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Abstract

A central issue in the study of the neural generation of respiratory rhythms is the role of the

intrinsic pacemaking capabilities that some respiratory neurons exhibit. The debate on this

issue has occurred in parallel to investigations of interactions among respiratory network

neurons and how these contribute to respiratory behavior. In this computational study, we

demonstrate how these two issues are inextricably linked. We use simulations and dynam-

ical systems analysis to show that once a conditional respiratory pacemaker, which can be

tuned across oscillatory and non-oscillatory dynamic regimes in isolation, is embedded into

a respiratory network, its dynamics become masked: the network exhibits similar dynamical

properties regardless of the conditional pacemaker node’s tuning, and that node’s outputs

are dominated by network influences. Furthermore, the outputs of the respiratory central

pattern generator as a whole are invariant to these changes of dynamical properties, which

ensures flexible and robust performance over a wide dynamic range.

Author summary

Breathing movements in mammals are generated by brainstem respiratory central pattern

generator (CPG) networks, which incorporate an excitatory oscillator located in the pre-

Bötzinger Complex (preBötC) that can exhibit autorhythmic behavior. To understand

how these autorhythmic properties impact CPG network dynamical performance, we per-

formed computational studies with an established modeling framework to systematically

analyze network behavior when the preBötC excitatory neurons’ intrinsic dynamics are

tuned to operate in autorhythmic versus non-autorhythmic regimes. Both of these

regimes enable rhythmic activity of the CPG network, and we show that the rhythm and

its responses to various manipulations are preserved across the tunings of intrinsic prop-

erties of the preBötC component. Correspondingly, the emergence of behaviorally appro-

priate rhythmic patterns of network activity is maintained across preBötC regimes,

accompanied by an expansion of the ranges of network output frequencies and ampli-

tudes beyond those attainable with either preBötC regime alone. These results lead to the

novel conclusion and concept that the dynamical operation of the CPG is functionally
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highly robust with respect to the rhythmogenic state of the preBötC excitatory circuits,

which could represent a key property for preserved respiratory function across varying

conditions and demands on network performance.

Introduction

A variety of neuronal circuits, including a range of brainstem and spinal cord central pattern

generators (CPGs) in many species, exhibit rhythmic activity patterns. In many CPGs, these

patterns consist of sequential activations of different neuronal populations that interact

through synaptic connections [1, 2]. Significant effort has gone into exploring, using experi-

mental and theoretical methods, the extent to which the intrinsic bursting or pacemaking

capabilities of neurons within these populations are responsible for the existence of the net-

work rhythms in which they participate. For example, experimental studies have established

the existence of intrinsically bursting neurons in the respiratory pre-Bötzinger complex

(preBötC), the inspiratory oscillator within the mammalian brainstem [3], and certain experi-

mental manipulations of burst-supporting conductances in these neurons have eliminated

respiratory rhythms [4–7].

Although these and a wide range of other investigations have explored burst generation

mechanisms in respiratory preBötC neurons and have debated the role of this burst generation

capability in respiratory rhythms across a variety of conditions [8, 9], these studies have not

answered a key question: What happens to this intrinsic bursting when the intrinsically burst-

capable neurons are embedded within the full network with which they interact synaptically?

In fact, it remains unknown whether the intrinsic bursting capabilities of subsets of preBötC

neurons affect the dynamics that these neurons actually exhibit once they are embedded within

a synaptically interconnected respiratory circuit and how this bursting capability contributes

to the properties of the circuit’s rhythmic outputs.

These issues relate to the broader concept of robustness. Respiration is critical for survival

in mammalian species; respiratory rhythms within individuals must be produced across varia-

tions in environmental conditions, metabolic demands, and physiological states, and this per-

sistence must occur across individuals despite their phenotypic heterogeneity. Robustness of a

dynamical output such as a respiratory rhythm refers to the maintenance of that pattern of

output across conditions or, in a modeling context, across changes in the model parameters or

features that represent these conditions. An even stronger form of robustness can arise in

which not only the output pattern but also the dynamical mechanisms that give rise to that pat-

tern are preserved. Past experimental and computational work has revealed significant robust-

ness of rhythmicity in the stomatogastric ganglion CPG, which generates certain digestive

rhythms in crustacean species, with respect to changes in extrinsic factors such as temperature

as well as intrinsic factors such as conductances of ionic currents [10–12].

In this study, we use highly reduced models of the respiratory CPG, composed of a small

number of units representing important neuron populations [13], to highlight some key ideas

relating to robustness of rhythmic outputs across parameter variations, including changes that

would induce a switch in intrinsic dynamics if applied to isolated preBötC neurons. The

model network generates a three-phase respiratory rhythm and includes inspiratory neurons

that abruptly activate at the onset of inspiration, with gradually declining input; a post-inspira-

tory component that strongly activates at the inspiratory-to-expiratory transition and then

gradually diminishes its activity; and a component with activity that represents a later expira-

tory phase, gradually augmenting after the main post-inspiratory activity surge [14, 15]. We
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model the burst-capable neurons in the respiratory network using differential equations that

incorporate a representation of the persistent sodium current, which supports an established

oscillatory burst generating mechanism and has been well documented in these neurons

experimentally [6, 16–18]. Basic principles of dynamical systems theory imply, however, that

any alternative mechanisms providing a similar voltage-dependence of activity and autorhyth-

mic capability would yield similar results [19], and hence the ideas that we illustrate are not

dependent on a specific bursting mechanism. In particular, our key finding is that network

rhythmicity extends smoothly and robustly across different dynamical regimes of the intrinsi-

cally burst-capable neurons in the network. Within the multi-phase rhythmic outputs that

emerge, these neurons’ outputs can become dominated by network influences. While network

rhythms exhibit similar features whether the tuning of these neurons renders them intrinsi-

cally burst-capable or not, the maintenance of output function across different tunings of

intrinsic dynamics yields a broadened dynamic range of network output properties.

Results

Properties of pre-I neuronal unit dynamics are masked within network

rhythms

We simulated a highly reduced rhythm-generating network model consisting of ordinary dif-

ferential equations representing coupled neuronal units. We based our network connectivity

on published models for the generation of rhythmic activity patterns in respiratory circuits [5]

and we tuned the network to produce rhythmic outputs that are qualitatively similar to the

experimentally observed tri-phasic rhythmic respiratory pattern, including the inspiratory (I),

the post-I expiratory, and the subsequent augmenting-expiratory (aug-E) stages. The circuit

depicted (Fig 1) consists of a preBötC excitatory (glutamatergic) unit (often referred to as pre-

Fig 1. Schematic illustration of the respiratory network configuration considered. Red is used for excitatory units

and their outputs, while blue denotes inhibitory units and their outputs. Black arrows correspond to tonic drives to

units in the network. The PiCo is only included in a subset of our simulations, as indicated in the text.

https://doi.org/10.1371/journal.pcbi.1006860.g001
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I/I because its firing occurs before and during the I phase, but abbreviated as pre-I throughout

this work) representing rhythmogenic neurons in the preBötC, a brainstem region that can

exhibit intrinsic oscillatory dynamics and drives I activity, along with inhibitory units named

after the timing within the respiratory cycle at which their activity occurs (early-I, post-I and

aug-E). Among these, it is thought that critical subpopulations of post-I and aug-E inhibitory

neurons in respiratory CPG circuits reside in the BötC region adjacent to the preBötC [5, 8],

and these inhibitory neurons have been shown to provide strong inhibition to the preBötC to

regulate inspiratory rhythmicity [20]. In some simulations, as noted in the corresponding text,

we also included a unit representing the recently identified glutamatergic post-inhibitory com-

plex (PiCo) [21]. Within this framework, we tuned the parameters in the equations for each

unit to represent a distinct activity profile experimentally identified to arise in a corresponding

subpopulation of respiratory neurons during the respiratory cycle [5]. In each of these popula-

tions, neurons become active and fall silent in a synchronized way but need not spike in syn-

chrony, and hence we omitted spiking currents in our model units.

Within the respiratory rhythm-generating circuit, some members of the pre-I population

in the preBötC have been found to be capable of producing rhythmic bursting activity even

when isolated from synaptic inputs, at least over some range of constant input currents or

extracellular potassium concentrations [3, 22, 23]. We simulate the conditional bursting

property of pre-I neurons by endowing the pre-I unit’s voltage equation with a persistent

sodium current, INaP, which is an established feature of preBötC excitatory neurons [6, 16,

18] and provides a voltage-controlled relaxation-oscillator type of rhythmic oscillation. In

the reduced modeling framework, the dynamics produced by the pre-I unit can be under-

stood by using a phase plane representation. The phase plane shows values of voltage, Vpre−I,

and INaP inactivation, hpre−I, along with these variables’ nullclines, which are curves along

which dVpre−I/dt = 0 or dhpre−I/dt = 0, respectively (Fig 2A). Nullcline intersections corre-

spond to fixed points, or combinations of Vpre−I, hpre−I for which the unit is at equilibrium.

