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Abstract

The broadly neutralizing antibody (bnAb) VRC01 is being evaluated for its efficacy to pre-

vent HIV-1 infection in the Antibody Mediated Prevention (AMP) trials. A secondary objec-

tive of AMP utilizes sieve analysis to investigate how VRC01 prevention efficacy (PE) varies

with HIV-1 envelope (Env) amino acid (AA) sequence features. An exhaustive analysis that

tests how PE depends on every AA feature with sufficient variation would have low statistical

power. To design an adequately powered primary sieve analysis for AMP, we modeled

VRC01 neutralization as a function of Env AA sequence features of 611 HIV-1 gp160 pseu-

doviruses from the CATNAP database, with objectives: (1) to develop models that best pre-

dict the neutralization readouts; and (2) to rank AA features by their predictive importance

with classification and regression methods. The dataset was split in half, and machine learn-

ing algorithms were applied to each half, each analyzed separately using cross-validation

and hold-out validation. We selected Super Learner, a nonparametric ensemble-based

cross-validated learning method, for advancement to the primary sieve analysis. This

method predicted the dichotomous resistance outcome of whether the IC50 neutralization

titer of VRC01 for a given Env pseudovirus is right-censored (indicating resistance) with an

average validated AUC of 0.868 across the two hold-out datasets. Quantitative log IC50 was
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predicted with an average validated R2 of 0.355. Features predicting neutralization sensitiv-

ity or resistance included 26 surface-accessible residues in the VRC01 and CD4 binding

footprints, the length of gp120, the length of Env, the number of cysteines in gp120, the

number of cysteines in Env, and 4 potential N-linked glycosylation sites; the top features will

be advanced to the primary sieve analysis. This modeling framework may also inform the

study of VRC01 in the treatment of HIV-infected persons.

Author summary

The two Antibody Mediated Prevention (AMP) clinical trials are testing whether intrave-

nous infusion of VRC01 (an antibody that can neutralize most HIV-1 viruses) can prevent

HIV-1 infection. Since the outer envelope (Env) protein of HIV-1 is highly genetically

diverse, the AMP trials will evaluate in an “amino acid sequence sieve analysis” whether

VRC01 prevents infection differentially depending on Env amino acid features of expos-

ing viruses. To maximize power of sieve analysis, the number of amino acid features tested

should be limited to those most likely associated with whether the virus is sensitive to neu-

tralization by VRC01. We used machine learning to analyze a database of 611 HIV-1

Envelope pseudoviruses, with data on how well VRC01 neutralizes each pseudovirus, to

identify models that best predict neutralization sensitivity from the amino acid features

and to identify the most predictive features. We identified models that could predict HIV-

1 sensitivity (as opposed to resistance) to VRC01 very well, and found that several amino

acid residues in Env locations where both VRC01 and the CD4 receptor bind were impor-

tant for making correct predictions. Our modeling approach will enable a focused AMP

sieve analysis and may be useful for studying the use of VRC01 in the treatment of HIV-

infected persons.

Introduction

The immense genetic and antigenic diversity of the trimeric HIV-1 envelope (Env) glycopro-

tein spike [precursor form = (gp160)3, proteolytically cleaved to (gp120/gp41)3], the major tar-

get of neutralizing antibodies, poses a significant problem in the development of an effective

prophylactic vaccine. Broadly neutralizing monoclonal antibodies (bnAbs) isolated from indi-

viduals with chronic HIV-1 infection have demonstrated significant promise by targeting a

wide spectrum of this diversity [1–5]. These bnAbs generally target conserved elements in one

of five regions of gp160: the V2 variable region, the N332 region in the V3 region, the CD4

binding site (CD4bs), the gp120–gp41 interface, and the membrane proximal external region

[6]. Knowledge of Env amino acid (AA) signature patterns that are associated with a neutrali-

zation phenotype of interest [7] informs our understanding of the relevant immunogenic char-

acteristics of HIV-1 and has important implications for bnAb regimen and HIV-1 vaccine

design.

The IgG1 monoclonal antibody (mAb) VRC01 neutralizes more than 80% of 600 viral

strains tested in vitro [1, 8], and targets a region in the relatively conserved CD4bs [1, 2, 9]. Evi-

dence from several experimental animal infection models [10–13] highlights the potential of

bnAbs such as VRC01 to prevent HIV-1 infection when administered via passive immuniza-

tion in pre-exposure or post-exposure prophylactic strategies [14, 15]. VRC01 has moved

through four phase 1 clinical trials (VRC601 [16], VRC602 [17], A5340 [18], and HVTN 104
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[19]) and is now being evaluated in the phase 2b Antibody Mediated Prevention (AMP) trials

[HVTN 704/HPTN 085 (ClinicalTrials.gov identifier NCT02716675) and HVTN 703/HPTN

081 (ClinicalTrials.gov identifier NCT02568215)] [20], the first proof-of-concept efficacy trials

in adults to determine whether passive administration of a bnAb can prevent HIV-1 acquisi-

tion in men who have sex with men and transgender persons, and women who are at risk of

HIV infection. A detailed description of the AMP trials and the statistical considerations of

their designs can be found in Gilbert et al. [20].

Following the conclusion of the AMP trials, we will conduct a series of “sieve analyses,”

which investigate the extent to which intervention-mediated protection from infection varies

with phenotypic (phenotypic sieve analysis) and AA sequence (genotypic sieve analysis) char-

acteristics of the exposing viruses [21]. The phenotypic sieve analysis in the AMP trials will

compare functional properties (such as sensitivity to VRC01-mediated neutralization) of the

breakthrough founding viruses from infected VRC01 recipients versus infected placebo recipi-

ents; this kind of analysis was previously conducted in the VAX004 efficacy trial of a candidate

preventive HIV-1 gp120 vaccine [22]. The other type of sieve analysis to be conducted in the

AMP trials–AA sequence or genotypic sieve analysis–compares AA features of breakthrough

founding Env sequences from infected VRC01 recipients versus infected placebo recipients,

similar to what we and others have done in preventive vaccine efficacy trials for HIV-1 [23–

29], malaria [30], and dengue [31]. An AA sequence sieve effect for a particular HIV-1 AA

sequence feature is defined as significant variation in prevention efficacy against viruses with

different levels of this feature.

A major challenge posed to AA sequence sieve analysis is the large number of Env AA

sequence features that could be considered for analysis, as an exhaustive search for sieve effects

would have low statistical power after multiple-testing adjustment. Therefore, “down-selec-

tion” of a set of top-ranked AA sequence features to the primary sieve analysis is important for

conserving statistical power. To address this challenge in vaccine efficacy trials, our approach

first conducts pre-specified primary analyses that focus on a limited subset of AA features

based primarily on knowledge of the specificity of the vaccine-elicited immune responses, or

aggregates AA information into distances to vaccine-insert sequences [24, 31, 32]. Following

these primary analyses, we conduct pre-specified exploratory sieve analyses in which we search

for sieve effects across a much more exhaustive set of features, considering the full proteomic

sequence and other genomic features, with the goal of generating additional hypotheses about

how prevention efficacy depends on pathogen proteomics/genomics.

For the AMP bnAb efficacy trials, our guiding criterion for including an AA sequence

feature is evidence that it helps predict the sensitivity of the virus to VRC01-mediated neutrali-

zation, as measured in vitro by the TZM-bl assay that will be used for the phenotypic (neutrali-

zation) sieve analysis. Two specific objectives of our work are: (1, “model selection”) to

develop a best model or best few models for predicting TZM-bl neutralization sensitivity to

VRC01 and advance this model or these models for use in the primary AA sequence sieve anal-

ysis, where we refer to predicted outcomes from these models based on given virus AA

sequences as “proteomic antibody resistance” (PAR) scores; and (2, “feature selection”) to

rank AA sequence features by their importance for predicting TZM-bl neutralization sensitiv-

ity to VRC01, and select the most important features to advance to the primary AA sequence

sieve analysis. In particular, for (1), the VRC01 resistance level of different viral Env sequences

can be compared using PAR scores. As such, the AA sequence sieve analysis will estimate how

prevention efficacy (PE) against HIV-1 acquisition varies with the defined PAR score of the

virus, similar to the neutralization sieve analysis that assesses how PE varies with the measured

IC50, IC80, or slope of the virus. This analysis will also allow a comparison of how well AA

sequence information vs. measured neutralization information discriminates PE. For (2), for

Predicting VRC01-mediated neutralization of HIV-1
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each advanced top-ranked feature, the AA sequence sieve analysis will consist of point and

confidence interval estimates of PE against each HIV virus proteomic type defined by a level of

the feature, as well as a statistical test of whether PE varies across the different virus types, with

multiplicity-adjustment across the top-ranked features.

We addressed both objectives using data from the Compile, Analyze and Tally NAb Panels

(CATNAP) database [8], which collates IC50 and IC80 neutralization values for specific mAbs

versus HIV-1 Env pseudoviruses used in the assay, as well as the corresponding Env viral

sequences. We used two machine learning approaches, both of which used a set of pre-defined

AA sequence features to predict each of five TZM-bl neutralization outcomes: two dichotomous

outcomes indicating a virus’s resistance vs. sensitivity status based on IC50, and three quantitative

outcomes (log IC50, log IC80, and the estimated neutralization slope of the dose-response curve).

A strength of our approach compared to previous approaches for predicting neutralization resis-

tance from AA sequence features is that we provide formal statistical inferences (i.e., confidence

intervals) for cross-validated parameters that quantify prediction accuracy. We also apply a

recently proposed variable importance measure that is interpretable without requiring a particu-

lar parametric model to be correctly specified and describes importance relative to the popula-

tion rather than relative to a fitted machine learning algorithm. The entire analysis was done on

two independent splits of the available VRC01 CATNAP data to enable a simple way to evaluate

replicability of the findings and to cross-check prediction accuracy. Objective (1) was achieved

with the identification of models that provide PAR scores highly predictive of a resistant vs. sen-

sitive virus. Objective (2) was achieved in that we identified 42 AA sequence features with high

variable importance measure (VIM) scores, indicating that they were highly predictive of VRC01

neutralization sensitivity, and that were also significantly associated with neutralization.

