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Abstract

Experimental studies have begun revealing essential properties of the structural connectiv-

ity and the spatiotemporal activity dynamics of cortical circuits. To integrate these properties

from anatomy and physiology, and to elucidate the links between them, we develop a novel

cortical circuit model that captures a range of realistic features of synaptic connectivity. We

show that the model accounts for the emergence of higher-order connectivity structures,

including highly connected hub neurons that form an interconnected rich-club. The circuit

model exhibits a rich repertoire of dynamical activity states, ranging from asynchronous to

localized and global propagating wave states. We find that around the transition between

asynchronous and localized propagating wave states, our model quantitatively reproduces

a variety of major empirical findings regarding neural spatiotemporal dynamics, which other-

wise remain disjointed in existing studies. These dynamics include diverse coupling (correla-

tion) between spiking activity of individual neurons and the population, dynamical wave

patterns with variable speeds and precise temporal structures of neural spikes. We further

illustrate how these neural dynamics are related to the connectivity properties by analysing

structural contributions to variable spiking dynamics and by showing that the rich-club struc-

ture is related to the diverse population coupling. These findings establish an integrated

account of structural connectivity and activity dynamics of local cortical circuits, and provide

new insights into understanding their working mechanisms.

Author summary

To integrate essential anatomical and physiological properties of local cortical circuits and

to elucidate mechanistic links between them, we develop a novel circuit model capturing

key synaptic connectivity features. We show that the model explains the emergence of a

range of connectivity patterns such as rich-club connectivity, and gives rise to a rich reper-

toire of cortical states. We identify both the anatomical and physiological mechanisms

underlying the transition of these cortical states, and show that our model reconciles an

otherwise disparate set of key physiological findings on neural activity dynamics. We fur-

ther illustrate how these neural dynamics are related to the connectivity properties by
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analysing structural contributions to variable spiking dynamics and by showing that

the rich-club structure is related to diverse neural population correlations as observed

recently. Our model thus provides a framework for integrating and explaining a variety of

neural connectivity properties and spatiotemporal activity dynamics observed in experi-

mental studies, and provides novel experimentally testable predictions.

Introduction

An essential step toward understanding cortical circuits is to interrelate their connectivity and

their spatiotemporal dynamics that underlie brain functions [1, 2]. A growing body of work

has begun uncovering the basic connectivity properties of cortical circuits at the synaptic level,

including distance-dependent connectivity, i.e. the connection probability between neuron

pairs decreases as their distance increases [3, 4], and the common-neighbor property, i.e. the

connection probability between neuron pairs increases with the number of their shared neigh-

bors [3]. Local cortical circuits with these connectivity properties also possess significant het-

erogeneity in synaptic efficacy [5, 6], as well as in the number of connections each neuron

sends (out-degree) and receives (in-degree), as strongly suggested by both transfer entropy-

based effective connectivity measures [7, 8] and anatomically constrained modeling studies

[9, 10].

Cortical circuits with such connectivity properties exhibit complex spatial and temporal

dynamics. It has been experimentally established that cortical neurons in vivo fire very variably

[11]. Recent recordings in the cortex of awake mice and monkeys have also revealed that

cortical neurons differ in their coupling to the overall firing of the population, ranging from

strongly correlated “choristers” to weakly correlated “soloists” [12]. Despite these variable and

diverse neural response properties, it has been found that at the level of neural circuits, there

exist structured spatiotemporal patterns, such as propagating waves [13–15] and precisely

timed spiking triplets [14]. However, it remains unclear whether and how these seemingly

distinct neural dynamics at different neural levels can be reconciled, and how these neural

dynamics relate to the underlying network structure.

Here, we first develop a generative connectivity model of local cortical circuits, which cap-

tures the key connectivity properties found at the synaptic level (i.e., the distance-dependent

connectivity, the common-neighbor property, and the heterogeneous degrees). The model

predicts and explains the emergence of high-order connectivity patterns, such as overrepre-

sented three-neuron motifs and rich-club connectivity. The former has been observed in rat

visual cortex [5], and the latter has been recently observed in a biologically constrained in silico
model [10] and in the effective connectivity quantified by information transfer between neu-

rons in rodent somatosensory cortex [16]; the existence of high firing rate neurons that tend to

be more connected to each other implies such a heterogeneous connectivity [17]. We then

construct a biophysically-based, local cortical circuit model of spiking neurons by incorporat-

ing the connectivity structure arising from the generative model and by considering an essen-

tial neurophysiological property, i.e. correlated excitatory and inhibitory inputs into individual

neurons with an equalized I-E ratio across neurons [18]. We find that the cortical circuit

exhibits a rich repertoire of collective dynamics ranging from irregular, asynchronous behav-

ior to localized and global propagating waves, modulated by both anatomical and physiological

mechanisms.

We illustrate that around this transition point, the circuit model can quantitatively repro-

duce, as well as provide insights into, a wide range of seemingly contrasting dynamics at
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different levels, which otherwise remain disjointed in existing modeling studies of cortical cir-

cuits [9, 19–22]. These dynamics include tightly balanced excitatory and inhibitory currents

into individual neurons [23], synaptic conductance dynamics [24], variability of spiking

dynamics [11], diverse coupling relationships between individual neurons and the population

[12], dynamical wave patterns occurring intermittently across cortical space with their dynam-

ical properties quantitatively comparable to those measured in [14] and [13], and precise spik-

ing triplet structures [14]. We further characterize how these dynamics relate to the structure

by analyzing the contribution of the variability of the heterogeneous connectivity to that of

neural activity and by showing how the common-neighbor property provides a novel connec-

tivity mechanism for altering the circuit activity state. Moreover, we demonstrate that the

diverse population coupling behavior emerging near the transition point is related to the rich-

club connectivity. Our model provides a framework for integrating and explaining a great vari-

ety of neural connectivity properties and spatiotemporal activity dynamics observed in experi-

mental studies, thus significantly advancing our understanding of local cortical circuits.

Results

We develop the local cortical circuit model in two steps. First, we develop a generative connec-

tivity model to capture a wide range of neural connectivity features found at the synaptic level

(see Materials and methods). Second, based on the structure generated by the connectivity

model, we incorporate experimentally established neurophysiological properties, such as

equalized inhibition-excitation (I-E) ratios across neurons [18], to construct a biophysically-

based, local cortical circuit model of spiking neurons (see Materials and methods).

A generative connectivity model of local cortical circuits

We obtain the connectivity structure of our network by iterating the generative model until it

converges (see Materials and methods); this structure integrates a range of key connectivity

properties of local cortical circuits, including the heterogeneous in- and out-degree distribu-

tions [8–10], the distance dependent connectivity [3, 4], the common neighbor property [3].

The generated connectivity structure exhibits emergent, higher-order connectivity patterns,

such as overrepresented three-neuron (triad) motifs and rich-club structure.

As shown in Fig 1A, the model accurately generates the given degree distribution specified

in Eq 3, with the variance of the default distribution (at q = 0.4) over three times larger than

that of the Poisson distribution (q = 0). The connection probability decreases as the inter-neu-

ron distance increases in the generated networks, as described by the exponential function in

our model (Fig 1B; see Materials and methods); this is consistent with experimental results in

[3] and [4]. The distance decay constants in Fig 1B network results are primarily determined

by the decay constant τD used in our generative model, but also modulated by the common

neighbor factor. To illustrate this, we remove the common neighbor factor in the model

(by setting aΓ = 1) and find that the generated decay constants (6.08 ± 0.04, 12.07 ± 0.07,

20.15 ± 0.12; fitted to one random trial, 95% confidence interval) become almost identical with

the generative decay constants τD used in our model (τD = 6, 12, 20, respectively). As shown in

[25], such distance-dependent connections alone can give rise to the common neighbor prop-

erty in our generated networks; that is, the connection probability increases linearly with the

number of shared pre-synaptic common neighbors (Fig 1C; aΓ = 1; r = 0.64, p< 0.001). This

common neighbor property has been found in layer 5 of rat somatosensory cortex [3].

The additional incorporation of the explicit common neighbor factor in our model (Eq 1),

however, allows for a direct control of the slope of increase as shown in Fig 1C (r = 0.77,

p< 0.001, for the default model with aΓ = 2); this indicates that a stronger common effect
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(i.e., a greater aΓ) results in a greater degree of clustering in the generated network (Fig 1D),

which is a key anatomical mechanism underlying the transition of different activity states in

our circuit model as illustrated in the following sections. For the connection strengths in the

generated network, their distribution follows the theoretical one (Fig 1E), which is log-normal

as found in experimental studies [5], and the average incoming connection strengths and in-

degrees follow the inverse square root scaling (Fig 1F), consistent with [26].

Overrepresented connectivity patterns. To demonstrate the presence of overrepresented

pair and triad motifs in our model as found in the layer 5 of rat visual cortex [5], we first com-

pare the number of bidirectional connections against Erdős-Rényi (E-R) random networks.

We find significantly more bidirectional connections than expected in E-R networks

(mean ± SEM: 1.94 ± 0.02, p< 0.001, one sample t-test), indicating that the bidirectional con-

nections are overrepresented. A triad motif can be arranged in thirteen ways with all three

neurons connected to each other (Fig 2A). As in [5], we compare the numbers of these motifs

Fig 1. Connectivity properties synthesized by the generative model. (A) The generated (dots) and theoretical (solid lines) in-degree distributions

with different hybrid parameters q; q = 0 and q = 1 correspond to the pure Poisson and log-normal distributions, respectively. (B) The generated (dots)

connection probabilities as a function of inter-neuron distance with different decay constants τD. The decay constants of fitted exponential curves (solid

lines) are 5.57 ± 0.05, 11.17 ± 0.04, 19.25 ± 0.15 (95% confidence), respectively. (C) The generated (dots) connection probabilities as a function of

shared pre-synaptic common neighbors with different common neighbor coefficients aΓ; the error bars show one SEM of 65 trials. The solid colored

lines are the linear fit to the data. For each trial, the results are calculated from 2000 samples; each sample consists of 12 neurons randomly selected from

a circular region in the network containing 2000 excitatory neurons to approximate the sampling methods used in [3]. The results are not sensitive to

the diameter of the sampling area. The solid black line is the expected curve from the E-R random networks. (D) The mean clustering coefficient (CC)

of the network (colored and black dots) increases as the common neighbor coefficient aΓ increases. The solid line is the fitted exponential function (0.22

− 0.089e−aΓ/7.04; R2 = 0.996). The convergence of mean CC for 4 example aΓ values (colored dots) after iterations of the algorithm is shown in the inset.