Fixed points may be asymptotically stable, stable, or unstable; in the last case, if we choose a

Fig 2. Pre-I tuning. (A): The Vpre−I-nullcline structure for the pre-I unit in the preBötC depends on its tonic drive parameter, c11. Blue curves

denote the Vpre−I-nullcline for several values of c11, with different line patterns used for contrast enhancement. The red curve is the hpre−I-

nullcline, which is independent of c11. A fixed point occurs where the two nullclines intersect. (B): Bifurcation diagram for the pre-I unit with

respect to c11. Solid (dashed) curve denotes stable (unstable) equilibria. Red curves are max and min voltages along a family of stable periodic

orbits; these grow extremely rapidly in amplitude when they first appear, near c11 = −0.060. Pre-I is oscillatory where these orbits exist, on c11 2

(−0.060, −0.011). Inset shows dependence of periods on c11; period jumps sharply from 0 at the onset of oscillations, drops abruptly, and then

decays more gradually as c11 increases.

https://doi.org/10.1371/journal.pcbi.1006860.g002
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starting point for (Vpre−I, hpre−I) at random, then we expect these quantities to stay away from

the fixed point as time evolves.

Because the tonic excitatory drive to the pre-I unit affects dVpre−I/dt, the Vpre−I-nullcline’s

position and shape depend on the strength of this drive, denoted by c11. Generally, increases in

c11 cause nullcline alterations that promote elevations in voltage (Fig 2A). More specifically,

for relatively low values of c11, the unit’s Vpre−I-nullcline is cubic or N-shaped and features an

asymptotically stable fixed point on its hyperpolarized (or left) branch, corresponding to a qui-

escent state. As c11 is increased, the Vpre−I-nullcline changes, causing the location of its inter-

section with the hpreI
-nullcline to change as well. As a result, the fixed point crosses to the

middle branch and a bifurcation occurs (an Andronov-Hopf, or A-H, bifurcation with a

canard explosion [24]) that destabilizes the fixed point, after which the unit will, in isolation

from synaptic inputs from other units, produce relaxation oscillations. In this regime, the unit

is intrinsically rhythmic, and this rhythmicity depends on INaP. Finally, with additional

increases in c11, the Vpre−I nullcline switches from cubic to monotonically increasing and

another (A-H) bifurcation occurs, producing the loss of oscillations and the restabilization of

the fixed point, now at a depolarized voltage, corresponding to a tonically activated state (Fig

2). In this regime, the excitatory drive to the unit keeps voltage high enough that INaP deinacti-

vation is limited, including in the tonically activated state. Note that the actual numerical val-

ues of c11 used here are given in arbitrary units.

Once this pre-I unit is embedded within the full respiratory network (as shown in Fig 1, but

without the PiCo), its intrinsic properties are masked, or superseded by the network dynamics.

There are multiple manifestations of this form of masking. First, at the low end of the c11 range

over which the isolated pre-I unit generates oscillations, the coupled network does not produce

oscillatory dynamics but rather settles into a tonic activity regime in which the post-I unit

maintains a steady elevated activation level while the pre-I and early-I units exhibit low activa-

tion levels. Second, the ranges of periods and amplitudes that the pre-I unit exhibits during its

intrinsic oscillations differ from those that it produces when operating within the oscillatory

dynamics of the full network (Fig 3). The sensitivity of the pre-I oscillation period and ampli-

tude to changes in c11 is also altered by the embedding.

Interestingly, the activity pattern of the synaptically connected respiratory network remains

remarkably similar regardless of whether c11 is tuned to yield oscillatory or tonic pre-I dynam-

ics in isolation. These network activity patterns are shown in Fig 4A and 4B for representative

c11 values, one per regime of intrinsic pre-I dynamics, in terms of nondimensional variables

(scaled between 0 and 1, with the same scaling used across all c11) representing the output of

the pre-I, early-I, post-I, and aug-E units that comprise the network, when PiCo is silent. In

both cases, pre-I and to a lesser extent early-I output slowly ramps up before pre-I and early-I

activity levels surge together, corresponding to the onset of inspiration. Pre-I and early-I then

gradually decline before an abrupt take-over by post-I unit activity and corresponding inhibi-

tion of the two I units, marking the phase switch to expiration. After this switch, post-I output

declines, disinhibiting aug-E, the output of which ramps up, yielding what is known as the late-

expiratory or E-2 phase, with aug-E output exceeding and inhibiting but not completely sup-

pressing post-I. This similarity in the pattern of network dynamics across different pre-I unit

tunings represents another form of masking, since the intrinsic tuning of the pre-I unit dynam-

ics becomes hidden and cannot be deduced from observation of the network activity pattern.

A comparison between the examples shown reveals that the periods of the outputs gener-

ated for these parameter values do differ. We will next explore frequency responses to parame-

ter changes across the two regimes of pre-I intrinsic dynamics, and later we will consider

network dynamics when PiCo activity is included (Fig 4C and 4D).
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Period and amplitude responses to reductions of gNaP
In the model that we are considering, we use a persistent sodium current, INaP, to allow the

possibility of intrinsic rhythmicity in our pre-I unit. In experiments, addition of the INaP

blocker riluzole to the perfusate of an in situ rat preparation that preserved the intact respira-

tory network yielded little change in respiratory period but caused the output of the phrenic

nerve, which corresponds to the excitatory output from the inspiratory neurons in the respira-

tory circuit, to decrease in amplitude [5]. This decrease occurred roughly linearly with riluzole

concentration, reaching about 1/3 of the original amplitude with the maximal riluzole dose

applied.

We tested the dependence of the period of our network rhythm (T), the duration of its

inspiratory (TI) and expiratory (TE) phases, and the amplitude of the pre-I unit’s output on

the strength of INaP, represented by its maximal conductance gNaP,exc. Moreover, we evaluated

this dependence over a range of values of the pre-I tonic drive parameter c11 spanning across

regimes of both oscillatory and tonic pre-I intrinsic dynamics. Note that the value of c11 at

which the pre-I unit’s intrinsic dynamics changes from oscillatory to tonic depends on gNaP,exc.

Since this transition occurs at an A-H bifurcation as shown in Fig 2B, we used the continuation

capabilities of XPPAUT [25] to follow this bifurcation in the two parameters (gNaP,exc, c11),

thereby generating a transition curve. This curve appears in red in all panels of Fig 5.

We found that the quantitative properties of the network rhythm did depend on both gNaP,exc

and c11 (Fig 5). For example, T was sensitive to gNaP,exc over a range of c11 values but less so for

sufficiently large c11, possibly because units other than pre-I exerted more control over network

timing for large c11 values associated with tonic intrinsic pre-I dynamics (Fig 2). A sufficient

Fig 3. Pre-I output properties are altered by embedding within the full respiratory network. Dashed curves show

the period (blue) and amplitude (red) of oscillations exhibited by the pre-I unit in isolation, over the range of c11 values

for which it intrinsically generates oscillatory behavior. Solid curves illustrate the same quantities for the pre-I unit

when it is embedded in the full model respiratory network, over the range of c11 values for which the network

oscillates.

https://doi.org/10.1371/journal.pcbi.1006860.g003
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reduction of gNaP,exc prevented network output of a rhythmic pattern for most of the range of c11

considered because pre-I became unable to activate, although for c11 sufficiently large, rhythmic

outputs persisted down to gNaP,exc = 0 nS, despite the lack of intrinsic pre-I rhythmicity at this

c11 level. Wider ranges of T, TI, and TE values could occur for relatively small (i.e., relatively neg-

ative) c11 than for large c11 (Fig 5A, 5C and 5D), while amplitude changed more with gNaP,exc

when c11 was large (i.e., near 0 or positive, Fig 5B), due to the wider range of gNaP,exc values pre-

serving rhythmicity. Importantly, however, when gNaP,exc and c11 were varied from one side of

the oscillatory-tonic transition curve (red curves in Fig 5) to the other, the transition in pre-I

intrinsic dynamics caused absolutely no associated jump or shift in the quantitative properties

of the network rhythm (Fig 5). In other words, the patterns of changes in period, amplitude, TI,

and TE with respect to gNaP,exc and c11 continue uninterrupted across this transition curve.

