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Abstract

Emerging evidence has shown microRNAs (miRNAs) play an important role in human dis-

ease research. Identifying potential association among them is significant for the develop-

ment of pathology, diagnose and therapy. However, only a tiny portion of all miRNA-disease

pairs in the current datasets are experimentally validated. This prompts the development of

high-precision computational methods to predict real interaction pairs. In this paper, we pro-

pose a new model of Logistic Model Tree for predicting miRNA-Disease Association

(LMTRDA) by fusing multi-source information including miRNA sequences, miRNA func-

tional similarity, disease semantic similarity, and known miRNA-disease associations. In

particular, we introduce miRNA sequence information and extract its features using natural

language processing technique for the first time in the miRNA-disease prediction model. In

the cross-validation experiment, LMTRDA obtained 90.51% prediction accuracy with

92.55% sensitivity at the AUC of 90.54% on the HMDD V3.0 dataset. To further evaluate the

performance of LMTRDA, we compared it with different classifier and feature descriptor

models. In addition, we also validate the predictive ability of LMTRDA in human diseases

including Breast Neoplasms, Breast Neoplasms and Lymphoma. As a result, 28, 27 and 26

out of the top 30 miRNAs associated with these diseases were verified by experiments in dif-

ferent kinds of case studies. These experimental results demonstrate that LMTRDA is a reli-

able model for predicting the association among miRNAs and diseases.

Author summary

Identification of miRNA-disease associations is considered as an important step for the

development of diagnose and therapy. Computational methods contribute to discovering
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the potential disease-related miRNAs. Based on the assumption that functionally related

miRNAs tend to be involved disease, the model of LMTRDA is proposed to prioritize the

underlying miRNA-disease associations by fusing multi-source information including

miRNA sequences, miRNA functional similarity, disease semantic similarity, and known

miRNA-disease associations. Through cross validation, the promising results demon-

strated the effectiveness of the proposed model. We further implemented the case studies

of three important human complex diseases including Breast Neoplasms, Breast Neo-

plasms and Lymphoma, 28, 27 and 26 of top-30 predicted miRNA-disease associations

have been manually confirmed based on recent experimental reports. It is anticipated that

LMTRDA model could prioritize the most potential miRNA-disease associations on a

large scale for advancing the progress of biological experiment validation in the future,

which could further contribute to the understanding of complex disease mechanisms.

Introduction

MicroRNAs (miRNAs) are a small class of endogenous non-coding RNAs with a length of

about 20–24 nucleotides [1]. They bind to the 3’-untranslated region of target miRNA through

sequence-specific base pairing, resulting in cleavage or translation inhibition of target miRNA,

and thereby regulating gene expression at the post-transcriptional level [2]. A growing body of

research has shown that miRNA plays an important role in many biological processes, and

their mutations and dysfunctions may lead to a variety of diseases [3]. Therefore, it is very

important to identify the relationship among miRNAs and diseases, which has become a

research hotspot in recent years.

Early studies often use biological experiments to determine the impact of a single factor on

the results of the experiment and achieve higher accuracy. Lee et al. discovered the first

miRNA in 1993, that is, the presence of Lin-4 in C.elegans [4]. Since then, many miRNAs have

been discovered and identified by using different biological experimental methods, thus giving

new insights into the functions and regulatory mechanisms of miRNAs [5, 6]. Furthermore,

these studies have demonstrated that miRNAs are associated with many important biological

processes, such as viral infection [7], immune reaction [8], tumor invasion [9], signal transduc-

tion [10], cell proliferation [11], cell growth [12], and cell death [13]. With the development of

biotechnology, more and more miRNA-disease associations have been revealed. By studying

the expression changes of cancer-associated miRNAs in the early stage of HBV-associated

hepatocarcinogenesis, Gao et al. found that the deregulation of miRNAs is an early event and

accumulates in various steps of HBV-associated hepatocarcinogenesis. At the same time, their

results also indicate that miR-145 is a candidate tumor suppressor miRNA, which may play an

important role in the development of HCC [14]. Bang et al. discovered that miR-23, miR-27

and miR-24 cluster are involved in angiogenesis and endothelial apoptosis during cardiac

ischemia and retinal vascular development, and plays an important role in cardiovascular

angiogenesis [15]. However, the traditional experimental methods have the disadvantages of

long experimental cycle, high cost, small scale and easy to be disturbed by the outside world.

Therefore, researchers are committed to finding more efficient computational methods to

achieve large-scale and credible predictions of the association among miRNAs and diseases.

Based on the hypothesis that functionally similar miRNAs tend to be associated with dis-

eases with similar phenotypes, many computational methods for predicting miRNA-disease

association have been proposed [16–18]. These computational methods can be roughly divided

into two categories: similarity-based measures methods and machine learning-based methods
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[19–21]. The former predicts miRNA-disease association by measuring the association

strength between nodes in miRNA and disease network, while the latter applies the machine

learning correlation algorithm to this problem [22–24]. Chen et al. proposed the RWRMDA

method and applied it to the miRNA-miRNA functional similarity network, which starts at a

given seed node and randomly simulates the transfer process of the pedestrian from the cur-

rent node to its neighboring nodes in the network, thus predicting the relationship between

miRNA and disease [25]. Liu et al. constructed a heterogeneous network by combining data

from multiple sources and applied the random walk algorithm to predict miRNA-disease asso-

ciations. In this method, the functional similarity information of miRNA, semantic similarity

information of diseases and miRNA-disease association information are added to the network

model, so that it can predict the potential association of new diseases with unknown miRNA

related information [26]. Zeng et al. proposed a prediction method based on social network

analysis, which combines social network analysis with machine learning to predict the rela-

tionship between miRNA and disease under the premise of known miRNA-disease associa-

tion, miRNA-miRNA functional similarity, and disease-disease similarity [27]. Zou et al. used

a supervised machine learning approach to predict miRNA-disease associations by training

the biased SVM classifier with bootstrap aggregating algorithm [28].