(E) The generated (dots) and theoretical (solid line; log-normal) distributions of unitary EPSP magnitudes. (F) The average incoming connection

strength and the in-degree of individual excitatory neurons (dots) follow the inverse square root scaling (solid line fitted; R2 = 0.917); note the plot is on

a log-log scale. All the empirical data sets or points in (A-B) and (D-F) show the results of individual realizations of the generative model with default

parameter values (unless otherwise stated).

https://doi.org/10.1371/journal.pcbi.1006902.g001
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in our network against those in a null model, which is a random network with the unidirec-

tional and bidirectional connection probabilities specified separately to match the original net-

work. As shown in Fig 2A, the triad motifs in our model exhibit two salient features. First, for

the most overrepresented motif, No.13 (the fully connected motif), its count relative to the null

model (4.96 ± 1.86; p< 0.001, one sample t-test) is dominantly higher than the other motifs;

Fig 2. Emergent higher-order connectivity features. (A) Triad motif counts. Within each trial, the motif counts are averaged from

1000 randomly sampled quadruplets using the brain connectivity toolbox [28] and 100 control networks are generated to normalize

the motif counts. The error bars show one SEM from 10 trials. The mean clustering coefficient is shown above each motif, with the

non-zero ones highlighted in red. The asterisks denote the relative motif counts that are statistically significantly different from one

(red asterisks p< 0.001, black asterisks p< 0.034; Holm step-down adjusted p-values [29]). (B) Left y-axis (blue): normalized rich-

club coefficients F(k), which measures the extent to which the neurons with total degrees> k in a network are over-connected to

each other. Within each trial, 100 control networks are generated to normalize the coefficients. The coefficient peaks at 1.60, which is

significantly higher than 1 as given by the control networks (p< 0.001, one-sample t-test). Right y-axis (red): dynamical importance

(averaged across neurons with the same total degree k within each trial), defined as the fractional change (%) in the largest eigenvalue

of the adjacency matrix of the network upon removal of the neuron from it. The solid lines show the averages over 10 trials and the

shaded areas show one SEM. Data for k< 200 is omitted from the plot because neurons with total degree k< 200 are sparse. (C) The

rich-club curves with different common neighbor coefficients aΓ. Inset: the maximum rich-club coefficient between k = 500 and

k = 600 are positively correlated with the common neighbor coefficient. Both motif and rich-club results are calculated for a circular

region in the network containing 2000 excitatory neurons to avoid artefacts from the periodic boundaries.

https://doi.org/10.1371/journal.pcbi.1006902.g002
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this feature of the fully connected motif in our network model is consistent with measured

data [5]. Second, the majority of the motifs that form a closed loop (ignoring direction) are

overrepresented (except motif No.7 and No.11, Fig 2A); this is also consistent with experimen-

tal observations [5]. The existence of such closed loops in a triad motif can be characterized by

its directed clustering coefficient (CC). The CC of a node (neuron) indicates the tendency of

the node’s neighbors to cluster together [27], with its value ranging from 0 (none of the neigh-

bors are connected to each other) to 1 (all neighbors are mutually reciprocally connected);

the CC of a motif is obtained by averaging the CC of its three nodes. As shown in Fig 2A, the

motifs with a closed loop have non-zero CCs and vice versa. As will be shown in the later sec-

tions, the CC is a structural property that has significant impact on neural dynamics.

In our model, the overrepresentation of the triad motifs with non-zero CC can be mainly

explained by the distance-dependent connectivity, but the common neighbor property also

makes a small yet significant contribution. To illustrate this, we first investigate how the

change of the decay constant of the exponential connection probability function affects the

motifs; we find that when it is decreased from 12 to 4, the number of motifs with non-zero CC

relative to the null model increases (r = 0.82; p< 0.001). Aside from this spatial mechanism,

we find that, a stronger common neighbor effect, as captured by a common neighbor coeffi-

cient aΓ increased from 1 to 3, also increases the number of motifs with non-zero CC value

(r = 0.20; p< 0.001). These results are consistent with the observation from a recent in silico
study that the overrepresented triad motifs cannot be fully captured by the distance depen-

dence and complementary mechanisms are needed [10]; our modeling study suggests that the

common neighbor property can serve as such a mechanism.

Emergence of rich-club connectivity. We next show that our model gives rise to a rich-

club connectivity phenomenon, and can explain the emergence of such a higher-order connec-

tivity pattern. For this purpose, we calculate the normalized rich-club coefficient F(k), which

is the ratio between the number of connections among neurons whose total degrees (i.e. the

sum of in-degrees and out-degrees) are larger than k and that expected from random networks

with the same in- and out-degrees for each neuron [30, 31]. In other words, this coefficient F

(k) measures the extent to which the neurons with total degrees > k in a network are over-con-

nected to each other. In our network, F(k) is consistently greater than 1.30 for neurons with

k> 500 (Fig 2B blue). This result thus indicates that these neurons are over-connected to each

other with at least over 30% more connections than expected from their in- and out-degrees,

forming a densely connected rich-club. To further characterize these rich-club neurons, we

calculate the dynamical importance for each neuron, defined as the fractional change in the

largest eigenvalue of the adjacency matrix of the network upon removal of the neuron from it

[32, 33], and find that rich-club neurons have higher dynamical importance (Fig 2B red). The

heterogeneity of connection is also evidenced in the effectivity connectivity. To demonstrate

this, we use the methods in [16, 34] to calculate the transfer entropy-based effective connectiv-

ity in our model, and find that the distribution of effective connection strengths is lognormal

and there exists rich-club connectivity (see S1A and S1B Fig).

The emergence of such a rich-club connectivity structure in our model is dependent on the

weakly correlated broad in- and out-degree distributions as well as the common neighbor

property [3]. The former gives rise to a small group of well-connected “hub” neurons charac-

terized by their large total degrees, and the latter makes those hub neurons more connected to

each other than expected by chance. More specifically, we find that when the correlation ρK
between in- and out-degrees or the hybrid parameter q (which controls the broadness of

the in- and out-degree distributions; see Materials and methods) increases, the standard devia-

tion of the total degree distribution also increases (r = 0.84 and r = 0.99, respectively; both

p< 0.001). The common neighbor property increases the connection probability between a
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pair of hub neurons with large total degrees, because they are likely to share more common

neighbors simply as they have more neighbors than those less well-connected neurons in the

first place; indeed, we find that, as the common neighbor coefficient increases, the correspond-

ing maximum normalized rich-club coefficient also increases (Fig 2C; r = 0.24, p< 0.001).

Rich-clubs have been found in macroscale human brain networks [31] and in the effective

connectivity networks of mouse somatosensory cortex [16]. Very recently, at the synaptic

level, rich-clubs have been found in a biologically constrained in silico model [10]. The rich-

club behavior predicted by our circuit model is consistent with this line of research. Our

model further suggests that the broad in- and out-degree distributions and the common neigh-

bor factors are essential for the emergence of rich-clubs at the synaptic level, which could be

tested in future experimental studies. Moreover, as illustrated in the following sections, the

rich-club connectivity is related to heterogeneous neural dynamics as found in [12].

Spatiotemporal neural dynamics

Our spatially extended, heterogeneous circuit model exhibits a repertoire of states with rich

spatiotemporal dynamics, beyond synchronous and asynchronous states that have been the

main focus of previous studies [9, 19, 22]. To study the circuit dynamics, we systematically

vary the I-E ratio z; neurophysiologically, this ratio could be controlled in vivo by non-compet-

itive GABA receptor antagonists [35]. When z is gradually decreased, i.e. when excitation is

much stronger relative to inhibition, the firing rate gradually increases. As shown in Fig 3A,

the firing rate can be well fitted by two power functions, one for z< zc (adjusted coefficient of

determination R2 = 0.998), and another for z> zc with a much larger exponent (Fig 3A; R2 =

0.988), where empirically zc = 3.375. This change of firing rates indicates changes in the collec-

tive dynamic states of the circuit.

Transition from the asynchronous state to the propagating wave state. By studying the

spatiotemporal activity patterns emerging from our local cortical circuit model, we next illus-

trate that the change identified in firing rates (Fig 3A) is related to a change from an asynchro-

nous firing state to propagating wave states. We find that when the I-E ratio z is large (z> zc),

the circuit does not show any structured patterns in spiking activity (Fig 3B); instead, it exhib-

its an asynchronous state. In this state, the globally averaged pairwise spike train correlation

coefficient and the coefficient of variation of inter-spike intervals of the excitatory population

are 0.002 ± 0.001 and 0.784 ± 0.002, respectively, which are similar to those found in the

irregular and asynchronous firing state of randomly connected, balanced networks, e.g.

[19, 36, 37].

On the other hand, when the I-E ratio z is small (z< zc), coherent patterns emerge from

the circuit, in the form of a localized propagating wave (Fig 3C and S1 Video; see Materials

and methods for pattern detection methods), or a global plane wave if z is further decreased

(i.e. if the circuit is further disinhibited; Fig 3D and S2 Video); these patterns propagate across

the neural circuit with relatively smooth and regular moving trajectories. Such global propa-

gating waves with regular dynamics emerging from our model due to disinhibition are largely

consistent with empirical studies reporting that when cortical circuits were disinhibited by

using bicuculline to block GABA receptors, similar epileptiform global plane waves were

observed [38]. Such spontaneous, regular waves arising due to disinhibition are thus funda-

mentally different from transient propagating waves as observed in the visual cortex of behav-

ing monkeys [39] and in the MT area of anesthetized marmosets [40, 41].

When the circuit is around the transition point between the asynchronous state and the local-

ized propagating wave state (z� zc), spatially coherent patterns emerge intermittently from the

asynchronous background activity (Fig 3E; Bayes factor> 102, see Materials and methods).

Emergent structural and dynamical properties of cortical circuits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006902 April 2, 2019 7 / 34

https://doi.org/10.1371/journal.pcbi.1006902


Such wave patterns have complex dynamics; they propagate coherently for a while (with a mean

duration of 16.5 ± 1.3 and 10% duration values larger than 45.0 ms), and then jump to a differ-

ent location (Fig 3E; see S3 Video). It is interesting to note that such propagating localized pat-

terns have been found in cortex under normal excitability conditions, and their jumping

behavior as observed in our model has been explicitly documented in [13]; similar intermittent

wave patterns have also been observed in the cortex of awake rabbits [42]. Note that spikes in

our model are sparse (typically under 6 Hz), consistent with the spontaneous firing rate of corti-

cal circuits in vivo [43, 44]; this thus gives rise to the propagating pattern that is spatially sparse.