Finally, we compared the dependence of the model on gNaP,exc to that found experimentally

[5]. We found that over a range of c11 values straddling 0 (c11 2 [−0.006, 0.004]), we could

select a range of gNaP,exc values (gNaP,exc 2 [1.7 nS, 4.1 nS]) such that when gNaP,exc was reduced

Fig 4. Basic model behavior. (A-B): Time courses of outputs of all 4 neurons (with PiCo silent and omitted) in the network rhythm when (A)

pre-I is intrinsically oscillatory (c11 = −0.03) or (B) pre-I is intrinsically tonic (c11 = 0.01). Black: pre-I. Red: early-I. Blue: post-I. Magenta: aug-E.

(C-D): Time courses of outputs of all 5 neurons in the network rhythm, including PiCo (c15 = 0.045), when (C) pre-I is intrinsically oscillatory

(c11 = −0.03) or (D) pre-I is intrinsically tonic (c11 = 0.01). Black: pre-I. Red: early-I. Cyan: PiCo. Blue: post-I. Magenta: aug-E.

https://doi.org/10.1371/journal.pcbi.1006860.g004
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through this range, the model provided an excellent agreement with the experimentally

observed [5] invariance of period and 2/3 drop in amplitude of inspiratory output (blue boxes,

Fig 5A and 5B; amplitude range approximately 0.23 to 0.75). In fact, there was some decrease

in TI over this range (Fig 5C), but it was compensated by an increase in TE (Fig 5D) to yield lit-

tle net change in T (Fig 5A).

Dynamical mechanisms of network rhythms do not depend on intrinsic

tuning of preBötC excitatory unit

Although the network’s rhythmic activity pattern is similar for both oscillatory and tonic

intrinsic preBötC unit dynamics, it remains possible that this intrinsic tuning could affect the

detailed dynamical mechanisms by which this pattern is produced, potentially leading to dif-

ferent dynamics in response to certain inputs or perturbations. Since we use model units with

dynamics that can be visualized in the phase plane to model each population in the network,

we can represent the network oscillation mechanisms geometrically and compare them

between the two cases. To do so, although the full network model consists of an eight-dimen-

sional dynamical system, we consider the network outputs projected to various two-dimen-

sional phase planes, each defined using the two variables for one specific unit (Figs 6 and 7).

Within these phase planes, we plot the nullclines, or curves of zero rate of change, for each of

these two variables. Since each unit’s voltage equation depends on the outputs of the other

Fig 5. Parameter-dependence of model output. In all cases, gNaP refers to the persistent sodium conductance for the

pre-I unit (i.e., gNaP,exc from the Methods section). (A) Grey scale in boxes codes period of full rhythm, with longest

period given by palest shades (color bar, periods in seconds). For parameter values in the unboxed white region, the

network is not rhythmic. For parameter values below the red curve, the pre-I neuron is intrinsically oscillatory. (B)

Grey scale codes amplitudes, with largest amplitude given by darkest shades (color bar, amplitudes measured as

maximum minus minimum of pre-I output, f(V1)). Red curve as in upper left. (C) Grey-coded inspiratory phase

duration (seconds), measured as time between increased and subsequent decreases of V1 through a threshold of -35

mV. (D) Grey-coded expiratory phase duration (seconds), measured as the period minus the inspiratory phase

duration. The blue boxed regions are explained in the text.

https://doi.org/10.1371/journal.pcbi.1006860.g005
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units that are coupled to it synaptically, the location of each projected voltage nullcline varies

with the activity of each presynaptic unit. We plot the nullclines at several key moments within

a network activity cycle that are particularly helpful for understanding the network dynamics.

We also plot the projection of the network output trajectory to each phase plane. Because volt-

age changes much more rapidly than the persistent sodium inactivation variable, these trajec-

tory projections generally lie on appropriate voltage nullclines except during brief excursions

when the network output rapidly changes, which occur in the transitions between inspiratory

Fig 6. Network oscillation mechanisms when pre-I is intrinsically oscillatory, with c11 = −0.03. (A) Phase plane (hpre−I versus Vpre−I) for the

pre-I unit. Black curve is the model output projected to this plane. Solid blue curves are Vpre−I-nullclines. The lower right nullcline corresponds to

0 inhibition to pre-I, the upper left nullcline (which continues out of the image) to the maximal inhibition received by pre-I (0.0965), and the

middle nullcline to the inhibition level received by pre-I (0.09) when it begins its escape to the active phase by hitting the curve of knees (LK, grey

dashed). The red curve is the hpre−I-nullcline, which is independent of inhibition level. The vertical black curve denotes the Vpre−I value at which

the output of pre-I is half of its maximum value. Solid black circles and squares correspond to time points when inhibition to the pre-I unit is 0.09

and 0.0965, respectively. (B) Same solution projected to the plane in which the inhibition to pre-I is plotted versus hpre−I (black solid). As

inhibition wears off, the trajectory first crosses the curve of pre-I fixed points (FP, green dashed) and then crosses the curve of Vpre−I-nullcline left

knees (LK, blue dashed), allowing escape (black circle) and initiation of inspiration. Trajectories for reduced/increased inhibition from post-I to

pre-I (b31 = 0.105/0.175) are also shown (dotted/dashed black). (C) Phase plane (hpost−I versus Vpost−I) for the post-I unit. Curves are analogous to

those in (A). The Vpost−I-nullclines shown correspond to minimal inhibition to post-I (far right, inhibition is 0), occurring when the maximal

value of Vpost−I is achieved along the trajectory (black square, same time point as in (A)); to maximal inhibition to post-I (far left, inhibition is

0.54); and to the inhibition level when pre-I initiates its escape (middle, inhibition is 0.0525, also marked by solid black circle at same time point

as in (A)). (D) Phase plane (haug−E versus Vaug−E) for the aug-E unit. Curves are analogous to those in (A). From right to left, the Vaug−E-nullclines

shown correspond to minimal inhibition to aug-E (inhibition is 0.05); to inhibition to aug-E at the moment when pre-I initiates its escape

(inhibition is 0.0542, also marked by black circle at same time point as in other plots); to inhibition to aug-E when Vpre−I is at its peak (0.283); and

to inhibition to aug-E when Vpost−I is at its peak (0.35, marked by black square at same time point as in other plots).

https://doi.org/10.1371/journal.pcbi.1006860.g006
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and expiratory phases. Note that we omit the early-I unit from this discussion, because it

always settles to a stable fixed point corresponding to the level of input that it receives, and it

lacks the auto-rhythmic capability needed to initiate a transition to the I phase.

The phase plane for the pre-I unit shows that even if the pre-I unit is tuned to be intrinsi-

cally oscillatory, at the moment when it receives its maximal level of inhibition, which occurs

at the onset of post-I activity (black square in Fig 6A), the unit cannot activate through INaP

deinactivation alone, because its voltage- or Vpre−I-nullcline (leftmost blue curve, Fig 6A) inter-

sects the hpre−I-nullcline (red curve) in a stable fixed point at large hpre−I, corresponding to sta-

ble quiescence. When inhibition to the pre-I is at its peak, Vpost−I is at its maximum (black

square in Fig 6C), while Vaug−E is hyperpolarized due to the strong inhibition that the aug-E

unit receives from post-I (black square in Fig 6D). As can be seen in Fig 6C and 6D, during the

ensuing post-I phase, Vpost−I gradually decreases, which occurs due to an inhibitory input from

the aug-E unit (which is already present—although very weak—near the onset of the expira-

tory phase in our model tuning; see Fig 4), and Vaug−E gradually increases (Fig 6C and 6D

arrows); together, these changes form a self-reinforcing feedback loop. As a result, the inhibi-

tory output from the post-I unit drops, the Vpre−I-nullcline position changes, and the value of

Vpre−I increases correspondingly while hpre−I continues to deinactivate (Fig 6A, arrow).

A key moment in the respiratory cycle is the transition from expiration to inspiration.

From the phase plane in Fig 2, recall that when the pre-I unit is tuned to be intrinsically oscil-

latory, the Vpre−I-nullcline has a cubic shape whether it receives any inhibition or not. In a

phase plane with a cubic voltage nullcline, a unit transitions from the hyperpolarized phase to

the depolarized phase when its voltage rises above the left fold or knee of its voltage nullcline,

corresponding to sufficient INaP deinactivation relative to the level and time course of input

that the unit receives. Because the inhibition from post-I to pre-I is stronger than the inhibi-

tion from aug-E to pre-I, it follows that the inhibition to pre-I declines over the course of expi-

ration. This decline allows the pre-I unit to reach its curve of knees once Vpost−I is sufficiently

reduced. This event is illustrated in Fig 6A, where the Vpre−I-nullcline is shown at the moment

(marked with a black circle) when Vpre−I reaches this curve of knees (grey curve), allowing the

transition to inspiration to commence (see also black circles and corresponding voltage null-

clines in Fig 6C and 6D).

