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Abstract

Phylodynamic modelling, which studies the joint dynamics of epidemiological and evolution-

ary processes, has made significant progress in recent years due to increasingly available

genomic data and advances in statistical modelling. These advances have greatly improved

our understanding of transmission dynamics of many important pathogens. Nevertheless,

there remains a lack of effective, targetted diagnostic tools for systematically detecting

model mis-specification. Development of such tools is essential for model criticism, refine-

ment, and calibration. The idea of utilising latent residuals for model assessment has

already been exploited in general spatio-temporal epidemiological settings. Specifically, by

proposing appropriately designed non-centered, re-parameterizations of a given epidemio-

logical process, one can construct latent residuals with known sampling distributions which

can be used to quantify evidence of model mis-specification. In this paper, we extend this

idea to formulate a novel model-diagnostic framework for phylodynamic models. Using sim-

ulated examples, we show that our framework may effectively detect a particular form of

mis-specification in a phylodynamic model, particularly in the event of superspreading. We

also exemplify our approach by applying the framework to a dataset describing a local foot-

and-mouth (FMD) outbreak in the UK, eliciting strong evidence against the assumption of no

within-host-diversity in the outbreak. We further demonstrate that our framework can facili-

tate model calibration in real-life scenarios, by proposing a within-host-diversity model which

appears to offer a better fit to data than one that assumes no within-host-diversity of FMD

virus.

Author summary

Integrated modelling of conventional epidemiological data and modern genomic data (i.e.

phylodynamics) has made significant progress in recent years, due to the ever-increasing

availability of genomic data and development of statistical methods. However, there is a

lack of tools for carrying out effective diagnostics for phylodynamic models. We propose a

novel model diagnostic framework that involves a latent residual process which is a priori
independent of model assumptions and which can be used to quantify, and reveal the
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nature of, model inadequacy. Our results suggest that our framework may systematically

detect deviation from a particular model assumption and greatly facilitate subsequent

model calibration.

Introduction

Pathogen dynamics are shaped collectively and interdependently by biological processes

occurring at the epidemiological, immunological and evolutionary levels. Conventionally,

however, each of these processes has been studied independently, revealing only a partial pic-

ture of the pathogen dynamics. Phylodynamics studies how these biological processes at vari-

ous levels act together to shape the phylogeny and transmission of the pathogens [1]. Studies

of pathogen phylodynamics are facilitated greatly by increasingly available data sources (par-

ticularly, genomic data) [2] and the concurrent development of statistical tools for data inte-

gration. In particular, major advances in statistical models that integrate epidemiological and

genomic data have been made (e.g., [3–13]). These models have proved very useful for obtain-

ing more comprehensive and detailed pictures of pathogens dynamics− in populations of

human, animals and plants. For example, joint epidemiological-evolutionary models have

enabled more accurate estimation of transmission histories and a better understanding of the

interconnectedness between epidemiological and evolutionary processes.

Despite these advances in model construction and inference, there has been very little

development of bespoke diagnostic frameworks for model criticism and, importantly, for sys-
tematically detecting suspected deviations from particular assumptions in a phylodynamic

model in order to guide model refinement. Such a diagnostic framework is crucial given the

increasing complexity and diversity of phylodynamic model components and assumptions. In

particular, while many phylodynamic frameworks for inferring a transmission history have

been proposed [3–5, 7, 10–12, 14–17], various simplifying assumptions made in these models

remain to be tested. For example, as it is generally challenging to incorporate and infer within-

host-diversity explicitly in a phylodynamic model, many studies assume no pathogen diversity

within individual hosts [3, 5, 7, 14–17]. It is often assumed that, within a host, there is a single,

dominant pathogen strain at any time t and potential within-host-diversity is thereby ignored.

Within-host evolution is a known phenomenon for many pathogens (e.g., foot-and-mouth,

HIV, Ebola and influenza [18–21]), so that the appropriateness of the single-dominant-strain

(s-d-s) approximation in any given scenario should be assessed.

We propose a framework for answering the following questions: (1) How can we quantify
the evidence against model assumptions in a phylodynamic model?, (2) If strong evidence is
observed, can we discern the nature of model mis-specification so that a more adequate model
may be proposed? Such a framework will greatly facilitate model criticism, refinement and cali-

bration. The notion of using Bayesian latent residuals to assess mis-specifications in a spatio-

temporal epidemiological model was proposed and exploited in [22, 23]. By proposing appro-

priately designed non-centered (re-)parametrizations of the underlying process, in [22] the

authors construct latent residuals whose prior sampling properties are known, and whose pos-

terior samples are sensitive to mis-specifications of the components of a general spatio-tempo-

ral epidemiological model. Inferred samples from the posterior distributions of the latent

residuals are then assessed against their known sampling distributions, quantifying evidence

against model assumptions. The ‘latent–residuals’ approach complements established model-

testing tools (e.g., the DIC [24]), allowing diagnostics to be targetted at particular aspects of
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model formulation. Moreover, for spatio-temporal dynamic models of infectious diseases, it

may offer a more sensitive test and more interpretable diagnostics [22, 25].

