the methylation dynamics in all cells are equilibrated and

that cells cannot be distinguished, the internal methylation configuration of any randomly cho-

sen cell at any time during growth of the population can be derived from the quasi-stationary

distribution pQSD(r, m) of the individual-site methylation process in Fig 2a (see S1 Appendix

Section S.1). pQSD(r, m) is the equilibrium distribution of the stochastic process conditional on

it not having reached the absorbing state where the DNA is cut and the cell has died (Fig 3a);

in short, methylation and growth equilibrate “in all directions except the one leading towards
self-restriction”. Then, setting pQ = pQSD(r, m) in Eq [1] reduces the phase-type distribution

f(τi) for the time τi until self-restriction at an individual restriction site to a single exponential,

implying further that the waiting time τS = mini2{1,. . .,NS}
τi until self-restriction of any site in

the cell is also exponentially distributed. Consequently, we are led to the main result of this sec-

tion: growth with self-restriction can be rigorously modeled at the population level with a Mar-

kov birth-death process for which the expected population size n(t) follows a simple ordinary

differential equation

d
dt

nðtÞ ¼ ðl � mðr; m; lÞÞnðtÞ ¼ lenðtÞ; ð3Þ

where λe(r, m, λ) = λ − μ(r, m, λ) is the effective growth rate and μ(r, m, λ) is the rate of self-
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restriction, defined as the inverse of the per-cell expected waiting time until self-restriction

mðr;m; lÞ ¼ E½tS�
� 1
¼

NS

� pQSDB
� 11
¼ � g1NS; ð4Þ

with γ1 being the largest eigenvalue of B (an explicit stochastic simulation validating this ana-

lytical result is provided in the S1 Appendix Section S.2).

Eq [4] allows us to straightforwardly evaluate the reduction in the population growth rate

due to random self-restriction events in single cells for any given pair of enzyme activities, r
and m. To study possible qualitative effects of self-restriction, we explore in Fig 3b a wide

range of enzyme activities for a system with NS = 5 restriction sites (chosen, for illustration

purposes, significantly smaller than the typical number of sites recognized by real RM

Fig 3. Growth of self-restricting populations. (a) Top: Selective cutting of cells (red ‘X’) with unmethylated restriction sites biases growing populations towards

methylation configurations with larger numbers of methylated sites. Bottom: The long-term population distribution of methylation configurations, pQSD (p0—

unmethylated, p1—hemi-methylated, p2—doubly-methylated; see S1 Appendix Section S.1). Increasing either r or m reduces the probability of finding

unmethylated restriction sites in the population. Three example choices for r, m (blue, red, green) and λref are same as in Fig 2 and are denoted with crosses in

panel b and corresponding colors in panel c; NS = 5 is chosen for illustration purposes. (b) Dependence of the self-restriction rate, μ(r, m, λref), on the enzyme

activities. (c) Effective population growth rate λe = λ − μ(r, m, λ) as a function of the replication rate λ for different enzyme activities r and m. For the reference

parameters (red), the self-restriction rate computed using the quasi-steady state distribution pQSD (solid) is significantly different when compared to an estimate

based on fully equilibrated pQ in which restriction does not lead to an absorbing state (dashed).

https://doi.org/10.1371/journal.pcbi.1007168.g003
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systems). We find that the main determinant of self-restriction is the activity m of the methyl-

transferase and that the effects of molecular noise can be suppressed by sufficiently increasing

m. Furthermore, so long as m is large enough such that unmethylated restriction sites are only

rarely available, μ(r, m, λ) lies on a large plateau of low self-restriction and changes only little

with r and m, suggesting that stochastic fluctuations in enzyme activities would only have

minor consequences for the population, especially when they are positively correlated, as

would be the case if R and M enzymes were expressed from the same operon (S1 Appendix

Section S.3).