Fig 7. Network oscillation mechanisms when pre-I is intrinsically tonic, with c11 = 0.01. Mechanisms are identical to the case when pre-I is

intrinsically oscillatory. (A) Analogous curves to Fig 6A. Maximal inhibition is 0.088 (black square), minimal inhibition is 0, inhibition at escape

is 0.012 (black circle). Note that the grey curve of knees terminates, which corresponds to where the Vpre−I-nullcline becomes monotone. (B)

Analogous curves to Fig 6B. The termination of the curve of left knees is also evident here (around inhibition of 0.7 ×10−2).

https://doi.org/10.1371/journal.pcbi.1006860.g007
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Another view of this transition is provided by plotting the total level of inhibition to the

pre-I unit versus hpre−I (Fig 6B). The (Vpre−I, hpre−I) coordinates of both the knee itself (dashed

blue curve) and the fixed point (dashed green curve), where the Vpre−I and hpre−I nullclines

intersect, depend on this inhibition level. The projection of the trajectory would tend to the

curve of fixed points if inhibition were held fixed, preventing the onset of inspiration. But the

gradual decrease of total inhibition to pre-I carries the trajectory across the curve of knees,

allowing Vpre−I to rapidly increase and inspiration to begin. During the subsequent inspiratory

phase, the pre-I unit progresses along the right branch of its uninhibited voltage nullcline as

INaP inactivates (rightmost blue curve, Fig 6A; see also sharp rise in pre-I output in Fig 4),

while the post-I and aug-E units become strongly inhibited and jump to corresponding inhib-

ited voltage nullclines at hyperpolarized voltages (Fig 6C and 6D). Finally, once Vpre−I becomes

close enough to its synaptic threshold (black vertical line, Fig 6A), the inhibition to post-I and

aug-E weakens, allowing both of their nullclines to shift to depolarized voltages. Both units

attempt to activate but post-I wins, yielding a transient spike and subsequent hyperpolarization

of the aug-E unit and the transition to expiration, which completes the respiratory cycle.

Note that the only possible moment in this process when the intrinsic oscillation capability

of the pre-I unit could have mattered was at the onset of inspiration, which depends on the

cubic shape of the Vpre−I-nullcline. Yet examining similar phase plane representations when

the pre-I unit is tuned to be intrinsically tonic shows that even in this tuning, the Vpre−I-null-

cline is still cubic at the moment of onset of inspiration and the mechanism underlying the

transition to inspiration is the same as in the oscillatory tuning case (Fig 7A and 7B). That is,

even though in the absence of inhibition the Vpre−I-nullcline becomes monotonic in this tun-

ing, sufficiently strong inhibition can yield a prolonged quiescent period with enhanced INaP

deinactivation, corresponding to a cubic Vpre−I-nullcline. When the inhibition to the pre-I unit

starts to decay after a period of strong inhibition during expiration, the deinactivation of INaP

can allow the pre-I unit to cross its inhibition-induced knee curve and activate. This mecha-

nism is robust; the Vpre−I-nullcline has a cubic shape, with a corresponding left knee, over a

wide range of inhibition levels to the pre-I unit (dashed blue curve, Fig 7B). Not surprisingly,

we observed that the phase plane projections for the post-I and aug-E units are qualitatively

identical between the two pre-I unit tunings as well.

Parameter dependence of network rhythms does not depend on intrinsic

tuning of preBötC excitatory unit

The fact that the same dynamical mechanisms underlie network rhythmicity across parameter

tunings explains the insensitivity of output period, phase durations, and amplitude to the

switch in intrinsic preBötC dynamics as gnap and c11 are varied (Fig 5). Similarly, we can expect

the changes of the network rhythm properties with variations in other network parameters to

be independent of intrinsic preBötC tuning. Although we already explored variations in c11,

we first plotted period (T) and inspiratory (TI) and expiratory (TE) phase durations versus c11

for comparison with effects of other parameter variations (Fig 8A). As seen previously (Fig 5),

there was no abrupt change as the preBötC tuning switched from intrinsically oscillatory to

intrinsically tonic. The period T decreased as c11 increased, via a shortening of TE as also

observed experimentally with preBötC stimulation (e.g., [26]), from a maximum of just over 7

seconds to a minimum of about 3 seconds.

Next, since the role of inhibition in respiratory rhythmicity has received significant recent

attention [8, 20, 26–29], we considered the effects of varying the strength of the inhibition

from the post-I to the pre-I unit, b31. This parameter variation produced similar effects

whether the pre-I unit was tuned to be intrinsically oscillatory (Fig 8B) or tonic (Fig 8C):
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increases in b31 produced increases in overall period, largely via increases in TE but with a

small accompanying increase in TI, again yielding a range of periods between about 3 and 7

seconds. The stronger maximal inhibition allowed faster deinactivation of INaP, represented by

a faster increase in hpre−I, than with weaker inhibition and therefore allowed the pre-I unit to

cross its curve of left knees and activate at a larger inhibition level than previously (dashed

black curves, Figs 6B and 7B). Nonetheless, the amount of time for inhibition to decay from its

larger maximum value enough to allow the trajectory to hit the curve of left knees and initiate

inspiration was still longer than the escape time with weaker inhibition, leading to an overall

longer TE. The stronger INaP deinactivaton represented by the larger value of hpre−I at the onset

of inspiration in this case yielded the small increase in inspiratory duration TI. Similarly,

reducing b31 allowed an earlier crossing of the pre-I curve of left knees to initiate inspiration

and a shorter TE (dotted black curve, Figs 6B and 7B).

After these manipulations of parameters associated with the pre-I unit, we varied the drive

levels to the other units in the network, one by one, to analyze their abilities to tune network

oscillation frequency. In all three cases, these parameter changes produced qualitatively similar

results across both tunings of the pre-I unit (Fig 9). Increases in the drive to the early-I unit,

c12, caused decreases in network period via decreases in TE. In contrast, increases in c13 (post-I

drive) and c14 (aug-E drive) both increased T, again via changes in TE. Interestingly, the period

was much more sensitive to c14 than to c13 (also consistent with previous modeling [13]). This

sensitivity emerged because in the baseline tuning, the aug-E unit activation was much more

modest than the post-I activation, with the aug-E output much farther from maximal. Thus,

changes in drive to aug-E influenced the inhibition level to the pre-I unit more than changes

in drive to post-I. Finally, because the baseline period was shorter for the intrinsically tonic

than the intrinsically oscillatory pre-I tuning, the range of periods in all cases extended to

larger values, producing a wider overall range, for the oscillatory regime.

Network responses to changes in synaptic inhibition

Recent experiments considered perturbations of respiratory rhythms resulting from microin-

jection of GABAA receptor and glycine receptor antagonists into the preBötC or the BötC of

rats to disrupt post-synaptic inhibition [29]. The former manipulation led to a decrease in

respiratory period and amplitude, as measured by integrated phrenic nerve activity. In an in
situ rat brainstem-spinal cord perfused preparation, sufficient blockade of inhibition to the

preBötC completely disrupted the respiratory rhythm. Sufficient blockade of inhibition to the

Fig 8. Input to the preBötC pre-I node controls period by modulating TE. (A): Period (black), inspiratory duration (blue),

and expiratory duration (red) versus drive to pre-I, c11, over the range of c11 for which network rhythms were maintained.

Values of c11 where the pre-I unit is intrinsically oscillatory or tonic are separated (dash-dotted black line) and labeled. (B-C):

Same curves versus the value of inhibition from post-I to pre-I, b31, relative to its baseline value (0.125; here labeled as 0) over

the range where network rhythmicity is maintained; results are shown when the pre-I is intrinsically oscillatory (B), with c11 =

−0.03, and tonic (C), with c11 = 0.01. Increasing b31 prolongs the time until pre-I activity can rise, leading to longer expiratory

phase durations and periods.

https://doi.org/10.1371/journal.pcbi.1006860.g008
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BötC, where the subpopulations of post-I and aug-E inhibitory neurons providing input to

preBötC circuits are thought to reside [8, 20, 29], also perturbed respiratory rhythms, in both

in vivo and in situ experiments. In contrast to the experiments on the preBötC, however, this

manipulation increased respiratory period while decreasing the amplitude of phrenic nerve

outputs. In some cases, rhythmic activity was completely suppressed with block of inhibition

in the BötC. Responses of our model to reductions in inhibition were similar, but not identical,

to the experimental findings.