Results

The distributions of neutralization sensitivity outcomes of Env pseudoviruses in dataset 1

(comprising half of the Env sequences retrieved from the CATNAP database, see Methods)

and in dataset 2 (comprising the other half of the Env sequences retrieved from the CATNAP

database, see Methods) are shown in Fig 1. Sixteen percent of all viruses included in this analy-

sis have right-censored IC50 values, and hence are considered resistant for both dichotomous

outcomes. For the analysis of the sensitive/resistant only outcome, 22% of all viruses were

excluded from the analysis because they qualified as neither sensitive (IC50 < 1 μg/mL) nor

resistant (right-censored IC50 value). In this reduced population, 79% of viruses are sensitive

and 21% are resistant. The quantitative IC50 readouts have broader variability than the quanti-

tative IC80 readouts. In all analyses, we included each virus’s geographic region of origin, to

control for possible geographic confounding. All confidence intervals provided in parentheses

represent 95% confidence intervals.

Objective 1 (model selection): To develop a best model or best few models

for predicting TZM-bl neutralization sensitivity to VRC01

To address objective 1, we applied nonparametric ensemble-based cross-validated learning (a

form of stacking [33]) as the primary learning method, which is often referred to as super

learning or the Super Learner [34] (see Methods, Statistical Learning Approaches). We com-

pared the performance of Super Learner with each of its component learners as comparative

benchmarks. The Super Learner enjoys an oracle property ensuring in large samples that its

error (e.g., mean-squared error or AUC for predicting neutralization resistance from AA

sequence features) is essentially the same or better than any of its individual component learn-

ers [34]. The Super Learner has also been shown to perform well in many simulation studies

Predicting VRC01-mediated neutralization of HIV-1
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and in real data applications (e.g., [34–36]). We quantified model performance by rigorous

inference on data-adaptive target parameters [37], including cross-validated area under the

receiver operating characteristic curve (CV-AUC) for binary outcomes [38] and cross-vali-

dated nonparametric R-squared (CV-R2) for quantitative outcomes, the latter of which is a

version of cross-validated MSE that is scaled by the variance of the outcome for the sake of

interpretability [39]. Cross validation is used for an initial comparison to confirm that Super

Learner performs equivalently or better than its component learners, while our primary crite-

rion for evaluating a model’s performance is with the holdout data, using the area under the

receiver operating characteristic curve (AUC) for binary outcomes and nonparametric R-

squared for continuous outcomes (R2).

While the most auspicious models for the AMP sieve analysis will have maximally high

CV-R2 or CV-AUC, it is difficult to define specific thresholds for these metrics for qualifying a

model for use in the AMP sieve analysis. However, we propose that a bare minimal require-

ment is that the 95% confidence interval (CI) about the chosen cross-validated prediction

accuracy metric indicates significantly greater prediction accuracy than a pure-noise model—

this benchmark is a 95% CI for CV-R2 above 0 and a 95% CI for CV-AUC above 0.5.

To define our terminology, we use the term “prediction” to define the general case of pre-

dicting a neutralization endpoint, either dichotomous or quantitative, and we also use it in the

specific case of regressing quantitative endpoints. We use the term “classification” to specify

the prediction of dichotomous neutralization endpoints.

Classifying IC50-based dichotomous outcomes for VRC01 neutralization. For generat-

ing predicted probabilities of each of the two IC50-based dichotomous outcomes, the Super

Learner and four individual models showed approximately equivalent and consistently strong

performance in classifying TZM-bl neutralization sensitivity to VRC01. In dataset 1, “random

forest (using geography and AAs in the VRC01 binding footprint)” (See Methods, Envelope

amino acid feature input variable groups) had the best performance for the IC50 censored out-

come, with a CV-AUC of 0.849 with 95% CI (lower bound 0.777, upper bound 0.922). In data-

set 2, “random forest (using geography and AAs in the CD4 binding site)” (See Methods,

Envelope amino acid feature input variable groups) had the best performance for this same

outcome, with a CV-AUC of 0.866 (0.807, 0.926) (Fig 2). For this outcome, the Super Learner

performed similarly to the top-performing model, and performed slightly better on dataset 2

than on dataset 1 (CV-AUC = 0.854 (0.836, 0.932) and 0.813 (0.747, 0.880), respectively).

Cross-validated ROC curves for the top four performing models are presented in Fig 3, and

comparisons of these models’ performance on held-out data during cross-validation are

Fig 1. Distributions of neutralization sensitivity outcomes of Env pseudoviruses in dataset 1 and in dataset 2.

https://doi.org/10.1371/journal.pcbi.1006952.g001
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illustrated in Fig 4. From Fig 3, we see that the models perform well enough that reasonably

accurate classifications of both non-censored IC50 (putatively sensitive) viruses and of right-

censored (resistant) viruses can be obtained, based on the choice of the ROC curve discrimina-

tion threshold, defined as a cut-point of the predicted probability of resistance. Under a stan-

dard approach that classifies a virus as right-censored/resistant if the fitted probability of right-

censored exceeds 0.5, the Super Learner’s cross-validated specificity to detect a resistant virus

is 0.39 on dataset 1 and 0.32 on dataset 2, compared to its cross-validated sensitivity to detect a

putatively sensitive virus of 0.97 on dataset 1 and 0.99 on dataset 2. These results highlight the

issue of unbalanced data, where because most viruses are VRC01-sensitive, classification accu-

racy is very high for sensitive viruses but low for resistant viruses. The cut-point of predicted

probability for defining classified resistant vs. classified sensitive may be adjusted to be most

relevant for the planned application of sieve analysis in the AMP trials. One approach that

seeks to have statistical power reasonably close to optimal for a variety of possible alternative

hypotheses in the sieve analysis considers the two types of misclassifications as equally costly,

where, for example, setting the cut-point at predicted probability 0.12 for the Super Learner

Fig 2. Performance of the Super Learner and the top 5 individual models in classifying the IC50 censored outcome. Cross-validated AUC point estimates

and 95% confidence intervals are shown for A) models trained on dataset 1 and B) models trained on dataset 2.

https://doi.org/10.1371/journal.pcbi.1006952.g002
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model in Fig 4 yields a misclassification rate of 25% for each category, VRC01-resistant and

-sensitive, for each data set.

Similar results were seen for the sensitive/resistant only outcome (see Methods), which

included a smaller subset of viruses: “random forest (using all features)” (See Methods, Enve-

lope amino acid feature input variable groups) had the best performance in both datasets, with

a CV-AUC of 0.886 (0.834, 0.938) in dataset 1 and a CV-AUC of 0.881 (0.822, 0.940) in dataset

2. Super Learner yielded the second-best performance with this endpoint, yielding a CV-AUC

of 0.828 (0.764, 0.893) with dataset 1, and a CV-AUC of 0.872 (0.818, 0.925) on dataset 2.

Cross-validated ROC curves for the top four performing models are presented in S1 Fig, and

these models’ actual classifications are compared in S2 Fig.

Classifications of both outcomes were well-validated using the top algorithms and feature

sets discovered with one dataset when evaluated using the other, completely separate, dataset.

Specifically, the top models for the IC50 censored outcome (as determined by CV-AUC) had

AUCs for the held-out dataset of 0.877 (0.819, 0.934) (trained on dataset 1, validated on dataset

2) and 0.850 (0.782, 0.918) (trained on dataset 2, validated on dataset 1), with the Super

Learner performing similarly, with a hold-out AUC of 0.884 (0.836, 0.932) (trained on dataset

1, validated on dataset 2) and 0.851 (0.779, 0.922) (trained on dataset 2, validated on dataset 1)

(S1 Table). Similarly, the top models for the sensitive/resistant only outcome (as determined

by CV-AUC) had validated AUCs of 0.925 (0.883, 0.968) (trained on dataset 1, validated on

dataset 2) and 0.904 (0.851, 0.957) (trained on dataset 2, validated on dataset 1) (S2 Table). The

Super Learner was the second-best performing learner for this endpoint, with a validated AUC

Fig 3. Cross-validated receiver operating characteristic curves for the best-performing models in classifying the IC50 censored outcome. Results are shown for the

top three cross-validated models plus the cross-validated performance of the Super Learner, for A) dataset 1 and B) dataset 2. Values in parentheses are the cross-

validated areas under the receiver operating characteristic curve (CV-AUC) for the different models.

https://doi.org/10.1371/journal.pcbi.1006952.g003
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Fig 4. Classification boxplots for the best-performing models and the Super Learner in classifying the IC50 censored outcome. Cross-validated performance is

shown for the Super Learner and the top three individual models for (A) dataset 1 and (B) dataset 2. Glmnet is the lasso learner.

https://doi.org/10.1371/journal.pcbi.1006952.g004
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of 0.921 (0.882, 0.959) (trained on dataset 1, validated on dataset 2) and 0.881 (0.813, 0.948)

(trained on dataset 2, validated on dataset 1).

The CV-AUC results for all models for the IC50 censored outcome and the sensitive/resis-

tant only outcome, for both dataset 1 and dataset 2, are shown in S3 Fig and S4 Fig,

respectively.

Prediction of the quantitative log IC50 and log IC80 outcomes for VRC01 neutraliza-

tion. Of the two outcomes, the quantitative log IC50 outcome was predicted better than the

quantitative log IC80 outcome. In dataset 1, the Super Learner had the best performance for

the quantitative log IC50 outcome, with a cross-validated nonparametric R-squared (CV-R2) of

0.349 (0.259, 0.429). In dataset 2, “random forest (using all features)” had the best performance

for this outcome, with a CV-R2 of 0.303 (0.251, 0.352) (Fig 5). The Super Learner was the

third-best model for this dataset, with a CV-R2 of 0.261 (0.183, 0.332).