In this study, we propose a new computational method of Logistic Model Tree for predicting

miRNA-Disease Association (LMTRDA) based on the assumption that functionally similar

miRNAs are often associated with phenotypically similar diseases, and vice versa. The LMTRDA

combines multiple sources of data information, including miRNA sequence information,

miRNA functional similarity information, disease semantic similarity information, and known

miRNA-disease association information. In particular, LMTRDA incorporates biological

sequence information of miRNAs extracted by natural language processing techniques. Specifi-

cally, LMTRDA first respectively calculates the similarity between miRNA and disease according

to the miRNA functional similarity network and disease semantic similarity network, and com-

bines them with the Gaussian interaction profile kernel similarity network to obtain the similar-

ity descriptors of miRNA and disease. Secondly, the Natural Language Processing (NLP)

technology is used to extract the feature information of the miRNA sequence, and the sequence

information and the similarity information of each miRNA-disease pair are combined to form a

complete feature descriptor according to the known miRNA and disease association. Finally, the

reduced dimension feature descriptors are fed into the Logistic Model Tree (LMT) classifier to

predict the associations among miRNAs and diseases. The flowchart of LMTRDA model to pre-

dict potential miRNA-disease associations is shown in Fig 1. To evaluate the performance of

LMTRDA, the five-fold cross-validation was implemented on the newly released HMDD V3.0

dataset. As a result, LMTRDA obtained 90.51% prediction accuracy with 92.55% sensitivity at

the AUC of 90.54%. In comparison with different classifiers and feature descriptors, LMTRDA

also achieved good results. Furthermore, we validated the proposed model against three human

diseases including Breast Neoplasms, Colon Neoplasms and Lymphoma. Ultimately, most of the

top 30 miRNA candidates associated with these three diseases (28 of 30 in Breast Neoplasms, 27

of 30 in Colon Neoplasms, 26 of 30 in Lymphoma) predicted by LMTRDA were confirmed in

some representative databases. These experimental results indicated that LMTRDA is well suit-

able for predicting miRNA-disease association.

Materials and methods

Human miRNA–disease association dataset

In the experiment, we validate our model using the HMDD (Human microRNA Disease Data-

base) dataset provided by Li et al. [29]. The HMDD dataset provides experiment-supported
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evidence for human miRNA and disease association, which collects miRNA and disease asso-

ciation data from the evidence of circulating miRNAs, epigenetics, genetics and miRNA-target

interactions, and contains detailed and comprehensive annotations. Currently, the latest ver-

sion of the HMDD dataset is V3.0, which collects 32281 miRNA-disease association entries,

including 1102 miRNAs and 850 diseases from 17412 papers. This dataset can be downloaded

from the http://www.cuilab.cn/hmdd. When pre-processing the dataset, we removed some of

the miRNAs because their information was judged to be unreliable by the public database

miRBase. After screening, we chose 32226 miRNA-disease association pairs containing 1057

miRNAs and 850 diseases as positive samples in the experiment. Since HMDD does not pro-

vide unrelated miRNA-disease association entries, we randomly selected 32226 miRNA-dis-

ease pairs as negative samples from all possible miRNA-disease pairs that have removed the

positive samples. In fact, the negative sample set thus constructed may contain positive sam-

ples that have not been confirmed by the experiment. However, from a statistical point of

view, the proportion of negative samples we selected from all possible samples is only 32226�

(850×1057)�0.0358, and the number of samples with actually interactions as negative sample

sets is very small. Ultimately, the dataset used in our experiment contained 64456 samples, of

which positive and negative samples accounted for half. On this basis, we constructed the adja-

cency matrix AD of miRNA and disease, which consists of 850 rows and 1057 columns, corre-

sponding to 850 diseases and 1057 miRNAs, respectively. When disease d(i) and miRNA m(j)
are verified to be related by the HMDD V3.0 database, the element AD(d(i),m(j)) of the adja-

cency matrix AD is assigned to 1, otherwise it is assigned to 0. Known human miRNA-disease

associations and their names obtatined from HMDD V3.0 database can be seen in S1–S3

Tables.

Disease semantic similarity

The disease semantic similarity information we use comes from the MeSH database, which

can be downloaded from the National Library of Medicine database at https://www.nlm.nih.