In this paper, we innovate a model-diagnostic framework for phylodynamic models, utilis-

ing and extending the idea of latent residuals. First, we outline generally how latent residuals

may be tailored to quantify the evidence against model assumptions in a joint epidemiologi-

cal-evolutionary spatio-temporal model. Then, we introduce the idea of marked latent residu-
als where we associate an epidemiological quantity (or ‘mark’) with each residual. The marks

may then be used to specify subsets of residuals that may potentially be most informative

regarding particular mis-specifications of the evolutionary process. Specifically, using simu-

lated data, we show how the marked latent residuals can be used to identify parts of the phylo-

genetic/epidemic trajectory where modelling assumptions may respectively under- or over-

estimate the importance of the within-host evolution of the pathogen. We then apply our diag-

nostic framework to data describing a localised foot-and-mouth outbreak in the UK, conclu-

sively highlighting the importance of within-host-diversity in modelling the outbreak. In

parallel with the model assessment work, we propose a more general model, with an associated

pseudo-likelihood, to represent within-host-diversity and significantly improve model fit.

Models and methods

In this section we give details of phylodynamic models we use in the paper, how these are fitted

to data, and the construction of the latent residual process used to assess the quality of model

fit.

The null model M0: A joint epidemiological-evolutionary spatio-temporal

model

Epidemic process. We model the epidemic process with a general spatio-temporal sto-

chastic SEIR epidemic model with susceptible (S), exposed (E), infectious (I) and removed (R)

compartments. An individual j becomes infected (exposed) via background infection with rate

α and from an infectious individual i with rate βK(dij;κ). K(dij;κ) is the spatial kernel function

which characterizes the spatially-dependent infectious challenge from infective i to susceptible

j as a function of distance between them dij [26, 27]. Here, we assume K(dij;κ) = exp(−κdij). We

use a Gamma(a, b) distribution parameterized by the shape a and scale b to model the time

spent in class E (i.e. the latent period), and a Weibull(c, d) parameterized by the shape c and

scale d to model the time spent in class I (i.e. the infectious period). In applying to the FMD

data, we use Exponential(μ) for the infectious period, for matching the assumptions of [3, 5].

In simulation studies, we assume α = 4 × 10−4, β = 8, a = 8, b = 0.5, c = 2, d = 2 and κ = 0.02.

Molecular evolutionary process. The molecular evolutionary process of the pathogen is

modelled at the level of nucleotide substitutions and is assumed to be conditionally indepen-

dent of the epidemic parameters given the complete set of epidemic events. This, in effect,

means that that genetic evolution does not influence the epidemic parameters so that, for

example, there is no selection of increasingly virulent strains. A nucleotide sequence is assem-

bled from bases belong to purines (e.g., adenine (A) and guanine (G)) and pyrimidines (e.g.,

thymine (U) and cytosine (C)). Substitution between bases in the same category is called tran-
sition and the substitution between bases from different categories is called transversion.

Nucleotide bases at different positions of a sequence are assumed to evolve independently

according to a continuous-time Markov process. Specifically we use the two-parameter

Kimura model (Ref. [28]) which allows for different rates of transition and transversion. Under

the Kimura model, a nucleotide base x mutates to a different nucleotide base y within an inter-

val of arbitrary length4t with the probability described by Eq 3. We assume that there is a
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single dominating strain (s-d-s) at each infectious individual at any time point. Upon infec-

tion, a newly infected individual is infected with the s-d-s from the source individual. This

assumption is consistent with the assumption of no within-host diversity made by other

authors [3, 5, 7, 14–17]. In simulation studies, we assume μ1 = 1 × 10−4 and μ2 = 5 × 10−5

where μ1 and μ2 represent mutation rates for transition and transversion respectively.

A phylodynamic model M1 for simulating within-host-diversity

In order to assess the effectiveness of our methods we require a mechanism for generating epi-

demics where within-host diversity is present in the pathogen population. We consider a

within-host-diversity model M1 with the same epidemic process component used in M0. The

molecular evolutionary process in each host is described by a continuous-time birth-death

process which governs pathogen population growth and death, with mutation occurring along

branches. Denote by Nt the current total pathogen population size (of all existing strains) in an

infected host. The population size of any strain grows at rate ν. We assume there is an equilib-

rium population size Ne in a host − such an assumption may reflect the fact that there is com-

petition between strains for limited resources in the host [29, 30]. Death occurs at a rate ν ×
Nt/Ne, so that the equilibrium population size Ne is reached and maintained [29, 30]. Muta-

tions arise at rate ω × Nt, where ω is per-pathogen mutation rate without distinguishing

transition and transversion. An event occurs (i.e., birth, death or mutation) according to their

relative rates, and a strain is randomly chosen to experience this event, according to the cur-

rent population sizes of existing strains. Mutation on the chosen (ancestor) strain creates a

new strain (with initial population 1). The new strain has one (randomly chosen) nucleotide

position that is different to the ancestor strain. Upon infection, NB pathogens are randomly

chosen (i.e. NB is the transmission bottleneck) and may be transmitted into the newly infected

host in which the pathogen population undergoes the birth-death-mutation process just

described. We assume Ne = 3000, ν = 3, ω = 0.08 and NB = 200.