We saw slightly better performance when the top algorithms and feature sets chosen with

one dataset were validated using the other dataset. Specifically, Super Learner was the second-

best performing learner for the quantitative log IC50 outcome, with R2s for the held-out data-

sets of 0.331 (0.277, 0.380) (trained on set 1, validated on set 2) and 0.379 (0.327, 0.427)

Fig 5. Performance of the Super Learner and the top 5 individual models in predicting the quantitative log IC50 outcome. Cross-validated R2 point

estimates and 95% confidence intervals are shown for A) models trained on dataset 1 and B) models trained on dataset 2.

https://doi.org/10.1371/journal.pcbi.1006952.g005
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(trained on set 2, validated on set 1) (S3 Table). The results of the Super Learner predicting the

quantitative log IC50 outcome for datasets 1 and 2, both cross-validated and validated with the

hold-out set, are illustrated in S5 Fig.

Performance of the models for predicting the quantitative log IC80 outcome was notably

worse. For dataset 1, the best-performing model was “lasso (using geography and AAs in the

CD4 binding site)” (See Methods, Envelope amino acid feature input variable groups), with a

CV-R2 of 0.207 (0.139, 0.270). For dataset 2, “random forest (using geography and AAs in the

CD4 binding site)” was the best-performing model, with a CV-R2 of 0.252 (0.180, 0.317) (S4

Table). We saw slightly worse performance when algorithms were trained on one dataset and

validated on the other dataset. Specifically, the top algorithms and feature sets for this outcome

(as assessed by CV-R2) had R2s for the held-out datasets of 0.160 (0.088, 0.225) (trained on set

1, validated on set 2) and 0.208 (0.103, 0.301) (trained on set 2, validated on set 1) (S4 Table).

The Super Learner was again the second-best performing method for predicting the quantita-

tive log IC80 outcome, yielding a validated R2 of 0.208 (0.131, 0.278) (trained on set 1, validated

on set 2) and 0.238 (0.148, 0.318) (trained on set 2, validated on set 1). The results of the Super

Learner predicting the quantitative log IC80 outcome for datasets 1 and 2, both cross-validated

and validated with the hold-out set, are illustrated in S6 Fig.

The CV-R2 results of all models for predicting the quantitative log IC50 outcome or the

quantitative log IC80 outcome are shown in S7 Fig and S8 Fig, respectively.

Prediction of neutralization slope. None of the Super Learner-based approaches were

able to obtain a prediction result better than a CV-R2 of 0.100 (0.032, 0.163) with dataset 1, or

a CV-R2 of 0.084 (-0.002, 0.162) with dataset 2 (S5 Table). The CV-R2 results of all models for

predicting neutralization slope are shown in S9 Fig, and the results of the Super Learner pre-

dicting the neutralization slope for datasets 1 and 2, both cross-validated and validated with

the separate held-out dataset, are illustrated in S10 Fig.

Objective 2 (feature selection): To rank amino acid sequence features by

their importance for predicting TZM-bl neutralization sensitivity to VRC01

We structured the objective 2 variable importance analysis by pre-specifying thirteen distinct

input variable groups of Env AA sequence features that could potentially be relevant for

VRC01 neutralization based on statistical and biological (structural, immunological, and viro-

logical) grounds. The input variable groups are, with the first six based on individual Env AA

positions and residues at those positions: 1) VRC01 binding footprint sites, 2) CD4 binding

sites, 3) sites with sufficient exposed surface area, 4) sites identified as important for glycosyla-

tion, 5) sites with residues that covary with the VRC01 binding footprint sites, 6) sites associ-

ated with VRC01-specific potential N-linked glycosylation (PNGS) effects, 7) sites in gp41

associated with VRC01 neutralization sensitivity or resistance, 8) indication of potential N-

linked glycosylation sites (PNGS), 9) majority virus subtypes, 10) region-specific counts of

PNG sites, 11) viral geometry, 12) cysteine counts, and 13) steric bulk at critical locations. The

Methods section provides details about the features (“Envelope amino acid feature input vari-

able groups”).

For each of the five outcomes, we calculated VIMs for all features included in any of the 13

input variable groups with two VIM analysis approaches. The first applied a Monte Carlo

Cross-Validation (MCCV)-based algorithm-specific approach that did not take into account

the input variable grouping, whereas the second applied an ensemble-based approach using

the Super Learner (see Methods, Statistical Learning Approaches) to assess variable impor-

tance of each of the 13 variable groups and individual features. We report as top-ranked fea-

tures those with a Holm-Bonferroni adjusted 2-sided p-value < 0.05 from a univariate
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regression adjusted for geographic region, and that rank among the top 50 features by either of

the two VIM approaches. The primary results from these VIM analyses pertain to the IC50 cen-

sored outcome and the log IC50 outcome, which are best-predicted dichotomous and quantita-

tive outcomes with the largest sample size.

For the IC50 censored dichotomous outcome analysis, Table 1 reports all features that

ranked among the top 50 features by either VIM method, and that had a Holm-Bonferroni

2-sided p-value less than 0.05 for an association with the outcome in a logistic regression

model using both datasets (with adjustment for geographic region as in all analyses). This p-

value criterion was more stringent than the pre-specified criteria, and was added to ensure that

any individual features selected by our VIM method were individually predictive after strict

multiplicity adjustment using a well-understood standard method, logistic regression. Table 2

shows the results for the quantitative log IC50 outcome, under the same rule for reporting

except replacing logistic regression with linear regression. There is much overlap between the

features found in Tables 1 and 2, and if we take the union of all features found for both end-

points, the result is a set of 42 unique features.

The majority of the top-ranked features for the two outcomes pertain to presence/absence

of specific Env residues, with the most important residues located at CD4 contact sites shown

previously to be associated with VRC01 neutralization sensitivity or resistance. The most

important of the features predictive of non-censored IC50 (which we refer to here as neutrali-

zation sensitivity) were an arginine at position 456 (R456) and a glycine at position 459

(G459), which were identified as top-ranked features for both outcomes and by both VIM

methods; when referring to an AA present at a given position, we give the one-letter code of

the AA followed by its position in HBX2 coordinates. Other highly ranked features predictive

of sensitivity were N280 (top-ranked by both VIM methods for IC50 censored), G458 (top-

ranked by the algorithm-specific method for the IC50 censored outcome), and D279 (top-

ranked by the algorithm-specific method for the log IC50 outcome). The most highly ranked

residue predictive of neutralization resistance was I471 (highly ranked by both VIMs for both

outcomes). In total, 16 residues predictive of neutralization sensitivity and 10 residues predic-

tive of neutralization resistance made the top-ranked list in Table 1. Of these, 6 (37.5%) resi-

dues predictive of neutralization sensitivity and 3 (30%) residues predictive of neutralization

resistance also made the top-ranked list in Table 2. Visualizations of the locations, magnitudes,

and distributions of the most predictive residues in Tables 1 and 2 are provided in Fig 6. Clus-

ters of predictive sites are found just prior to and within the V5 variable loop, and within Loop

D. The logo plots in Fig 6C and 6D show the distributions of amino acids within neutraliza-

tion-sensitive and -resistant viruses, respectively. These figures demonstrate that, with the

majority of the predictive sites, minority mutations are entirely or strongly associated with

resistance (e.g., with anything but arginine (“R”) at site 456 conferring VRC01 resistance), and

that no strong discriminating signal exists at the individual site level, implying that a multivari-

ate predictor would be necessary for effective performance.

Besides site-specific residue information, other AA sequence features were also highly

ranked. A longer length (in AAs) of Env and of gp120 was found to be important for predict-

ing resistance for both outcomes, and more cysteines in Env were found to be important for

predicting resistance in the IC50 censored outcome. For the dichotomous outcome, the pres-

ence of a PNGS at either site 156 or site 616 was important for predicting sensitivity, and the

presence of a PNGS at either site 229 or site 824 was important for predicting resistance. The

number of PNG sites in the V5 region was important for predicting neutralization sensitivity,

for the dichotomous outcome only, and subtype A1 was also important for predicting neutrali-

zation sensitivity, for the log IC50 outcome only. VIM results for the other three outcomes are

given in S7 Table.
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Table 1. Variable importance measure (VIM) information for the features that have a Holm-Bonferroni p-value less than 0.05, ranked by their contribution to the

classification of the log IC50 censored outcome.

