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Abstract

Many fast renewing tissues are characterized by a hierarchical cellular architecture, with tis-

sue specific stem cells at the root of the cellular hierarchy, differentiating into a whole range

of specialized cells. There is increasing evidence that tumors are structured in a very similar

way, mirroring the hierarchical structure of the host tissue. In some tissues, differentiated

cells can also revert to the stem cell phenotype, which increases the risk that mutant cells

lead to long lasting clones in the tissue. However, it is unclear under which circumstances

de-differentiating cells will invade a tissue. To address this, we developed mathematical

models to investigate how de-differentiation is selected as an adaptive mechanism in the

context of cellular hierarchies. We derive thresholds for which de-differentiation is expected

to emerge, and it is shown that the selection of de-differentiation is a result of the combina-

tion of the properties of cellular hierarchy and de-differentiation patterns. Our results sug-

gest that de-differentiation is most likely to be favored provided stem cells having the largest

effective self-renewal rate. Moreover, jumpwise de-differentiation provides a wider range of

favorable conditions than stepwise de-differentiation. Finally, the effect of de-differentiation

on the redistribution of self-renewal and differentiation probabilities also greatly influences

the selection for de-differentiation.

Author summary

How can a tissue such as the blood system or the skin, which constantly produces a huge

number of cells, avoids that errors accumulate in the cells over time? Such tissues are

typically organized in cellular hierarchies, which induce a directional relation between

different stages of cellular differentiation, minimizing the risk of retention of mutations.

However, recent evidence also shows that some differentiated cells can de-differentiate

into the stem cell phenotype. Why does de-differentiation arise in some tumors, but not

in others? We developed a mathematical model to study the growth competition between

de-differentiating mutant cell populations and non de-differentiating resident cell popula-

tion. Our results suggest that the invasion of de-differentiation is jointly influenced by the
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cellular hierarchy (e.g. number of cell compartments, inherent cell division pattern) and

the de-differentiation pattern, i.e. how exactly cells acquire their stem-cell like properties.

Introduction

In multicellular organisms, it is important that the inevitable replication errors of cells do not

persist and threaten the functioning of the organism as a whole. Many tissues that need to

undergo continuous cell turnover are organized in a hierarchical multi-compartment struc-

ture, which reduces the risk of the persistence of such mutations [1–13]. Each compartment

represents a certain stage of cellular differentiation (Fig 1). At the root of the cellular hierarchy

are tissue specific stem cells (SCs), which are capable of self-renewal and differentiation into

more mature cells [14]. It is often argued that cancers may have similar hierarchical structures,

where cancer stem cells (CSCs) possess characteristics associated with SCs in normal tissues

[14, 15]. The CSCs scenario assumes that some cancerous tissues are hierarchically organized,

similar to normal tissues [16].

The hierarchical tissue architecture proposes a unidirectional cascade from less differenti-

ated stages to more differentiated stages (Fig 1a). This would minimize the risk of the accumu-

lation of genomic damage in the long-term self-renewing stem cells. However, there is

Fig 1. Representation of our models. We illustrate our models by considering a four-compartment hierarchical structure. (a) Null model

without de-differentiation. Each compartment represents a certain stage of cell differentiation. For example, compartment 1 represents stem cell

which performs cell division with rate r1. In each cell division, it can either give birth to two identical stem cells (self-renewal) with probability p1

or two identical daughter cells in adjacent downstream compartment 2 (differentiation) with probability q1. Similar division pattern can also

happen to cells in compartments 2 and 3 (with division rates r2 and r3 respectively). Compartment 4 represents terminally differentiated cells

which cannot divide and are removed from the tissue at rate d. (b) Stepwise de-differentiation. Based on the hierarchical structure, we consider

de-differentiation from downstream compartment i + 1 to the adjacent upstream compartment i. By introducing de-differentiation (with

probability δi) in cell division, the self-renewal probability of each cell in compartment i is changed from pi to pi − κδi, while its differentiation

probability is changed from qi to qi − (1 − κ)δi. Here, we have introduced the redistributing factor κ that captures the effect of de-differentiation

on the self-renewal and differentiation probabilities. (c) Jumpwise de-differentiation, in which de-differentiation happens directly from

compartment 3 to 1 without cells reaching the state in compartment 2. For each cell in compartment 3, its self-renewal probability is changed

from p3 to p3 − κδ3, and its differentiation probability is changed from q3 to q3 − (1 − κ)δ3. (d) The four cell division patterns used in our

models.