Latent residuals construction for molecular evolutionary process

General framework. The construction of latent residuals has its roots in a simple, fre-

quently applied idea which can be illustrated by the following example. Suppose we observe a

random sample of observations y1, . . ., yn believed to arise from a continuous distribution with

distribution function FY(y; θ). Then, using the standard tool of inversion of the distribution

function, we can consider each yi ¼ F� 1
Y ðqi; yÞ where qi is the quantile associated with yi and,

accordingly, q1, . . ., qn is a random sample from a Unif(0, 1) distribution. One can then test the

fit of the observed y1, . . ., yn to the model FY by assessing the fit of q1, . . ., qn to the Unif(0, 1)

distribution. These quantiles then represent a set of residuals whose sampling distribution is

not dependent on FY or any model parameter θ. Our constructions utilise this basic idea—suit-

ably adapted to accommodate the discrete outcomes, unobserved processes, and parameter

uncertainty inherent in the epidemic setting—and embed it within a Bayesian framework.

Moreover, we exploit the fact that residuals can be designed, and tested, in a multiplicity of

ways to obtain tests targeted at suspected forms of mis-specification.

In the epidemic setting, let z denote the complete set of events (unobserved and observed)

randomly generated from a phylodynamic model M parameterized by θ. Then, as long as the

sampling properties of the phylodynamic model are preserved, we can consider z to be gener-

ated in non-unique ways. In particular, we consider z as a deterministic function hM;θð~rÞ
where ~r is a random sample from a known distribution, and plays the role of a latent residual

process. This representation is essentially a functional model as in [31], and exemplifies the

concept of generalised residuals proposed in [32]. The process of inversion of the distribution

Model diagnostics and refinement for phylodynamic models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006955 April 5, 2019 4 / 17

https://doi.org/10.1371/journal.pcbi.1006955


function outlined above provides a simple example of a functional model. Symbolically, we

have

z ¼ hM;θð~rÞ: ð1Þ

Note that, for any M, the selection of a residual process ~r and a function hM,θ(.), can be effected

in a multiplicity of ways − and can be tailored to be sensitive to a suspected mode of mis-

specification.

In a Bayesian data-augmentation framework, given a random draw (θ0, z0) from the poste-

rior distribution π(θ, z|y) (where y denotes the observed data) it is generally straightforward to

invert Eq 1 to impute the corresponding residual ~r0 by sampling it from the set h� 1
M;θðz

0Þ, the set

of residual vectors mapped to z0 by hM,θ. Under the hypothesis that the fitted model is correct,

then a priori ~r follows the known distribution. We may therefore apply a classical test for con-

sistency with the theoretical distribution to the imputed ~r0 (e.g., Anderson-Darling hypothesis

test [33]) and obtain a posterior distribution of p-values pðPð~rÞjyÞ, summarizing evidence

against the modelling assumptions. This distribution represents the posterior distribution of a

p-value obtained by a classical observer of ~r0 who tests its compliance with its assumed distri-

bution. Should this posterior distribution place high probability on the p-value taking small

values, then with high posterior probability the classical observer would reject the hypothesised

model for ~r . The general approach is discussed in more detail in [34].

The latent–residual approach extends the ideas underlying posterior predictive checking

[35] and can be viewed in that general context. We note that posterior predictive checking has

been previously applied in the phylogenetic setting. For example, in [36] the fit of a phyloge-

netic model is assessed by comparing clustering properties of observed trees with the distribu-

tion of clustering properties on trees simulated from the posterior predictive distribution. Our

approach builds on the standard approach to posterior predictive checking through its use of

discrepency variables defined in terms of imputed, rather than directly observed processes,

exploiting the freedom afforded by the Bayesian approach to tailor the imputed latent pro-

cesses so that tests can be targetted at specific modes of model inadequacy. A further difference

lies in the use of the full posterior distribution of the resulting imputed p-value to summarise

evidence against the model—rather than its expectation as expressed by the usual posterior

predictive p-value. Finally we note that, by imputing quantities with a sampling distribution

that is fixed under the assumed model and independent of model parameters, we dispense

with any need to simulate from their posterior predictive distribution.

Marked latent residuals for model M0. Given a realization of the epidemic process, con-

sider a pair of pathogen sequences GA and GB on an infected host at consecutive ‘critical time
points’ tA < tB (where a critical point is a transmission or a (sequence) sampling event).

Assuming GA evolves to GB during the interval (tA, tB) according to the continuous-time Mar-

kov process specified in M0, the number of observed mutations (i.e. change of nucleotide

bases) among n nucleotides on GA is distributed as

m � Binðn; p4tÞ ð2Þ

where4t = tB − tA and

p4t ¼ 0:75 � 0:25e� 4m24t � 0:5e� 2ðm1þm2Þ4t: ð3Þ

and μ1 and μ2 are the rates of transition and transversion respectively.

We now design a process ~r and a function hM0
ð:Þ in order that the statistical test on ~r be sen-

sitive to deviation from the s-d-s assumption that underpins molecular evolution. Specifically,

we formulate a functional model for the molecular evolutionary process in which components
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of ~r are independently distributed as

~r � Unif ð0; 1Þ: ð4Þ

The process described by Eq 2 may be reconstructed as

m ¼ inf m0 j
Xm0

k¼0

qðkÞ > ~r

( )

; ð5Þ

where q(.) is the cumulative distribution function of the Binomial distribution in Eq 2. Note

that this formulation specifies only the numbers of mutations occurring within a time window;

the specific sites at which mutations occur are not specified by ~r .