Fig 1. Flowchart of LMTRDA model to predict potential miRNA-disease associations.

https://doi.org/10.1371/journal.pcbi.1006865.g001
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gov/. The MeSH database gives a rigorous disease classification system of diseases, which pro-

vides great help for the study of disease semantic similarity [30]. In the system, the relationship

among diseases is described as the Directed Acyclic Graph (DAG), where node represents dis-

ease and edge represents their relationship [31]. If the disease d(i) is related to the disease d(j),
use the edge to connect them, indicating that the child node d(i) comes from the parent node

d(j). Thus, disease d(i) can be described as DAGd(i) = (d(i),Nd(i),Ed(i)), where Nd(i) is the ances-

tor node set of d(i) including d(i), and Ed(i) is the edge set containing the corresponding edges.

We define the contribution of disease s in DAGd(i) to the semantic value of disease d(i) as fol-

lows:

DdðiÞðsÞ ¼ 1 if s ¼ dðiÞ

DdðiÞðsÞ ¼ maxfε � DdðiÞðs0Þjs0 2 children of sg if s 6¼ dðiÞ
ð1Þ

(

Where ε is the semantic contribution factor linking disease s and its child disease s0. In the

DAG of disease d(i), the contribution value of disease d(i) to its own semantic value is defined

as 1. Therefore, we can get the semantic value DV(d(i)) of disease d(i), and its formula is as fol-

lows:

DVðdðiÞÞ ¼
P

s2NdðiÞ
DdðiÞðsÞ ð2Þ

Here, we assume that diseases sharing more parts of their DAGs will have higher semantic

similarity. By considering the relative position of disease d(i) and disease d(j) in the MeSH dis-

ease DAG, the semantic similarity value SV1(d(i),d(j)) between them can be calculated, and the

formula is as follows.

SV1 dðiÞ; dðjÞð Þ ¼

P
s2NdðiÞ\NdðjÞ

ðDdðiÞðsÞ þ DdðjÞðsÞÞ

DVðdðiÞÞ þ DVðdðjÞÞ
ð3Þ

In the SV1 model, we mainly consider the relationship between the layers of disease in

DAG graph, that is, the contribution of different diseases in the same layer to the semantic

value is the same. However, we observed that the number of different diseases appearing in the

DAGs is different, and the contribution of disease less appearing in the DAGs should be higher

than that of disease more appearing in the DAGs. Therefore, in order to distinguish this situa-

tion, we introduce the second calculation model [32] of contribution value of disease s, the for-

mula is as follows:

D0dðiÞ sð Þ ¼ � log
numðDAGsðsÞÞ
numðdiseasesÞ

� �

ð4Þ

where num(DAGs(s)) indicates the number of DAGs containing disease s, and num(diseases)
indicates the number of all diseases. Thus, the second model of semantic similarity value SV2(d
(i),d(j)) of disease d(i) and disease d(j) is obtained, and the formula is as follows:

SV2 dðiÞ; dðjÞð Þ ¼

P
s2NdðiÞ\NdðjÞ

ðD0dðiÞðsÞ þ D0dðjÞðsÞÞ

DVðdðiÞÞ þ DVðdðjÞÞ
ð5Þ

where the value of DV(d(i)) and DV(d(j)) are the same as model 1, which can be calculated

using formula 2. The diseases used in disease similarity model 1 and model 2 are from the

MeSH database, which accounts for only a part of the diseases we use. Therefore, the remain-

ing disease similarity scores are calculated using Gaussian interaction profile kernel similarity.
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MiRNA functional similarity

Under the hypothesis that functionally similar miRNAs are more likely to be associated with

phenotypically similar diseases, Wang et al. proposed a functional similarity model to calculate

the functional similarity between different miRNAs [31], and placing its functional similarity

score matrix at http://www.cuilab.cn/files/images/cuilab/misim.zip. In this article, we down-

load it as the miRNA function similarity information. But similar to the case of the disease

similarity model, the miRNAs provided in this matrix contains barely a portion of the miRNAs

we use. Therefore, we combine it with Gaussian interaction profile kernel similarity to form a

complete miRNA similarity matrix. The constructed miRNA functional similarity score matrix

can be seen in S4 Table.

Gaussian interaction profile kernel similarity

Since the HMDD V3.0 dataset provides a greater number of diseases and miRNAs than the

disease and the miRNA similarity models described above, we describe the remaining disease

and miRNA similarity information using Gaussian interaction profile kernel similarity [33].

The calculation of Gaussian interaction profile kernel similarity for diseases is based on the

hypothesis that similar diseases tend to be functionally similar miRNA, and vice versa. By

observing whether disease d(i) is associated with each of the 1057 miRNAs we have compiled

from the HMDD V3.0 dataset, we defined binary vector V(d(i)) to represent the interaction

profiles of disease d(i). Here, the binary vector V(d(i)) is the row vector of the adjacency matrix

AD in which the disease d(i) is located. Gaussian interaction profile kernel similarity for dis-

eases GD(d(i),d(j)) between disease d(i) and disease d(j) can be calculated as follows:

GDðdðiÞ; dðjÞÞ ¼ expð� ydkVðdðiÞÞ � VðdðjÞÞk2
Þ ð6Þ

where θd is the width parameter of the function, which can be calculated by normalizing the

original parameters. The formula is as follows:

yd ¼
1

m
Pm

i¼1
kVðdðiÞÞk2

ð7Þ

where m is the number of rows of the adjacency matrix AD.