https://doi.org/10.1371/journal.pcbi.1007167.g001
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significant evidence that the directional relation between different stages of differentiation

could be broken in some tissues [17–22]. In other words, cells in later differentiated stages can,

under some circumstances, revert to earlier differentiated stages, or even the stem cell stage, in

a process called de-differentiation (Fig 1b and 1c). De-differentiation could play an important

role in regeneration and tumorigenesis [17]. In particular, even though the origin of cancer

stem cells is still an open question, growing evidence shows that non-stem cancer cells can

reacquire stem-like characteristics in colon cancer [23], breast cancer [20, 21], melanoma

[24], leukemia [25–28], glioblastoma [29], and other cancers. For example, expression of the

MLL-AF9 gene in committed hematopoietic progenitor cells led to the development of a leu-

kemic stem cell population where only four of these cells were able to result in disease in a

mouse model that could be transferred from one mouse to another, confirming the presence

of a stem cell population [27].

More recently, special attention has been paid to the effect of de-differentiation on the cellu-

lar hierarchy by mathematically modeling its impact [30]. Previous work has e.g. considered

how de-differentiation influences the waiting time to carcinogenesis [31], the fixation proba-

bility of a mutant [32, 33], the phenotypic equilibrium [34–36], transient overshoots [37, 38],

and radiation sensitivity [29]. However, the adaptive significance of de-differentiation is still

poorly understood: Under which circumstances would de-differentiation arise in the first

place and rise in abundance? Intuitively, de-differentiation contributes to a faster growth of

stem cells, and note that stem cells are typically defined as having the greatest self-renewal

potential, hence de-differentiation should benefit the growth of whole population and always

be favored in the cellular hierarchy. However, reality seems even more complicated, as de-dif-

ferentiation arises in only some tumors, but not in others. Therefore, it is still unclear whether

de-differentiation is a crucial improvement or just an unintended consequence of cellular hier-

archy. Moreover, the comparison between different patterns of de-differentiation has received

little attention.

Here, we develop a matrix population model [39] of a stage-structured population for

studying the evolution of de-differentiation. Two typical de-differentiation cases are taken into

account in our model: One is stepwise de-differentiation which happens from a downstream

compartment to an adjacent upstream compartment (Fig 1b), the other is jumpwise de-differ-

entiation which is directly from a highly differentiated compartment into the stem cell com-

partment without any intermediate stages (Fig 1c). Given a hierarchically structured multi-

compartment cell population, we are concerned about the selection of stepwise or jumpwise

de-differentiating mutant cell population in the competition with non de-differentiating resi-

dent cell population. By comparing the growth rates of different cell populations, we analyze

favorable conditions for different de-differentiation patterns to invade a tissue. However, we

do not study the direct competition between de-differentiating and non de-differentiating

cells. We hope that our work contributes to the theoretical understanding of the emergence of

de-differentiation in multicellular tissues.

Methods

The matrix population model for cellular hierarchy

Consider a cell population composed of n compartments, each of which represents a certain

stage of differentiation [10, 13] (Fig 1). For example, compartment 1 represents stem cells, and

compartment n represents terminally differentiated cells. Each cell in compartment i (1� i�
n − 1) divides at rate ri. With probability pi, it divides symmetrically, giving birth to two

identical cells in compartment i (Fig 1d). With probability qi, it differentiates symmetrically,

Selection for de-differentiation
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generating two identical daughter cells in compartment i + 1. The terminally differentiated

cells in compartment n cannot divide and are removed from the tissue at rate d.

We use the vector ~N ¼ ðN1;N2; :::;NnÞ
T

to denote the cell numbers in different compart-

ments. Then, the hierarchically structured population dynamics composed of non de-differen-

tiating cells can be described as a matrix population model [39]

d~N
dt
¼ A0

~N ; ð1Þ

where A0 is the projection matrix which is given by

A0 ¼

r1ðp1 � q1Þ 0 � � � � � � 0

2r1q1 r2ðp2 � q2Þ � � � � � � 0

0 2r2q2 � � � � � � 0

0 0 � � � 0 0
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: ð2Þ

Here ri(pi − qi) represents the effective self-renewal rate of compartment i, and 2riqi represents

the influx rate from compartment i to compartment i + 1 due to differentiation. It should be

pointed out that, for simplicity, asymmetric division [40, 41] (giving birth to one daughter cell

in compartment i and the other in compartment i + 1) is not taken into account here. It can

be shown that our model is equivalent to a model with asymmetric division [42]. Actually, by

introducing asymmetric division (e.g. with probability si) into our model, the effective self-

renewal rate of compartment i is still given by ri(pi − qi), while the influx rate from compart-

ment i to compartment i + 1 is shifted from 2riqi to 2riqi + risi. We can see that the characteris-

tics of matrix A0, such as essentially non-negativity (all the off-diagonal elements are non-

negative [43]) and lower triangular structure, remain unchanged. Therefore, our approaches

and results are still applicable for the model with asymmetric division.