Our results agreed completely with the experimental findings [29] associated with reduc-

tion of inhibition to the pre-I and early-I units of the preBötC, both for intrinsically oscillatory

and for intrinsically tonically active pre-I tunings. Indeed, in both cases, period was approxi-

mately halved and amplitude, measured in terms of inspiratory output, dropped by about 40%

(Fig 10A and 10B), quantitatively consistent with the experimental results. As observed in vivo,

the drop in period included shortening of both TI and, especially, TE. The reduction in TE was

clearly expected based on the lessened ability of the expiratory units to suppress the inspiratory

units, while the decrease of TI resulted from the fact that inspiratory onset occurred with less

deinactivation of INaP, yielding a shorter time needed for INaP inactivation to occur (Fig 11).

The production of a rhythmic output failed at a higher remaining fraction of inhibition when

the pre-I unit was intrinsically tonic than when it was oscillatory, because the pre-I and early-I

Fig 9. Inputs to different nodes in the network provide distinct period control mechanisms. Left column: pre-I is

tuned to be intrinsically oscillatory (c11 = −0.03). Right column: pre-I is tuned to be intrinsically tonic (c11 = 0.01). All

panels show period (black curve), inspiratory duration (blue curve), and expiratory duration (red curve) versus the

value of a drive parameter relative to its baseline value (here labeled as 0) that was varied over the full range that

preserved network rhythmicity. Drive parameters used are drive to early-I, c12 (top), drive to post-I, c13 (middle), and

drive to aug-E, c14 (bottom). Drive parameters are fixed at c12 = 0.19, c13 = 0.58, c14 = 0.2 unless being varied. The same

horizontal and vertical axis ranges are used in all panels.

https://doi.org/10.1371/journal.pcbi.1006860.g009
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Fig 10. Dependence of respiratory period and amplitude of inspiratory signal on inhibition levels. (A) pre-I unit is

intrinsically oscillatory (c11 = −0.03) and inhibition to the preBötC units (pre-I and early-I) is varied. (B) pre-I unit is

intrinsically tonic (c11 = 0.01) and inhibition to the preBötC units (pre-I and early-I) is varied. (C) pre-I unit is

intrinsically oscillatory (c11 = −0.03) and inhibition to the BötC units (post-I and aug-E) is varied. (D) pre-I unit is

intrinsically tonic (c11 = 0.01) and inhibition to the BötC units (post-I and aug-E) is varied. All horizontal axis ranges

are distinct; in all cases, the baseline network corresponds to 1 and the lower bound denotes a level just below which

the oscillation is lost. The network response to lowered inhibition is qualitatively similar regardless of whether the pre-

I unit is oscillatory or tonic. Period and amplitude are both much more strongly modulated by changes in inhibition to

the preBötC units than by changes in inhibition to the BötC units; note also that the slopes of the period curves are

opposite in the two cases.

https://doi.org/10.1371/journal.pcbi.1006860.g010

Fig 11. Pre-I dynamics varies across inhibition levels. (A) Baseline levels of inhibition to the preBötC yield relatively long respiratory periods

with large amplitude pre-I voltage excursions (black) and significant INaP deinactivation (red) and total magnitude (blue). (B) Inhibition at 50%

of baseline yields a faster period due to shortening of TI and, especially, TE, with less deinactivation and total magnitude of INaP.

https://doi.org/10.1371/journal.pcbi.1006860.g011
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units became tonically active within the network with less of a loss of inhibition than in the for-

mer case.

When we decreased inhibition to the post-I and aug-E units, corresponding to experimen-

tal perturbations of synaptic inhibition in the BötC, the network did not exhibit an appreciable

change in inspiratory output amplitude. When the pre-I unit was intrinsically oscillatory, out-

put period was relatively insensitive to the inhibition level to the BötC within the range over

which rhythmicity persisted, although it did increase by about 20% (Fig 10C). With a reduc-

tion of inhibition of only about 10%, output rhythmicity was lost. An intrinsically tonic tuning

of the pre-I unit provided more robustness to the stronger inhibition from expiratory units

that resulted from a decrease in inhibition to the BötC, such that network rhythmicity per-

sisted down to about 65% of normal inhibition levels. Moreover, network period increased by

almost 50% over this range of inhibition levels, due to the same effect that was observed to be

dominant experimentally, namely an increase in TE, consistent with the mechanism of net-

work rhythmogenesis (Fig 10D). This comparison with experimental results supports the idea

that an intrinsically tonic tuning of pre-I neurons may be more consistent with experimental

observations than an intrinsically pacemaking tuning, since the tonic tuning provides more

robustness against decreased inhibition in the BötC [29].

Network rhythmicity remains similar when an excitatory post-inspiratory

complex (PiCo) unit is included

Recently, a glutamatergic post-inspiratory complex (PiCo) including neurons with intrinsic

oscillatory capabilities has been identified [21]. As its name suggests, PiCo neurons activate

during the post-inspiratory phase. The timing of PiCo activation shifts to inspiration when

the inhibition that it normally receives during the I phase is blocked, suggesting that the PiCo

receives excitatory inputs from glutamatergic inspiratory neurons. To explore its possible

role, we incorporated an intrinsically oscillatory PiCo unit into our model network, sending

excitation to the post-I unit, excited by the pre-I unit, and, like the post-I inhibitory unit,

inhibited by the early-I and aug-E units. We modeled the PiCo as an intrinsically oscillatory

unit [21], with a voltage equation including the same formulation of INaP used in the pre-I

unit and, for simplicity, with the same persistent sodium and leak conductances as the pre-I

unit as well.

The inclusion of the PiCo did not qualitatively alter network activity patterns: the PiCo

remained suppressed by inhibition from early-I during inspiration and activated together with

post-I during the post-inspiratory phase (Fig 4C and 4D). Excitatory output from the PiCo

promoted post-I activation, causing the post-I unit to exhibit less adaptation during its active

phase and, correspondingly, making the activation of the aug-E unit slightly less gradual (com-

pare Fig 4C and 4D vs. Fig 4A and 4B). Because the network was already rhythmic without the

presence of the PiCo, turning on and strengthening the excitation from the PiCo to the post-I

unit had little effect on expiratory phase duration, regardless of whether the pre-I unit was

intrinsically oscillatory or tonic (Fig 12A and 12B). Examining this effect in more detail, we

observe that excitation from PiCo to the post-I unit induces a stronger post-I inhibition of its

postsynaptic targets, and of pre-I in particular, while PiCo is active. As a result of this stronger

inhibition, the persistent sodium current for the pre-I unit deinactivates more than it would

otherwise during the expiratory phase. After the post-I unit falls silent, the pre-I is left with

approximately the same inhibitory input (from the aug-E unit) as it would have been without

the PiCo, but with slightly larger hpre−I (Fig 12C and 12D; compare grey and magenta circles).

With similar inhibition levels, a similar level of persistent sodium deinactivation is needed to

allow pre-I activation; with PiCo, since the value of hpre−I at the start of aug-E is larger, the
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augmenting-expiratory phase ends up being slightly shorter, resulting in a mildly shorter over-

all cycle period.

Given that the PiCo unit oscillates and drives post-I, it seems theoretically possible that if

the pre-I unit is tuned to produce tonic inspiratory activity, then the PiCo could conceivably

rescue the network rhythm by activating and recruiting post-I, which could in turn shut down

the pre-I and early-I units. In our network configuration, however, extensive parameter explo-

rations with networks tuned to exhibit either sustained pre-I/early-I activation or sustained

post-I activation did not reveal evidence that adding a rhythmic PiCo unit to the network with-

out other parameter alterations could induce oscillations. Thus, although this issue needs to be

explored further, our findings support the conjecture that a post-inspiratory oscillatory unit

cannot on its own induce network oscillations in an otherwise non-rhythmic respiratory

network.