Similarly, Gaussian interaction profile kernel similarity for miRNA GR(r(i),r(j)) between

miRNA r(i) and miRNA r(j) can be calculated as follows:

GRðrðiÞ; rðjÞÞ ¼ expð� yrkVðrðiÞÞ � VðrðjÞÞk2
Þ ð8Þ

yr ¼
1

n
Pn

i¼1
kVðrðiÞÞk2

ð9Þ

where the binary vector V(r(i)) is the column vector of the adjacency matrix AD in which the

miRNA r(i) is located, n is the number of columns of the adjacency matrix AD.

Numerical representation of miRNA sequences

The sequence of miRNA contains abundant information. In order to describe the characteris-

tics of miRNA more comprehensively, we transform them into numerical vectors and fuse

them with the above similarity vectors to form the final descriptors. The usual approach to

convert miRNA sequences into numerical vectors is to use k-mers [34], which refers to the

length of a subsequence of k. Given a miRNA sequence of length l, the number of possible k-

mers is l−k+1. For example, 6-mers sequence of miRNA can be represented as AAAAAA,

Prediction of miRNA-disease association using machine learning
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AAAAAC,. . .,UUUUUU. However, this approach does not take into account the difference

between the two k-mers because it treats the distance between any two k-mers as equal. But

the difference between AAAAAA and UUUUUU is significantly larger than between AAAAAA
and AAAAAC. Therefore, we introduce natural language processing technology to solve this

problem [35–38]. It can not only transform the original high-dimensional data into low-

dimensional continuous real-valued vector, but also learn its effective representation from

miRNA sequences in an unsupervised manner.

In this study, we use skip-gram in natural language processing’s Word2vec algorithm to

learn the distributed representation of miRNA for k-mers, which is a shallow two-layer neural

network and represents an item by considering its context information from the nearby items.

Given a sequence of words w1,w2,. . .,wn, skip-gram uses the co-occurrence information of

words in the context window to learn the word representation, and look for the parameter set

θ to maximize the product of the following conditional probabilities.

arg maxy
Q

w2T½
Q

c2CðwÞpðcjw; yÞ� ð10Þ

where T is the text set; w is a word; c is a word in the context; C(w) is the set of words contained

in the context in which the word w appears in the text set T; p is a conditional probability,

which is defined as follows:

p cjw; yð Þ ¼
expðvc � vwÞP
c02Cexpðvc � vwÞ

ð11Þ

where vc and vw are the column vectors of c and w, respectively; C is the set of words in all

contexts, which is equivalent to vocabulary v; and parameter θ is the specific value of each

dimension in vc and vw. In experiments, we use 6-mers to transform miRNA sequences,

which ultimately get 46 = 4096 6-mers. Taking the AAGUCGUACGAU sequence as an

example, 6-mers can convert it to {AAGUCG,AGUCGU,GUCGUA,UCGUAC,CGUACG,

GUACGA,UACGAU}. After obtaining the 6-mers of all miRNAs in the HMDD V3.0 dataset,

we trained the skip-gram word2vec algorithm using all the miRNAs downloaded from the

public database miRBase as training sets. In the implementation of the algorithm, we use the

following parameters: the minimum number of occurrences of the training words "min_-

count" is set to 5, the maximum distance of the word vector context "window" is set to 5, the

dimension size of the word vector "size" is set to 64, the maximum number of iterations in the

stochastic gradient descent method "iter" is set to 10, and the other parameters are set to

default values.

Multi-source feature fusion

In this study, we ultimately used descriptors that fused multiple sources of data including dis-

ease similarity, miRNA similarity and miRNA sequence to predict the miRNA-disease associa-

tion. The advantage is that it can reflect the characteristics of diseases and miRNAs from

different perspectives, help to deeply dig out the potential relationship among miRNAs and

diseases, and improve the performance of model prediction.

For the similarity of diseases, we construct disease semantic similarity model SV1, disease

semantic similarity model SV2 and disease Gaussian interaction profile kernel similarity GD.

The disease similarity matrix DSim(d(i),d(j)) between disease d(i) and d(j) can be obtained by

Prediction of miRNA-disease association using machine learning
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integrating the above disease similarities. The formula is as follows:

DSim d ið Þ; d jð Þð Þ

¼

SV1ðdðiÞ; dðjÞÞ þ SV2ðdðiÞ; dðjÞÞ
2

if dðiÞ and dðjÞ has semantic similarity

GDðdðiÞ; dðjÞÞ otherwise
ð12Þ

8
<

:

For the similarity of miRNA, we combined miRNA functional similarity RF and miRNA

Gaussian interaction profile kernel similarity GR to form miRNA similarity matrix RSim. The

miRNA similarity matrix RSim(r(i),r(j)) formula for miRNA r(i) and miRNA r(j) is as follows:

RSimðrðiÞ; rðjÞÞ ¼
RFðrðiÞ; rðjÞÞ if dðiÞ and dðjÞ has functional similarity

GRðrðiÞ; rðjÞÞ otherwise
ð13Þ

(

For the final feature vector FV, we need to integrate the sequence information of miRNA

RSeq. The feature vector FV(d(i),r(j)) formed by diseases d(i) and miRNA r(j) can be described

in the following formula:

FVðdðiÞ; rðjÞÞ ¼ ½DSimðdðiÞÞ;RSimðrðjÞÞ;RSeqðrðjÞÞ� ð14Þ

where DSim(d(i)) represents the i row vector of disease d(i) in the disease similarity matrix

DSim; RSim(r(j)) represents the j column vector of miRNA r(j) in the miRNA similarity matrix

RSim; RSeq(r(j)) represents the j row vector of miRNA r(j) in the miRNA sequence matrix

RSeq.