Let MðtÞ ¼
Pn

i¼1
NiðtÞ be the total cell number of the population. Note that A0 is an essen-

tially non-negative and lower triangular matrix. According to the standard theory of matrix

population models [39], the population approaches exponential growth, i.e.

MðtÞ � Mð0Þexp½l0t� for large t; ð3Þ

where λ0 is the real largest eigenvalue. The largest eigenvalue hence characterizes the asymp-

totic growth rate of the whole population, which is often used as a measure of fitness in matrix

population models [44, 45]. The whole population will expand if λ0 > 0, remain in homeostasis

if λ0 = 0, or shrink if λ0 < 0. Here, we are interested in the cases when λ0� 0, i.e. we assess

whether a mutant can invade an expanding or steady resident population by comparing their

fitness measures. Besides, due to the intense inevitable internal and external noise in cellular

dynamics [46] and experimental measurements, in reality it is quite unlikely for different com-

partments to have exactly the same observations of parameters, and therefore there is little

chance for A0 to have multiple eigenvalues [37]. It is thus reasonable to assume that λ0 is

unique (or simple).

Selection for de-differentiation
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Stepwise and jumpwise de-differentiation

Let us now introduce de-differentiation processes given the non de-differentiating resident

cell population Eq (1). Since it is biologically unclear how a non de-differentiating resident cell

acquires the ability for de-differentiation, here we consider de-differentiation as a result of cer-

tain genetic or epigenetic alterations (jointly referred to as mutations). It is assumed that the

mutant cells are provided with the additional ability of de-differentiation. More specifically,

when these mutant cells divide, besides symmetric division and symmetric differentiation,

they can also perform symmetric de-differentiation (Fig 1d) with a small probability. In

principle, there are two different ways to do this: (i) stepwise de-differentiation, where cells de-

differentiate to the previous compartment, and (ii) jumpwise de-differentiation, where de-dif-

ferentiation happens across multiple compartments at a time. These are the most extreme

cases and a mixture between them is possible.

For stepwise de-differentiation, a mutant cell in compartment i gives rise to two daughter

cells in its adjacent upstream compartment i − 1 (Fig 1b) when de-differentiation happens. Sup-

pose that the de-differentiation probability from compartment i to i − 1 is δi. Then, the influx

rate from compartment i to i − 1 due to de-differentiation is given by 2ri δi. We denote the

self-renewal and differentiation probabilities of each mutant cell in compartment i as p0i and q0i
respectively. Note that p0i þ q0i þ di ¼ 1, that is, the sum of the self-renewal and differentiation

probabilities of each mutant cell is reduced from 1 to 1 − δi. Due to the current lack of knowl-

edge regarding the effect of de-differentiation on the self-renewal and differentiation probabili-

ties, there is no way to know how much the self-renewal probability or differentiation

probability changes individually. In view of this, we introduce a parameter κ (0� κ� 1) to cap-

ture how mutant cell redistributes the probabilities for self-renewal and differentiation when

taking de-differentiation into account. We thus call κ the redistributing factor. In this way, the

self-renewal probability of each mutant cell in compartment i is given by p0i ¼ pi � kdi, and its

differentiation probability is given by q0i ¼ qi � ð1 � kÞdi. Although currently we are unable to

measure the specific value of κ, it would be very interesting to see if the redistributing factor

affects the emergence of de-differentiation, and we will see that κ does deserve special attention.

It has been reported that de-differentiation is generally a rare event [21], we thus assume

that ρi = 2riδi� 1. As the occurrence of de-differentiation for different stages of differentiation

is poorly understood, for simplicity we assume that all the ρi are the same, i.e. they are indepen-

dent of index i and denoted as ρ for short. In this way, the population dynamics of the stepwise

de-differentiating mutant cell population can be modeled with a projection matrix given by

AS ¼

r1ðp1 � q1Þ r � � � � � � � � � 0

2r1q1 r2ðp2 � q2Þ � kr � � � � � � � � � 0

0 2r2q2 � ð1 � kÞr � � � � � � � � � 0

0 0 . .
. ..

.
0 0

..

. ..
. ..

. . .
.

r 0
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.

� � � � � � rn� 1ðpn� 1 � qn� 1Þ � kr 0

0 0 � � � � � � 2rn� 1qn� 1 � ð1 � kÞr � d
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: ð4Þ
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Jumpwise de-differentiation provides an alternative pattern where even highly differenti-

ated cells can directly revert to stem cells without being in intermediate stages (Fig 1c). For-

mally, it is assumed that the jumpwise de-differentiating mutant cell in compartment n − 1

can give birth to two daughter stem cells in compartment 1 (Fig 1d). Therefore, the projection

matrix is given by

AJ ¼

r1ðp1 � q1Þ 0 0 � � � r 0

2r1q1 r2ðp2 � q2Þ 0 � � � � � � 0

0 2r2q2 r3ðp3 � q3Þ � � � � � � 0

0 0 . .
.