Feature MCCV Composite

VIM

Ensemble VIM Ensemble VIM

SE1
Ensemble VIM

Rank

Direction of

Effect2
p-value3 q-value4 FWER

p-value5

456 is R 90.772 0.045 0.030 1 Sensitive 2.18E-

41

1.81E-

38

1.81E-

38

459 is G 66.592 0.013 0.027 9 Sensitive 5.59E-

33

2.32E-

30

4.63E-

30

280 is N 44.915 0.018 0.030 5 Sensitive 1.42E-

28

3.93E-

26

1.18E-

25

458 is G 40.411 0.003 0.027 97 Sensitive 2.62E-

28

5.43E-

26

2.16E-

25

655 is N 34.969 -0.004 0.027 394 Resistant 6.42E-

10

1.55E-

08

5.12E-

07

279 is E 26.415 -0.006 0.027 553 Resistant 1.42E-

05

1.61E-

04

0.011

Length of gp120 23.992 -0.003 0.027 362 Resistant 2.71E-

05

2.77E-

04

0.02

471 is I 21.989 -0.002 0.030 278 Resistant 3.59E-

14

1.19E-

12

2.90E-

11

181 is M 17.443 -0.009 0.027 683 Resistant 1.13E-

05

1.34E-

04

0.009

Length of Env 14.893 -0.002 0.027 271 Resistant 4.65E-

06

5.84E-

05

0.004

428 is Q 14.592 0.003 0.027 79 Sensitive 2.28E-

19

1.90E-

17

1.88E-

16

466 is E 13.877 -0.004 0.027 426 Sensitive 4.42E-

19

3.33E-

17

3.62E-

16

124 is P 13.515 0.005 0.028 54 Sensitive 1.04E-

16

4.13E-

15

8.46E-

14

469 is R 13.424 -0.008 0.027 622 Sensitive 2.85E-

08

5.25E-

07

2.24E-

05

589 is D 12.691 0.001 0.027 137 Sensitive 5.19E-

15

1.87E-

13

4.19E-

12

Total cysteines in Env 12.57 0.003 0.027 86 Resistant 1.06E-

06

1.57E-

05

8.23E-

04

569 is T 11.7 -0.004 0.027 395 Sensitive 5.44E-

17

2.66E-

15

4.43E-

14

616 is PNGS 10.648 -0.002 0.027 306 Sensitive 1.38E-

11

4.25E-

10

1.11E-

08

365 is S 10.641 -0.006 0.027 508 Sensitive 3.27E-

10

8.47E-

09

2.61E-

07

457 is D 10.137 0 0.027 202 Sensitive 3.46E-

06

4.42E-

05

0.003

456 is W 10.122 -0.013 0.027 788 Resistant 4.19E-

11

1.24E-

09

3.36E-

08

Total PNG sites in V5

region

10.083 -0.003 0.027 346 Sensitive 3.20E-

05

3.05E-

04

0.024

456 is H 8.955 -0.011 0.027 742 Resistant 1.42E-

05

1.61E-

04

0.011

374 is H 8.929 -0.008 0.026 620 Sensitive 5.87E-

16

2.22E-

14

4.75E-

13

471 is G 8.881 0 0.027 205 Sensitive 9.08E-

10

2.02E-

08

7.22E-

07

459 is D 7.234 0 0.027 221 Resistant 4.85E-

11

1.39E-

09

3.89E-

08

(Continued)
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In addition to evaluating the predictive importance of individual AA sequence features, the

ensemble-based Super Learner approach also estimated VIMs for the groups of pre-specified

AA sequence features (S11 Fig) by feature group. This analysis showed that the group of AAs

in the VRC01 binding footprint and the CD4 binding sites were the most important predictive

groups, a result found for both the dichotomous and the log IC50 outcome.

Output of the analysis. Based on the above analysis, all of the features listed in Tables 1 or

2 may be included in the primary AA sequence sieve analysis that assesses how prevention effi-

cacy depends on the Env variants of each feature.

Exploratory sensitivity analyses

Analysis and feature selection using lasso. Although this study evaluates the use of Super

Learner against its component learners, one easily interpretable model for defining a PAR

score is the “lasso (using geography and all features pre-selected by lasso)” (See Methods,

Envelope amino acid feature input variable groups) method applied to the IC50 censored out-

come, which we can use as an example to investigate how many of the total features would be

selected for analysis, and how they contribute to classification. This method performed well on

Table 1. (Continued)

Feature MCCV Composite

VIM

Ensemble VIM Ensemble VIM

SE1
Ensemble VIM

Rank

Direction of

Effect2
p-value3 q-value4 FWER

p-value5

Total cysteines in gp120 6.826 0 0.027 193 Resistant 7.53E-

07

1.18E-

05

5.86E-

04

397 is C 6.679 0.001 0.027 133 Resistant 1.22E-

24

2.03E-

22

1.01E-

21

425 is N 6.503 -0.012 0.027 773 Sensitive 3.45E-

10

8.68E-

09

2.75E-

07

156 is N 6.245 -0.005 0.027 442 Sensitive 9.23E-

10

2.02E-

08

7.33E-

07

156 is PNGS 6.222 NA NA 805 Sensitive 9.23E-

10

2.02E-

08

7.33E-

07

280 is S 5.592 -0.011 0.027 740 Resistant 5.76E-

17

2.66E-

15

4.68E-

14

425 is R 5.346 -0.007 0.027 558 Resistant 1.64E-

10

4.54E-

09

1.31E-

07

824 is PNGS 1.303 0.012 0.027 13 Resistant 3.21E-

06

4.16E-

05

0.002

229 is PNGS 0.99 0.013 0.028 10 Resistant 6.62E-

07

1.06E-

05

5.16E-

04

Features shown were ranked among the top 50 features by either VIM method and had a Holm-Bonferroni 2-sided p-value less than 0.05 for an association with the

outcome in a logistic regression model using both datasets (with adjustment for geographic region as in all analyses).
1The ensemble-based VIM standard error is based on the estimated influence function for the ensemble-based VIM [49].
2 When the direction of effect is “sensitive” (“resistant”), the presence of or a higher quantity of the feature associates with a censored (non-censored) IC50, which is

interpreted as VRC01 sensitivity (resistance).
3 The p-value is from a Wald test in a logistic regression model testing the association of the feature with outcome, controlling for the sequences’ geographic region of

origin information to control for possible confounding.
4 The q-value is the Benjamini-Hochberg false discovery rate.
5 The FWER p-value is the Holm-Bonferroni family-wise error-rate adjusted p-value.

FWER, family-wise error rate; MCCV, Monte Carlo cross-validation; SE, standard error; VIM, variable importance measure.

https://doi.org/10.1371/journal.pcbi.1006952.t001
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both datasets, and received large weight in the Super Learner ensemble in several instances. To

explore this model further, we fit this selected model to the whole dataset (sets 1 and 2 com-

bined), using the penalty that minimizes the 10-fold cross-validated deviance, and the resulting

model had 80 non-zero coefficients, showing that many AA features contribute to classifica-

tion of neutralization resistance (S6 Table).

Classifying IC50 censored with lasso using a reduced feature space. In a related sensitiv-

ity analysis, we sought to determine whether we could achieve equivalent classification perfor-

mance with only a small number of features and using a simple estimator. Extending the above

sensitivity analysis, we used the lasso as our estimator, and used the top five features selected

by this lasso on each dataset. For the model built using dataset 1, the selected features were

R456, G459, "subtype is C", "total cysteines in Env", and G132. For the model built using data-

set 2, the selected features were R456, G459, "subtype is C", N380, and I471. We then built a

predictive lasso model for each dataset of the IC50 censored outcome using only these five fea-

tures and validated this model against the second dataset. The simple lasso model built on

dataset 1 was validated on dataset 2 with an AUC of 0.865; the simple lasso model built on

dataset 2 was validated against dataset 1 with an AUC of 0.845. The results of this simple

Table 2. Variable importance measure (VIM) information for the features that have a Holm-Bonferroni p-value less than 0.05, ranked by their contribution to the

prediction of the quantitative log IC50 outcome.

Feature MCCV Composite VIM Ensemble VIM Ensemble VIM SE1 Ensemble VIM Rank Direction of Effect2 p-value3 q-value4 FWER

p-value5

456 is R 100 0.131 0.024 15 Sensitive 1.68E-23 1.40E-20 1.40E-20

459 is G 68.458 0.11 0.022 377 Sensitive 9.00E-20 3.74E-17 7.46E-17

181 is M 40.702 0.108 0.021 504 Resistant 4.12E-06 8.77E-05 0.003

279 is D 33.329 0.109 0.021 460 Sensitive 5.39E-05 8.29E-04 0.042

Subtype is A1 31.624 0.117 0.022 56 Sensitive 1.09E-05 1.97E-04 0.009

Length of Env 30.962 0.105 0.021 680 Resistant 6.53E-06 1.29E-04 0.005

655 is N 26.362 0.103 0.021 768 Resistant 2.30E-05 3.82E-04 0.018

471 is I 23.337 0.112 0.022 204 Resistant 1.77E-09 7.74E-08 1.44E-06

Length of gp120 19.636 0.106 0.021 636 Resistant 6.86E-06 1.33E-04 0.005

471 is G 19.324 0.106 0.021 638 Sensitive 8.80E-09 3.04E-07 7.10E-06

280 is N 16.896 0.11 0.021 368 Sensitive 2.43E-15 5.05E-13 2.01E-12

179 is L 10.191 0.113 0.022 170 Sensitive 5.74E-06 1.16E-04 0.005

456 is S 6.81 0.116 0.021 69 Resistant 1.47E-06 3.48E-05 0.001

459 is D 5.934 0.106 0.021 626 Resistant 1.89E-07 5.42E-06 1.52E-04

425 is N 4.186 0.119 0.021 44 Sensitive 3.33E-09 1.38E-07 2.70E-06

455 is Q 0.011 0.12 0.022 37 Resistant 8.70E-09 3.04E-07 7.03E-06

428 is M 0.007 0.204 0.032 3 Resistant 2.31E-07 6.40E-06 1.85E-04

280 is T 0.005 0.126 0.023 19 Resistant 7.63E-06 1.44E-04 0.006

Features shown were ranked among the top 50 features by either VIM method and had a Holm-Bonferroni 2-sided p-value less than 0.05 for an association with the

outcome in a linear regression model using both datasets (with adjustment for geographic region as in all analyses).
1The ensemble-based VIM standard error is based on the estimated influence function for the ensemble-based VIM [49].
2 When the direction of effect is “sensitive” (“resistant”), the presence of or a higher quantity of the feature associates with a lower (higher) quantitative log IC50, which is

interpreted as VRC01 sensitivity (resistance).
3 The p-value is from a Wald test in a logistic regression model testing the association of the feature with outcome, controlling for the sequences’ geographic region of

origin information to control for possible confounding.
4 The q-value is the Benjamini-Hochberg false discovery rate.
5 The FWER p-value is the Holm-Bonferroni family-wise error-rate adjusted p-value.