The (r, m) plane in Fig 3b contains a transition region that separates the large plateau with

low self-restriction from the plateau where self-restriction is severe enough to stop the popula-

tion growth altogether. We have chosen our reference (red) parameter values (rref,mref) to lie

in this transition region, and explored the regime with an e-fold higher rates (“large r & m”,

indicated by green), and with 2e-fold lower rates (“small r & m”, indicated by blue) in Fig 3b

and 3c. The comparison of these three regimes in Fig 3c is most clear when the effective growth

rate is shown as a function of λ, the rate at which the cells, and thus the restriction sites, are

replicated. In the “small r & m” regime, self-restriction is so infrequent that it can easily be out-

grown by replication (except at very low λ). In the “large r & m” regime, m is sufficiently high

to keep the restriction sites protected and thus self-restriction is rare, except at extremely large

λ, where the green curve falls below the blue curve. In the reference regime, r is too large and

m not high enough to protect, so self-restriction can not be “outgrown”; effective growth thus

falls significantly below λ. Our numerical analyses further show that the self-restriction rate

μ(r, m, λ) grows faster-than-linearly with λ (S1 Appendix Section S.1), causing the effective

population growth to slow down and ultimately drop to zero at high enough λ.

We end this section by highlighting a non-trivial interaction between the single-cell

and population-scale processes. While increasing the activity r of the endonuclease always

decreases the effective growth rate of the population due to self-restriction, the effect can be

smaller than expected from the single-cell analysis (dashed lines in Fig 3c). This is because

high values of r feed back through the population scale to bias the steady-state distribution of

methylation configurations away from cells with lots of unmethylated sites, as shown in Fig 3a,

making self-restriction less likely. Implicit feedback effects of this type frequently give rise to

complex dynamics in multi-scale models.

Phage escape

RM systems lower the growth rate of the population due to self restriction, especially when the

activity m of the methyl-transferase is small. Upon infection by a phage, however, small values

of m are advantageous, making it less likely that the unmethylated phage DNA will get methyl-

ated and escape the immune system before it can be cut by the restriction endonuclease.

Assuming that all restriction sites are identical and independent, the probability of phage

escape can be calculated [28] as

pVðr;mÞ ¼
m

r þm

� �NV

; ð5Þ

where NV is the number of restriction sites on the phage DNA. From Eq [5] it is straightfor-

ward to see that pV(r, m) is monotonically increasing in m and decreasing in r. One might

therefore expect that the balance between avoiding self-restriction that favors high m, Eq [4],

and minimizing phage escape that favors low m, Eq [5], would impose a tradeoff and thus lead

to an optimal value of m. However, this is not the case, because the phage escape probability

pV(r, m) and the population self-restriction rate μ(r, m, λ) can both approach zero so long as r

Molecular noise of innate immunity shapes bacteria-phage ecologies
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and m both increase to infinity but r does so faster. While mathematically possible, this limit

is, however, not biologically relevant: large enzyme expression levels should incur a cost (meta-

bolic or due to toxicity presumably caused by non-specific protein-DNA interactions in the

case of RM systems) for the cells [29, 30], which we sought to incorporate into our model by

including a growth rate penalty proportional to the activity of restriction and methylation

enzymes, i.e., λe(r, m, λ) = λ − μ(r, m, λ) − crr − cmm. Interestingly, it can be verified that our

reasoning is valid only because two subsequent demethylation events need to occur to create a

restriction-susceptible site on the bacterial DNA (S1 Appendix Section S.1). If hemi-methyl-

ated sites could be recognized by the restriction endonuclease, or if both methyl groups could

be lost in a single event, our initial expectation about the existence of the tradeoff would be

correct, and a particular choice of r and m values would simultaneously minimize the phage

escape and self-restriction, even in the absence of the expression cost for R and M.

Our model can be generalized to multiple coexisting RM systems that recognize different

restriction sites and operate in parallel, as is often observed for bacteria in the wild [17]. This

provides increased protection from phages since the phage has to escape all RM systems to

infect successfully. However, multiple RM systems also imply that the bacteria either have to

pay higher expression and self-restriction costs or that they have to re-balance the expression

levels of the enzymes such that lower self-restriction rates per RM system are obtained with

the same overall enzyme activity. Allowing bacteria to have multiple RM systems, but assum-

ing for the sake of simplicity that these systems are all equivalent in terms of enzyme activities

and number of recognition sites, we obtain the phage escape probability for k RM systems as

pVðr;m; kÞ ¼ m
rþm

� �k �NV
, with the corresponding growth rate being

leðr;m; k; lÞ ¼ l � k � ðmðr;m; lÞ þ crr þ cmmÞ: ð6Þ

Population dynamics in the presence of phages

What is the combined effect of phage escape and self-restriction in simple bacteria-phage ecol-

ogies? To investigate this question, we first extended an established deterministic model of

bacteria-phage ecology [31] to track the population dynamics of bacteria with and without