� � � 0 0
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: ð5Þ

Selection gradient for de-differentiation

In the following, we consider the competition between a non de-differentiating resident cell pop-

ulation and a stepwise de-differentiating mutant cell population (which is called S mutant cell

population for short), as well as between a non de-differentiating resident cell population and a

jumpwise de-differentiating mutant cell population (which is called J mutant cell population for

short) by comparing their fitness measures, i.e. the largest eigenvalues λ0, λS and λJ of A0, AS and

AJ, respectively. Note that ρ is very small, such that both AS and AJ can be seen as matrix pertur-

bations to A0. According to the eigenvalue perturbation theory (see e.g. Theorem 4.4 in [47]),

both λS and λJ are differentiable with respect to ρ provided that λ0 is simple. In this way, we have

lS � l0 þ DlSr; lJ � l0 þ DlJr: ð6Þ

Here, ΔλS and ΔλJ are given by

DlS ¼ ~m
T @AS

@r

� �

r¼0

~Z; DlJ ¼ ~m
T @AJ

@r

� �

r¼0

~Z; ð7Þ

where~m and~Z are the left and right eigenvectors associated with λ0 respectively (see S1 File).

For a given parameter set (ri, pi, qi, d, κ), ΔλS characterizes the selective difference between

an S mutant cell population and a non de-differentiating cell population. If ΔλS> 0, for exam-

ple, the S mutant population is favored in this competition—a non de-differentiating resident

cell population is invaded by an S mutant cell population. Therefore, ΔλS corresponds to a

selection gradient and acts as a comparative fitness measure of the S mutant cell population

relative to the non de-differentiating resident cell population. A similar argument also applies

for ΔλJ. We thus term ΔλS and ΔλJ as selection gradients of the S mutant cell population and

the J mutant cell population, respectively. Based on these quantities, we will analyze the favor-

able conditions for de-differentiation.

Results

We infer whether de-differentiation leads to an increased fitness in the different cases (step-

wise and jumpwise), both analytically and numerically.

Selection for de-differentiation
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Let us first focus on the null model without de-differentiation. In this case, the projection

matrix A0 is a lower triangular matrix whose eigenvalues are just the diagonal elements. Note

that the resident cell population in Eq (1) is assumed to be not shrinking, which implies that

there exists at least one non-negative diagonal element in A0. In this way, the largest eigenvalue

λ0 is the largest among all the non-negative diagonal elements of A0. Note that −d is always

negative, such that λ0 is always in the form of rj0ðpj0 � qj0Þ, where j0 is the compartment that

maximizes this quantity.

Next, we turn to stepwise de-differentiation, Eq (4). Given l0 ¼ rj0ðpj0 � qj0Þ, the selection

gradient (comparative fitness) of an S mutant cell population is given by (see S1 File for mathe-

matical details)

DlS ¼

G1;1;2 for j0 ¼ 1

Gj0� 1;j0 ;j0 � 1 þ Gj0 ;j0 ;j0þ1 � k for 1 < j0 < n � 1

Gn� 2;n� 1;n� 2 � k for j0 ¼ n � 1

8
>>><

>>>:

ð8Þ

where Gj;k;l ¼
2rjqj

rkðpk � qkÞ� rlðpl � qlÞ
. Note that the largest eigenvalue λ0 is unique, which implies that

rj0ðpj0 � qj0Þ is strictly larger than any other rj(pj − qj) for j 6¼ j0. Thus, all the Γj,k,l in Eq (8) are

positive. In particular, for j0 = 1, ΔλS = Γ1,1,2 is positive. In other words, an S mutant cell popu-

lation is always favored in the competition with non de-differentiating resident cell population

provided that stem cells have the largest effective self-renewal rate among all cell compart-

ments. We performed exact numerical solutions to verify our theoretical approximation and

find a very good agreement. Fig 2 illustrates two different cases. One is for expanding popula-

tions, i.e. when the effective self-renewal rate of stem cells λ0 = r1(p1 − q1) is positive. The other

is for the populations at steady state (homeostasis), i.e. when λ0 is zero. We can see that the

selection gradient ΔλS is always positive, even though different patterns of function relation

are present for left and right panels. That is, the stepwise de-differentiation always provides

a fitness advantage, regardless of whether the resident cell populations are expanding or at

steady state. Actually, this result is quite in line with biological intuition. Given that stem cells

have the highest self-renewal potential, i.e. the self-renewal potential is gradually lost in the

process of differentiation, de-differentiation effectively leads to a faster growth rate of the

population.