We proceed to investigate the relationship between the transition state identified in our

local circuit model and near-criticality dynamics. As in [45], we calculate the susceptibility

χ = hρ2i − hρi2, where h�i denotes averaging over time, and we use the faction of active

excitatory neurons in the model for the density of activation ρ. As shown in Fig 4A, the

Fig 3. Transition of the circuit activity states induced by changing the I-E ratio z. (A) Mean firing rate of the

excitatory population shows a phase transition around z = zc = 3.375. The red solid line and blue dashed line are the

two power functions fitted to the data points marked by red squares and blue circles, in the form of a1xb1 þ c1 and

a2xb2 , respectively. The fitted coefficients are a1 = 25.47 ± 5.17 (0.95% confidence bounds), b1 = −3.535 ± 0.392, c1 =

−23.72 ± 6.10, a2 = 2.199 ± 0.045, and b2 = −2.455 ± 0.116. The black triangles are the data points without fitting. The

error bars show one SEM. Inset: the same plot but with the y-axis on a linear scale. (B-E) Snapshots of spiking patterns

emerging from our local cortical circuit model with different I-E ratio z values. Black dots denote that one spike has

been emitted from the excitatory neuron during a 5 ms period, and red dots denote two spikes. The cyan circles in (C)

and (E) show one standard deviation of the fitted Gaussian firing rate profile and the blue curves show the trajectory of

the centers of the pattern in the previous 40 ms. For the state shown in (E), the pattern appears intermittently and

exhibits jumping behavior with a variable propagation trajectory.

https://doi.org/10.1371/journal.pcbi.1006902.g003
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susceptibility is the largest in the transition region from the asynchronous to the localized

propagating wave state of our model. We also calculate the branching parameter σ� of spikes

of excitatory neurons, which is the average ratio between the number of spikes in one bin,

divided by the number of spikes in the previous bin, with different bin sizes as in [46]. It has

been shown that with the bin size normalized by the averaged inter-event interval hIEIi (the

inverse of population firing rate), the curves of branching parameter σ� versus the normalized

bin size are very similar across species and experiments (see Fig. 7C in [46]). At the transition

point of our model (as shown in Fig 4B), the curve of branching parameter σ� (subsampling

100 neurons as in [46]) is quantitatively comparable to that reported in [46]. In particular, the

maximum of branching parameter σ� under subsampling in our model is 1.61 ± 0.06, which is

close to that of 1.4 in [46]. These results thus indicate that the transition state in our model is

near criticality.

Theoretical analysis. To understand the mechanisms underlying this transition from the

asynchronous state to the localized propagating wave state, we employ an analytical framework

known as the diffusion approximation [47, 48], in particular, its recent extension for analyzing

spatially extended, spiking neural circuits [49] (see S1 Appendix for details). Unlike more

abstract models commonly used for studying emergent spatial patterns in neural media, this

analytical approach preserves most of the biophysical details of the spiking neurons (Eq 4). We

find that when the mean E-to-E synaptic strength used in the analysis is scaled by an empirical

factor h = 0.4775, the critical I-E ratio zc from the analysis and the simulation coincide; the

role of h is to compensate for the simplifications imposed by the diffusion approximation (see

S1 Appendix for details). As shown in Fig 5A, for z> zc, the mean firing rate of the spatially

uniform activity predicted by the analysis, which corresponds to the asynchronous state,

matches closely to our full spiking circuit model; however, for z< zc, the circuit’s mean firing

rate becomes larger than that predicted by the analysis, as a sharp transition to spatially coher-

ent pattern occurs in the full circuit model. We analyze the stability of the spatially uniform

activity under spatially periodic perturbations, and find that it is stable for z> zc but unstable

for z< zc. In the latter case, we find that the formation of spatially coherent pattern is due to a

Turing bifurcation (Fig 5B). Our analysis thus provides an explanation for the formation of

the spatially coherent pattern in our cortical circuit model.

Fig 4. Near critical dynamics around the transition of the circuit activity states. (A) Susceptibility of the excitatory

population at different I-E ratios z. 1 ms time bin is used for the calculation; the results are not sensitive to the choice of

bin size. The error bars show one SEM of 10 trials. (B) Branching parameter σ� under subsampling as a function of the

normalized bin size at ξ/ξc = 1. The shaded area shows one SEM of 10 trials.

https://doi.org/10.1371/journal.pcbi.1006902.g004
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Common neighbor property of neural connectivity can induce the change of dynamic

states. We now demonstrate that the common neighbor factor provides a novel structure-

based mechanism for shifting cortical activity states. We vary the common neighbor coeffi-

cient aΓ; a larger aΓ means that connections will more likely be formed between neuron pairs

sharing more common pre-synaptic neighbors (see Materials and methods). Note that the

value of aΓ does not affect the number of connections or the total incoming connection

strengths of individual neurons. Instead, a larger aΓ results in a more clustered network (i.e.

with more triad motifs that have closed loops), as indicated by an increasing mean network

CC (Fig 1D). We find that such a change in the connectivity induces a similar transition from

the asynchronous state to the localized propagating wave state. Networks with smaller aΓ and

thus smaller CC values fire asynchronously and irregularly (Fig 6A); on the other hand, net-

works with larger aΓ and CC values exhibit localized propagating patterns with regular moving

trajectories (Fig 6C). Propagating patterns with complex dynamics, including variable propa-

gation direction, speed, and jumping behavior, thus emerge from the network with intermedi-

ate CC values (Fig 6B); this scenario is largely consistent with the recent in vitro finding that

moderately clustered networks appear optimal for initiation and propagation of diverse, com-

plex propagating wave patterns [50].

These results reveal that both the neurophysiological mechanism (i.e. the I-E ratio z) and

the structure-based mechanism (i.e. the common neighbor coefficient aΓ) can shift circuit

activity state from the asynchronous to the propagating wave state. We thus use these two

parameters (z and aΓ) to systematically explore the circuit dynamics based on the distinctive

dynamic states we have found above. As shown in the phase diagram (Fig 6D), the transition

from the asynchronous to localized propagating wave state can be induced across a range

of the parameter values. We define a working point of the cortical circuit model at one such

critical transition of the states with z = zc and aΓ = 2 (Fig 6D), where the average firing rate

(3.0 ± 0.2) of the excitatory neurons are close to that found during spontaneous activity in vivo
[43, 44].

Fig 5. Stability analysis of the homogeneous, asynchronous state of the spatially-extended spiking circuit. (A)

Mean firing rate of the excitatory population in the simulation of our local cortical circuits (dots) and the rate of

spatially uniform activity from the analysis (solid line) with the optimal correction factor. The dashed line shows the

critical point z = zc. (B) Eigenvalues with the largest real parts of the network’s dynamics in response to spatially

periodic perturbations (spatial Fourier mode k = (1, 1)), with different I-E ratios z and the optimal correction factor.

The eigenvalues in this parameter regime are real, with positive values emerging as the I-E ratio z decreases below the

critical point zc (dashed line), indicating a Turing bifurcation. The dominant spatial eigenmode has wave vector k = (1,

1), indicating that a single pattern is formed, consistent with that observed in the full spiking circuit.

https://doi.org/10.1371/journal.pcbi.1006902.g005
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Effect of spike-frequency adaptation. We now demonstrate that the spike-frequency

adaptation (Eq 5) affects the spatiotemporal dynamics of our local cortical circuit model. For

this purpose, we investigate neural circuit dynamics after removing the spike-frequency adap-

tation from our model (by setting Δgk = 0 in Eq 5). As shown in Fig 6E, spatiotemporal pat-

terns can still be formed without adaptation, including localized activity patterns (State II) and

global plane waves (State III). However, the localized activity patterns in State II have different

dynamics, which are pinned to certain locations without clear long-range propagations as

found in the original model with adaptation. This behavior of the localized patterns results in

the scenario that within this state, only a small portion of excitatory neurons fire and the rest is

quiescent. As in [9], we calculate the fraction of excitatory neurons quiescent in our spatially

extended, heterogeneous network and find that this fraction is mostly greater than 50% for

this state. In contrast, for the original network with the adaptation, the fraction of neurons qui-

escent is low (< 0.1%) for all the states. This result is consistent the observation that the inclu-

sion of adaptation can reduce the fraction of neurons quiescent in randomly connected neural

circuits with heterogeneous degree distributions [9]. In comparison, the removal of adaptation

Fig 6. Common neighbor coefficient aΓ can induce the transition from the asynchronous state to the localized

propagating wave state. (A-C) Snapshots of spiking patterns in the local cortical circuit model with different common

neighbor coefficient aΓ values. These patterns are visualized in the same way as in Fig 3B–3E. (D) Phase diagram

constructed based on the pattern detection rate (the percentage of time frames where a localized wave is detected) and

the average firing rate of the excitatory population. The States 1, 2, 3 and 4 correspond to the asynchronous state, the

transition state, the localized propagating wave state and the global plane wave state, respectively. The circle denotes

the working point of our local cortical circuit model. (E) Phase diagram as in (D) but with the spike frequency

adaptation removed, where the different states are shown by red boundary lines. The state I, II, and III correspond to

the asynchronous state, the state with localized activity patterns that barely propagate (see S4 Video), and the global

plane wave state, respectively. The excitatory neurons without firing a spike during the 10 second simulation time are

detected as quiescent neurons.

https://doi.org/10.1371/journal.pcbi.1006902.g006
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has less effect on the asynchronous state (State I in Fig 6E); the part of the asynchronous state

in the original phase space with lower firing rates (Fig 6D; bottom right), after the removal of

adaptation, remains as the asynchronous state with dynamics similar to those found in [37].

This is expected because in this region, the inter-spike intervals of individual neurons are

rarely shorter than or comparable to the decay constant of potassium current (τK = 80 ms; see

Eq 5), rendering the effect of spike-frequency adaptation negligible. Note that both an increase

in the I-E ratio z in the circuit without spike-frequency adaptation and the introduction of

adaptation can induce the transition from the state with localized activity patterns that barely

propagate to the asynchronous state; this suggests that both factors tend to reduce excitation in

the circuit. However, only the introduction of adaptation can induce the transitions from local

to propagating patterns. This happens because the adaptation destabilizes the local pattern and

fluctuations of the network would cause it to propagate away from its original location, form-

ing a propagating wave.

Dynamic working regime of spatially extended, heterogeneous cortical

circuits

We next demonstrate that around the working point (i.e. the critical transition from the asyn-

chronous to the localized propagating wave state), our model can quantitatively reproduce a

great variety of key experimental findings regarding spatiotemporal dynamics of spontaneous

neural activity. In addition, this critical regime further reveals how these dynamics are corre-

lated to the connectivity structure.

Emergent, tightly balanced excitation and inhibition. It has been found in vivo that cor-

tical neurons receive strongly correlated excitatory and inhibitory inputs, with the former

closely tracked by the latter as characterized by a strong cross-correlation around zero time lag

[23, 51]; such tight proportionality between E and I inputs is regarded as a tight balance [52].