Logistic model trees classifier

In this study, we use the Logical Model Tree (LMT) as a classifier to predict the associations

among miRNAs and diseases. The basic idea of LMT originates from the combination of two

complementary classification schemes: linear logistic regression and tree induction [39, 40]. It

uses the LogitBoost algorithm to establish the logistic regression function on the node of the

tree, and uses the CART algorithm to prune. Specifically, LMT first constructs a basic "weak

classifier" based on the existing sample dataset, and calls the "weak classifier" repeatedly. By

giving more weight to the wrong samples in each round, it will pay more attention to the sam-

ples that are hard to judge. Then, after several rounds of cycles, the "weak classifiers" of each

round are combined into the "strong classifier" by weighting method, thereby obtaining a

higher precision prediction model. Finally, the tree grown in the training set is pruned using

the CART algorithm to obtain the final classification model.

Results and discussion

Evaluation criteria

To have a comprehensive assessment of the performance of LMTRDA, we follow common

evaluation criteria to evaluate the model, including accuracy (Accu.), sensitivity (Sen.), preci-

sion (Prec.) and Matthews Correlation Coefficient (MCC). Their calculation formulas are

defined as follows:

Accu: ¼
TP þ TN

TP þ TN þ FP þ FN
ð15Þ

Sen: ¼
TP

TP þ FN
ð16Þ

Prediction of miRNA-disease association using machine learning
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Prec: ¼
TP

TP þ FP
ð17Þ

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð18Þ

where TP, TN, FP, and FN respectively indicate the number of correctly predicted positive

samples, correctly predicted negative samples, incorrectly predicted positive samples, and

incorrectly predicted negative samples by the model. In addition, the Receiver Operating

Characteristic (ROC) curve and the area under the curve (AUC) that can comprehensively

reflect the performance of the model are also used in the experiment [41].

Assessment of prediction ability

To assess the ability of LMTRDA to predict miRNA-disease association, we validated it on

HMDD V3.0 dataset using the five-fold cross-validation by LMT classifier. Firstly, we divided

all 64452 miRNA-disease pairs into five subsets that were disjoint and roughly equal. Secondly,

four of them are selected as training sets to train the LMT classifier, and the remaining one is

used as a test set to obtain prediction results. Finally, take turns selecting different subsets as

the test set and repeat step 2 until all subsets are treated as test set once and only once. We col-

lected the results of these five experiments and used the mean and standard deviation as the

final experimental results.

Table 1 lists the experimental results of the five-fold cross-validation obtained by LMTRDA

on the HMDD V3.0 dataset. We can see from the table that LMTRDA has achieved an average

prediction accuracy of 90.51%. The accuracy of the five experiments is 90.99%, 90.29%,

90.74%, 90.22% and 90.30% respectively, while the standard deviation is only 0.34%. The

LMTRDA model obtained the sensitivity, precision, Matthews correlation coefficient and area

under ROC curve are 92.55%, 88.93%, 81.10%, and 90.54%, with standard deviations of 1.11%,

0.98%, 0.67% and 0.33% respectively. The ROC curves and PR curves generated by our pro-

posed method on the HMDD V3.0 dataset are shown in Fig 2 and Fig 3.

Comparison among different classifiers

Our proposed LMTRDA model has achieved satisfactory results on HMDD V3.0 dataset using

the LMT classifier. In this part of the experiment, we select the state-of-the-art SVM classifier

and random forest classifier to compare with it [42]. SVM is a supervised learning algorithm

to solve classification problems. It can find the best separated hyperplane in the feature space

to maximize the interval between positive and negative samples on the training set, and obtain

the global optimization result [43, 44]. Random forest is a classifier with multiple decision

Table 1. Five-fold cross-validation results performed by LMTRDA on HMDD V3.0 dataset.

Test set Accu.(%) Sen.(%) Prec. (%) MCC(%) AUC(%)

1 90.99 92.32 89.92 82.00 91.03

2 90.29 93.98 87.44 80.81 90.51

3 90.74 93.37 88.53 81.60 90.69

4 90.22 91.72 89.31 80.47 90.22

5 90.30 91.35 89.47 80.63 90.27

Average 90.51±0.34 92.55±1.11 88.93±0.98 81.10±0.67 90.54±0.33

https://doi.org/10.1371/journal.pcbi.1006865.t001
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trees whose output is determined by the mode number of output categories of decision trees

[45, 46]. It can improve the prediction accuracy without significantly improving the amount of

computation, so it is widely used in the field of pattern recognition and data mining. When

classifying with SVM classifier, we optimized its parameters using grid search method and set

the kernel function to radial basis function, c = 0.5 and g = 0.2. We use radial basis as the kernel

function for the SVM classifier, and the optimization results are stored in S5 Table. When clas-

sifying with random forest classifier, we also optimized its parameters, setting the maximum

depth of the tree to 2, and other parameters to the default values.