RM systems and both susceptible and methylated phages (see S1 Appendix Section S.4.2). By

numerically integrating this population model for more than a million parameter combina-

tions for the activity of restriction (r) and methylation (m) enzymes, we find that whether or

not phages will ultimately take over the population depends on the ecological parameters (e.g.

phage adsorption rate, rate of spontaneous phage inactivation, etc.) but is completely indepen-

dent of RM system efficiency. This result might seem surprising at a first glance, but closer

analysis reveals that for efficient RM systems the phage population reaches levels that are so

small that they should be considered as extinction from a biological perspective. Nevertheless,

even in these cases methylated phage eventually takes over the population. This is because

phages cannot go extinct in the mathematical sense and the phage population always remains

at levels that are strictly larger than zero if ecology models based on ordinary differential equa-

tions are used for the analysis. While this clearly limits the practical relevance of such models,

the finding that RM systems apparently cannot provide long term protection if phage escape

probability and phage population size remain strictly larger than zero is still interesting since it

suggests that the task of RM systems cannot be to prevent phage escape but only to delay it as

much as possible to give bacteria enough time to develop alternative mechanisms of phage

resistance through genetic mutations [21, 22].

In line with the above reasoning, we decided to represent phage escape events stochastically

and to focus in more detail on how RM systems impact exponentially growing bacterial
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populations until the first phage escape event. To explore this question, we formulated several

efficiency measures that quantify how RM systems can help bacterial populations before the

first phage escape event:

1. How much can a bacterial population grow before the first phage escape event happens?

2. What is the probability that an immunity conferring mutation happens in any bacterium

before the first phage escapes?

3. What is the total number of mutations accumulated in the population when methylated

phages start to spread?

Here we will show that questions (i)-(iii) can be answered rigorously if we assume that the

size of the phage population remains approximately constant until the first phage escape event.

An example of an ecological scenario where this assumption is realistic is that of bacteria colo-

nizing a phage-dominated environment in which the number of phages is much larger than

the number of bacteria such that the reduction in the phage population size due to unsuccess-

ful infections is negligible. More generally, any ecological scenario in which the phage popula-

tion size is for some reason in equilibrium at least until the first phage escapes on a bacterium

carrying a RM system, will fulfill this assumption.

Mathematically, we consider a bacterial population of initial size n0 trying to colonize an

environment containing a phage population of size v. As we have shown before, the bacterial

population will initially grow exponentially at rate λe until the time τp at which the first phage

escape event occurs. Interpreting these events as random, the crucial unknown is therefore τp,
the random time to first phage escape, characterized by its probability distribution, f(τp),
which we find to be given by (see S1 Appendix Section S.4.3):

f ðtpÞ ¼ rvn0pV exp rvn0 1 � eletpð Þ
pV
le
þ letp

� �

: ð7Þ

Specific examples of this probability distribution are visualized in Fig I in S1 Appendix.

In general, larger values of any of the parameters ρ, v, n0, pV or λe will imply that phage escape

is likely to occur at earlier times. Importantly, the waiting time distribution until first phage

escape, f(τp), allows us to analytically answer questions (i)-(iii), as summarized in Table 1 (see

S1 Appendix Section S.4.3). We note that despite the somewhat intricate form of f(τp) the “bac-

terial performance” metrics derived for all three efficiency criteria turn out to be remarkably

simple, depending only on some of the parameters that define f(τp). More concretely, by exam-

ining these metrics, we can make two important observations:

First, assuming a fixed mutation rate cmut, expressions for bacterial performance in Table 1

are functions of λe and pV, which depend solely on the restriction rate r, the methylation rate

m, and the number of concurrently active RM systems, k. This means that optimal bacterial

Table 1. Efficiency criteria for bacterial populations in different ecological scenarios. Efficiency criterion in the first column is captured by the corresponding mathe-

matical expression for the bacteria-phage ecology in the second column, which implies the maximization of the “bacterial performance” quantity in the third column. cmut

is the mutation rate per unit time per bacterial cell to gain resistance against phage (and ~cmut ¼ cmut=ðrvÞ is the normalized mutation rate); τmut denotes the (random) time

at which the first mutation happens.

efficiency criterion mathematical expression bacterial performance summary figure

(i) expected growth until phage escape E½nðtpÞ� � n0 λe/pV Fig 4a

(ii) prob. that mutation happens before phage escape Pðtmut < tpÞ ~cmut=ð~cmut þ pVÞ Fig J in S1 Appendix

(iii) expected integrated population mutation rate E½
R tp

0
cmutnðtÞdt� ~cmut=pV Fig J in S1 Appendix

https://doi.org/10.1371/journal.pcbi.1007168.t001
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strategies at the ecological level can be found mathematically —and possibly tuned evolution-

arily— by adjusting the three parameters, r, m, and k, defined at the single-cell level.