We now show that tightly balanced synaptic inputs with the dynamical properties as found in

[23] emerge from the working point of our model as defined above; the balanced condition in

our current model is thus referred to as such a tightly balanced one. Fig 7A (middle panel)

shows that the magnitudes of E and I currents into a neuron closely track each other in time,

with strong cross-correlations around zero time lag (Fig 7B red), which decay to zero within

around 50 ms; note that this decay time is largely consistent with that measured in in vivo
recordings (see Fig. 1 of [23]). It is also interesting to note that only near the critical transition

state, as shown in Fig 7A (middle panel), synaptic inputs appear to exhibit large, occasional

excursions in amplitudes; such bumpy properties of synaptic inputs have been explicitly docu-

mented in [23]. When the system is in the asynchronous state, the inputs do not have such

bumpy properties (Fig 7A bottom panel) but the E and I currents are still highly correlated at

zero time lag. However, the cross-correlation decays to zero much faster (within around 15

ms; Fig 7B blue) than that measured in [23]. In the propagating wave state, the strong cross-

correlation is also present (Fig 7B cyan) but the synaptic inputs become semi-periodic and reg-

ular (Fig 7A top panel), apparently inconsistent with the large fluctuations observed in synaptic

inputs in vivo.

Another key property of the synaptic inputs to cortical neurons is that they keep neurons in

a high-conductance state [24, 53]. We now demonstrate that in our conductance-based model,

the statistical properties of such a high-conductance state can be captured. At the working

point, the mean excitatory synaptic conductance into individual excitatory neurons is of the

order of the leaky conductance (with the ratio between them being 1.27 ± 0.15; 400 sample

neurons pooled from 10 trials), as found in pyramidal neurons in areas 5, 7, and 21 of the pari-

etal cortex of awake cats [24]. Furthermore, the mean and fluctuation (i.e., SD) ratios between
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Fig 7. Properties of synaptic inputs to individual neurons in the local cortical circuit model. (A) Time series of

total excitatory and inhibitory inputs received by individual excitatory neurons over 1 s in the different dynamic states

(with z/zc = 0.8, 1.0, 1.3 corresponding to the propagating wave state, the transition state and the asynchronous state,

respectively; see Fig 3). (B) Average cross-correlation (xcorr) between the total E and I currents into excitatory neurons

in the different dynamic states. The shaded area shows one SEM of 10 trials. (C) The convex hulls of the mean and

standard deviation data points (pooled from 10 trials) of the total input current into individual neurons in the different

dynamic states, denoted by the same color-coding as in (B). The region to the left of vertical dashed line is where the

mean input current is less than the threshold current. The region above the inclined dotted line is where the mean plus

one standard deviation of the input current is above the threshold current. (D) The relative errors of estimating the

total standard deviation σI (and mean μI) of the recurrent currents with the sum of individual components as given by

the variance decomposition (Variance decomposition analysis), averaged over the excitatory neurons and over a

period of 50 ms within each trial. (E) The contributions to the variance in recurrent currents from various sources are

shown across circuits with different I-E ratio z. The numbers above the bars are the corresponding total variances

averaged over excitatory neurons (nA2).

https://doi.org/10.1371/journal.pcbi.1006902.g007
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inhibitory and excitatory conductances (2.81 ± 0.21 and 2.95 ± 0.59, respectively) are also con-

sistent with those measured in [24]. As a result of such synaptic inputs, the membrane poten-

tial is depolarized (with a mean of −61.7 ± 0.6 mV) and exhibits large fluctuations (with a SD

of 4.1 ± 0.3 mV). However, our model does not capture the observed decrease in inhibitory

conductance within 20 ms before a spike [24]. As the I-E ratio becomes larger (z> zc), and

mean excitatory conductance is still comparable to the leaky conductance (with a ratio of

0.79 ± 0.03 at z/zc = 1.3, in the asynchronous state); however, when the circuit becomes disin-

hibited with a smaller I-E ratio (z< zc), the mean excitatory conductance becomes patholog-

ically high (6.67 ± 0.68 times the leaky conductance at z/zc = 0.8, in the propagating wave

state).

Structural heterogeneities contribute to neural fluctuations. Similar to the conduc-

tances, the excitatory and inhibitory input currents into individual neurons also show large

fluctuations (Fig 7A). This dynamic regime near the working point of our model is fluctua-

tion-driven [54]; that is, the mean input currents into individual excitatory neurons are sub-

threshold as a result of the tight balance described above and, without the time varying

fluctuations around their mean input, the neurons would not fire (Fig 7C red). In this regime,

the neural dynamics are largely determined by the variances in the recurrent currents and

therefore highly variable, as characterized by a mean coefficient of variation of inter-spike

intervals of the excitatory neurons at 0.93 ± 0.03, consistent with that measured from the spon-

taneous activity in vivo. In the asynchronous state (z> zc), the mean input currents remain

subthreshold (Fig 7C blue); on the other hand, in the disinhibited propagating wave state

(z< zc), the mean input currents become superthreshold (Fig 7C cyan).

By incorporating a range of realistic features of cortical connectivity into the spiking circuit

model, such as the heterogeneities in both connection topology and strength, our model allows

us to explore their effects on the variable neural dynamics. In particular, we investigate how

the structural heterogeneities contribute to the variances in the recurrent excitatory currents

in the fluctuation-driven circuits with z� zc. For this purpose, we develop an analysis method

called variance decomposition analysis (see Materials and methods). As described in Eq 9 syn,

there are four components determining the recurrent currents, namely, the connection topol-

ogy, the connection strength, the pre-synaptic dynamics and the postsynaptic dynamics,

denoted by the shorthand letters a, J, s and V, respectively. Our analysis shows that there are 15

different sources of variance of the recurrent currents (Variance decomposition analysis), aris-

ing from each of the four components (a, J, s and V) contributing via either its own (co-)vari-

ance or mean value (see Materials and methods). For example, one such source arises from the

coupling among the variances of s & a and the mean values of V & J; we denote this source by

ðŝEE
as Þ

2
, only including in the subscript the letters representing those components contributing

via their (co-)variances. In our variance decomposition analysis we assume that the four com-

ponents are mutually independent and ignore the moments beyond second-order. To validate

this analysis, we study how well the sum of individual variance sources (RHS of Variance

decomposition analysis) matches the total variance (LHS of Variance decomposition analysis)

using numerical data with different I-E ratio z. As shown in Fig 7D, the two match with rea-

sonable accuracy.

The contributions of these 15 sources across fluctuation-driven systems with different I-E

ratios are shown in Fig 7E; we find that, to capture most of the variance in recurrent currents

across different I-E ratios, at least four sources need to be considered, including ðŝEE
s Þ

2
, ðŝEE

as Þ
2
,

ðŝEE
a Þ

2
and ðŝEE

aJsÞ
2
. Note that the variances in connection topology (a) and strength (J) contrib-

ute to 3 out of 4 of the major sources; as shown in Fig 7E, without these two structural factors,

at z = zc, only 78.3 ± 9.9% of the total variance can be captured by ðŝEE
s Þ

2
alone. Therefore, the
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variances of connection topology and strength make a significant contribution to the variable

recurrent currents at the working point of our model. When the I-E ratio increases to z/zc =

1.4, the amount of variance captured by ðŝEE
s Þ

2
alone further decreases down to around 50%.

This result thus reveals the importance of the structural heterogeneities in generating the vari-

able, fluctuation-driven neural dynamics, going beyond previous studies about variable neural

dynamics, in which such variances in connection topology and strength were not captured,

e.g. [19, 36, 47].

Emergent heterogeneous population coupling. Recently, it has been found that in the

deep layers of sensory cortex of awake mammals, individual neurons correlate (couple) to the

population activity differently, ranging from strongly correlated “choristers” to weakly corre-

lated “soloists” [12]; this experimental study has revealed a fundamental relationship between

individual neurons and a larger population. However, the dynamic nature of this diverse cou-

pling behavior and how it is related to structural connectivity remains unclear. We now dem-

onstrate that such diverse coupling can emerge in our model near the critical transition from

the asynchronous to the localized propagating wave state. In addition, we illustrate that these

heterogeneous neural dynamics are related to the rich-club connectivity predicted by our

model.

To quantify the population coupling in our model, we calculate the spike-trigged popula-

tion rate (stPR); as in [12], this is done by first summing the spike train of mutiple neurons to

get the population rate, and then correlating the spike train of each neuron with this popula-

tion rate. As shown in Fig 8A, the neurons in our model exhibit diverse population coupling

behavior; that is, there are neurons with strongly positive, weakly positive, neutral or even neg-

ative correlations with the population activity. To test the significance of this diverse coupling,

we use the method in [12] to shuffle the spike data in a manner that preserves both the popula-

tion rate and the average firing rate of each neuron but randomizes the timing of individual

spikes. We find that, after the shuffling, the diverse population coupling behavior almost

completely disappears (Fig 8B). For a quantitative comparison, we calculate the stPR coeffi-

cients as in [12]. In our model, the stPR coefficients before shuffling ranges from −0.96 ± 0.26

to 2.85 ± 0.23, with a mean of 0.81 ± 0.09 and a standard deviation of 0.76 ± 0.06; these results

are comparable to those measured in the deep layers of S1 of awake mice, i.e. with a range

from -0.5 to 2.5 and a mean around 0.5 [12]. After shuffling, however, the standard deviation

of stPR coefficients becomes much smaller (0.14 ± 0.03; Fig 8B inset; p< 0.001, two-sample F-

test), confirming that the diverse population coupling behavior emerging from our model is

an inherent dynamical property of our local cortical circuit model.

We find that our model does not show such diverse population coupling when it is shifted

away from the working point (i.e., the critical transition point between the asynchronous and

the propagating wave states), although the structural topology remains the same. As shown in

Fig 8C, in the asynchronous state, the stPRs are noisy and show little difference from the shuf-

fled results. As the network becomes more disinhibited with a smaller z value, the stPRs

become periodic due to the regular movement of patterns (Fig 8D), not consistent with those

reported in [12].

To unravel whether and how the heterogeneous connectivity is related to this diverse cou-

pling, we compare the rich-club connectivity of the neurons with their population coupling

behavior. As mentioned above, the normalized rich-club coefficient F(k) characterizes the

degree of “over-connection” among the neurons with a total degree higher than k; Fig 9A
shows the connections among such a group of high degree neurons. In order to compare F(k)

against the population coupling behavior, we need to quantify the corresponding degree of

“over-coupling” to the population rate of the corresponding neurons (with a total degree
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higher than k). This can be achieved by calculating the average z-score of stPR coefficients for

those neurons. As shown in Fig 9B, this k-dependent stPR coefficient z-score shows an overall

increasing trend when the total degree k increases; this trend is closely followed by the normal-

ized rich-club coefficient F(k). For a more direct comparison, we plot the coefficient z-scores

against the corresponding normalized rich-club coefficients with the same k (Fig 9B inset),

and confirm that the z-scores can be largely explained byF(k) (r = 0.84; p< 0.001).