Finally, we examined how tuning the drive to the PiCo unit (c15) impacted network outputs

and how the presence of the PiCo affected network responses to tuning of drives to other units

Fig 12. Effect of increasing drive from PiCo to the post-I unit (a53) on respiratory period. (A) Period (black) and expiratory phase duration

(red) for c11 = −0.03 (pre-I unit intrinsically oscillatory). (B) Period (black) and expiratory phase duration (red) for c11 = 0.01 (pre-I tonic). Note

that the entire change in period is captured by the change in expiratory phase duration in both (A) and (B). (C) Trajectories projected into the

slow phase plane for the pre-I unit with c11 = −0.03 for a53 = 0 (without PiCo activity, grey) and a53 = 0.4 (with PiCo activity, magenta). The

curves of fixed points (green, FP) and left knees (blue, LK) for the pre-I unit dynamics are also shown. (D) Trajectories projected into the slow

phase plane for the pre-I unit with c11 = 0.01 for a53 = 0 (grey) and a53 = 0.4 (magenta). FP and LK as in (C). In both (C) and (D), the projected

trajectories reach the points marked with circles at the start of the aug-E phase. The arrow indicates the direction of flow.

https://doi.org/10.1371/journal.pcbi.1006860.g012
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(c1i, i< 5). Varying c15 switched intrinsic PiCo dynamics from complete quiescence (stable

fixed point at hyperpolarized voltage) to oscillations to tonic activation (stable fixed point at

depolarized voltage; Fig 13A and 13B), as is typical for the voltage-dependent INaP-mediated

oscillation mechanism. For small enough c15, even excitation from pre-I could not induce

PiCo recruitment at or near the onset of the post-I phase on all rhythm cycles, while for large

enough c15, PiCo excitatory output allows post-I to suppress aug-E throughout expiration.

Between these extremes, c15 had little effect on network period (Fig 13A and 13B). Although

variation of c15 altered the projection of the network output trajectory to the PiCo phase plane,

we found that the PiCo active phase duration remained essentially invariant. Larger c15 pro-

duced slightly stronger PiCo output and hence affected post-I output quantitatively, but PiCo

deactivation remained associated with a significant drop in post-I output and corresponding

emergence of aug-E activity, with little change in overall timing (*200 msec change over the

full range of c15). Similarly, because PiCo activation remained stereotyped, its inclusion pro-

duced little impact on network responses to other drive parameters (cf. Fig 13C and 13D, and

compare to Fig 9, middle row). One subtle effect that emerged from inclusion of the PiCo is

that its output could support post-I activation for lower levels of c13 than otherwise possible,

and, interestingly, could preserve rhythmic network outputs for slightly higher levels of c13 as

well (Figs 13C, 13D and 9, middle row, compare range of c13 values), through effects of inhibi-

tion on INaP.

Fig 13. Period is insensitive to drive to the PiCo and to the presence of PiCo. Period T (black), expiratory duration

TE (red), and inspiratory duration TI (blue) versus (A,B) PiCo drive parameter (c15) or (C,D) drive to the post-I unit

(c13), relative to its baseline value of 0.58 (denoted by 0 here). In (A,B), dashed-dotted vertical black lines separate

intervals of c15 values corresponding to different types of PiCo intrinsic dynamics. In (A,C), pre-I is intrinsically

oscillatory (c11 = −0.03); in (B,D), pre-I is intrinsically tonic (c11 = 0.01). Axis ranges in (C,D) are identical to those in

Fig 9 (middle row) except for extension to more negative relative values of c13 here, since rhythmicity persists down to

these lower levels.

https://doi.org/10.1371/journal.pcbi.1006860.g013
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Discussion

In this work, we considered a computational network of neuronal units connected synaptically

and receiving tonic excitatory synaptic drive, with network parameters tuned to produce a

multi-phase rhythmic activity pattern, as a model of components of the mammalian respira-

tory CPG. Our most fundamental result was the observation that network outputs persist

across regimes of tuning of a conditionally rhythmic unit in the network, representing the

inspiratory pre-I oscillator in the preBötC. This robustness and insensitivity of qualitative net-

work output pattern to pre-I intrinsic dynamics was not inevitable but also did not require spe-

cial tuning. These properties emerged because synaptic interactions shaped the network

dynamics, altering the pre-I unit’s outputs compared to what they would be in the isolated pre-

BötC and resulting in similar network dynamical mechanisms across intrinsic tuning regimes

for pre-I. While qualitatively similar network outputs were maintained, the ability of the net-

work to function across a broad range of pre-I excitability resulted in an extended dynamic

range of output amplitude and period, which could be valuable for function across diverse

conditions.

Implications for the respiratory CPG

Our findings can be viewed as exposing general properties of networks incorporating condi-

tional oscillators under certain conditions and are also of specific relevance to an ongoing

debate about rhythmicity in the respiratory CPG, which motivated our choices of network

connectivity and unit dynamics to study. In the respiratory context, our results point out that a

CPG network structure that has been hypothesized based on experimental data [5, 13] yields

network dynamics that are robust across a range of tunings of the key glutamatergic respira-

tory neurons in the preBötC. Our findings also imply that experimental manipulations that

would alter dynamics or excitability in the isolated preBötC [4, 6, 26, 30, 31] cannot be

expected to yield analogous results when applied to the connected respiratory network, and

that the failure of such manipulations to compromise respiratory outputs does not imply a

lack of a role for pre-I dynamics in respiratory rhythm generation. Moreover, our modeling

analyses extend our previous results [13] indicating that all of the units participating in rhyth-

mic respiratory activity that are proposed to be core elements of the respiratory CPG can rep-

resent important nodes for the control of rhythm features. This control appears to occur

seamlessly without altering the basic three-phase organization of activity within the CPG, con-

sistent with experimental observations [20, 31] and the notion that input tuning of excitability

of different circuit elements is robust in terms of maintaining the coordinated activity neces-

sary for proper behavioral function.

More specifically, our work predicts that increases in tonic drive to pre-I and early-I respi-

ratory neurons should shorten the respiratory cycle period via decreases in the duration of

expiration, which is consistent with experimental results [20, 26, 31]. Increases in tonic drive

to post-I and aug-E respiratory neurons are predicted to increase the period, again via changes

in expiratory duration, also consistent with experimental observations [20]. We found that

tuning of the aug-E population produces a broader range of periods than tuning of post-I;

aug-E output in baseline conditions is far from maximal levels, due to lingering inhibition

from post-I, and hence increased drive to aug-E can have a significant impact on the timing of

inspiratory onset. We also predict that the maximal amplitude of pre-I outputs will be larger in

the connected network than in the isolated preBötC, while the minimal network amplitude

will also exceed the minimal preBötC amplitude (Fig 3). The inclusion of INaP in our pre-I

model yields oscillations with small amplitude and short period when pre-I excitability is high,

as well as very long oscillations just before the transition to quiescence as excitability drops, in
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the isolated pre-I population. While the connected network cannot capture this full range of

periods, the fact that it continues to produce functional outputs across different regimes of

pre-I intrinsic dynamics significantly extends its dynamic range relative to what it could pro-

duce if restricted to a specific pre-I tuning. Interestingly, our model produces some evidence

in support of the idea that in conditions associated with respiratory outputs in the in situ per-

fused rat preparation, pre-I respiratory neurons are tuned to be tonically active, based on

model responses to decreases in gNaP used to simulate partial INaP blockade (Fig 5). We also

found that the tonic pre-I tuning gives more robustness of rhythmic network activity to

decreases in inhibition to BötC neurons than does the oscillatory tuning (Fig 10), because the

tonic tuning allows inspiratory neurons to activate despite receiving stronger inhibitory out-

puts from the BötC. Note, however, that a tonic pre-I tuning does not imply that INaP does not

play any role in pre-I activity nor that it is completely inactivated; indeed, it is evident in Fig 7

that hpre−I does not drop to zero during oscillations in this case. On the other hand, we

observed that the oscillatory pre-I tuning generally could yield longer respiratory cycle periods

(hence extended dynamic range) and associated expiratory phase durations over changes in

various drive and synaptic parameters (Fig 9), because with this tuning, the escape of the pre-I

unit from inhibition, needed to initiate inspiration, could become strongly delayed. The oscil-

latory tuning also gave more robustness to decreases in inhibition to preBötC neurons because

this tuning yielded more protection against tonic activation of pre-I and early-I within the full

network (Fig 10). It is therefore possible that neuromodulatory adjustment of pre-I excitability

could be used to transition the network between these regimes, each allowing for particular

network tuning mechanisms to become accessible.

The ideas that we explore are consistent with arguments made by Richter and Smith [8]

that in the intact respiratory circuit, endogenous pacemaker currents of preBötC neurons need

not be autonomously active to drive respiration and indeed may not be active during rhythm

generation by the full respiratory CPG circuit due to control of membrane potentials by inhibi-

tory synaptic currents from network connections from the BötC; furthermore, the frequency

of the full rhythm may not match the intrinsic frequency of pacemaker neurons in isolation.