In general, stem cells are defined as having the greatest potential for long term self-renewal.

There is also evidence that stem cells replicate slowly and therefore in many tissues it is the

progenitor cells that lead to amplification and maintenance of tissues due to a process of repli-

cation, self-renewal and differentiation [48, 49]. Previous modeling work has considered dif-

ferent relationships between differentiation stage and self-renewal rate [10, 50, 51], in which

downstream compartments rather than the stem cells compartment were often assumed to

have the largest effective self-renewal rate. Therefore, it is of significance and interest to con-

sider the case of j0 > 1 in our model.

From Eq (8) we can see that ΔλS is a linear combination of Γj,k,l and κ when j0 > 1. It is

interesting to see that ΔλS is negatively correlated with κ. Note that κ is the redistributing fac-

tor that characterizes how the introduction of de-differentiation reshapes the probabilities for

self-renewal and differentiation. For κ = 0, ΔλS is surely positive. With an increase of κ, ΔλS
could become negative. Hence, there are typically two scenarios of ΔλS: either it is always larger

than zero for any κ, or it changes from positive to negative at some critical point 0< κ� < 1.

Fig 3 illustrates how ΔλS changes with κ provided that compartment 2 has the largest effective

self-renewal rate (j0 = 2). In the expanding case (left panel) both of these two scenarios are

Selection for de-differentiation
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present, whereas in the homeostasis case (right panel) ΔλS is always larger than zero. Actually,

when the population is at homeostasis, i.e. λ0 = r2(p2 − q2) = 0, we can show that Γ1,2,1 is larger

than 1 and note that Γ2,2,3 is always positive, then ΔλS is shown to be positive for any 0� κ�
1. Fig 4 illustrates ΔλS as a function of both κ and p2 in the scenario that ΔλS can change from

positive to negative. It is shown that with the increase of p2, the critical value κ� decreases,

which means it is getting less likely for the S mutant cell population to be favored. Note that

Γj,k,l represents the effect of cellular hierarchy on de-differentiation, and κ represents how de-

differentiation reshapes the cellular division patterns. Therefore, the selection of de-differenti-

ation is a combined result of cellular hierarchy and de-differentiation pattern.

We now turn our attention to the selection gradient (comparative fitness) of the J mutant

cell population, which is given by (see S1 File for mathematical details)

DlJ ¼

ð
Qj0 � 1

i¼1
Gi;j0 ;i
Þð
Qn� 1

i¼j0þ1
Gi� 1;j0 ;i

Þ for 1 � j0 < n � 1

Qn� 2

i¼1
Gi;n� 1;i � k for j0 ¼ n � 1

8
<

:
ð9Þ

Similar to Eq (8), here all the Γj,k,l in Eq (9) are positive. For the case of 1� j0 < n − 1, in partic-

ular, ΔλJ is always positive, i.e. the J mutant cell population is advantageous. Fig 5 illustrates

the selection of jumpwise de-differentiation for the cases j0 = 1 and j0 = 2. For each case, it is

shown that ΔλJ is positive, regardless of whether the resident cell populations are expanding or

maintaining homeostasis.

Fig 2. Selection for stepwise de-differentiation when the effective rate of self renewal is highest for stem cells. Illustration of the selection

gradient (comparative fitness) of the S mutant cell population ΔλS as a function of division rates and symmetric division probabilities, provided

that the stem cell compartment has the largest effective self-renewal rate, i.e. λ0 = r1(p1 − q1). In both panels, colored lines represent analytical

approximations from Eq (8) by using the eigenvalue perturbation method and symbols represent exact numerical solutions, which agree very

well with each other. The common parameters are n = 4, κ = 0.1, ρ = 0.001, d = 0.05, r1 = 0.99, r3 = 0.3. (a) Expanding case (λ0 > 0). De-

differentiation provides a fitness advantage for all values of p1 and r2. Here p2 = 0.55, p3 = 0.6 and the range of p1 (0.55< p1 < 1.0) ensures that

r1(p1 − q1) is the largest eigenvalue. (b) Homeostasis case (λ0 = 0). De-differentiation also provides a fitness advantage for all values of p2 and r2.