The residuals in ~r can be further associated with specific quantities or ‘marks’ characterized

by the realized epidemic process. Let tðkÞA and tðkÞB denote the corresponding critical time points

for the kth pair of consecutive sequences GðkÞA and GðkÞB sampled (or imputed) from a particular

infected host. The corresponding residual ~r is then associated with the mark

z
ðkÞ
¼

tðkÞA � t0

tðkÞB � t0

2 ð0; 1Þ; ð6Þ

where t0 is the time of infection of the host. Note that these marks are determined solely by

the epidemic process and that the residual associated with a mark is therefore independent of

the value of the mark in our functional-model representation. The s-d-s model M0 assumes a

relationship between the expected number of mutations (effectively a ‘genetic’ time) and the

time difference tB − tA that is approximately linear when this difference is small. The quantity

z(k) is designed to identify situations where − proportionately − the ‘effective’ genetic time

between GðkÞA and GðkÞB might deviate from that predicted by M0. Suppose that we fit M0 to data

generated from a model with considerable within-host-diversity. One may expect that this

deviation would be most prominent when z(k) is large (i.e. when tðkÞA � tðkÞB and z(k)� 1). As

tðkÞA � tðkÞB � 0, M0 would predict very few mutations between GðkÞA and GðkÞB , while the within-

host-diversity may lead to a substantial difference between GðkÞA and GðkÞB . Fig 1 illustrates sche-

matically the rationale behind the marked latent residuals. Therefore, the deviation from the s-

d-s assumption should be systematically reflected in the distribution of the imputed residuals

associated with large z(k) (see Results). In particular, according to (the inversion of) Eq 5, we

expect to observe a concentration of (imputed) residuals close to 1 when attention is restricted

to residuals associated with high mark z(k) (Results). We therefore anticipate, for example, that

a test that restricts attention to a subset of residuals with non-zero marks may be more sensi-

tive to within-host pathogen diversity than one based on the full set of residuals (Results).

Associating with superspreading events. Superspreading is a common phenomenon in

many infectious disease epidemics [26, 37] in which numerous infections by a given host

occur within a relatively short period of time and multiple pathogen-sequence pairs are sam-

pled/transmitted closely in time (see Fig 1). Since systematic deviation from Unif(0, 1) is

expected in residuals associated with high marks, and high marks may be more numerous in

the event of superspreading, one may naturally conjecture that deviations from the s-d-s

model, as detected using our methods, may be most apparent when superspreading occurs.

The general ideas underpinning the construction of latent residuals can be applied to design

tests to detect other modes of mis-specification. The imputation of ‘infection-link’ residuals to

detect mis-specification of spatial kernel functions has been described in [22], where residuals

to detect mis-specification of sojourn time distributions are also considered. The construction

of the marked genetic residuals described here could also be modified to detect alternative
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suspected modes of mis-specification of a genetic model. The key aim would be to identify

imputable outcomes from the epidemic model (e.g. exposure times of individuals, properties

of the transmission graph) that can be used to specify marks in such a way that an association

between marks and residuals would be expected should the suspected mis-specification be

present. For example, were it suspected that the mutation rate of the pathogen population

were increasing or decreasing over time, then we might redefine the mark associated with a

given residual (see Eq (6)) to simply be tA—the infection time of the source imputed for a par-

ticular infection event. Any increase in the true mutation rate over time should then induce

some systematic dependence of imputed residuals on the corresponding mark, with small

(resp. high) marks tending to be associated with small (resp. high) residuals. Were it suspected

that the pathogen’s ability to reproduce itself tended to be less in the recipient than in the

donor of infection, then this deviation may be detected by defining the mark associated a

residual to be the depth of the corresponding donor in the imputed transmission graph, and

testing for an association between residuals and the corresponding mark. Either of these tests

could be implemented via comparatively minor modifications of the algorithms presented

here.

Statistical inference

An overview of the Bayesian inference procedures used in the paper is given in SI: SI Text. In

summary, given observations y, we use standard Bayesian data-augmentation approaches to

generate samples from π(θ, z = (ze, zg)|y) where ze comprises the times and nature of all transi-

tions occurring during the epidemic and zg comprises the set of observed genetic sequences

Fig 1. Schematic illustration of the rationale of the marked latent residuals. Assume that a single pathogen strain

enters a host and begins to evolve at time t0. A within-host-diversity model, crudely illustrated by (a), allows for

establishment of new strains (i.e. new branches) generated from mutations (occurred at internal nodes). The s-d-s

model M0, illustrated by (b), allows only mutations along the (linear) line/branch and as a result assumes only one

(dominant) strain at any particular time point. Assume that two sequence samples GA and GB (superscripts dropped

without ambiguity) are randomly sampled from the pathogen population at tA and tB respectively, where tA − tB� 0

(i.e. z(k)� 1). (a) may predict distinct GA and GB, while (b) would predict minimal difference between them due to the

implied linear relationship between mutations and time. Therefore, residuals associated with high z(k) may be expected

to be large if a model takes insufficient account of within-host-diversity.

https://doi.org/10.1371/journal.pcbi.1006955.g001
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augmented with the set of sequences passed during transmission events. These techniques, as

applied to the model M0, are described in detail in [3].