Second, despite the dependence of the time to phage escape on the initial population size

n0, the performance of the bacterial population is independent of n0 according to all criteria.

This has the important consequence that optimal defense strategies against phages do not

depend on the size of the bacterial population and that there exists a single unique best defense

strategy that is constant in time: if phage escape has not happened until a certain time during

which the bacterial population has grown to a new size, the same defense strategy continues to

be optimal with the initial size taken to be the new size, with no need to re-balance the activity

levels r and m of the RM enzymes, or the number of RM systems, k. For cases (ii) and (iii), we

further observe that the results are independent of the effective growth rate λe. Faster growth

leads to quicker increases in the probability that immunity conferring mutations happen but

this is exactly compensated by the increase in probability of a phage escape event.

An in-depth study of the consequences and implications of case (i) is presented in the

following section while questions (ii) and (iii) are treated in the S1 Appendix (Section S.4.4).

Taken together, these results show how the mathematical framework developed in this paper

can be readily adjusted to analyze trade-offs between the efficiency and cost of immunity in

different ecological contexts. For the concrete scenarios that we considered here, we find that

(i) and (iii) imply overall similar results in which bacteria can relatively directly trade cost

for efficiency and vice versa. The results for (ii), however, are qualitatively different since (ii)

implies that increasing the cost beyond a certain point provides only diminishing returns in

terms of efficiency (Fig J in S1 Appendix). We conclude that analyzing such trade-offs in prac-

tice will require careful consideration of the efficiency criteria according to which bacteria

might have been shaped in a particular ecological context. Reversely, different trade-offs and

optimal strategies for different efficiency criteria imply that the criterion on which evolution

might have been operating in a given ecological context can, in principle, be reverse engi-

neered from observations of phage defense strategies that are employed by the bacteria.

Tradeoffs and optimality in bacterial immunity

Can bacteria tune the single-cell parameters over evolutionary timescales in order to minimize

the cost of RM systems, that is maximize the growth rate λe(r, m, k), while also maximizing

their efficiency, quantified here as the increase in population size before the first phage escape,

nsðr;m; kÞ :¼ E½nðtpÞ� � n0 in (i), that is determined by λe(r, m, k)/pV (r, m, k)? Eq [6] and

Table 1 assert that cost and efficiency are necessarily in a tradeoff and cannot be optimized

simultaneously. This tradeoff is the first key result of the section. With no single optimum pos-

sible, we look instead for Pareto-optimal parameter combinations, (r, m, k), i.e., solutions for

which λe cannot be further increased without reducing ns and vice versa [32, 33]. Different

Pareto-optimal solutions trace out a “front” in the plot of λe vs ns in Fig 4a that jointly maxi-

mizes growth rates and population sizes to the extent possible. Points in the interior of the

front are sub-optimal and could be improved by adjusting parameter values, while points

beyond the front are inaccessible to any bacterial population. Which Pareto-optimal solution

ultimately emerges as an evolutionary stable strategy depends on the actual bacterial and

phage species considered as well as their biological context. Rather than focusing on specific

examples, we next establish several general results of our analysis, contrasting in particular

“fast growth” bacterial strategies that maximize λe with “large size” strategies that maximize ns.
We start by examining in Fig 4b the optimal enzyme activities, mopt and ropt, along the

Pareto fronts. For the “large size” regime at low λe, the bacterial population primarily needs to

defend against phage escape, favoring low m and high r, even at the cost of self-restriction. As
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we move towards the “fast growth” regime, r can drop to decrease the cost, but m must

increase to protect against self-restriction, until maximal mopt is reached. For even higher λe,

it is optimal to “shut down” the RM systems altogether to save on the cost, by tuning r and m
simultaneously to zero. Numerical analysis (S1 Appendix S.4.5) reveals that along the Pareto

front of Fig 4a, the total cost of running the RM systems varies in precise inverse linear rela-

tionship with λe. Pareto-optimal solutions are further characterized by the fact that the reduc-

tion in growth rate, λ − λe, is split equally between the cost of running RM systems, c(r + m),