Tables 2 and 3 summarize the five-fold cross-validation results performed by SVM and ran-

dom forest classifier combined with the proposed feature descriptors on the HMDD V3.0

dataset. From Table 2 we can see that the accuracy, sensitivity, precision, MCC, and AUC

Fig 2. ROC curves performed by LMTRDA on HMDD V3.0 dataset.

https://doi.org/10.1371/journal.pcbi.1006865.g002

Fig 3. PR curves performed by LMTRDA on HMDD V3.0 dataset.

https://doi.org/10.1371/journal.pcbi.1006865.g003
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obtained by the SVM model are 86.09%, 76.14%, 95.05%, 73.65% and 86.10%, and their stan-

dard deviations are 0.29%, 0.60%, 0.18%, 0.45% and 0.38%, respectively. It can be seen from

Table 3 that the accuracy, sensitivity, precision, MCC, and AUC achieved by random forest

model are 89.66%, 88.14%, 90.90%, 79.35% and 89.73% respectively. Their standard deviations

are 0.50%, 0.57%, 0.50%, 1.01%, 0.58%, respectively.

For convenience of comparison, we summarize the experimental results of the three models

and present them in the form of the graph. From the Fig 4 we can visually observe that

LMTRDA achieves the highest result among the five evaluation criteria of accuracy, sensitivity,

MCC, and the third result in terms of precision. This indicates that LMTRDA does not per-

form as well as the other two models in terms of the precision, which representing the propor-

tion of true positive samples in the positive samples predicted by the prediction model. But

overall, the performance of LMTRDA is optimal, especially on the predictive accuracy and the

MCC and AUC that represent the overall performance of the model. From Fig 4, we also

found that the RF model achieved higher results than that of the SVM model, but generally

lower than LMTRDA. This shows that the RF classifier is more suitable for the proposed fea-

ture descriptors than the SVM classifier, but the LMT classifier is the most suitable one in this

model.

Comparison among different feature descriptors

To evaluate the ability of our proposed descriptors to represent disease and miRNA feature

information, we compare them with different descriptors. Since the descriptor we proposed

consists of disease similarity information, miRNA similarity information, and miRNA

sequence information, we constructed different descriptors to compare with them in this part

of the experiment. That is, the descriptor ‘DescSeq’ consisting only of disease similarity infor-

mation and miRNA sequence information, and the descriptor ‘DescSim’ consisting only of

disease similarity information and miRNA similarity information. Tables 4 and 5 list the five-

fold cross-validation results generated by the LMT classifier combined with these two

Table 2. Five-fold cross-validation results performed by SVM classifier combined with the proposed feature descriptors on HMDD V3.0 dataset.

Test set Accu.(%) Sen.(%) Prec. (%) MCC(%) AUC(%)

1 86.30 76.56 95.09 74.02 86.13

2 86.46 77.00 94.82 74.21 86.75

3 86.04 75.71 95.06 73.52 85.91

4 85.76 75.65 95.32 73.21 85.84

5 85.88 75.79 94.97 73.28 85.88

Average 86.09±0.29 76.14±0.60 95.05±0.18 73.65±0.45 86.10±0.38

LMTRDA 90.51±0.34 92.55±1.11 88.93±0.98 81.10±0.67 90.54±0.33

https://doi.org/10.1371/journal.pcbi.1006865.t002

Table 3. Five-fold cross-validation results performed by random forest classifier combined with the proposed feature descriptors on HMDD V3.0 dataset.

Test set Accu.(%) Sen.(%) Prec. (%) MCC(%) AUC(%)

1 90.12 88.35 91.60 80.30 90.32

2 89.88 88.69 90.76 79.78 90.14

3 90.02 88.33 91.21 80.06 89.95

4 89.32 88.16 90.55 78.67 89.27

5 88.95 87.18 90.39 77.94 88.97

Average 89.66±0.50 88.14±0.57 90.90±0.50 79.35±1.01 89.73±0.58

LMTRDA 90.51±0.34 92.55±1.11 88.93±0.98 81.10±0.67 90.54±0.33

https://doi.org/10.1371/journal.pcbi.1006865.t003
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descriptors respectively. It can be seen from the table that the accuracy of the ‘DescSeq’ and

‘DescSim’ descriptors generated on the dataset are 87.51% and 89.43%, the sensitivity are

87.25% and 92.46% and, the precision are 87.71% and 87.23%, the MCC are 75.03% and

79.03%, the AUC are 87.61% and 89.55% and, respectively.

Fig 5 shows the five-fold cross-validation prediction results of three descriptors combined

with LMT classifier on HMDD V3.0 dataset. As can be seen from the Fig 5, our proposed

descriptors have achieved the best prediction performance on the evaluation criteria accuracy,

sensitivity, precision, MCC, and AUC, respectively. In particular, there is a significant

improvement in the Accuracy indicating the average accuracy of the prediction model and the

MCC and AUC indicating the overall performance of the prediction model. This suggests that

the multi-source information descriptor which combines disease similarity, miRNA similarity

and miRNA sequence can describe the miRNA-disease association from different aspects, so

as to maximize the deeper meaning of miRNA-disease data hiding.