Here p1 = 0.5, p3 = 0 and the range of p2 (0< p1 < 0.3) ensures that λ0 = 0 is the largest eigenvalue.

https://doi.org/10.1371/journal.pcbi.1007167.g002
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On the other hand, for j0 = n − 1, ΔλJ is negatively correlated with the redistributing factor

κ. Fig 6 illustrates how ΔλJ changes with κ provided that cells in compartment 3 have the

largest effective self-renewal rate (j0 = n − 1 = 3). The results are quite similar to Fig 3. In the

expanding case (left panel), either ΔλJ is always positive (blue line), or it changes from positive

to negative at some critical point 0< κ� < 1 (red line). Whereas in the homeostasis case (right

panel), ΔλJ is always positive for all κ 2 [0, 1]. Actually, when the largest eigenvalue becomes

zero, theoretically we can show that Γi,n − 1,i is larger than 1, and then the product
Qn� 2

i¼1
Gi;n� 1;i

is also larger than 1. In this way, DlJ ¼
Qn� 2

i¼1
Gi;n� 1;i � k is always positive for any κ 2 [0, 1].

By combining the results from Figs 3 and 6, we know that de-differentiation always provides a

fitness advantage in the populations at homeostasis, regardless of how the redistributing factor

κ affects the self-renewal and differentiation probabilities.

A comparison between Eqs (8) and (9) reveals some important differences between step-

wise and jumpwise de-differentiation patterns. First of all, jumpwise de-differentiation pro-

vides a much wider range of favorable conditions for de-differentiation than stepwise de-

differentiation in the sense that ΔλJ is always positive for any 1� j0 < n − 1, but ΔλS is always

positive only for j0 = 1. Secondly, ΔλS only depends on the parameters related to the neighbor-

hood compartments of j0, but ΔλJ depends on the parameters related to all compartments,

ranging from the stem cell stage to the stage where de-differentiation occurs. This implies that,

the total number of compartments does matter in the jumpwise case, but not in the stepwise

case. In other words, stepwise de-differentiation utilizes the local structure around the com-

partment with the largest effective self-renewal rate, whereas jumpwise de-differentiation uti-

lizes the global structure throughout the multi-compartment hierarchy.

Fig 3. Selection for stepwise de-differentiation when the effective rate of self renewal is highest in compartment 2. Illustration of the

selection gradient (comparative fitness) of the S mutant cell population ΔλS as a function of redistributing factor and division rates provided that

λ0 = r2(p2 − q2). In both panels, colored lines represent the eigenvalue perturbation results from Eq (8) and symbols represent exact numerical

solutions. The common parameters are n = 4, ρ = 0.01, d = 0.05. (a) Expanding case (λ0 > 0). In this case, there are two different scenarios: For

r1 <
r2ð2p2 � 1ÞðG2;2;3 � 1Þ

ð2p1 � 1ÞðG2;2;3 � 1Þ� 2ð1� p1Þ
� 0:1950, ΔλS is always positive (blue color); For r1 > 0.1950, ΔλS changes from positive to negative with the increase of

κ (red color). Here p1 = 0.5, p2 = 0.95, p3 = 0.55, r2 = 0.44, and r3 = 0.17. (b) Homeostasis case (λ0 = 0). In this case, ΔλS is always positive. Here

p1 = 0.001, p2 = 0.5, p3 = 0.001, r1 = 0.99, and r3 = 0.8.

https://doi.org/10.1371/journal.pcbi.1007167.g003
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Discussion

In this study, we have explored the adaptive significance of de-differentiation in hierarchical

multi-compartment structured cell populations. Favorable conditions for de-differentiation

have been presented by comparing the fitness measures between resident hierarchical struc-

tured cell populations without de-differentiation and mutant cell populations with different

modes of de-differentiation.

In principle, there are two main factors that could influence the selection of de-differentia-

tion: cellular hierarchy and the de-differentiation pattern. Cellular hierarchy refers e.g. to the

number of cell compartments, the inherent cell division pattern, and the cell division rate.

These correspond to the parameter landscape of (n, pi, qi, ri) in our model. The de-differentia-

tion pattern refers to different modes of de-differentiation (stepwise or jumpwise), as well as

how de-differentiation reshapes the division pattern in the cellular hierarchy (corresponding

to κ in our model). Interestingly, our results show that the selection gradients for de-differenti-

ation (ΔλS and ΔλJ) can generally be decomposed into a sum of a cellular hierarchy part and a

de-differentiation part, showing that the selection of de-differentiation is a result of the linear

combinations of these two factors.

Among all factors in the cellular hierarchy, the most important one is which of the cell

compartments has the largest effective self-renewal rate. In general the stem cells are the cells

with the highest potential for long term self-renewal. There is also agreement that stem cells

Fig 4. Selection for stepwise de-differentiation in a landscape composed of the symmetric division probability p2

and redistributing factor κ when the effective rate of self renewal is highest in compartment 2. The curve

represents the boundary with ΔλS = 0, which is generated by the eigenvalue perturbation approximation from Eq (8).