Given a draw from π(θ, z = (ze, zg)|y), it is straightforward to impute the corresponding

latent residual process ~r0 by reversing the procedure described in Eq 5, given m and the other

model parameters inferred in the Bayesian framework. The imputed ~r0 is then compared to its

sampling distribution (i.i.d. Unif(0, 1)) to quantify the evidence against model M0 −here using

the posterior distribution of the associated p-value, pðPð~rÞjyÞ. When strong evidence against

the model is observed, the corresponding marked latent residuals may be inspected to elicit

the nature of the poor fit (Results).

Model refinement: Generalizing the S-D-S model. While it may be straightforward to

simulate data-sets using Model M1 inference with this model, using the approach applied to

Model M0, is problematic due to intractability of the genetic component of the likelihood.

We therefore propose an alternative inferential framework—effectively using a surrogate

model—that can represents within-host-diversity and attempt to assess its adequacy using our

methods.

Assume that an infectious individual infects individuals at times t1 < t2 < . . . during the

period [t0, tf]. The s-d-s model M0 assumes that the strain transmitted at tk is a direct descen-

dent of that transmitted at tk−1 and a full likelihood function can be constructed for the genetic

differences between strains assuming a comparatively simple mutation model [3]. However,

while it is possible to simulate within-host evolution from a mechanistic within-host-diversity

model (e.g., from model M1, see Models), it may not be straightforward to perform inference

with the dynamical model used. We therefore formulate a pseudo-likelihood framework Mp

which takes into account within-host-diversity (and allows departure from the s-d-s assump-

tion), and includes the s-d-s model M0 as a limiting case.

We introduce a framework which represents an ‘effective genetic time difference’ between

two strains randomly chosen from the population within a host (and transmitted) at critical

time points tA, tB 2 [t0, tf]. The effective time difference between the two strains GA and GB,

transmitted at times tA < tB, is defined to be:

TðGA;GBÞ ¼ tA þ tB � 2TcðGA;GBÞ ð7Þ

where tA� Tc(GA, GB)� t0 is the latest time up to which ancestry of GA and GB is common.

Now T(GA, GB) is unknown so we treat it as a random variable. A mutation event (i.e. a nucle-

otide at a same position on GA and GB being different) may be then described by a simple

probabilistic model, i.e., probability of a mutation

pTðGA;GBÞ
¼ 1 � e� lTðGA;GBÞ ð8Þ

where λ represents a mutation rate (note that we use single parameter λ for mutation rate as

opposed to the two-parameter setting in the s-d-s model). Note that tB − tA < T(GA, GB)< tB +

tA − 2t0. Under our approach we assume

T�ðGA;GBÞ � Betaðg; ZÞ; ð9Þ

where

T�ðGA;GBÞ ¼
TðGA;GBÞ � tB þ tA

2ðtA � t0Þ
2 ð0; 1Þ: ð10Þ

We then formulate a ‘pseudo-likelihood’ function for the complete genetic data by augmenting

the genetic data with the unknown T(GA, GB) (or equivalently T�(GA, GB)) for each successive

pair of transmitted strains, by assuming that the relationship of GB to GA is independent of the
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latter’s relationship to any previously sampled or transmitted strain strains. Details of the for-

mulation of the likelihood function are given in SI: S1 Text. Note that the s-d-s model would

arise as a special case of the above in the limit where γ is fixed and η!1. The corresponding

limiting distribution for T�(GA, GB) places unit probability on T�(GA, GB) = 0, so that the effec-

tive time difference reduces to tB − tA. Model inference is performed by adapting the MCMC

algorithm used to fit the s-d-s model in [3] by further augmenting the parameter vector with

the T�(GA, GB) and replacing the part of the likelihood contributed by the evolutionary process

with a pseudo-likelihood function (as detailed in SI: S1 Text).

Latent residuals under this pseudo-likelihood framework Mp may be constructed in a fash-

ion similar to that applied to M0, by replacing the probability of observing a mutation pΔt

(under the s-d-s assumption) in Eq 3 by pT(GA, GB) (which considers within-host diversity) in

Eq 8.

Although we have a simple Jukes-Cantor substitution model in Mp, in the interests of

reducing complexity, we remark that the approach can be applied, with little modification,

when the Kimura model is used in Mp, since the probability of mutation at a site in a given

interval is not dependent on the base at the site in question. Hence the number of mutations in

a given interval follows a binomial distribution and a residual can be imputed based on the

quantile function of the binomial, as we do here. Note that we could define a second residual

process related to the relative frequency of transitions and transversions by first noting that,

conditional on the number of of mutations being m, the number of transitions follows a Bin
(m, p) distribution for some appropriate p calculable from the generator matrix of the continu-

ous-time Markov process defining the dynamics of mutations at a site, and the effective time T
(GA, GB). Intuitively, we may expect evidence against the model’s assumptions on within-host

diversity to be most apparent from inspection of the first set of residuals. Accordingly, we may