FWER, family-wise error rate; MCCV, Monte Carlo cross-validation; SE, standard error; VIM, variable importance measure.

https://doi.org/10.1371/journal.pcbi.1006952.t002
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approach with a small number of features are nearly equivalent to the performance of the

“lasso (using geography and all features pre-selected by lasso)” method described above that

yielded 80 non-zero coefficients, which had AUCs of 0.843 (0.779, 0.908) when trained using

dataset 1 and validated against dataset 2, and 0.866 (0.806, 0.925) when trained using dataset 2

and validated against dataset 1. This sensitivity analysis suggests that using a simple estimator

and a small number of important features performs nearly as well as the estimator using the

full set of predefined features.

Classifying IC50 censored with lasso using the top selected features from the VIM analy-

sis. We sought to determine whether using the top selected features of the VIM analysis in

Table 1 in a lasso model would yield similar classification performance to our previous sensi-

tivity analysis (using the top five lasso-selected features only). We also sought to determine the

minimum number of features required to achieve equivalent performance. Starting with the

top five VIM-determined features and working incrementally through the top ten VIM-deter-

mined features, we built a lasso model for each dataset of the IC50 censored outcome and vali-

dated the model against the respective hold-out dataset. The classification of this endpoint

achieved equivalent performance as the full model using all features with the top seven VIM-

determined features, achieving AUCs of 0.861 (when trained on dataset 1 and validated on

dataset 2) and 0.841 (when trained on dataset 2 and validated on dataset 1). In contrast, the

top six (or fewer) VIM-determined features achieved a slightly reduced performance, with

hold-out validated AUCs of 0.824 and 0.794 for training sets one and two, respectively. The

equivalent performance from a simple lasso model using the top seven features selected by the

VIM analysis suggests that these seven VIM-identified features may account for a large pro-

portion of the performance of the full model.

Assessing for phylogenetic confounding. Our analyses have corrected for potential HIV-

1 phylogenetic confounding by always controlling for geographic region, which we acknowl-

edge is a somewhat limited approach. In light of this, we conducted another sensitivity analysis

with more-refined confounding control based on phylogenetic trees. A neighbor-joining tree

was built from all the Env protein sequences using DIVEIN [40], and using the pairwise phylo-

genetic divergence, we identified the pair of sequences with the closest distance; the sequence

in this pair with the shortest mean pairwise divergence to all other sequences was removed

from the population, and the process repeated until all sequences had a pairwise divergence

greater than 0.05. This reduction process identified 76 sequences (12.4%) for removal, result-

ing in a total of 535 sequences. Starting with the same two analysis data sets that were used by

our primary analysis, removing these sequences resulted in two new analysis data sets of size

n = 275 (set 1) and n = 260 (set 2). Classifying the dichotomous IC50 censored endpoint, the

best model with set 1 yielded a CV-AUC of 0.863 (validating on set 2 with an AUC of 0.913),

and the best model with set 2 yielded a CV-AUC of 0.870 (validating on set 1 with an AUC of

0.786). The performance of these models is similar to those that were trained on whole data-

sets, implying that our modeling process is not majorly affected by phylogenetic confounding.

Discussion

Excellent research has been done to understand HIV-1 Env genotypic/AA features that affect

VRC01 resistance [2, 9, 41–44]. Our approach complements this work by applying state-of-

Fig 6. Positions, magnitudes, and distributions of amino acid residues at predictive sites selected by VIM methods. A) IC50 censored

outcome; B) Quantitative log IC50 outcome. C and D) Logo plots of the probabilities of each of the amino acids observed at key positions in

(C) VRC01-sensitive Env pseudoviruses and D) VRC01-resistant Env pseudoviruses. FWER, family-wise error rate; VIM, variable importance

measure. The positions illustrated here correspond to the results in Tables 1 and 2 for the presence of residues at specific sites.

https://doi.org/10.1371/journal.pcbi.1006952.g006
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the-art machine learning and methodology for unbiased, nonparametric statistical inference

(our area of expertise) − a contribution not yet provided in previous computational

approaches to define AA sequence signatures for various bnAbs [7, 45–49] − and then inter-

preting the results in comparison with those from literature. Other advantages of our modeling

approach are that it (i) combines the strengths of several machine learning algorithms to

improve prediction accuracy in an automated, unbiased way; and (ii) bases all decisions on

hold-out validation, where only data not used in model building is used for measuring predic-

tive performance and for selecting features.

Within each of two separately analyzed halves of the CATNAP data, we used the metrics of

cross-validated AUC and cross-validated nonparametric R2 for summarizing prediction accu-

racy to compare the performance of different learners and feature sets, with 95% confidence

intervals that are valid in the context of “inference after model selection” [38]. We then applied

models fit with one dataset to the other completely separate dataset, validating their perfor-

mance and effectively providing a simple conclusion of replicability of the results. In addition,

our novel Super Learner-based variable importance measure (VIM) has a useful incremental

predictive value interpretation for a given feature, as the additional proportion of variance in

the outcome explained by including the feature in addition to including all other features [50].

An advantage of this nonparametric VIM is that its interpretation does not require any partic-

ular parametric model for the data to hold, in contrast to methods such as logistic regression.

In our first objective (model selection), we identified several models via machine learning

that provided strong and similarly accurate performance to classify viruses (based on specific

AA sequence features in Env) as resistant vs. sensitive, measured by whether neutralization

IC50 is right-censored or by restricting the “sensitivity” category to IC50 < 1 μg/mL. Due to its

advantageous theoretical properties, strong performance in simulation studies and data analy-

ses, and consistently high performance in the present work, the Super Learner is the learning

approach that will be advanced to the primary sieve analysis. We have already created a prelim-

inary Super Learner-based model to predict neutralization sensitivity of virus sequences

obtained from HIV-1 infections occurring during the AMP trials. When predicting the quanti-

tative endpoints, our models had weaker performance than those built to classify the dichoto-

mous outcomes. It is possible that the dichotomous IC50 outcome is easier to classify because

the value “censored” has clear meaning as neutralization activity not being detected in the

experiment [8], whereas log IC50 and log IC80 may have more noise due to natural variability

in the TZM-bl assay and the assignment of specific numeric values to censored values. In addi-

tion, of the three quantitative outcomes studied, prediction performance was best for log IC50,

intermediate for log IC80, and worst for neutralization slope. This may be explained in part

because 29.6% percent of the 611 viruses in CATNAP were missing data on IC80 (and by

extension, neutralization slope), and perhaps the missing data is contributing to a diminished

predictive signal. In addition, the slope readout is a ratio-readout with the additive difference

term log IC80 –log IC50 in the denominator, such that if noise makes IC80 close to IC50, then

the denominator is small, and the impact of noise is amplified. This can occur because each of

IC80 and IC50 are estimated imperfectly based on a percent neutralization by concentration

curve (with IC50 estimated with somewhat more precision given the fiftieth percentile is in the

center of the percent neutralization distribution). Thus, it remains an open question whether

slope is a meaningful neutralization outcome.

Our novel findings in objective 2 pertain to the variable importance measures of individual

AA sequence features, which identified 14 specific residues at certain AA sites (M181, E279,

S280, T280, C397, R425, M428, Q455, H456, S456, W456, D459, I471, and N655) and 6 other

AA sequence features (longer gp120, longer Env, more cysteines in gp120, more cysteines in

Env, and PNG sites at 229 and 824) that had high variable importance for predicting
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neutralization resistance. We also identified 18 specific residues (P124, N156, L179, D279,

N280, S365, H374, N425, Q428, R456, D457, G458, G459, E466, R469, G471, T569, and D589)

and 4 other AA sequence features (PNGS at sites 156 and 616, more PNG sites in V5, and sub-

type A1) that had high variable importance for predicting neutralization sensitivity.

Most of the important features identified in this study were based on the documented

VRC01 footprint and the CD4 binding sites, which largely overlap with each other. Seven of

the predictive residues that we identified, however, fall outside of these regions. Three of these

seven sites were included for analysis because of their covariation with sites within the VRC01

footprint: L179 (lending to VRC01 sensitivity), and M181 and C397 (lending to VRC01 resis-

tance). The latter finding is interesting, in that it is rare to find cysteines in the surface-exposed

region of gp160 outside the context of the 10 canonical disulfide bond-forming pairs

(described in [51]). Neither site 179 nor site 397 has been described in the literature to be asso-

ciated with VRC01 activity, although glycans at 397 have been found to be important for the

binding activity of other bnAbs [52].

Three of the four remaining sites identified as predictive by this study were included as part

of the sites in gp41 that have been found to be associated with VRC01 binding: T569 and D589

were associated with increased sensitivity, and N655 was associated with resistance. These

results agree with previous reports of similar mutations altering neutralization sensitivity glob-

ally [53–55], and highlight how variation in the HR-1 and HR-2 domain of gp41 can modulate

sensitivity to neutralization by VRC01.

The final site identified by this study is N156 (lending to VRC01 sensitivity), which was

included as part of Group 6, based on the probability that the presence or absence of a PNGS

at this site would result in improved or reduced VRC01 binding [56]. Indeed, site 156 was

observed to be a PNGS in 94% (576 of 611) of the CATNAP sequences included in this study,

where disruption of the PNGS motif was more likely to confer VRC01 resistance: 51% of sites

without a PNGS at site 156 were found to be VRC01 resistant, while only 14% of sites with a

PNGS at site 156 were VRC01 resistant. A glycan at this position has been hypothesized as

being important for recognition by other bnAbs [57], but to the best of our knowledge this is

the first report to associate N156 with sensitivity to neutralization by VRC01.

Many of the residues we identified as highly predictive of at least one of the outcomes are

supported by experimental evidence as being important for VRC01 binding. Four of the top-

ranked AAs found in this study (D279, N280, R456, and G459) have been shown to be sites of

common interactions with potent VRC01-like Abs [58], and D279 and E459 have been identi-

fied as making critical interactions with VRC01 [9, 52]. Moreover, mutation of residue D279

to E279 (D279E) was shown to be part of the VRC01 escape pathway within the donor from

whom VRC01 was isolated [41]. For objective 2, we also found that AA sequence features in

the VRC01 binding footprint sites and in the CD4bs have greatest variable importance, a result

that is not surprising given previous work. This finding supports conducting AMP sieve analy-

ses that focus on groups of AA sites that define these two regions.