The symbols represent the exact numerical solutions for ΔλS = 0. The parameters are n = 4, ρ = 0.01, r1 = 0.0885, r2 =

0.4145, r3 = 0.5555, p1 = 0.4723, p3 = 0.0727, d = 0.005.

https://doi.org/10.1371/journal.pcbi.1007167.g004
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replicate slowly and therefore in many tissues it is the progenitor cells that lead to amplifica-

tion and maintenance of tissues. There is evidence that cells downstream of the stem cells can

undergo self-renewal, albeit not long term or indefinite. In hematopoiesis, for example, ery-

throid progenitors that are committed to produce red blood cells undergo self-renewal that is

regulated by Bm1-1 and PU-1 [52, 53]. Guibal et al have also shown that proerythroblasts in

the bone marrow undergo self-renewal [54]. Mutations in cells downstream of the hematopoi-

etic stem cell can transform such cells with long term self-renewal potential behaving like

stem cells and able to transfer disease in serial transplantation experiments. Examples of these

include AML-ETO expression in primary erythroid cells [55], PML-RARA in acute promyelo-

cytic leukemia [54]. Krivtsov et al [27] also discuss how MLL-AF7 expression in progenitor

cells leads to stem cell like behavior. Finally, Jamieson et al have shown how the CML blast cri-

sis emerges from progenitor cells not CML stem cells and leads to self-renewal of such trans-

formed progenitor cells [56].

According to our results, de-differentiation is more likely to be favored when earlier com-

partments have the largest effective self-renewal rate. For example, in the stepwise case, de-dif-

ferentiation is favored provided that stem cells have the largest effective self-renewal rate. This

result is quite intuitive. Stem cells are normally considered to have the greatest self-renewal

potential, and due to de-differentiation the stem cells compartment receives the influx from

differentiated cells. In this way, de-differentiation contributes to a faster growth rate of the

whole population. In the jumpwise case, de-differentiation is favored in all cases except when

the latest divisible cell compartment has the largest effective self-renewal rate. Interestingly,

Fig 5. Selection for jumpwise de-differentiation. Illustrations of the selection gradient (comparative fitness) of the J mutant cell population ΔλJ
for the cases j0 = 1 and j0 = 2. In all panels, colored lines represent analytical approximations from Eq (9) by using eigenvalue perturbation and

symbols represent exact numerical solutions. The joint parameters n = 4, κ = 0.1, ρ = 0.01, d = 0.05. (a) ΔλJ as a function of p1 provided an

expanding population in which compartment 1 has the largest effective self renewal rate, i.e. λ0 = r1(p1 − q1)> 0. Here p2 = 0.55, p3 = 0.6, r1 =

0.2, and r3 = 0.3. (b) ΔλJ as a function of p2 provided an expanding population in which compartment 2 has the largest effective self renewal rate,

i.e. λ0 = r2(p2 − q2)> 0. Here, p1 = 0.55 p3 = 0.6, r1 = 0.2, r3 = 0.3. (c) ΔλJ as a function of p2 provided a steady population in which compartment

1 has the largest effective self renewal rate, i.e. λ0 = r1(p1 − q1) = 0. Here p1 = 0.5, p3 = 0.1, r2 = 0.4, and r3 = 0.6. (d) ΔλJ as a function of p1,

provided a steady population in which compartment 2 has the largest effective self renewal rate, i.e. λ0 = r2(p2 − q2) = 0. Here, p2 = 0.5, p3 = 0.1,

r1 = 0.4, and r3 = 0.6.

https://doi.org/10.1371/journal.pcbi.1007167.g005
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these results apply in both expanding and steady cell populations. For the expanding case,

advantageous de-differentiation can speed up the growth rate of the whole population. For the

steady case, de-differentiating mutant cell populations with fitness advantage can escape from

the homeostasis and expand with time. A significant biological implication of this result is that

de-differentiation could play a very important role in tumor initiation [57] during which the

balance between self-renewal and differentiation of stem cells could be broken. Furthermore,

it has been reported that de-differentiation also happens in normal tissues and contributes to

the regenerative processes after injuries [17, 19, 20]. Our results suggest that the presence of

de-differentiation could effectively speed up the recovery of tissues. It should be noted that,

even though the characteristics of de-differentiation seem similar in both tumorigenesis and

regenerative processes, their biological mechanisms should be highly different: The de-differ-

entiation in regenerative processes must be tightly regulated, whereas the de-differentiation in

tumorigenesis may be more difficult to control. Note that the differences between them are

still poorly understood, it will be very interesting and enlightening to model and compare de-

differentiation mechanisms in these two different scenarios.