Fig 4. Optimal tradeoffs in the presence of phages. For all panels, we set NS = 599, NV = 5, and λ = 0.017 min−1 in line with the strain used in [26] carrying the EcoRI

system, and without loss of generality we fix l/ρv = 1min such that ns and λe/pV are the same up to units. Note that for these results, we used a biologically realistic

number of restrictions sites on the bacterial DNA as opposed to the small value of NS that was used for illustration purposes earlier in the paper. (a) Pareto front (thick

line) for expected growth until phage escape, ns(r, m, k), and effective growth rate, λe (r, m, k), traced out by varying m, r, and the number of RM systems, k (different

colors; dotted lines show individual Pareto fronts at fixed k); c = cr = cm = 10−5. Examples with specific parameter values are marked on k = 1 front with crosses. (b)

Optimal enzyme activities, ropt and mopt (in min−1), on Pareto fronts for different k (color as in a), as a function of effective growth rate, λe. (c) Pareto fronts for

different replication rates, λ, and cost c = cr = cm� 3.7 � 10−7 chosen to make E. coli in [26] lie on the front (black dot, also in panel d); only k� 6 are considered. (d)

Pareto fronts for different cost c = cr = cm at fixed λ = 0.017 min−1.

https://doi.org/10.1371/journal.pcbi.1007168.g004
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and self-restriction. If this were not the case and the cost were larger (or smaller) than self-

restriction cost to growth, cells could always down- (or up-)regulate the RM system activity to

trade cost for self-restriction and obtain an overall smaller total growth reduction. This univer-

sal equality of cost of running RM systems and self-restriction at optimality is the second key

result of the section.

A detailed examination of the Pareto front in Fig 4a reveals a striking shift in the structure

of optimal solutions as we move from “fast growth” to “large size” regime. In situations where

fast growth is favored, we observe that a single RM system (k = 1) is optimal. In contrast, large

bacterial population sizes favor kopt > 1 RM systems, with the optimal number, kopt, set by the

costs, cm and cr, of operating the RM systems. These results are quantitatively robust to changes

in replication rate, λ, as shown in Fig 4c, where Pareto fronts for different λ are nearly rescaled

versions of each other. These results are also qualitatively robust to changes in the cost c = cr =

cm so long as the cost is nonzero, as shown in Fig 4d.

Establishing that “fast growth” regime favors simple innate immunity with a single RM sys-

tem while “large size” regime favors complex innate immunity with multiple RM systems is

the third key result of this section. This result can be understood intuitively by considering

under what conditions, if any, multiple RM systems could be optimal at “fast growth”. If costs

for R and M enzymes are vanishingly small, a single RM system can provide arbitrarily good

protection, as we showed previously. If the costs are not vanishingly small, multiple RM sys-

tems must be more costly than a single system at comparable phage escape and self-restriction

rates: to keep self-restriction constant with k RM systems, not only does the cell require k
times more M molecules than at k = 1, but their individual activities need to be higher as well,

leading to a higher cost for M and thus a lower effective growth rate; thus, k> 1 cannot be

optimal for “fast growth” and can only be tolerated in the “large size” regime where protection

from phages is more important than fast growth.

Lastly, we sought to put our results into perspective by relating them to a typical E. coli
strain. Recent measurements [26] quantified the self-restriction rate in a bacterial population

with the EcoRI system replicating at λ = 0.017 min−1 to be around μ� 10−3 min−1. The cost of

RM systems was not detectable in WT strain but could be detected in strains overexpressing M

enzymes. Treating the cost c as unknown and assuming that E. coli is Pareto-optimal in light

of criterion (i) in Table 1 (black dots in Fig 4c and 4d), would lead us to predict the following

parameter values for the RM systems: cost c� 3.7 � 10−7, enzyme activities r� 1.2 � 103 min−1,

m� 1.5 � 102 min−1, with the optimal number of RM systems being at the boundary between

k = 1 and k = 2. Clearly, this prediction depends on the chosen measure of the efficiency of RM

systems, which is determined by the considered ecological scenario and the particular objective

that bacteria have in this scenario. Consequently, the concrete numbers presented here should

not be understood as general results, but rather as a demonstration of how our framework can

be used to calculate optimal bacterial strategies given different modeling assumptions about

the phage-bacteria ecology.