To further illustrate the relationship between the rich-club connectivity and the diverse

population coupling, we vary the common neighbour factor aΓ that can modulate the rich-

club coefficients (Fig 2C) while preserving the in- and out-degrees of individual neurons

(see Materials and methods). We find that when the common neighbour factor aΓ decreases

from 3 to 1, the difference between the original distribution of stPR coefficients and the distri-

bution of the control case (i.e., the case with random shuffling of spikes) gradually diminishes

Fig 8. Emergent, heterogeneous population coupling in the dynamical working regime of the local cortical circuit

model. (A) Spike-triggered population rate (stPR) for five representative neurons in a single trial. (B) stPR for the same

five neurons but with spikes shuffled. Inset: distributions of stPR coefficients pooled from 10 trials before (black) and

after (red) spike shuffling. The coefficients are defined as the stPR values at zero time lag normalized by the median

value of the shuffled data. For each trial, 10 samples of 66 excitatory neurons are randomly chosen to match the sample

size used in experimental studies [12]. Neurons are sampled from a circular area with a radius of 25 grid units (about

125 ¼m) for approximating the spike detection range of a single shank of silicon electrode array used in [12]. The

results are not sensitive to the size of the sampling area or the number of sampled neurons. (C-D) stPRs for z = 1.15

and z = 0.7, respectively. Insets: shuffled stPRs. For z = 1.15, the model is shifted away from the working regime into

the regular propagating wave state; while for z = 0.7, it is shifted into the irregular, asynchronous state.

https://doi.org/10.1371/journal.pcbi.1006902.g008
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(Fig 9C), indicating that the diverse population coupling effect becomes less significant. This

trend can be quantified by normalizing the original stPR coefficients with the standard devia-

tion (SD) of those coefficients of the control case. These normalized coefficients are then com-

pared across circuits with different values of aΓ; as shown in Fig 9D, the trial-average of such

coefficients decreases as the common neighbour factor aΓ decreases. As decreasing aΓ results

in a decrease in the peak value of normalized rich-club coefficient F(k) (see Fig 2C), these

results indicate that the rich-club connectivity in our circuit model is closely related to the

diverse coupling behavior of neural dynamics.

Dynamic propagating patterns and precise spiking structures. We next demonstrate

that in our local cortical circuit model, propagating wave patterns emerging near the transition

Fig 9. Rich-club connectivity is related to the heterogeneous population coupling. (A) An example of the rich-club

connectivity among high total degree (k> 600) excitatory neurons (red dots). Only a 10% random subset of the synaptic

connections are plotted (lines) for visualization purpose, with a probability of 1/F(k = 600) colored in blue and otherwise

in yellow to illustrate the proportion between the number of connections expected from their total degrees alone (blue)

and the number of extra connections due to the rich-club connectivity (green). The circle shows the range within which

both the rich-club and stPR coefficients are calculated as used in Figs 2B and 8. (B) The rich-club neurons have high stPR

coefficients. Left y-axis (blue): the blue dashed line shows the stPR coefficient z scores for the neurons with a total degree

> k averaged over 10 trials and the shaded area shows one SEM. Within each trial, 10 random 66-neuron samples (as in

Fig 8) are collected to calculate the k-dependent stPR coefficient z scores. Right y-axis (red): the red dashed line shows the

normalized rich-club coefficient curve from Fig 2B and the shaded area shows one SEM. Inset: normalized rich-club

coefficientF(k) (y-axis) versus k-dependent stPR coefficient z score (x-axis) from 10 realizations of the network (shown

with 10 different colors). (C) Distributions of stPR coefficients pooled from 10 trials before (black) and after (red) spike

shuffling from the local cortical circuits with different common neighbour factors aΓ. For comparison, the total count

(area under curve) and bin size are the same for each distribution. (D) stPR coefficients before shuffling, normalized by the

SD of stPR coefficients after shuffling (i.e., coefficients of control case) and plotted in the same k-dependent manner as in

(B). Each curve shows the average of 10 trials.

https://doi.org/10.1371/journal.pcbi.1006902.g009
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point (Fig 6) can quantitatively account for the dynamic properties of propagating spiking

waves of UP states found in spontaneous activities of cortical neurons in layer 5 of awake rats

[14]. In addition, our model can capture precise spiking structures, which have been found to

coexist with propagating waves [14]. We further show that the spatial extension property of

our model is essential for the emergence of these patterns.

Around the working point (i.e. the transition point from the asynchronous to the localized

propagating wave state), our model exhibits a propagating wave pattern with irregular trajec-

tory and variable speed as illustrated above (Fig 3E). To compare these wave patterns with

those found in [14], we visualize the firing activity using raster plots where neurons are sorted

based on one spatial coordinate; Fig 10A shows a wave propagating with a component of its

direction along this spatial coordinate. To characterize the pattern propagation in our model,

we calculate the distance traveled every millisecond to obtain the propagation speed distribu-

tion. We find the propagation speed is highly variable, as evidenced by its log-normal distribu-

tion (Fig 10B). This propagation speed distribution has a mean of 1.72 ± 0.06 grid-units ms−1

(12.7 μm ms−1; see Materials and methods for the conversion) and 10% of values larger than

3.55 ± 0.11 grid-units ms−1 (26.3 μm ms−1), which matches the highly variable propagation

speed measured in the cortex of awake rats with values spanning from 8 to 40 μm ms−1 [14].

Such variability in speed has also been found in cortical slices, where the propagation of local-

ized excitation patterns often abruptly change speed; under normal excitability conditions, the

typical speed values are between 6-10 μm ms−1 [13]. In our model, the variability of propagat-

ing wave patterns is lost when the system is disinhibited (with small I-E ratio z), as patterns

propagate in a more regular way.

Around the working point, our model can also capture the precise spiking structures during

spontaneous activity in layer 5 of rodent somatosensory cortex [14]. Precisely repeating pat-

terns embeded in variable neural activity have also been found in spontaneous activity with

critical dynamics [55]. In our model, precise spiking structures can be detected by considering

spike triplets. As illustrated in Fig 11A, a spike triplet is composed of three spikes, each from

a different neuron, and can be characterized by the two inter-spike intervals. The joint

Fig 10. Dynamic properties of propagating wave patterns emerging in the dynamical working regime of the local

cortical circuit model. (A) Raster plots of 50 neurons randomly sampled from a 10-by-50 grid-unit region, sorted

according to their y-coordinates, showing two travelling patterns moving in opposite directions at different time

points. The solid blue line is the linear fit to the first spikes at each y-position (y = 0 denoting the y-center of the

sampling region). (B) The distribution of the pattern propagation speed (dots) with the log-normal fit (blue solid line).

The error bars and shaded area show one SEM.

https://doi.org/10.1371/journal.pcbi.1006902.g010
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distribution of the two inter-spike intervals should have a flat structure without any preferred

mode if the three neurons fire randomly as independent stationary Poisson processes. There-

fore, a statistically unlikely large peak in the joint distribution, as found in our model (Fig

11B), means a temporally precise, sequential firing pattern appears repeatedly in this neuron

trio. Following the method in [14], the triplets with inter-spike intervals 10 ms around the

mode are detected as precisely repeating triplets.

To further test the statistical significance of the detected precisely repeating triplets in our

model, we first shuffle the individual spike timing using the method in [14] and compare the

number of detected triplets before and after the shuffling, with respect to the time from acti-

vated state onset, which serves as an objective temporal reference for comparison. As shown in

Fig 11C, the number of the detected triplets (or equivalently the triplet probability) is consis-

tently lower after shuffling within 100 ms after the activated state onset, confirming that a

significant portion of detected triplets in the original data are intrinsically structured. In partic-

ular, the triplet probability before shuffling peaks shortly after the activated state onset (around

48 ms; peak value 0.78 ± 0.50 times higher than that of the shuffled data; p< 0.001 for two

sample t-test), which is consistent with the in vivo findings [14]. Additionally, we use the dith-

ering method (method L in [56]) to test the statistical significance of this result. As shown in

Fig 11C, the dithering method gives a characteristic decay of the triplet probability when the

dithering window size increases from 10 ms to 80 ms (compared with the triplet detection win-

dow size 20 ms), and the peak triplet probability before dithering is significantly higher than

that of the dithered ones (p< 0.006 for two sample t-test), confirming the statistical signifi-

cance of the detected triplets [57].

The detected activated states largely correspond to a spiking wave pattern passing through

the sampling region, as the chance of finding the center of a wave pattern within the sampling

region during activated states is nearly three times (2.84 ± 0.62) as high as the average. There-

fore, the results in Fig 11C indicate that the precisely repeating triplets are initiated by the

propagating waves patterns, as found in [14]. In our model, when the I-E ratio z is shifted

further into either the asynchronous state or the regular propagating wave state, no such

Fig 11. Emergent precise spiking structures. (A) Schematic of a spike triplet that is described by two inter-spike intervals. (B) The

probability distribution of two inter-spike intervals from a representative neuron trio. The black square denotes the precisely repeating triplets

occurring around ± 10 ms of the mode. (C) Occurrence of precisely repeating triplets peaks shortly after the start of activated states. The time

from activated state (AS) onset is calculated based on the first spike of the triplet. The black, red, and green lines are the trial-averaged

normalized probability density functions (PDFs) for the original data, shuffled data [14], and data dithered with different window sizes

(method L in [56]), respectively. For each trial, 50 samples of 50 excitatory neurons are randomly chosen from a 10-by-50 grid-unit region

(about 50-by-250 μm) to approximate the spike detection region of two neighboring shanks of silicon electrode array used in the experimental

study by [14]. The results are not sensitive to the width of the rectangular sampling area. Within each sample, 50 neuron trios are randomly

chosen to get the original and shuffled/dithered spike triplet counts.

https://doi.org/10.1371/journal.pcbi.1006902.g011
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statistically significant precise spiking structure can be detected. In [58], however, spike

sequences can reliably arise in an irregular, asynchronous state of randomly connected neural

networks with lognormal synaptic weight distributions, and these sequences are organized

along the unidirectional synaptic pathways embedded by rare strong synapses.

In our local cortical circuit model, due to its spatial extension property formed by the dis-

tance-dependent connectivity, spikes of one group of neurons would result in those neurons

that are physically proximal to them to fire, resulting in propagating patterns. To further dis-

sect this role of spatial extension in our model, we set all of the decay constants of the exponen-

tial connection probability functions in our model t
ab
D !1, so that the connectivity no

longer depends on the spatial locations of the neurons. This effectively removes the spatial

extension property, while keeping all the other connectivity properties of our model fixed. We

find that propagating patterns cannot be formed and precisely repeating triplets cannot be

detected. These results thus demonstrate the importance of such a spatial extension arising

from the distance-dependent connectivity in shaping complex cortical dynamics, indicating

that structured spatiotemporal patterns can emerge from the highly variable firing activity of

individual neurons in such spatially extended networks.