Diverse approaches have been taken to identify Env sequence patterns associated with

bnAb neutralization sensitivity (bnAb signatures) [7, 45–49]. We next discuss our work in the

context of sequence-based approaches that have been taken to predict sensitivity to

VRC01-mediated neutralization. Using non-linear support vector machines to predict neutral-

ization sensitivity of pseudoviruses with different Env AA sequences, Hake and Pfeifer identi-

fied N186, N276, N279, N280, G459, and K232 as strong predictors of susceptibility to

VRC01-mediated neutralization [59]. Of these 6 AAs, we found that G459 ranked extremely

highly for contribution to prediction to 4 out of the 5 outcomes (Table 2, S6 Table). N280 also

ranked highly for contribution to prediction of the quantitative log IC50 outcome (Table 2).

Moreover, considering that for each of the outcomes, only a small number of sites (between 2
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to 4 for each outcome) met our criteria for being highly predictive of a given outcome (high

VIMs across both methods, a low FWER p-value), and that our sensitivity analysis was able to

achieve equivalent classification performance of the IC50 censored outcome with only five fea-

tures (see Results), our results support the overall conclusion of Hake and Pfeifer that, in gen-

eral, only a few key residues are needed to well-predict neutralization resistance.

While we have reported our specific findings based on all available VRC01 CATNAP data

as of the initiation of this work in March 2017, the CATNAP database is being continuously

updated to include new results in the scientific literature; at the time of this writing, the CAT-

NAP database includes 54 neutralization results that were not available when the datasets for

this analysis were finalized. When finalizing the plan for the AMP sieve analysis (expected in

2020), we plan to re-run this predictive analysis with an up-to-date version of the CATNAP

database, to (a) ensure that our selected PAR scores are based on the maximum number of

pseudoviruses/sequences; (b) verify that the most predictive AA features remain the same, and

(c) update our analysis plans accordingly if new AA features are found that outperform the

top-performing AA features identified here. We will also consider including AA sequence fea-

tures identified by others in complementary analysis approaches.

We now discuss the limitations of this study. To maximize our sample size, we used all

available sequences with TZM-bl neutralization data in the CATNAP database, regardless of

their subtype. The AMP trials, however, are conducted in regions where circulating HIV-1

viruses are largely subtypes B (Americas and Switzerland) and C (southern Africa). As such,

the results of this analysis may be influenced by characteristics of viral subtypes that will not

play a role in the AMP trials; however, we note that our analysis did assess whether subtype

helped predict neutralization resistance, and only subtype non-A1 vs. subtype A1 was found to

be an important feature (while subtype C was associated with greater neutralization resistance,

its variable importance measures did not rank it among the most predictive features).

While the TZM-bl assay is validated and the multiple labs contributing data to CATNAP

undergo certification through proficiency testing, nevertheless it is common for different labs

to produce IC50 or IC80 readouts with two-to-three-fold variation on the same samples [60].

This variability creates noise in the outcome variable that dampens prediction accuracy. In

addition, the outcome predicted best by our models–whether the IC50 outcome was reported

as right-censored (i.e., resistant) in the original publication cited by CATNAP [8]–has noise

stemming from unknown differences among labs in factors that were considered in defining

the outcome.

Another limitation of our approach is that we considered prediction of neutralization sensi-

tivity of a single Env pseudovirus based on its gp160 AA sequence, but some AMP efficacy trial

participants are expected to be infected with multiple founder viruses. How to properly

account for the number of founders and the accompanying multiple gp160 sequences in pre-

dicting neutralization sensitivity of an exposing viral quasispecies is an open question for

future research. An additional caveat is that we only analyzed VRC01 neutralization readouts

obtained by one particular assay, which uses TZM-bl target cells and is performed in vitro,

only approximating a real-life exposure event of the genital mucosa to HIV-1 in the presence

of VRC01; however, given that this assay is the standardized and validated platform for HIV-1

vaccine evaluation, developing predictors of this assay’s readouts is an important goal, with a

test of in vivo validation forthcoming from the AMP sieve analysis. Prior evaluation of the abil-

ity of multiple bnAbs to prevent HIV-1 infection using a mucosal tissue explant model has

shown that neutralizing activity as assessed by the TZM-bl assay is moderately correlated with

inhibitory activity in penile and cervical tissue, but not correlated with inhibitory activity in

colorectal tissue [61]. In addition, VRC01 may protect against HIV-1 acquisition in additional

ways not captured by a neutralization assay, such as via non-neutralizing Fc effector functions.
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In support of this idea, VRC01 (or serum from participants infused with VRC01) has been

shown to mediate low levels of antibody-dependent cell-mediated cytotoxicity [62] and higher

levels of antibody-dependent cellular phagocytosis (ADCP) of gp140-coated microspheres and

of virion capture [63], which may also be important for preventing HIV-1 acquisition. These

findings make it of interest in future work to build models predicting ADCP and other non-

neutralizing Fc effector functions based on AA sequence features.

With this study, we have created and applied modeling tools to help design the primary AA

sequence sieve analysis in AMP, such that the analysis will be based on the hypothesis that Env

AA-based predictors of in vitro resistance measured by the TZM-bl assay will also discriminate

prevention efficacy. For each of the top-ranked features we identified, the AMP sieve analysis

could test whether the level of prevention efficacy differs across HIV-1 variants of the feature.

Beyond preparation for sieve analysis in bnAb prevention efficacy trials, another application of

our predictive modeling framework includes scoring AA signature types for bnAb resistance,

prior to using a particular bnAb as a therapeutic in an HIV-1 infected individual.

Methods

Dataset

A total of 624 Env viral AA sequences, their associated pseudovirus IC50 and IC80 values for

neutralization by VRC01 as assessed by the TZM-bl assay, and other associated annotations

were retrieved from the CATNAP database [8]. [The 50% and 80% inhibitory concentrations

(IC50 and IC80, respectively) are defined as the concentration of VRC01 required to cause

either a 50% or 80% reduction in Env pseudovirus replication (as measured in relative lumi-

nescence units) relative to the level of replication in the absence of VRC01. This reduction in

replication in the presence of VRC01 is inferred to be a consequence of VRC01-mediated neu-

tralization. Hence, a low IC50 or IC80 value for VRC01 indicates that the given Env pseudovirus

is relatively sensitive to VRC01-mediated neutralization, whereas a higher or right-censored

IC50 or IC80 value indicates that the given Env pseudovirus is relatively resistant to VRC01-me-

diated neutralization.] Some of the provided annotation was unstructured or unsuitable for

analysis, so these data were refactored appropriately. (Additional details about the data pro-

cessing step can be found in the S1 Text.) Thirteen sequences/pseudoviruses were excluded

from the analysis, because their IC50 measurement was recorded as right-censored at 1 μg/ml.

According to the study that produced these results [64], this unusually low limit of censorship

was due to a lack of reagent. As such, we excluded these pseudoviruses from the study, as their

neutralization results were regarded as unreliable.

This resulted in a total of 611 sequences/pseudoviruses to include in the analysis, of which

48.0% (293) were subtype C (the predominant subtype in the HVTN 703/HPTN 081 trial) and

13.3% (81) were subtype B (the predominant subtype in the HVTN 704/HPTN 085 trial) (S8

Table). Of these 611 pseudoviruses, all 611 had quantitative log IC50 neutralization readouts,

which means that the IC50 censored outcome and the quantitative log IC50 outcome (defined

below in “TZM-bl resistance outcomes used in this analysis”) were available for all 611 of

them. We were able to derive a sensitive/resistant only outcome for 474 (77.6%) of these pseu-

doviruses, and 430 (70.4%) of the pseudoviruses had an IC80 neutralization readout, which

means that we were only able to derive quantitative log IC80 and neutralization slope outcomes

for these 430 pseudoviruses. All of the data used in this analysis, including the identifiers of the

sequences and their outcomes used, are posted at https://github.com/benkeser/vrc01/tree/1.0.

The restructured dataset was randomly partitioned into two datasets (“dataset 1” and “data-

set 2”) for the statistical learning analyses. The two datasets were mutually exclusive, each with

half of the data [n = 306 (dataset 1) and n = 305 (dataset 2)]. The random partitioning process
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was stratified by the viruses’ country of origin. We chose to stratify the data by country instead

of HIV-1 subtype because subtype was to be included as an input feature in the analysis, as it

was considered to be a potential sequence-based predictor of resistance, whereas country was

not used as an analytical feature but was controlled for as a potential confounder. Of the 611

HIV-1 sequences analyzed, 51.9% (317) originated from a country in which one or more study

sites for the HVTN 703/HPTN 081 trial are located and 9.5% (58) originated from a country in

which one or more study sites for the HVTN 704/HPTN 085 trial are located (S8 Table). The

geometric means of the imputed log10 IC50 values of the pseudoviruses whose Env sequences

were included in this analysis are shown by region/subtype in S12 Fig.

Envelope amino acid feature input variable groups

AA sites of potential relevance to VRC01-mediated neutralization of HIV-1 were included as

input features for the statistical learning analyses. For features defined by residue content at a

given AA site, only AA sites passing a minimum variability filter were included. Specifically,

the residue had to differ from the consensus residue in at least 3 sequences in the entire analy-

sis dataset (i.e., before splitting into the two analysis sets). Furthermore, indicators for the pres-

ence of a residue at a specific site were only included if that residue was present in at least three

viral sequences at that site across the entire dataset.