Case studies

To further evaluate the performance of LMTRDA, we implemented the case studies on three

diseases including Breast Neoplasms, Colon Neoplasms and Lymphoma. In the experiment,

Fig 4. Comparison of results of different classifier models on HMDD V3.0 dataset.

https://doi.org/10.1371/journal.pcbi.1006865.g004

Table 4. Five-fold cross-validation results performed by LMT classifier combined with descriptor DescSeq on HMDD V3.0 dataset.

Test set Accu.(%) Sen.(%) Prec. (%) MCC(%) AUC(%)

1 88.08 88.83 87.51 76.16 88.13

2 87.55 87.68 87.34 75.10 87.67

3 87.55 87.85 87.09 75.10 87.55

4 87.54 86.43 88.73 75.11 87.73

5 86.84 85.49 87.87 73.70 86.97

Average 87.51±0.44 87.25±1.31 87.71±0.64 75.03±0.87 87.61±0.42

LMTRDA 90.51±0.34 92.55±1.11 88.93±0.98 81.10±0.67 90.54±0.33

https://doi.org/10.1371/journal.pcbi.1006865.t004
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we trained the classifier as the training set for all known miRNA-disease pairs in the HMDD

V3.0 dataset. The test set is the miRNA-disease pairs consisting of these three diseases and all

possible miRNAs. When LMTRDA obtained the predicted results, we took out the 30 miRNAs

with the highest scores according to different diseases and verified them in dbDEMC V2.0 and

miR2Disease databases [47].

Breast neoplasms are neoplasms that occur in breast tissue, accounting for about two-thirds

of breast disease. Malignant breast neoplasms are commonly known as breast cancer, and 99%

of them occur in women. The global incidence of breast cancer has been on the rise since the

late 1970s, and one in eight women in the United States has breast cancer. At present, breast

cancer has become a common neoplasm that threatens women’s physical and mental health. A

large number of experiments show that many miRNAs are related to breast neoplasms. So we

selected breast neoplasms as the first case study and use LMTRDA to predict the miRNAs

associate with them. The results are shown in Table 6, 28 out of the top 30 predicted miRNAs

are verified in the experimental data provided by the dbDEMC V2.0 and miR2Disease

datasets.

Colon neoplasms are common malignant neoplasms in the gastrointestinal tract, the inci-

dence of which is second only to gastric and esophageal cancer. Lymphoma is a malignant

tumor that originates in the lymphoid hematopoietic system. More and more literatures have

reported that much miRNAs are closely related to these two diseases. Therefore, we also

Table 5. Five-fold cross-validation results performed by LMT classifier combined with descriptor DescSim on HMDD V3.0 dataset.

Test set Accu.(%) Sen.(%) Prec. (%) MCC(%) AUC(%)

1 90.87 92.31 89.68 81.77 90.92

2 89.95 92.86 87.74 80.03 90.09

3 90.87 92.83 89.43 81.79 90.90

4 87.93 92.25 84.90 76.14 88.15

5 87.55 92.05 84.40 75.42 87.69

Average 89.43±1.60 92.46±0.36 87.23±2.48 79.03±3.06 89.55±1.53

LMTRDA 90.51±0.34 92.55±1.11 88.93±0.98 81.10±0.67 90.54±0.33

https://doi.org/10.1371/journal.pcbi.1006865.t005

Fig 5. Comparison of results of different descriptor models on HMDD V3.0 dataset.

https://doi.org/10.1371/journal.pcbi.1006865.g005
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choose these two diseases as the case study to verify the predictive ability of LMTRDA. Tables

7 and 8 respectively list the top 30 miRNAs with the highest scores associated with the two

diseases predicted by LMTRDA. After comparing with the dbDEMC V2.0 and miR2Disease

database, 27 out of the top 30 miRNAs in the Colon neoplasms disease predictions can be vali-

dated, and 26 out of the top 30 miRNAs can be validated in the Lymphoma disease predictions

can be validated.

Table 6. Top 30 miRNAs related to Breast Neoplasms were predicted by LMTRDA based on known miRNA-disease associations in HMDD V3.0 database.

miRNA

(prediction score 1–15)

Evidence miRNA

(prediction score 16–30)

Evidence

hsa-mir-520f dbDEMC V2.0 hsa-mir-211 dbDEMC V2.0

hsa-mir-520e dbDEMC V2.0 hsa-mir-19b-2 unconfirmed

hsa-mir-325 dbDEMC V2.0 hsa-mir-663 dbDEMC V2.0

miR2Disease

hsa-mir-616 dbDEMC V2.0 hsa-mir-362 dbDEMC V2.0

hsa-mir-634 dbDEMC V2.0 hsa-mir-133 dbDEMC V2.0

hsa-mir-637 dbDEMC V2.0 hsa-mir-490 dbDEMC V2.0

hsa-mir-498 dbDEMC V2.0 hsa-mir-483 dbDEMC V2.0

hsa-mir-885 dbDEMC V2.0 hsa-mir-30 dbDEMC V2.0

hsa-mir-181d dbDEMC V2.0 hsa-mir-186 dbDEMC V2.0

hsa-mir-28 dbDEMC V2.0 hsa-mir-95 dbDEMC V2.0

hsa-mir-216 dbDEMC V2.0 hsa-mir-449b dbDEMC V2.0

hsa-mir-208b unconfirmed hsa-mir-330 dbDEMC V2.0

hsa-mir-455 dbDEMC V2.0 hsa-mir-217 dbDEMC V2.0

hsa-mir-382 dbDEMC V2.0 hsa-mir-99b dbDEMC V2.0

miR2Disease

hsa-mir-520f dbDEMC V2.0 hsa-mir-365 dbDEMC V2.0

https://doi.org/10.1371/journal.pcbi.1006865.t006

Table 7. Top 30 miRNAs related to Colon neoplasms were predicted by LMTRDA based on known miRNA-disease associations in HMDD V3.0 database.