only impute, and test against the assumption of uniformity, the first residual process relating

to the number of mutations. For the Jukes-Cantor model we remark that p ¼ 1

3
. Hence, if we

wished to test our Jukes-Kantor assumption using this framework we may consider the second

residual process, imputed under the Jukes-Kantor assumption p ¼ 1

3
and test for deviations

from U(0, 1). Were a more complex substitution model, incorporating base-dependent transi-

tion rates, then functional-model representations—along with related residual processes—

could nevertheless be constructed, by representing mutations between strains GA and GB in

a given effective period in terms of four distinct, independent binomial distributions with

parameters (nA, pA), (nT, pT), (nG, pG), (nC, pC) where the first parameters denote the numbers

of sites occupied by each of the respective four bases and the second parameters denote the

respective mutation probabilities. We therefore believe that our basic approach can be tailored

to settings where the mutation process at sites follows a general continuous-time Markov

process.

Results

Simulation studies

To test our diagnostic framework, we consider two scenarios: (I) the s-d-s (null) model M0 is

fitted to data generated from M0 itself and (II) M0 is (inappropriately) fitted to data generated

from a within-host-diversity model M1. We use the same (SEIR) spatio-temporal epidemic

process component in both M0 and M1. Instead of assuming s-d-s, M1 embodies a continuous-

time evolutionary process that accounts for growth, death and mutation of pathogen strains.

Details of the models are given in Models.
We first simulate an epidemiological dataset ze among a susceptible population (with size

N = 150, generated as a random sample from a uniform distribution over a square region)
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using the common epidemic process component shared by M0 and M1, during a period (0,

Tmax). Data ze comprise typical epidemiological events, including infection time, transition

times from compartment E to I and from I to R and transmission path. Conditioning on this

ze, several sets of (different) sequence data zg are then simulated, using the evolutionary com-

ponent (s-d-s) in M0 (Scenario I) in a single case and that in M1 (Scenario II) in 5 cases. Using

the same set of ze (and epidemic process component) ensures that any discrepancy in the evi-

dence of mis-specification between the two scenarios arises from the difference of the evolu-

tionary component.

In each scenario, we use Bayesian data augmentation to generate a sample from π(θ, z =

(ze, zg)|y) from which we impute ~r0 , from the posterior distribution of the residual vector (SI:
S1 Text.) Here the observed data y include: times and locations of all transitions from E to I

and from I to R, and sequences sampled for each infected host at a random sampling time.

Transmission path, infection times and sequences transmitted during infection events are

assumed to be unknown.

For the assumed model M0 a priori ~r is distributed as a random sample from a Unif(0, 1).

Moreover, if ~r� denotes the subset of ~r with non-zero associated marks, then a priori ~r� is also

a random sample from Unif(0, 1). Then we apply an Anderson-Darling test to ~r , and to the sub-

set ~r� to test for consistency with the uniform distribution. We can summarize the evidence

against model assumptions from the posterior distribution of the p-values using summary sta-

tistics such as pðPð~rÞ < 0:05jyÞ (mainly used here) as well as the empirical distribution func-

tions of the p-values. Table 1 shows clear evidence against the null model M0 in scenario II.

Fig 2 shows that by using the subset ~r� we consistently obtain more evidence against the s-d-s

model, notably in the case Set 2 where the conclusion is relatively ambiguous.

Having observed strong evidence against the null model in scenario II, we investigate the

imputed residuals conditional on the p-value being less than 0.05 to detect any systematic

pattern. Fig 3 shows that, as conjectured, for z(k) with values in the upper tercile of the set of

marks, the corresponding residuals are consistently disproportionately located at the right-

hand end of the interval (0, 1), suggesting that model M0 may take insufficient account of

within-host-diversity leading to the poor model-fit suggested by Table 1.

Also, S2 Fig in SI shows that inferred posterior distributions can accurately recover the true

values of the model parameters when fitting the correct model.

Case study: Animal foot-and-mouth disease outbreak

Model diagnosis. In this section we apply our diagnostic framework to a localized FMD

outbreak in the UK (Darlington, Durham County) in 2001 previously analysed by several

Table 1. Proportions of p-value less than 0.05 that indicate overall evidence against the null model in two scenar-

ios: (1) fitting the correct model structures and (2) fitting the s-d-s M0 to data generated from a within-host-diver-

sity model M1. For scenario (2), five datasets are generated independently from M1 with a same set of parameter values

(Models), which are used to reveal any consistent difference of the evidence of model mis-specification compared to

scenario (1). Noted that in both scenarios, the (same) correct epidemic process component is fitted. ~r� is the subset of

the full set of residuals ~r , associated with non-zero marks zk.

Model Fitted pðPð~rÞ < 0:05jyÞ pðPð~r �Þ < 0:05jyÞ
M0 4.7% 4.4%

M1 (Set 1) 85.7% 95.5%

M1 (Set 2) 61.4% 87.0%

M1 (Set 3) 99.7% 100%

M1 (Set 4) 86.7% 95.8%

M1 (Set 5) 100% 100%

https://doi.org/10.1371/journal.pcbi.1006955.t001
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authors (e.g., [3, 5]). Some 15 infected premises (i.e. farms, indexed by by the letters A-P) were

observed, from which one virus sequence for each premises with sequence length n = 8176 was

sampled [5, 13]. The geographical locations, the removal (i.e. culling) times and the genome

sampling times of the infected premises were also reported. Here we fit the model M0 (also fit-

ted in [3]) and use our diagnostic framework to elicit evidence of mis-specification.