Discussion

In this study, we have shown that by uniquely integrating the essential anatomical and physio-

logical properties of local cortical circuits, our novel model exhibits a rich repertoire of activity

states ranging from the asynchronous and the localized propagating wave states to the global

propagating wave state, beyond the synchronous and asynchronous states that have been the

main focus of previous studies [9, 19, 22]. As we have demonstrated, in the dynamical regime

of the transition from the asynchronous to the localized propagating wave state, our model can

reconcile an otherwise disparate set of key experimental findings on neural dynamics [11, 12,

14, 23, 24], and can relate these dynamics to the underlying connectivity structure. In addition,

our results make novel predictions of cortical circuits. Our work thus provides a unified frame-

work for understanding the organizational properties of anatomic connectivity, neural dynam-

ics and their relations in cortical circuits.

Integrated connectivity features and emergent, higher-order connectivity

structures

We have developed a generative model to incorporate key connectivity features at the synaptic

level into our local cortical circuit model; these features include distance-dependence [3, 4],

the common-neighbor property [3], and heterogeneities in both numbers and strengths of

neural connections [5, 6, 9, 10]. As we have demonstrated, the fundamental advantage of our

generative model is that it not only recapitulates these connectivity features, but also accounts

for the formation of higher-order connectivity structures such as overrepresented triad motifs.

Overrepresented triad motifs as predicted in our model have been found in layer 5 of rodent

visual cortex [5]; we have illustrated that both the distance-dependent property and the com-

mon neighbor factor contribute to the emergence of these motifs. This is consistent with a

recent study of in silico local cortical circuits, in which it has been shown that overrepresented

motifs cannot be fully captured by the distance dependent connectivity property and some

additional mechanisms are needed [10]; our result suggests that the common neighbor factor

can serve as such a mechanism.

In addition, our model predicts and explains the existence of rich-club connectivity at the

synaptic level. As we have illustrated, the combination of two elementary connectivity proper-

ties, i.e. the heterogeneous in- and out-connectivity degrees and the common-neighbor
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property, is essential for the emergence of this connectivity behavior; the former gives rise to

some well-connected hub neurons, and the latter makes them more connected among them-

selves than chance, as quantified by the correlation between the common neighbor and the

rich-club coefficients. At the macroscopic level of connections between different brain regions,

rich-club structures have been found [31, 59]. At the microscopic level, recent work has

reported the existence of rich-club structures in the effective connectivity quantified by infor-

mation transfer between neurons in mouse somatosensory cortex [16]; very recently, rich-club

connectivity has been found in biologically constrained in silico reconstructed microcircuits

[10]. Our findings are consistent with these previous reports, but go beyond them by identify-

ing the elementary factors that contribute to the emergence of rich-club connectivity at the

synaptic level and by relating such connectivity to a key dynamical property of cortical micro-

circuits, i.e. the diverse coupling behavior of individual neurons to the population as found in

[12].

Dynamical working regime of local cortical circuits

Unravelling the dynamical and functional implications of the connectivity structure of local

cortical circuits is currently the focus of substantial scientific interest. For instance, clustered

connectivity with stronger than average synapses has been studied to understand how it is

related to the variability of neural spikes during spontaneous and evoked activity [20] and bis-

table dynamics [60]; in [61], [21] and [22], models with distance-dependent connectivity have

been developed to study how this connection property affects cortical dynamics; the dynamical

effect of heterogeneity in number of connections on cortical dynamics has been studied in [9]

and [62]; the effect of heterogeneous connection strengths on stabilizing sparse neuronal activ-

ity and spike-based communications has been studied in [63] and [58], respectively. Rather

than considering these connectivity properties in isolation as in these previous studies, for the

first time our model integrates them into the same modeling framework to elucidate how a

rich repertoire of cortical states can emerge; these include the asynchronous state, localized

propagating wave and global propagating wave states, beyond the asynchronous state that has

been the main focus of previous studies. To further explore these rich spatiotemporal dynam-

ics and relate them to connectivity of cortical circuits at different scales, it would be interesting

to extend our local cortical circuit model to incorporate cortical laminar structures [64] and to

further incorporate realistic inter-areal connectivity features [65, 66].

Our work identifies a dynamical working regime of local cortical circuits, within which

localized propagating wave patterns emerge intermittently from the asynchronous state and

give rise to near critical network dynamics. Our work thus contributes to the growing line of

research on critical network dynamics [67–69] from a novel perspective particularly by dem-

onstrating that in this working regime with dynamical wave patterns, a great variety of key

neurophysiological findings can be reconciled and can be related to the connectivity structure.

As we have demonstrated, in this working regime, bumpy excitatory inputs tightly track the

inhibitory ones with their cross correlation decaying to zero within 50 ms, as found in the bar-

rel cortex of rats [23], and the conductance properties are consistent with those measured in

[24]. As demonstrated in our study, the realistic variability of cortical connectivity including

the broad in- and out-degree distributions, spatial dependence and common neighbor proper-

ties contributes significantly to the variability of neural spiking activity, thus relating the vari-

ability of neural dynamics to that of connectivity. In addition, we have identified a new

anatomic mechanism (i.e. the common neighbor property) for altering the boundary of the

circuit activity states. This anatomic mechanism predicts that an increase in the clustering of

neural connectivity would gradually shift the circuit state from the irregular, asynchronous
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state to the state with regular propagating waves; this prediction could be tested by modulating

protein kinase C to modify the degree of clustering in neural circuits as in [50].

Furthermore, we have shown that in this dynamical working regime of our model, individ-

ual neurons are correlated to the firing rates of the population in a diverse way, with some neu-

rons (choristers) highly correlated to the population activity, while others (soloists) showing

correlations that are smaller than expected by chances or even anti-correlations; this diverse

coupling behavior has been found in deep layers of visual cortex of awake mice and monkeys

[12], but cannot be reproduced in either the asynchronous or the regular propagating wave

regime. By showing that the stPR coefficients are proportional to the rich-club coefficient and

that reducing the degree of rich-club connectivity while preserving the in- and out-degrees of

neurons would result in the decrease of the statistical significance of diverse population cou-

pling, our results further establish a relationship between diverse coupling as found in [12] and

the rich-club connectivity. This result provides another prediction regarding the organiza-

tional properties of cortical circuits.

In the dynamical working regime, our model exhibits localized propagating wave patterns

with complex dynamics; such dynamical patterns appear intermittently and propagate across

the circuit for a while and then jump to another seemingly random location, and their propa-

gation speeds are very variable. Notably, such localized propagating patterns with jumping

behaviour have been found in spontaneous activities of the slices of rat somatosensory cortex

bathed in low Mg solution or under normal excitability conditions once a shock was applied to

stimulate neurons [13]. The variable propagation speeds as found in our model are also consis-

tent with those measured from layer 5 of somatosensory cortex of awake rats [14]. Propagating

wave patterns with random initiation sites and propagation directions have also been observed

during spontaneous activity in both the sensorimotor cortex of behaving mice [70] and the

visual cortex of behaving monkeys by using voltage sensitive imaging recordings [39]. In our

model, such dynamical wave patterns cannot be captured in the asynchronous regime, within

which neurons asynchronously emit spikes without any structured patterns. If the circuit is

shifted into the propagating wave states by decreasing the I-E ratio, the circuit exhibits more

regular, global plane waves without variability in propagation speed; similar regular waves

have been found in pharmacologically manipulated, disinhibited neural circuits [38]. The

emergent dynamical wave patterns in the working regime of our model could communicate

information within cortical circuits due to their propagation property. The rich dynamics of

these patterns may enable such wave-based communication to be implemented in a funda-

mentally distributed way across space and time.

The identification of the working regime with dynamical wave patterns, which can uniquely

reconcile a wide range of anatomical and physiological observations, represents a key advance

toward understanding the working mechanism of cortical circuits. To experimentally test this

dynamical regime, it would be ideal to combine imaging studies and massive-unit recordings

to visualize and record neural activity at different levels, and to analyze recorded neural signals

in conjunction with analysis of neural anatomy by using the same methods as in our modeling

study.

Materials and methods

Generative connectivity model of local cortical circuits

We first describe the generative connectivity model used to construct the topological structure

of the local cortical circuits. The algorithm of the generative model consists of two stochastic

procedures. The first stochastic procedure synthesizes the three essential connectivity properties,

i.e. the heterogeneous in- and out-degree distributions, the distance dependent connectivity,
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and the common neighbor property. The second stochastic procedure controls the relationship

between connection topology and strength [26]. The details of the first procedure are as follows:

1. Individual neurons are embedded on a 2-dimensional plane with periodic boundary condi-

tions. NE excitatory neurons are located at integer coordinates and NI inhibitory neurons are

distributed uniformly randomly in the plane. The Euclidean distance Dab
ij is calculated

between each pair of neurons i from population α and j from population β, where α and β
are either excitatory (E) or inhibitory (I). The connection probability between neurons is

proportional to the distance-dependent factorO
ab

ij . Consistent with the findings in [3] and

[4], this factor is modelled as an exponential function of Dab
ij ; that is,O

ab

ij ¼ e� D
ab

ij =t
ab

D . For sim-

plicity, we only incorporate heterogeneous features into the E-to-E subnetwork as in other

modeling studies [20, 71]. Therefore, we will omit the superscript αβ in the rest of steps.

2. The in-degree Ki,in and out-degree Ki,out for each neuron are generated by randomly sam-

pling from the heterogeneous degree distributions that will be described later.

3. We use an iterative process to construct a binary adjacency matrix A = (aij), where aij = 1, if

there is a connection from neuron j to neuron i, or aij = 0 otherwise. Later we will use A =

(aij) to construct a weighted adjacency matrix. The connection probability between neurons

i and j is proportional to the common neighbor factor, Γij. Initially we set Γij = 1, but for

subsequent iterations Γij is a linear function of the number of common pre-synaptic neigh-

bors bij shared by neuron i and neuron j is, as found in [3],

Gij ¼ 1þ
bij � mini;jðbijÞ

maxi;jðbijÞ � mini;jðbijÞ
ðaG � 1Þ; ð1Þ

where bij = [A AT]ij. The functions mini,j(�) and maxi,j(�) denote the minimal and maximal

values among all neuron pairs, respectively; aΓ is the common neighbor coefficient, which

is used to control the strength of the common neighbor effect. For instance, when aΓ = 2

(the default value in our model), Eq 1 means that the common neighbor factor Γij of the

neuron pair with the most common neighbors is twice that of the pair with the least, and a

linear interpolation in between.