miRNA

(prediction score 1–15)

Evidence miRNA

(prediction score 16–30)

Evidence

hsa-mir-526b dbDEMC V2.0 hsa-mir-198 dbDEMC V2.0

hsa-mir-520g dbDEMC V2.0 hsa-mir-181d dbDEMC V2.0

hsa-mir-520f dbDEMC V2.0 hsa-mir-181c dbDEMC V2.0

hsa-mir-520e dbDEMC V2.0 hsa-mir-181b-2 dbDEMC V2.0

hsa-mir-325 dbDEMC V2.0 hsa-mir-181b-1 dbDEMC V2.0

miR2Disease

hsa-mir-302f unconfirmed hsa-mir-122 dbDEMC V2.0

hsa-mir-616 dbDEMC V2.0 hsa-mir-370 dbDEMC V2.0

hsa-mir-634 dbDEMC V2.0 hsa-mir-302c dbDEMC V2.0

hsa-mir-637 dbDEMC V2.0 hsa-mir-28 dbDEMC V2.0

hsa-mir-492 unconfirmed hsa-mir-26a-2 dbDEMC V2.0

miR2Disease

hsa-mir-520c unconfirmed hsa-mir-26a-1 dbDEMC V2.0

miR2Disease

hsa-mir-520b dbDEMC V2.0 hsa-mir-216 dbDEMC V2.0

hsa-mir-885 dbDEMC V2.0 hsa-mir-208b dbDEMC V2.0

hsa-mir-34b dbDEMC V2.0 hsa-mir-182 dbDEMC V2.0

miR2Disease

hsa-mir-340 dbDEMC V2.0 hsa-mir-103a-2 dbDEMC V2.0

https://doi.org/10.1371/journal.pcbi.1006865.t007
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Conclusion

In this study, we present a novel computational method LMTRDA for predicting miRNA-dis-

ease association base on fused multi-source data. An interesting aspect of LMTRDA is the use

of natural language processing techniques to transform miRNA sequences into numerical vec-

tors and merge them with miRNA functional similarity, disease semantic similarity, and

known miRNA-disease association information to form feature descriptors. Cross-validation

experiment results on HMDD V3.0 dataset demonstrated that this model can effectively pre-

dict the potential association among miRNAs and diseases. In comparison with different clas-

sifier and feature descriptor models, LMTRDA exhibits good performance. In addition, we

validated it in human diseases including Breast Neoplasms, Breast Neoplasms and Lymphoma,

and LMTRDA also achieved excellent results. These results indicated that LMTRDA is a reli-

able model for predicting miRNA-disease association. In future research, we will continue to

study how to better apply natural language processing techniques to biological sequence data

in anticipation of better performance of predictive mod.

Supporting information

S1 Table. Known human miRNA-disease associations obtained from HMDD V3.0 data-

base.

(XLSX)
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Table 8. Top 30 miRNAs related to Lymphoma were predicted by LMTRDA based on known miRNA-disease associations in HMDD V3.0 database.

miRNA

(prediction score 1–15)

Evidence miRNA

(prediction score 16–30)

Evidence

hsa-mir-526b dbDEMC V2.0 hsa-mir-30c-1 dbDEMC V2.0

hsa-mir-520g dbDEMC V2.0 hsa-mir-198 dbDEMC V2.0

hsa-mir-520f dbDEMC V2.0 hsa-mir-181d dbDEMC V2.0

hsa-mir-520e dbDEMC V2.0 hsa-mir-181b-2 dbDEMC V2.0

hsa-mir-325 dbDEMC V2.0 hsa-mir-506 unconfirmed

hsa-mir-302f unconfirmed hsa-mir-370 dbDEMC V2.0

hsa-mir-616 dbDEMC V2.0 hsa-mir-30a dbDEMC V2.0

miR2Disease

hsa-mir-634 dbDEMC V2.0 hsa-mir-302c dbDEMC V2.0

hsa-mir-637 dbDEMC V2.0 hsa-mir-302b dbDEMC V2.0

hsa-mir-492 dbDEMC V2.0 hsa-mir-216 dbDEMC V2.0

hsa-mir-520b dbDEMC V2.0 hsa-mir-208b dbDEMC V2.0

hsa-mir-498 dbDEMC V2.0 hsa-mir-103a-2 unconfirmed

hsa-mir-885 dbDEMC V2.0 hsa-mir-103a-1 unconfirmed

hsa-mir-340 dbDEMC V2.0 hsa-mir-1 dbDEMC V2.0

hsa-mir-30c-2 dbDEMC V2.0 hsa-mir-499 dbDEMC V2.0

https://doi.org/10.1371/journal.pcbi.1006865.t008
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