Despite the relatively small size of this dataset, our residuals detect notable evidence against

the model M0 both using ~r and ~r�. Specifically we find that pðPð~rÞ < 0:05jyÞ = 100% and

pðPð~r�Þ < 0:05jyÞ = 80%. The corresponding proportions become respectively 100% and 61%

when the significance level 0.05 is replaced by the more conservative 0.01.

Fig 4 further reveals that within-host-diversity has been considerably under-estimated by

fitting M0. It is observed that, in this case, the subset of residuals ~r� yields less evidence than

~r , plausibly due to the the small outbreak size, the small sample size of ~r� and the reduced

Fig 2. Empirical cumulative distribution functions of p-value obtained by applying the Anderson-Darling test to

the subset of residuals with non-zero marks and to the full set of residuals (for simulations set 1 to set 5 in

Scenario II where s-d-s model M0 is (inappropriately) fitted to data generated from a within-host-diversity model

M1), see also Table 1. Proportions of p-value less than 0.05 (indicated by colored text) in this case are consistently

higher for the subset of residuals corresponding to non-zero marks (red text).

https://doi.org/10.1371/journal.pcbi.1006955.g002

Fig 3. Systematic deviation revealed by the marked latent residuals. (a)-(e) correspond to simulation set 1-5 (from Scenario II where s-d-s

model M0 is (inappropriately) fitted to data generated from a within-host-diversity model M1). The histograms depicted in the first row are

formed by aggregating residuals whose associated marks z(k) lie in the top tercile of marks for any posterior sample for which the p-value of the

Anderson-Darling test is less than 0.05. The histograms of z(k) are shown in the second row. Residuals associated with smaller z(k) may exhibit a

multiplicity of patterns (see SI: S1 Fig).

https://doi.org/10.1371/journal.pcbi.1006955.g003
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potential for superspreading events. We observed that few marks attain higher values close to

unity (Fig 4) compared to the simulated scenarios (Fig 3) where the outbreak size (N = 150) is

much larger. The results are also consistent with studies of sequence diversity of FMD virus

(e.g. [18]) suggesting considerable within-host-diversity for FMD virus.

As our results (Fig 4) reveal considerable evidence against the s-d-s model M0, suggesting

that it may not take sufficient account of within-host diversity. it is natural to attempt to

refine this ‘inadequate’ model and to fit the more general model Mp. There is much weaker evi-

dence against the model when Mp is fitted to the FMD outbreak using the pseudo-likelihood

approach and latent residuals are imputed to yield a distribution of p-values. In particular we

obtain pðPð~rÞ < 0:05jyÞ = 43% and pðPð~rÞ < 0:01jyÞ = 14%, which are considerably less than

the 100% obtained by applying both metrics on the full set of residuals ~r in fitting the s-d-s

model M0. This result reinforces the conclusion that the s-d-s assumption may be one root of

model mis-specification (Fig 4(b)), and suggests that including within-host diversity may serve

to increase model adequacy. Fig 5 shows that the effective genetic time T(GA, GB) may be con-

siderably larger than the ‘absolute’ genetic time tB − tA used in the s-d-s model, given our esti-

mated T�ðGA;GBÞ � Betaðg; ZÞ (see also Eq 10). It is worth noting that in using the pseudo-

likelihood framework to fit Mp we obtained a smaller mean mutation rate 4.32 × 10−5, when

compared to the case of fitting the s-d-s model in which we had an overall mean mutation rate

(including transition and transversion) 6.41 × 10−5. Our results suggest that observed amount

of mutations in FMD may be better explained by a combination of a smaller mutation rate and

a longer effective genetic time that takes into account the within-host diversity, as opposed to a

larger mutation rate with a shorter absolute genetic time as implied by the s-d-s model.

An important question is that of whether inferred parameters of the epidemic model, or

imputed events in a partially observed epidemic, are sensitive to mis-specification of the

genetic model. Therefore in the SI we compare the posterior distributions of epidemic parame-

ters and of imputed infection graphs respectively using the s-d-s assumptions and the pseudo-

likelihood framework that takes into account within-host diversity. We note that while esti-

mated values of most key epidemiological parameters appear to be very similar over the two

analyses (see SI: S3 Fig) the posterior distribution of β, the secondary transmission rate, places

considerably more weight on higher values in the case of the pseudo-likelihood analysis, point-

ing to the potential for the s-d-s assumptions to lead to underestimation of this parameter

Fig 4. Residuals associated with the top tercile of marks z(k), in applying our diagnostic framework to a foot-and-

mouth dataset.

https://doi.org/10.1371/journal.pcbi.1006955.g004
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should they be inappropriate. Comparison of the a posteriori most probable transmission trees

under the two approaches (see SI: S4 Fig) suggests that while the trees share many similarities,

they differ in their inferences regarding the relative importance of sites A and K as infectors in

the epidemic. Under s-d-s assumptions A and K are the sources 2 and 5 infections respectively

in the modal infection graph. With the pseudo-likelihood framework these values become 5

and 1 respectively.