4. The in-degree availability ~Ki;in (denoting the number connections yet to be made) of all

neurons are initialized to be their in-degrees, i.e. ~Ki;in ¼ Ki;in. A neuron j is randomly

selected from all neurons, and Kj,out connections from this neuron to other neurons are

generated. When generating these connections, we need to ensure that the connection

probability between any pair of neurons is proportional to both their distance-dependent

factor Oij and common neighbor factor Γij as specified above, and that individual neurons

have the specified in-degrees and out-degrees. To achieve this, we introduce a stochastic

cost function Cij between neuron j and candidate post-synaptic neuron i,

Cij ¼
uij

~Ki;inOijGij

; ð2Þ

where i = 1, 2, � � �, NE and uij is a random variable uniformly distributed between 0 and 1

capturing certain randomness in neural connectivity. Establish connections from neuron j
to those post-synaptic neurons with the Kj,out smallest values of Cij. For each connection

made, the in-degree availability ~Ki;in is reduced by one accordingly. Repeat the above proce-

dures in this step for subsequently randomly chosen neuron j’s until the whole adjacency

matrix Aij is constructed.
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5. Step 3 to Step 4 are repeated until the mean clustering coefficient (CC) of the network con-

verges to a fixed value, which provides a single measure of the overall structural effect of the

common neighbor factor as shown in the Results section (Fig 1D).

The second procedure of the algorithm is to set the synaptic efficacies (connection strengths)

Jij for the aij = 1 connections. Experimentally, the distribution of excitatory synaptic connec-

tion strengths has been found to be heavily-tailed in cortical neurons [6, 72] and can be fitted

by a log-normal function as measured from rat visual cortex layer 5 [5]. We use a similar log-

normal distribution of Jij, which has a mean of 4.0 nS and a standard deviation of 1.9 nS. In

our spiking neuron model that will be described later, unitary excitatory post-synaptic poten-

tial (EPSP) and current (EPSC) magnitudes from the resting potential are proportional to the

connection strength Jij. As a result, the majority (50%) of unitary EPSP magnitudes are less

than 2 mV and a few (2%) are greater than 5 mV. The distribution of Jij is truncated at 38.3 nS

since values larger than this produce unrealistic unitary EPSP magnitudes above 20 mV.

It has been found that unlike the connection probability, connection strength does not

strongly depend on the inter-neuron distance [4]. As a first-order approximation, we can

assume connection strength is independent of distance. Nevertheless, naively randomly

assigning the strength values would result in a situation where the average incoming connec-

tion strength hJijij of each neuron i is a linear function of its in-degree Ki,in, that is, hJijij/ Ki,in,

where h�ij denotes an average over j. However, experimental studies have found an inverse

square root scaling between average connection strength and in-degree, hJijij / 1=
ffiffiffiffiffiffiffiffi
Ki;in

p
[26].

To incorporate this inverse square root scaling into our model, we develop a method called

reverse pooling (see S2 Appendix for details of the method). Briefly, the method draws connec-

tion strength values for each neuron without replacement from a pool of values pre-sampled

from a given distribution, which is ordered and then randomly separated into two sub-pools

for each neuron. Because the two sub-pools have different mean values, the desired average

incoming connection strength for each neuron can be achieved by randomly drawing pre-cal-

culated numbers of values from each sub-pool.

Heterogeneous degree distributions. We now specify the heterogeneous degree distribu-

tions used in Step 2 of our generative connectivity model. Direct evidence of heterogeneous

degree distributions of neural connectivity at the synaptic level is lacking, mainly due to small

sample sizes as limited by currently available tracing techniques [25]. However, heavily-tailed

degree distributions have been found in the effective connectivity of rodent somatosensory

cortex using transfer entropy-based methods [7], which produce qualitatively similar results

to those found by the patch clamp studies of [3]. Such degree distributions have also been

observed in a biologically constrained in silico microcircuit of the same area [10]. Anatomically

based estimates of the connectivity of layer 4 rat barrel cortex [9] have also indicated that the

degree distributions of cortical neurons are significantly broader than Poisson distributions in

the conventional E-R random networks (where the connection probabilities between any pair

of neurons are identical) for a given mean value. In light of these studies, in our model, we

assume that both the in- and out-degrees are heterogeneous, with some neurons having con-

siderably more incoming and/or outgoing connections than expected in the E-R networks.

More specifically, in our model, the in-degree Kin and out-degree Kout for any excitatory neu-

ron are sampled from a hybrid distribution composed of a linear combination of a Poisson dis-

tribution and a log-normal distribution, which is a mathematically simple and well-known

heavy-tailed distribution,

Kin ¼ ð1 � qÞKP
in þ qKL

in;

Kout ¼ ð1 � qÞKP
out þ qKL

out;
ð3Þ
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where Kin and Kout are rounded to the nearest integers, q is the hybrid parameter, KP
in and

KP
out are drawn from Poisson distributions with mean z = pEENE, pEE = 0.16 is the overall E-

to-E connection probability; KL
in and KL

out are drawn from log-normal distributions with the

same mean z and a standard deviation that is 20% of the mean. Furthermore, to allow for a

control of the correlation between in- and out-degree as a system parameter, the two Poisson

random variables and the two log-normal random variables are generated with identical

correlation coefficients of ρK; in our model, we assume there is a weak positive correlation

ρK = 0.13; note that positively correlated in- and out-degrees have been found in microscopic

connectivity data [25]. In our model, the hybrid parameter q allows the interpolation

between Poisson distributions as in E-R networks (q = 0) and log-normal distributions

(q = 1); with the default hybrid parameter q = 0.4, the hybrid in- and out-degree distributions

have a mean and standard deviation of 635 and 83, respectively. The total sums of in- and

out-degrees in a network must be exactly equal, which is not guaranteed by sampling them

from distributions with the same means; to satisfy this constraint, a random subset of sam-

pled in- or out-degrees are adjusted by one so that any mismatch in the total sums is com-

pensated for.

Equalized I-E ratios. In our model, we consider an essential neurophysiological feature of

local cortical circuits, that is, the excitatory post-synaptic currents are proportional to the

inhibitory ones, with a homogeneous ratio across all excitatory neurons, as found in mouse

primary visual cortex layer 2/3 [18]. To model this in our heterogeneous circuit, we consider

the I-E ratio zi ¼
PKEI

i;in
k¼1 JEIik =

P
jJ
EE
ij , where KEI

i;in denotes the number of connections (in-degree)

received by excitatory neuron i from the inhibitory population and the connection strength

values JEEij are determined by the reverse pooling method mentioned above. To equalize the I-E

ratio zi across the neurons to a desired network-wide ratio, that is, hzii = z, the JEIik values for

neuron i are sampled from a Gaussian distribution with a mean equal to z
P

jJ
EE
ij =K

EI
i;in and a

standard deviation that is 25% of the mean. The I-E ratio z will be varied as a system parameter

to explore the spatiotemporal dynamics of our cortical circuit model.

We now summarize the parameters used for generating the entire network. For most of the

results, we use NE = 63 × 63 = 3969 excitatory neurons and NI = 1000 inhibitory neurons. The

ratio between NE and NI is around 4, consistent with published measurements from rat visual

cortex [73]. We consider the distance between two neighboring excitatory neurons (one grid

unit) in our model to be 7.4 μm based on the measurements from rat primary visual cortex

layer 5 [74]. Therefore, our network model contains approximately the same number of pyra-

midal neurons as a 0.22 mm2 square patch of cortical layer 5. Our results are not sensitive to

the size of the network; we have obtained similar results for larger networks with sizes such as

NE = 103 × 103 = 10609 and NI = 2673. For the exponential distance-dependent connection

probability functions used in Step 1 of our generative connectivity model, the decay constants

for the excitatory connections are tEED ¼ 8 grid units and tIED ¼ 10 grid units (corresponding to

roughly 74 μm), which are consistent with experimentally measured ranges [3]. For the inhibi-

tory connection ranges, we use tIID ¼ t
EI
D ¼ 20 grid units. For simplicity, the in-degree distribu-

tions for the connections from and to the inhibitory population are Poisson with overall

connection probabilities pEI = pIE = 0.2 and pII = 0.4, taking into account the fact that the

inhibitory connections are locally denser than excitatory ones [75, 76]. The rest of the

connection strengths are assumed to be homogeneous and we use JIEij ¼ JIE ¼ 5 nS and

JIIik ¼ JII ¼ 25 nS. Our connectivity model can be regarded as a generic local circuit model of

mammalian cortex. However, considering the variations across species and cortical areas in

general, e.g. [77], our model is most applicable to the layer 5 of rodent primary sensory
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cortices, whose connectivity properties are used to constrain the majority of the connectivity

features in our model.

A local cortical circuit model

Our generative connectivity model synthesizes distance dependence of connections with het-

erogeneous connectivity properties, such as heterogeneities in in- and out-degrees and in con-

nection strengths, thus giving rise to a novel spatially extended, heterogeneous network. Based

on this network structure, we then construct a spiking circuit model with conductance-based,

leaky integrate-and-fire (LIF) neurons. The subthreshold membrane potential Va
i of neuron i

from population α evolves according to

C
dVa

i ðtÞ
dt

¼ � gL½V
a

i ðtÞ � VL� þ Iai;KðtÞ þ Iai;recðtÞ þ Iai;extðtÞ; ð4Þ

where C = 0.25 nF is the capacitance, gL = 16.7 nS is the leaky conductance, VL = −70 mV is

the reversal potential for the leak current [78], Iai;KðtÞ is the potassium current that introduces

spike frequency adaptation to the neurons [79], Iai;rec is the recurrent synaptic current received

by neuron i, and Iai;ext is the external current. When the membrane potential reaches the thresh-

old Vth = −50 mV, a spike is emitted and the membrane potential is reset to the potential Vrt =

−60 mV for an absolute refractory period τref = 4 ms [78]. The potassium current is given by

Iai;K ¼ � g
a
i;KðtÞðV

a
i � VKÞ, where gai;KðtÞ is the active potassium conductance and VK = −85 mV

[80]. The dynamics of the potassium conductance are described by

dgai;KðtÞ
dt

¼ �
gai;KðtÞ
tK
þ DgK

X

k

dðt � tai;kÞ; ð5Þ

where tai;k is the time of the kth spike emitted by neuron i from population α, ΔgK = 10 nS and

τK = 80 ms [80]. Because spike frequency adaptation has been primarily observed in cortical

pyramidal neurons [81, 82], we only include such adaptation for excitatory neurons in our

model.

The recurrent synaptic current Iai;recðtÞ in Eq 4 is

Iai;recðtÞ ¼
X

b

Iabi;recðtÞ ¼
X

b

½� gabi ðtÞðV
a

i � Vb

revÞ�; ð6Þ

where gabi is the conductance of the recurrent current Iabi;rec from the pre-synaptic population β.