Diekman et al. have also considered the related ideas that distinct mechanisms may underlie

network bursting under different feedback conditions and that an intrinsic tuning of preBötC

neurons that does not favor bursting may enhance the robustness of network bursting across

normoxic and hypoxic regimes in the presence of chemosensation [31].

Relation to studies of other CPGs and general implications

Related results to ours have recently been demonstrated in a half-center oscillator network,

using a similar reduced model that was shown to capture many properties found in simula-

tions of a network composed of a large collection of spiking Hodgkin-Huxley style model neu-

rons [33]. A key point in that work was that rather than the intrinsic dynamics of individual

units in the network, the dynamical transition mechanisms by which switches in active popula-

tions occurred, involving synaptic effects known as escape and release [13, 34–36], determined

network output properties. This finding is consistent with our proposal that masking of pre-I

properties arises because the dynamic regimes set up by network interactions are similar across

pre-I unit tunings.

Our results are also in the same spirit as many years of experimental and modeling results

from the CPG in the crustacean stomatogastric ganglion (STG), which generates digestive

rhythms. These experiments and simulations have shown that network patterning in the

STG is similar across wide ranges of values of parameters associated with the neurons in the

circuit [10, 12]. Our work carries this idea to the respiratory network and explores additional

Robustness of respiratory rhythm generation across dynamic regimes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006860 July 30, 2019 19 / 27

https://doi.org/10.1371/journal.pcbi.1006860


issues related to the two forms of masking that we have discussed. In particular, we demon-

strate that changes in parameter values that alter the intrinsic dynamics of a critical node in a

CPG if applied in isolation, for example by inducing a bifurcation, need not produce any

noticeable impact on the dynamics of a network in which that node is embedded. Moreover,

once that node is embedded in the network, the influence of the network can cause its output

tuning to change, effectively masking or overriding its intrinsic dynamics due to circuit

interactions.

These principles could be important for the robustness of multi-phase rhythmic outputs of

a variety of CPG systems. That is, interactions within a network can yield a preservation of

function in the face of changes in conditions that could significantly alter the dynamics of the

network components in isolation, as long as these interactions are sufficiently strong to con-

tribute to phase transitions without allowing one node to take over and suppress the others.

Furthermore, network interactions can enhance a network’s flexibility by allowing for similar

rhythms to result from different dynamic mechanisms in different parameter regimes, often

leading to a broader range of quantitative output features than would be attainable through

reliance on a single rhythm generation mechanism.

Multiple respiratory oscillators?

We performed some simulations with the newly discovered oscillatory post-I population, the

PiCo [21], included in our model network, receiving excitatory input from pre-I and inhibi-

tion from early-I and aug-E, while providing excitation to the post-I inhibitory unit, based on

the proposal that PiCo is critical for generation of post-I activity [21]. Interestingly, our simu-

lations predict that changes in drive to the PiCo have no effect on respiratory period and

increases in the strength of excitatory drive from the PiCo to post-I only slightly alter the

period, causing it to decrease by a small amount (Fig 12). We modeled the intrinsic dynamics

of the PiCo identically to the dynamics of the pre-I unit, based on observations of its intrinsic

rhythmicity [21], although it remains for future experiments to test the mechanisms underly-

ing this rhythmicity. Our results raise the question: in what way does the presence of PiCo

enhance respiratory network function? According to our simulations, PiCo has limited effec-

tiveness in restoring network rhythmicity if rhythmicity is not present without PiCo, but per-

haps PiCo could serve a rescue function in some other circumstances that we have not

explored. For example, Anderson et al. did demonstrate an impact on network dynamics by

showing that PiCo photostimulation leads to vagal bursts and delays subsequent inspiration

[21]. These results are consistent with the idea that stimulating PiCo excitatory neurons drives

post-I motor output and can also drive post-I inhibitory neurons to effect the dynamical tran-

sition from inspiration to expiration as proposed in our model. The recently proposed triple

oscillator hypothesis includes PiCo as a critical component, linked via excitatory coupling with

preBötC rhythm-generating neurons and the parafacial respiratory group (pFRG) conditional

oscillator, which generates late expiratory activity [37]. We have not included in the present

analysis the pFRG oscillator, which is not active and hence not involved in generating the aug-

E unit activity during normal eupneic breathing. We have previously (e.g., [38]) analyzed in

detail network dynamics when the pFRG and pre-I intrinsic oscillators are coupled and their

activity is coordinated by a more extensive inhibitory connectome than represented by the

present model, which is intended to represent generation of the normal three-phase rhythmic

pattern during eupneic breathing. An interesting future direction would be to analyze the net-

work dynamics in an extended model with coupling between pre-I, PiCo, and pFRG intrinsic

oscillators and to evaluate how these interactions impact network performance in conditions

(e.g., elevated CO2) under which the pFRG is functionally active.
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Modeling assumptions and limitations

Our results were based on simulations of a network of units with two-dimensional dynamics,

connected via synaptic coupling. This framework is perfectly valid for illustrating the funda-

mental point that intrinsic dynamics can become masked by network interactions. It makes

the link with the respiratory CPG more abstract, however. To make this connection, we think

of each unit within the network as representing the average activity of a population with syn-

chronized activation and inactivation but with asynchronous spiking. The assumed synchrony

within the preBötC is consistent with observed eupneic dynamics, presumably reflecting a lack

of strong, destabilizing inhibition intrinsic to the preBötC [39]. The model does include the

key features of conditional autorhythmicity of the excitatory unit, along with adaptation of the

inhibitory units. Furthermore, past work has established that it can produce similar output

patterns and even similar responses to changes in drives and coupling to a much more detailed

model involving many coupled Hodgkin-Huxley neurons [13, 33, 40]. Agreement of pre-I out-

puts with experimental recordings of inspiratory (pre)motor nerve outputs also supports the

use of this framework.

We based the conditional intrinsic rhythmicity in our model pre-I unit on the persistent

sodium current, INaP, a well studied current known to exist and to support the possibility of

rhythmogenesis in preBötC excitatory neurons. Our results immediately generalize, however,

if the pre-I unit instead features other currents or combinations of currents that include one

amplifying factor and one resonant (or depolarization-resisting) factor acting on appropriate

timescales [19], such that increasing drive yields transitions from quiescence to oscillations to

sustained activation via A-H bifurcations (Fig 2B). They may also apply to scenarios where

individual pre-I neurons cannot become rhythmic but instead the collective pre-I population

can be tuned to produce rhythmicity, either through expansion of dynamic range due to syn-

aptic coupling (e.g., [41–43]) or through inclusion of various ionic currents (e.g., [8, 44, 45]), if

the bifurcation structure associated with the activity transitions is similar to what we have con-

sidered. Nonetheless, specific predictions about the respiratory network, especially at the

quantitative level, may suffer from the abstraction in the model, as well as from the omission

of other currents, including the CAN current, which have been shown to contribute to respira-

tory outputs [46–48]. Our model also cannot represent the heterogeneity that is naturally pres-

ent within biological populations of neurons, which has been predicted to add robustness to

respiratory outputs [41–43]. Indeed, with heterogeneity, it is likely that different neurons have

different ionic conductances leading to different intrinsic dynamics [43]. In this case, the

results of our study lead us to conjecture that the maintenance of functional outputs from the

full respiratory network should be robust to some variations in these intrinsic dynamical prop-

erties, although we recognize that significant heterogeneties can lead to important dynamical

effects (e.g., [40, 49–51]). Another caveat of our results is that we saw loss of network rhyth-

micity with sufficient block of inhibition in all regimes considered, whereas outcomes from

experiments involving inhibitory block have been more diverse [27, 29, 52]. In reality, experi-

ments can show variable perturbations from disruption of inhibition (e.g., whether or not

rhythm is disrupted) across different experimental trials, possibly corresponding to different

levels of inhibition block achieved in different experiments.

Conclusion

CPGs subserve many functions critical to survival, including mammalian respiration. It is crit-

ical for functional outputs to persist across wide ranges of metabolic and environmental condi-

tions including diverse developmental and disease states. Maintenance of function as well as

control of outputs to allow effective behavior across conditions likely involve significant
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alterations in feedback and top-down drives to network components and in neuromodulatory

influences [53]. Hence, even if particular components within a CPG circuit exhibit intrinsic

rhythmicity for certain drive and neuromodulator levels, their dynamics may change as these

levels vary. Therefore, the invariance of network outputs and tuning under changes in intrinsic

dynamics that we highlight is likely a critical feature of maintaining stable CPG performance

across conditions. In the case of the respiratory network, this invariance ensures flexible and

robust performance over a wide dynamic range of rhythm generation, which is likely a critical

property for such a vital homeostatic CPG.