Given all the factors in the cellular hierarchy, we are most concerned about how different

de-differentiation patterns shape the evolution of de-differentiation. In particular the redistrib-

uting factor, i.e. the effect of de-differentiation on self-renewal and differentiation probabilities

greatly influences the selection conditions. Our results suggest that de-differentiation is more

likely to be favored if there is less effect on self-renewal than on differentiation. That is, the

smaller the redistributing factor κ is, the larger the selection gradient of de-differentiation will

be. Furthermore, it should be noted that in the homeostasis cases, the selection gradients for

Fig 6. Selection for jumpwise de-differentiation when the effective rate of self renewal is highest in compartment 3. Illustration of the

selection gradient ΔλJ as a function of the redistributing factor κ provided that λ0 = r3(p3 − q3). In both panels, colored lines represent eigenvalue

perturbation results in Eq (9) and symbols represent exact numerical solutions. The common parameters are n = 4, ρ = 0.01, d = 0.05. (a)

Expanding case (λ0 > 0). In this case, there are two different scenarios: For r1 >
r3ð2p3 � 1Þ

2ð1� p1ÞG2;3;2þð2p1 � 1Þ
� 0:45, ΔλJ is always positive (blue color). For

r1 < 0.45, ΔλS is changed from positive to negative with the increase of κ (red color). Here p1 = 0.5, p2 = 0.65, p3 = 0.85, r2 = 0.4, r3 = 0.6. (b)

Homeostasis case (λ0 = 0). In this case, ΔλJ is always positive. Here p1 = 0.01, p3 = 0.5, r1 = 0.8, r2 = 0.7, and r3 = 0.2.

https://doi.org/10.1371/journal.pcbi.1007167.g006
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both stepwise and jumpwise de-differentiation are always positive for any κ 2 [0, 1], which

suggests that de-differentiation is always advantageous when invading the hierarchical tissues

at homeostasis. In addition, the de-differentiation mode (stepwise or jumpwise) has enormous

implications for the selection conditions. Our results suggest that de-differentiation is more

likely to be favored in the jumpwise case than in the stepwise case. However, jumpwise de-dif-

ferentiation seems to be biologically much more difficult to achieve, the overall incidence of it

would still be very low. Perhaps an example of the differences between stepwise and jumpwise

de-differentiation and the implications of the subsequent disease behavior can be illustrated by

various types of leukemia. As already mentioned, MLL-AF9 expression in committed progeni-

tor cells can lead to the development of leukemic stem cells that can result in disease transmis-

sion across mice [27, 58]. In general MLL expression is associated with a poor prognosis in

acute myeloid leukemia [59, 60]. This may be an example of jumpwise de-differentiation. In

contrast, acute promyelocytic leukemia (APL) is an example of acute leukemia that is highly

curable [61]. It is therefore possible that in this disease, stepwise de-differentiation—or a situa-

tion where a mutant cell can stick in a compartment without differentiating, similar to a stem

cell—is occurring that in part makes the disease still potentially curable.

Note that the presented study is based on matrix population models with constant ele-

ments, which in principle do not take any non-linearity into account. Even though there

are still uncertainties regarding the growth patterns of cell populations in different contexts

(cancer or normal, solid or hematologic tumor, in vivo or in vitro) [7, 62] and linear models

are often considered to be unable to capture the biological processes in reality, they are

widely employed as default models to describe steady or growing cell populations, especially

in normal tissue at homeostasis and early cancer development [21, 63–66]. We followed this

idea and used it as a starting point to explore the adaptive significance of de-differentiation.

In the future, more complex biological mechanisms such as non-linear feedback [67, 68]

could be taken into account. In pioneering work, Wodarz studied mathematical models by

integrating feedback regulation with de-differentiation [33]. He showed that in the presence

of non-linear feedback, de-differentiation can lower the rates of tumor initiation and pro-

gression. Interestingly, this prediction is opposite to the prediction by Shirayeh et al [32], in

which they showed that de-differentiation can increase the rate of tumor initiation in the

absence of non-linear feedback. The discrepancy between these two predictions actually

reveals the complexities brought by the non-linear feedback which deserves special attention

in future study. Moreover, while the hierarchical architecture of tissues is considered to have

been selected to minimize the risk of retention of mutations, the risk of acquisition of stem

cell like properties by the large population of progenitor cells introduces new dynamics—

perhaps in such a scenario two additional considerations could reduce the risk of cancer—

namely the low probability that specific mutations lead to acquisition of stem cell like behav-

ior or the average survival of progenitor cells may be low enough to prevent the acquisition

of the additional mutations needed to reach the full cancer phenotype. This could be an

extension of this work in future.
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