Those sites that passed the minimum variability requirement were included in the analysis

if they fell into any of the following pre-defined groups (many sites are found in more than

one pre-defined set):

Group 1) VRC01 binding footprint sites, corresponding to the 35 AA positions in gp120

identified in [2] as contact sites between VRC01 and HIV-1 Env;

Group 2) CD4 binding sites, corresponding to all AA positions that constitute the CD4 bind-

ing site as defined in [2];

Group 3) Sites with sufficient exposed surface area (ESA) as calculated by the DSSP program

[65, 66] using crystal structures of VRC01 in complex with clade A/E gp120, clade A gp120,

clade C gp120, clade G gp140, and clade B gp140 (PDB IDs 3NGB [2], 4LSS [67], 4LST [67],

5FYJ [68], and 5FYK, respectively) (further details are given in S1 Text);

Group 4) Sites identified as important for glycosylation, including AA positions related to

the glycan fence identified in [68–70] or identified in [68] as sites where VRC01 interacts

with the Env trimer;

Group 5) Sites with residues that covary with the VRC01 binding footprint sites, correspond-

ing to all gp120 AA positions (excluding those in the signal peptide) not included in Groups

1–4 that are outside the VRC01 footprint (defined in [2]) and that statistically covary with at

least one footprint position, based on the normalized mutual information statistic and an

accompanying test for whether there is covariability [71] (further details are given in S1 Text);

Group 6) Sites associated with VRC01-specific potential N-linked glycosylation (PNGS)

effects, identified by a Bayesian machine learning approach that assessed bnAb binding

against a panel of 94 recombinant gp120 monomers [56], where the presence or absence of

a PNGS results in improved or reduced VRC01 binding; and

Group 7) Sites in gp41 associated with VRC01 sensitivity or resistance, corresponding to

the 13 sites identified in [53–55, 72–78].

In addition to AA sites, the following features within feature groups were also included as

input features:
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Group 8) Indication of potential N-linked glycosylation sites (PNGS). A binary indicator

was provided for sites in all of Env that featured the canonical N-linked glycosylation motif

([N][!P][S|T]) [79] in at least 3 of the analysis sequences (and absent from at least 3 of the

analysis sequences). PNGS indicators were not included for sites that are insertions relative

to HXB2, since these sites are difficult to reproduce precisely in a different alignment.

Group 9) Majority virus subtypes: Virus subtype was included for all subtypes present in at

least 10 database sequences for the entire dataset. These subtypes include CRF01_AE,

CRF02_AG, CRF07_BC, A1, A1C, A1D, B, C, D, O. All sequences with a subtype repre-

sented by fewer than 10 sequences (n = 44, 7.2% of total) were grouped into the subtype cat-

egory of “Other”. This information was represented in the data as binary indicator variables

for each subtype (including “Other”).

Group 10) Region-specific counts of PNG sites, corresponding to the numbers of PNG sites

as defined by the canonical N-linked glycosylation motif ([N][!P][S|T]) [79] among 10 dif-

ferent site sets (site sets are described in S1 Text). This information was included under the

rationale that subtype C neutralization resistance has been shown to be strongly associated

with high glycan density [80];

Group 11) Viral geometry, corresponding to the total lengths of five different regions

within the Env sequence known to be important for VRC01 binding: the entire Env poly-

protein, the entire gp120 protein, the V5 region, Loop D, and Loop E (additional detail in

S1 Text);

Group 12) Cysteine counts, corresponding to the numbers of cysteines present within five dif-

ferent regions of the Env sequence: the entire Env polyprotein, the entire gp120 protein, the

V5 region, Loop D, and Loop E (additional detail in S1 Text); and

Group 13) Steric bulk at critical locations, corresponding to the total number of “small” (as

defined in [81]) residues in the V5 region, in Loop D, and in the CD4 binding loop. This

group is based on the rationale that much natural resistance to VRC01 appears to be due to

steric clashes, especially in these loops [41, 42, 82].

All of these groups, and the sites contained within them, are outlined in Table 3A. Fig 7 pro-

vides a schematic visualization of the AA sites in Feature Groups 1–7 before application of the

minimum variability filter (specific sites in each group are listed in S1 Text).

TZM-bl resistance outcomes used in this analysis

For this analysis, new univariate IC50 and IC80 outcome variables for each pseudovirus were

created that incorporate imputations from the right-censored IC50 and IC80 values retrieved

from CATNAP and that account for occasions that values were reported from multiple studies.

This process is described in detail in S1 Text.

Using these IC50 and IC80 univariate outcomes, the statistical learning processes aimed to

predict from the AA sequence features five TZM-bl neutralization resistance outcomes: (1)

dichotomous resistance outcome of whether the IC50 is right-censored (the “IC50 censored”

outcome) as recommended in [8]; (2) dichotomous resistance outcome (the “sensitive/resis-

tant only” outcome), with resistance defined by the IC50 being right-censored as in (1) and

sensitive defined as IC50 < 1 μg/ml; (3) log10 IC50 resistance outcome as a quantitative measure

(the “quantitative log IC50” outcome); (4) log10 IC80 resistance outcome, also as a quantitative

measure (the “quantitative log IC80” outcome); and (5) estimated dose-response curve slope of

neutralization, which is a function of IC50 and IC80, calculated as in equation (6) of [83], equal
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to log(4) divided by (log IC80 –log IC50 (the “neutralization slope” outcome). A caveat of the

“IC50 censored” outcome analysis is that 50 pseudoviruses that were included were right-cen-

sored at value IC50 > 10 μg/ml (no pseudoviruses right-censored at a lower value were

included), yet some pseudoviruses had observed IC50s only incrementally larger than 10 μg/ml

Table 3. Distinct input variable sets used for the machine learning analyses, and learning algorithm types.

A. Distinct input variable sets used for the Super Learning analyses

Variable set name Variables1

1: geog Geographic region (Asia/Europe and Americas/N. Africa/S. Africa)

2: geog.AAchVRC01 geog + Group 12 (AAs in the VRC01 binding footprint) (97, 124, 198, 276, 278, 279, 280, 281, 282, 365, 371, 428, 429, 430, 455, 456, 458, 459,

460, 461, 463, 465, 466, 467, 474, 476)

3: geog.AAchCD4bs geog + Group 2 (AAs in the CD4 binding site) (124, 125, 198, 279, 280, 281, 282, 283, 365, 369, 374, 425, 426, 428, 429, 430, 432, 455, 456, 458,

459, 460, 461, 471, 474, 475, 476, 477)

4: geog.AAchESA geog + Group 3 (AAs with sufficient Exposed Surface Area) (97, 198, 276, 278, 279, 280, 281, 282, 365, 371, 415, 428, 429, 430, 455, 458, 459,

460, 461, 467, 474, 476)

5: geog.AAchGLYCO geog + Group 4 (AAs important for glycosylation) (61, 197, 276, 362, 363, 386, 392, 462, 463)

6: geog.AAchCOVAR geog + Group 5 (AAs that covary with the VRC01 binding footprint) (46, 132, 138, 144, 150, 179, 181, 186, 190, 290, 321, 328, 354, 389, 394,

396, 397, 406)

7: geog.AAchPNGS geog + Group 6 (AAs associated with VRC01-specific PNGS effects) (130, 139, 143, 156, 187, 197, 241, 289, 339, 355, 363, 406, 408, 410, 442,

448, 460, 462)

8: geog.AAchgp41 geog + All gp41 sites that affect global neutralization sensitivity (544, 569, 582, 589, 655, 668, 675, 677, 680, 681, 683, 688, 702)

9: geog.

AAchGlyGP160

geog + All gp160 N-glycosylation sites that are not included in VRC01 contact sites or paratope or sites with covariability

10: geog.st geog + Group 8 (viral subtypes) (01 AE/02 AG/07 BC/A1/A1C/A1D/B/C/D/O/Other)

11: geog.sequonCt geog + Group 9 (region-specific PNGS counts)

12: geog.geom geog + Group 10 (viral geometry metrics)

13: geog.cys geog + Group 11 (counts of cysteine residues in certain regions)

14: geog.sbulk geog + Group 12 (steric bulk at critical locations)

15: geog.corP geog + features selected with t-test univariate p-values

16: geog.glmnet geog + features selected with non-zero coefficients based off lasso

17: geog.all.MCCV All variables in sets 1–13, described above (AAs as positions 46, 61, 97, 124, 125, 130, 132, 138, 139, 143, 144, 150, 156, 179, 181, 186, 187, 190,

197, 198, 241, 276, 278, 279, 280, 281, 282, 283, 289, 290, 321, 328, 339, 354, 355, 362, 363, 365, 369, 371, 374, 386, 389, 392, 394, 396, 397, 406,

408, 410, 415, 425, 426, 428, 429, 430, 432, 442, 448, 455, 456, 458, 459, 460, 461, 462, 463, 465, 466, 467, 471, 474, 475, 476, and 477, plus all

features in Groups 8 through 12)

B. Learning algorithm types and the distinct input variable groups used with each learner

Algorithm type3 Input variable groups from 3A

SL.randomForest 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16

SL.glmnet 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16

SL.xgboost 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16

SL.naiveBayes 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16

SL.glm 1,10,11,12,13,15,16

SL.step 1,10,11,12,13,15,16

SL.step.interaction 1,10,11,12,13,15,16

SL.mean None

geog = geography; AA = amino acid. AA positions are given in HXB2 coordinates.
1All amino acids included in the variable sets met the minimum variability filter that the site had to differ from the consensus site in at least 3 sequences in the entire

CATNAP data set (i.e. before splitting into the two analysis sets).
2See Methods for details on listed input variable Groups 1−13
3The algorithms are listed by the functions used in the SuperLearner R package. An exception is “SL.naiveBayes”, which was a custom wrapper designed to use the

naiveBayes function from the e1071 package. The SL.glmnet package was used with the lasso penalty. All tuning parameters are set to the default values of the

SuperLearner package, except SL.xgboost, which we modified to fit decision stumps rather than trees.

https://doi.org/10.1371/journal.pcbi.1006952.t003
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(e.g., 14 pseudoviruses had IC50 greater than 10 μg/ml and less than 50 μg/ml); this issue could

add noise to the analysis.