Discussion

Major statistical advances for integrating epidemiological and genomic data have been stimu-

lated and accomplished in recent years, in the midst of ever-increasingly available genomic

data (e.g., [3–13]). Given the (increasing) complexity and variety of phylodynamic models, it is

crucial to develop model diagnostic methods that may systematically detect specified devia-

tions from particular model assumptions. Such tools would greatly facilitate model criticism,

calibration and refinement. While conventional model testing and model selection techniques

such as Bayes factors and Deviance Information Criterion (DIC) can be very useful for com-

paring competing models, they do not offer an interpretable framework that can be used for

fine component-wise model diagnostics and refinement [22, 24, 38]. Moreover, in contrast to

Fig 5. Logarithm of the ratio between inferred effective genetic time teff = T(GA, GB) and the ‘absolute’ genetic

time tabs = tB − tA used in the s-d-s model. Consider an individual who becomes infected at time t0 = 0 and causes two

infections at times tA and tB where tA< tB are generated as the first two event times in a Poisson process. Then we have

teff/tabs = 1 + 2 × T�(GA, GB) × Z (see also Eq 10) where Z = u/(1 − u) with u� Unif(0, 1). For each simulated Z, we

draw a corresponding T�(GA, GB) from Betaðg; ZÞ (see Eq 10) where γ and η are taken to be their respective posterior

means.

https://doi.org/10.1371/journal.pcbi.1006955.g005
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the latent-residual approach [22], they may be less sensitive in the context of spatio-temporal

dynamic modelling of infectious disease [25].

In this paper we have proposed a novel model diagnostic framework that extends the

notions of functional models and latent residuals [22, 23] to phylodynamic processes. Our

framework can be easily embedded within any Bayesian analysis of a spatio-temporal phylody-

namic system that makes use of data-augmentation. Overall evidence against model assump-

tions is evaluated by assessing sets of latent residuals sampled from the posterior distribution

for consistency with the assumed sampling properties of the residuals. We also particularly

show that how a marked latent-residual process can be tailored to reveal the nature of mis-

specification of the molecular evolution process specified in a phylodynamic model. Using

simulated datasets, we exemplify our approach by showing how the marked latent residuals

can be used to reveal and quantify the under-estimation of the importance of within-host-

diversity in a fitted phylodynamic model. Furthermore, we show that the tailored marked

latent residual testing can be particularly powerful in the event of superspreading. Our

framework is then applied to a local FMD outbreak in UK, the results suggesting that the

importance of within-host-diversity may be considerably under-estimated by the s-d-s models

[18]. Finally, we demonstrate that our diagnostic framework could facilitate effective model

calibration. Specifically, we propose a pseudo-likelihood framework which allows for a higher

degree of within-host-diversity, significantly improving the model adequacy as assessed using

the latent-residual approach.

We have considered testing schemes utilising respectively the full set of residuals ~r and

those associated with non-zero marks ~r�. The results suggest differences in the strength of

evidence against the assumed model provided by these two approaches but that one is not

invariably superior to the other. The procedure presented can only be valid if the rule

for selecting residuals is specified a priori; post-hoc selection of a maximally informative

subset is clearly not acceptable. This points to an interesting ‘virtual’ design problem of

determining the rule for selecting residuals, based on the Bayesian’s assumed model and

parameter prior and a specific sampling distribution for the observations under the sus-

pected mis-specified model, in order to maximise the expectation of some measure of evi-

dence against M0.

We have exemplified our diagnostic framework by using it to test the appropriateness of

the s-d-s assumption. Such a framework is broadly applicable to other phylodynamic systems

(e.g., influenza and Ebola [20, 21]) where quantifying importance of within-host diversity in

any given scenarios is crucial. In principle, the framework could be extended to test other

model assumptions by, for example, formulating different (epidemiological) marks z(k) to asso-

ciate with the residuals to reflect deviations from other assumptions for the evolutionary pro-

cess. We claim no optimality of the pseudo-likelihood framework proposed for the FMD

which utilises several simplifying assumptions of independence in the evolutionary process.

Nevertheless, since our objective is to seek further evidence that the under-estimation of the

importance of within-host-diversity is the source of model mis-specification (indicated by Fig

4) by showing improved fit of a model that represents diversity, we believe that its use may be

justified.

The results of this paper complement earlier results [3] where bespoke, infection-link

residuals were used to detect mis-specification of the spatial kernel in model M0 in the setting

where both epidemic and genetic information were available. In a simulation study, detailed

in the SI of reference [3] (Table S7 therein), it is shown that the evidence against a model

with mis-specified kernel provided by the infection-link residuals, appears to be enhanced

when genetic information is combined with the epidemic data. Our results here demonstrate

the feasibility of using alternatively formulated residuals to detect a different form of mis-
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specification, specifically the genetic component in model M0, providing support for the

broad applicability of the general approach. The marked latent residual approach should also

be easily scaleable for larger epidemics as the number of residuals only increases linearly

with of transmission and sequence sampling events.
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