The excitatory and inhibitory reversal potentials are VE
rev ¼ 0 mV and VI

rev ¼ � 80 mV,

respectively [78]. The conductance gabi ðtÞ is given by

gabi ðtÞ ¼
XNb

j¼1

aabij J
ab

ij s
ab

ij ðtÞ; ð7Þ

where both the connection topology aabij and the strength Jabij are specified by our generative

connectivity model described above. The non-dimensional gating variable sabij ðtÞ in Eq 7

describes the synaptic dynamics [83],

dsabij
dt
¼ �

sabij
t
b

d

þ
X

k

hbðt � tbj;k � dabij Þð1 � sabij Þ; ð8Þ

where t
b

d is the conductance decay time constant, tbj;k is the time of the kth spike emitted by
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neuron j from population β, and dabij is the conduction delay drawn from a uniform random

distribution between 0 and 4 ms. The term hβ(t) is described by a rectangular pulse with uni-

tary area, that is, hbðtÞ ¼ 1=tbr , if 0 � t � tbr , and otherwise hβ(t) = 0, where tbr ¼ 1 ms. The

ð1 � sabij Þ term in Eq 8 introduces the saturation effect, which is a physiologically realistic fea-

ture that ensures that the gating variable (fraction of open channels) cannot exceed 100% [84].

In our model, the time scale of the excitatory conductance is an approximation of both fast

AMPA receptor mediated conductance and slow NMDA receptor mediated conductance;

therefore, the excitatory synaptic decay time constant tEd ¼ 5 ms is larger than the inhibitory

one tId ¼ 3 ms.
In our local cortical circuit model, the external currents are excitatory Iai;ext ¼ Jextsai;ext

ðVa
i � VE

revÞ, where Jext = 2 nS, each gating variable sai;ext is driven by a Poisson spike train tai;ext
with a rate z

a

ext and the saturation effect is ignored, dsai;ext=dt ¼ � s
a
i;ext=t

E
d þ hEðt � tai;extÞ. We use

z
I
ext ¼ 1000 Hz and calibrate z

E
ext at 850 Hz, so that the average spontaneous firing rate of excit-

atory neurons is 3.0 ± 0.2 in a dynamic working regime of the model, within which a range of

key in vivo findings can be captured; this working regime will be illustrated in the Results sec-

tion. To provide a high-level description of our local cortical circuit model, we adapt the table

templates in [85] to summarize the structural setup (see Table 1) and the neuron model

parameters in our model (see Table 2).

Variance decomposition analysis. To study how different heterogeneities in the neural

circuit model each impact neural dynamics, we develop the following variance decomposition

Table 1. Summary of model definition.

Populations Excitatory (E) and inhibitory (I)

Topology 2D square Cartesian grid with periodic boundaries

Excitatory neurons on integer (idealized anatomical) coordinates

Inhibitory neurons uniformly randomly positioned

Connectivity Algorithmically generated and constrained by empirical data

E-to-E In- and out-degree sampled from hybrid Poisson-lognormal distributions, and weakly correlated

Connection probability between neuron pairs proportional to both a distance dependent factor and

a common neighbor factor

Connection strengths sampled from a lognormal distribution, with the total in-coming connection

strength following an inverse square-root scaling w.r.t. the in-degree

I-to-E In-degree sampled from a Poisson distribution

Connection probability proportional to a distance dependent factor

Connection strength sampled from a Gaussian distribution for each excitatory neuron with a given

mean that equalizes the ratios between total incoming E and I connection strengths across

excitatory neurons (equalized I-E ratio)

E-to-I In-degree sampled from a Poisson distribution

Connection probability proportional to a distance dependent factor

Identical connection strength

I-to-I Similar to E-to-I

Neuron model Leaky integrate-and-fire neurons (Eq 4)

Excitatory neurons with spike-frequency adaptation (Eq 5)

Channel

model

Conductance-based excitatory and inhibitory channels (Eqs 6 and 7)

Synapse model Fraction of open channels (gating variable) described by first-order dynamics driven by pulse

inputs (incoming spikes; Eq 8)

External input Individual neurons receive excitatory synaptic inputs driven by independent Poisson spike trains

with constant rate

https://doi.org/10.1371/journal.pcbi.1006902.t001
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analysis. As described in Eqs (6 and 7), the recurrent synaptic current in the conductance-

based model is given by

Iabi;recðtÞ ¼ � ½Va
i ðtÞ � Vb

rev�
XNb

j¼1

aabij J
ab

ij s
b

j ðtÞ: ð9Þ

We obtain the deviation parts of the connection topology (denoted by daabij ) and strength

(denoted by dJabij ) by removing the mean values (over different realizations), that is, daabij ¼
aabij � �aabij and dJabij ¼ Jabij � �J ab. We denote the standard deviations as s

ab
ij;a and s

ab
ij;J , respectively.

Similarly, assuming the dynamics are stationary in terms of firing rate of each neuron, we have

the time varying parts of the gating variable and the membrane potential as dsbj ðtÞ ¼ sbj ðtÞ � �sbj
and dVa

i ðtÞ ¼ Va
i ðtÞ � �V a

i , where the averages are taken over an ensemble of networks with

different realizations of the random initial conditions. Following the same notation, the corre-

sponding standard deviations are s
b
j;s and sai;V .

Substituting the above expressions into Eq 9, expanding the brackets and after some deriva-

tions utilizing or assuming the independencies among the deviation and time varying parts

(see S3 Appendix), we obtain the mean and time varying part of the recurrent current,

Iabi;recðtÞ ¼ �I abi;rec þ dI
ab
i;recðtÞ, where the mean is given by �I abi;rec ¼ � ð�V a

i � Vb
revÞ

�J ab
PNb

j¼1
�aabij �sbj and

the time varying part can be expressed as a sum of the products of 15 random variables and

their associated standard deviations,

dIabi;recðtÞ ¼
P

Xŝ
ab
i;Xx

ab

i;XðtÞ; ð10Þ

where x
ab

i;XðtÞ are independent normal random variables with zero mean and unit variance

and the associated standard deviations ŝ
ab
i;X can be systematically obtained and expressed in

terms of the mean or (co-)variance of the four components in Eq 9, namely, aabij ; J
ab
ij ; s

b
j ðtÞ

and Va
i ðtÞ. The subscript X contains the shorthand letters of the components contributing to

the term ŝ
ab
i;X via their (co-)variances instead of mean values; for instance, for X = as, ŝabi;as ¼

j�V a
i � Vb

revj
�J ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jðs

ab
ij;as

b
j;sÞ

2
q

(see S3 Appendix for detailed derivations). And there are in total

Table 2. Summary of neuron parameters (in a consistent system of units; see Eq 4).

Definition Symbol Value Units

Capacitance C 0.25 nF

Leaky conductance gL 0.0167 μS

Unit increase in potassium conductance ΔgK 0.010 μS

Reversal potential for leak current VL -70 mV

Reversal potential for postsynaptic currents VE;I
rev 0,-80 mV

Reversal potential for potassium currents VK -85 mV

Firing threshold Vth -50 mV

Reset potential Vrt -60 mV

Decay time constant for potassium conductance τK 80 ms

Rise time constant for postsynaptic conductance tE;Ir 1 ms

Decay time constant for postsynaptic conductance t
E;I
d 5,3 ms

Absolute refractory period τref 4 ms

Rate of external Poisson spike train z
E;I
ext

0.85, 1.0 kHz

https://doi.org/10.1371/journal.pcbi.1006902.t002
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15 different terms for the recurrent current from population β to α, that is, X 2 {a, J, s, V, aJ,
as, aV, Js, JV, sV, JsV, asV, aJV, aJs, aJsV}. These results enable us to obtain the variance σ2(�) of

the synaptic currents,

s2½Iabi;recðtÞ� ¼
P

Xðŝ
ab
i;XÞ

2
; ð11Þ

which allows us to decompose the contributions to the variance of recurrent currents from dif-

ferent sources, including connectivities.

Statistical analysis

Simulations of the local cortical circuit model are performed using the forward Euler method

with a time-step of 0.1 ms. The initial membrane potentials are uniformly distributed between

Vrt = −60 mV and Vth = −50 mV. A typical trial is one realization of the circuit simulated for

at least 100 biological seconds unless otherwise stated, with the first 500 ms excluded. All the

standard errors of mean (SEM) reported in the Results section are calculated from 10 trials

unless otherwise stated. Statistical analysis is done with MATLAB2015b. Spike train statistics

are calculated with a bin size of 1 ms. The custom C++ simulation software and MATLAB

codes used for analysis are available on GitHub (URL: https://github.com/

BrainDynamicsUSYD/SpikeNet).

Localized propagating wave detection. The spontaneous activity of our local cortical cir-

cuit model exhibits rich spatiotemporal dynamics, including propagating wave patterns. To

compare the properties of these wave patterns in our model with those reported in [14], we use

the following detection method. We assume at any time the excitatory population has a firing

rate profile of a 2-D circular Gaussian function, with the firing rate vEi of excitatory neuron i
described as

vEi ðθtÞ ¼ vpðtÞe
� jri � rpðtÞj

2=2s2
pðtÞ; ð12Þ

where ri is the coordinate vector of neuron i and θt ¼ ½rpðtÞ; s2
pðtÞ; vpðtÞ� is the parameter vec-

tor that contains the center position, the variance, and the height of the Gaussian function,

respectively. We further assume that the firing process of each neuron around time t can be

approximated by a Poisson process with rate vEi ðθtÞ. With this assumption, the log-likelihood

ln L(θt) of the parameters is given by

ln LðθtÞ ¼
X

i

½� vEi ðθtÞ þ nE
i ðtÞ ln vEi ðθtÞ�; ð13Þ

where nE
i ðtÞ is the spike count of excitatory neuron i within a small window Δt = 5 ms centered

around time t. To find the maximal likelihood fit to the spiking data on the grid with periodic

boundaries, we transform the grid coordinates into points on unit circles and calculate the cir-

cular means. To measure the goodness of fit, we compare the Gaussian model against a null

model that assumes a uniform firing rate profile by calculating the Bayes factor B12 (see S4

Appendix for details). A Bayes factor log10(B12)> 2 means the Gaussian model is significantly

more strongly supported by the data than the null model is [86]. In our analysis, we regard

any fitting results with log10(B12)< 2 as irregular firing states between coherent spiking wave

patterns.
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S2 Video. Sample video for Fig 3D. The global propagating wave state.

(MP4)

S3 Video. Sample video for Fig 3E. The transition state.
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S4 Video. Sample video for State II in Fig 6E. The video is visualized in the same way as in
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