Statistical learning approaches

Creating proteomic antibody resistance (PAR) scores for use in the primary statistical

amino acid sequence sieve analyses of the AMP trials (Objective 1). We applied several sta-

tistical learning techniques to determine the best prediction function for each outcome. These

learning techniques included modern machine learning approaches: lasso [84] (with identity

link for continuous outcomes and logistic link for dichotomous outcomes, implemented in the

glmnet R package [85]), random forests [86] (implemented in the randomForest R package

[87]), Naïve Bayes [88] (for dichotomous outcomes only, implemented in the e1071 R package

[89]), and boosted decision stumps via extreme gradient boosting [90] (implemented in the

xgboost R package [91]). We also included classical statistical techniques: generalized linear

models and stepwise-selected generalized linear models (again with identity link for continu-

ous outcomes and logistic link for dichotomous outcomes, implemented in the glm R package

[92]). Each learning approach was combined with different variable screening techniques,

resulting in a total of 82 candidate learning algorithms for each dichotomous outcome, and 67

candidate models for each continuous outcome (listed in Table 3B). We also considered a con-

vex ensemble of all learners using regression stacking [33, 93], also known as Super Learning

[34]. In this approach, the candidate learning algorithms are combined by convex weights cho-

sen to minimize a cross-validated prediction criterion (in this work, we used mean squared

error for continuous outcomes and average negative log-likelihood loss for dichotomous out-

comes). This allows the contribution of each candidate learning algorithm to be between zero

and one, with the weights summing to one. Since the Super Learner estimator is a convex com-

bination of the individual candidate learners, the Super Learner estimator is as nonparametric

as the most nonparametric estimator included in the Super Learner algorithm [34]. In particu-

lar, including random forests and boosted decision stumps in our library of candidate learners

makes our Super Learner estimator highly flexible.

The following analyses were done separately for each of the two partitioned datasets. Each

candidate learner and the Super Learner were evaluated on each dataset via internal 10-fold

Fig 7. Specific sites in Feature Groups 1 to 7 before application of the minimum variability filter.

https://doi.org/10.1371/journal.pcbi.1006952.g007
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cross-validation. That is, each of the two datasets were split into ten folds and cross-validated

prediction metrics were computed on each dataset. We note that in computing these measures

for the Super Learner, which itself utilizes cross-validation, it was necessary to perform nested

cross-validation. For dichotomous outcomes, we computed the cross-validated area under the

receiver operating characteristics curve (CV-AUC), while for quantitative outcomes, we com-

puted the cross-validated nonparametric R-squared (CV-R-squared or CV-R2), defined as one

minus the ratio of cross-validated mean squared error and the variance of the outcome. The

CV-R2 measures the proportional reduction in mean squared-error when predicting the out-

come using a given learner versus predicting the outcome using its mean. Thus, values close to

one indicate that a learner nearly perfectly predicts the value of the outcome, values close to

zero indicate that a simple average of the outcome predicts the outcome about as well as the

learner, and values below zero indicate that a simple average predicts better than the learner.

Wald-type 95% confidence intervals about CV-AUC and CV-R2 were computed using influ-

ence function-based standard error estimates [38]. This influence function-based approach

allows us to compute valid confidence intervals for the true CV-AUC and the true CV-R2 on

both the training and validation sets [38].

Proteomic antibody resistance (PAR) scores are defined for given gp160 AA sequences as

the predictions generated by the models that performed best in terms of CV-AUC or CV-R2

consistently across the two datasets and validated against the separate dataset (we ended up

selecting the Super Learner model), and used as a predictor of VRC01 sensitivity to study as a

discriminator of prevention efficacy in the AMP sieve analysis. When the HIV-1 sequences

from infected trial participants are available for the AMP sieve analysis, the final Super Learner

predictive model for creating the PAR scores will be updated by re-fitting the model to the

entire available CATNAP dataset.

Assigning variable importance measures (VIMs) to AA sequence features in the input

set and thresholds for inclusion in the analysis (Objective 2). To determine a group of gp160

AA features to be included in the primary sieve analysis for AMP, each individual feature and each

pre-defined group of features (see “Input variable groups” above) were assigned VIMs for each of

the five TZM-bl neutralization outcomes and each dataset (datasets 1 and 2). Two approaches

were taken to define variable importance: an algorithm-specific approach and an ensemble-based

approach. The arithmetic mean was then taken of VIMs across all learners. This resulted in a single

composite VIM for each feature, in the range of 0–100, for each of the five outcomes.

In the algorithm-specific approach, Monte Carlo cross validation (MCCV) was used with

each of the two data sets, using 1000 iterations and an 80/20 training/test split. Variable impor-

tance was defined using the commonly used importance metric for each learning algorithm.

Specifically, the VIMs for each learner are: the number of iterations where the feature was

selected over the MCCV runs (for the lasso and XGboost); the out-of-bag variable importance

measure for mean decrease in accuracy (for random forests); and the inverse log-10 of the p-

value of the balance of the probabilities for each variable (Naïve Bayes). This yielded one VIM

value for each unique combination of dataset, algorithm, outcome, and feature.

To fulfill Objective 2 based on the algorithm-specific VIMs, the VIMs for each algorithm/

outcome/dataset combination were linearly rescaled across features to a range of 0−100. The

two VIM values computed on the two datasets were consolidated using the geometric mean,

so that each learning method and outcome had a single VIM for each feature; using the geo-

metric mean penalized a feature for having discordant VIMs across the two datasets. The arith-

metic mean was then taken of the VIMs across all learners. This resulted in a single composite

algorithm-specific VIM for each feature, in the range of 0–100, for each of the five outcomes.

In the ensemble-based approach, variable importance was defined as the additional propor-

tion of variability in the outcome explained by including an individual feature or group of
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features in the estimation procedure relative to the other features; this compares the condi-

tional mean with all features included to the conditional mean omitting the individual or

group of features of interest, but keeping all other features [50]. By definition, the true, popula-

tion ensemble-based VIM is a number between zero and one. This VIM may also be viewed as

a population difference in R2 values. This implies that negative ensemble-based VIM estimates

are possible; negative estimates suggest that the features of interest decrease predictive perfor-

mance. However, the magnitude of the estimate must be taken into account prior to drawing

strong conclusions about decreases in prediction performance. We estimated a single VIM for

each unique combination of feature, outcome, and dataset; the specific details of the estimation

procedure are below.

The following procedure was applied to each of the two datasets separately. A cross-vali-

dated sequential prediction procedure was used in the ensemble-based approach to estimate

the additional variability in the outcome explained by the features of interest. We used Super

Learning [34] to perform predictions, with the same candidate learning algorithms [general-

ized linear models (including with interactions), stepwise regression, elastic net regression

(lasso), random forest, boosted decision stumps, and generalized additive models] as in the

Super Learner analyses for Objective 1 with a subset of the variable screens (all variables, and

features selected with t-test univariate p-values). To illustrate the sequential prediction proce-

dure, consider estimating the importance of the group of CD4bs (Group 2 above) in predicting

the quantitative log IC50 outcome in dataset 1. First, we split dataset 1 into 10 folds. Using each

fold in turn as a held-out test set, we: (1) fit a 10-fold cross-validated Super Learner to the

remaining nine-tenths of the data, predicting quantitative log IC50 using all features; (2) fit a

second 10-fold cross-validated Super Learner, using the same nine-tenths of the data, predict-

ing the fitted values from the first Super Learner (as the outcome) using all features besides the

CD4bs; (3) obtain predicted values on the held-out test set using the resulting algorithms from

(1) and (2); and (4) use these predicted values, along with the test set outcome data, to compute

an estimate of variable importance using the R package vimp [94], which implements the algo-

rithm outlined in [50]. We then average these 10 VIMs, resulting in a 10-fold cross-validated

estimate of the importance of the CD4bs; we also compute a 95% confidence interval for the

true variable importance of the CD4bs, again using the vimp package. This process was

repeated for each outcome of interest, each feature or group of features for which importance

was desired, and both datasets. Finally, we estimate the average VIM for each feature or feature

group by taking the mean across the two datasets; these within-dataset estimates are indepen-

dent, and thus we can obtain a confidence interval for the average straightforwardly, again

using the vimp package.

Since features are commonly selected for prediction because of their marginal gain in pre-

dictive ability in the context of all the other features, it is typical in a predictive model contain-

ing multiple features that several of the features will be working in a peripheral manner, and

that they are only weakly correlated with the outcome in a univariate context. Such peripheral

features would not be very useful in one type of sieve analysis: AA site scanning that tests sites

one at a time for whether prevention efficacy depends on residue content at the site. Accord-

ingly, we added a statistical test of each feature in a univariate context, using either logistic

regression (for dichotomous outcomes) or linear regression (for quantitative outcomes), with

geographic region of origin included in the model to control for any potential geographic con-

founding. Features with Wald test Holm-Bonferroni adjusted 2-sided p-value < 0.05 are

flagged as having evidence for being associated with the outcome.

Final selection of top-ranked features for consideration in the primary sieve analysis of the

AMP trials (i.e., to have satisfied Objective (2)) is based on both the algorithm-specific and

ensemble approach VIMs, as well as on the Holm-Bonferroni adjusted 2-sided p-values noted
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above. In particular, we report as top-ranked features those with a Holm-Bonferroni adjusted

2-sided p-value < 0.05 and that rank among the top 50 features by either of the two VIM

approaches. For the purpose of this paper, we focus on reporting and interpreting results for

the outcomes with the largest sample size: IC50 censored (dichotomous) and quantitative log

IC50 (continuous).
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