Discussion

Despite the ubiquity of RM systems in prokaryotic genomes [17], basic ecological and

evolutionary aspects of these otherwise simple genetic elements are poorly understood [20].

Although RM systems have been discovered more than six decades ago due to their ability to

protect bacteria from phage [34] and this is often assumed to be their main function [35], only

a few experimental studies focused on the ecological and evolutionary dynamics of interactions

between RM systems and phage [36, 37]. Similarly, effects of RM systems on their host bacte-

ria, such as their cost in individual bacteria due to self-restriction, began to be addressed
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quantitatively only recently [26, 38]. In this work, we bridged these two scales using mathemat-

ical modeling. Our model captures the stochastic nature of RM systems originating at the level

of interacting molecules in individual bacteria and extends it all the way to the dynamics of

interactions between bacterial and phage populations.

Using this approach, we analytically described tradeoffs between the cost and the effi-

ciency in different ecological contexts of immunity conferred by RM systems. The existence

of such tradeoffs was previously indicated by quantitative single-cell experiments with two

RM systems isolated from E. coli [26] and has since then been reported in the context of

other RM systems [39]. We used our mathematical framework to quantify these tradeoffs

and to study their ecological consequences, as well as the implications that these conse-

quences have for optimally tuning the R and M enzymatic activities at the level of single

cells. Our results for different ecological scenarios suggest that we should expect observed

expression levels and enzymatic activities of naturally occurring RM systems to represent

adaptations to specific environmental pressures. Such “tuning” of expression levels towards

optimality has previously been directly experimentally shown in different molecular systems

[29]. The expression levels of both R and M should be readily tunable by mutations in the

often complex gene-regulatory regions [40].

With optimal bacterial defense strategies depending on the ecological scenario and the par-

ticular objective of the bacteria (see S1 Appendix Section S.4 and Table 1), making general pre-

dictions on R and M expression levels or numbers of concurrently active RM systems that we

should expect to find in bacteria in the wild is difficult. However, we want to highlight that, in

a given context, assuming optimality of the bacterial defense strategy allows one to make clear

and quantitative predictions about enzymatic activities and the number of RM systems, and

improving these predictions to take into account more relevant biological detail (if needed and

known) remains only a technical, rather than conceptual challenge. Second, for the ecological

scenario that we investigated in detail in this paper, parameter values measured for an E. coli
RM system put optimal solutions into a regime that permits a large variation in the optimal

number of RM systems, between one to six, with relatively small changes in the effective

growth rate. This observation allows us to advance the following hypothesis: the number of

RM systems in different bacterial strains and species is not a historical contingency, but an

evolutionary adaptation to different ecological niches. In other words, the tradeoff between the

cost and the efficiency of immunity can be partially alleviated in bacteria employing multiple

RM systems. It is therefore interesting to note that many bacterial species carry multiple RM

systems and the number of RM systems varies significantly among bacteria with different

genome sizes and lifestyles [16, 17]. Our results indicate that different numbers of RM systems

would be optimal in populations under different selection pressures (phage predation/resource

limitation).

The analytical model presented here makes several simplifying assumptions. First, we con-

sider only interactions between a single species of bacteria and a single species of phage. In nat-

ural environments, many bacterial and phage species interact and this diversity will certainly

impact the resulting ecological end evolutionary dynamics [36, 41–43]. Second, we assumed

the key parameters such as the numbers of restriction sites in bacterial and phage genomes to

be constant in time and thus disregarded the long-term evolutionary dynamics. Bioinformatic

studies have shown that many bacteria and phage avoid using restriction sites in their genomes

[44–46]. Restriction site avoidance can represent an adaptive mechanism for increasing the

probability of escape in phages [45, 47] and decreasing the probability of self-restriction in bac-

teria [26, 48]. The stochastic nature of RM systems observed at the level of individual cells is

thus likely to critically shape the ecological and evolutionary dynamics of interactions between

bacteria, RM systems and phage.
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Writing – review & editing: Jakob Ruess, Maroš Pleška, Cǎlin C. Guet, Gašper Tkačik.
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