Methods

All results in this paper were derived from simulations of highly reduced ordinary differential

equation models for the excitatory kernel of the preBötC and for a respiratory CPG network

that includes this preBötC component as well as inhibitory early-I, post-I, and aug-E compo-

nents and, in some simulations, an additional excitatory PiCo component (Fig 1). The models

were based on those used in several previous respiratory modeling studies [13, 38, 40, 54]. In

this framework, each neuronal population is assumed to undergo synchronized transitions

between active and silent states, but without spike-level synchrony. Thus, each is represented

by a single non-spiking neuron model unit, the voltage of which corresponds to the average of

the membrane potentials of the neurons in that population.

For purposes of model specification, we number the model units as follows: 1—pre-I, 2—

early-I, 3—post-I, 4—aug-E, 5—PiCo. All units obeyed the equations

dVi=dt ¼ ð� INaP;i � IK;i � IL;i � Isyn� I;i � Isyn� E;iÞ=C;

dhi=dt ¼ ðh1ðViÞ � hiÞ=thðViÞ
ð1Þ

where i 2 {1, . . ., 5}. In system (1), INaP,i represents the current through persistent sodium

channels, IK,i is a potassium current, IL,i = gL,α � (Vi − EL,α) is the leakage current with α = exc
for i 2 {1, 5} and α = inh for i 2 {2, 3, 4}, respectively. Moreover, Isyn−I,i and Isyn−E,i are inhibi-

tory and excitatory synaptic currents, respectively.

For the excitatory units, with i 2 {1, 5}, the intrinsic currents in (1) take the following

forms:

INaP;i ¼ gNaP;exc �m1ðViÞ � hi � ðVi � ENaÞ;

IK;i ¼ gK;exc � n4
1
ðViÞ � ðVi � EKÞ:

ð2Þ

For the inhibitory units, with i 2 {2, 3, 4}, the intrinsic currents in (1) are given by:

INaP;i ¼ gNaP;inh �m1ðViÞ � hi � ðVi � ENaÞ;

IK;i ¼ gK;inh � pi � ðVi � EKÞ;
ð3Þ

with

dpi=dt ¼ ðdifout;inhðViÞ � piÞ=tp;i: ð4Þ

That is, the persistent sodium current takes the same form for all units but has a stronger con-

ductance for excitatory than inhibitory units. On the other hand, as in previous models (e.g.,

[13]), the potassium current for the excitatory units is a standard delayed rectifier that is set to

be quite weak, representing potassium current activated by the depolarization attributable to

the persistent sodium current, while for the inhibitory units it is a much stronger adaptation

current with a dedicated gating variable, pi. The voltage-dependent activation functions and
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time constants in Eqs (1), (2) and (3) are described by the following functions:

h1ðVÞ ¼ 1=ð1þ exp ½ðV � yhÞ=sh�Þ;

thðVÞ ¼ �= cosh ½ðV � yhÞ=ð2shÞ�;

m1ðVÞ ¼ 1=ð1þ exp ½ðVi � ymÞ=sm�Þ;

n1ðVÞ ¼ 1=ð1þ exp ½ðVi � ynÞ=sn�Þ:

ð5Þ

In Eq (4) for the adaptation current gating variable, the function fout,inh(V) appears. This

function represents a nonlinear filtering of the output of a unit and takes the sigmoidal form

fout;inh ¼ 1=ð1þ exp ½ðV � yout;inhÞ=sout;inh�Þ: ð6Þ

Thus, Eq (4) specifies how the conductance of an inhibitory unit’s adaptation current grows

while that unit is active.

To define the synaptic currents in Eq (1), we use the function given in Eq (6) along with

similar sigmoidal functions

fout;pre� I ¼ 1=ð1þ exp ½ðV � yout;pre� IÞ=sout;pre� I�Þ for pre � I;

fout;pico ¼ 1=ð1þ exp ½ðV � yout;picoÞ=sout;pico�Þ for PiCo:
ð7Þ

The synaptic currents to unit i are given by

Isyn� I;iðViÞ ¼ gsyn� I � ðVi � Esyn� IÞ �
P

j2N inh
i

bjifout;inhðVjÞ;

Isyn� Ei
ðViÞ ¼ gsyn� E � ðVi � Esyn� EÞ � ½

P
j2N exc

i
ajifout;excðVjÞ þ

P2

j¼1
cji�;

ð8Þ

where N inh
i ;N

exc
i denote the sets of inhibitory and excitatory units, respectively, presynaptic to

unit i, the constants bji, aji give the strengths of inhibitory and excitatory connections, and the

terms cji, j 2 {1, 2}, are parameters representing the strength of the tonic drive to each unit,

with c1i tunable and c2i fixed for each i.
A baseline parameter set was used for all results unless otherwise specified in the text. This

set included the following values:

• pre-I and PiCo: gNaP,exc = 4.5nS, gK,exc = 1.0nS, gL,exc = 3nS, EL,exc = −65mV, θout,pre−I =

−32mV, σout,pre−I = −8mV, θout,pico = −20mV, σout,pico = −12mV

• early-I, post-I, and aug-E: gNaP,inh = 0.25nS, gK,inh = 10.0nS, gL,inh = 3.25nS, EL,inh = −60mV,

θout,inh = −30mV, σout,inh = −4mV, τp,2 = 2000ms (early-I), τp,3 = 1500ms (post-I), τp,4 =

2000ms (aug-E)

• shared: C = 20pF, ENa = 50mV, EK = −85mV, θh = −48mV, σh = 8mV, � = 4000ms, θm =

−37mV, σm = −6mV, θn = −29mV, σn = −4mV, gsyn−E = 10nS, gsyn−I = 60nS, Esyn−E = 0mV,

Esyn−I = −75mV

Additional synaptic connection strength parameter values for each unit as specified in

Eq (8) were as follows:

• pre-I (unit 1): b31 = 0.125, b41 = 0.015, c21 = 0.095, with c11 values given in the text

• early-I (unit 2): a12 = 0.6, b32 = 0.27, b42 = 0.3, c12 = 0.19, c22 = 0.3

• post-I (unit 3): a53 = 0.1 (when PiCo was included), b23 = 0.6, b43 = 0.05 without PiCo or

0.02 with PiCo, c13 = 0.58, c23 = 0
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• aug-E (unit 4): b24 = 0.3, b34 = 0.45, c14 = 0.2, c24 = 0.4

• PiCo (unit 5): a15 = 0.2, b25 = 0.2, b45 = 0.3, c15 = 0.045

All simulations were run in XPPAUT [25] and Matlab (The Mathworks, Inc., Natick, MA,

USA) and the latter was used to generate computational figures. Based on these simulations,

we define the parameter ranges over which the network generates functional rhythmic outputs

with the correct order of activation (pre-I activation before or together with early-I activation,

followed by post-I activation and then aug-E activation in each cycle) and with greater aug-E

output than post-I output at the end of the expiratory phase (fout,inh(V4)> fout,inh(V3); e.g,.

Fig 4).

Some figures in this paper include nullclines or bifurcation diagrams. Note that system (1)

for a single unit in the excitatory case (i.e., without a p variable) consists of a pair of coupled

differential equations with dependent variables V, h, subject to time-dependent inputs from

the synaptic currents Isyn−I, Isyn−E. If these inputs are held fixed or are set to zero to represent a

unit in isolation, then the behavior of solutions of the system can be visualized in the (V, h)

plane. Within this plane, the set of (V, h) for which dV/dt = 0 holds is the V-nullcline, with an

analogous definition for the h-nullcline. For system (1), each of these sets is a curve (Fig 2A).

In particular, for a certain range of parameters, the V-nullcline is a cubic-shaped curve with

two folds, or knees, the left knee (LK) and right knee (RK).

The position of the each nullcline will vary with changes in model parameters that appear

in the corresponding ODE. Intersection points of the nullclines are equilibria of the system; if

(V, h) are initially chosen to correspond to their values at an equilibrium point, then (V, h) will

remain constant for all time. For sufficiently small c11, the equilibrium point (or fixed point,

FP) lies on the left branch of the V-nullcline. Yet since the V-nullcline for the pre-I unit moves

under modulation of c11 (Fig 2A), the position of the unit’s equilibrium point also changes. We

use XPPAUT to generate a bifurcation diagram for the pre-I unit by tracking both the location

and the stability of the equilibrium point (Fig 2B), along with information about periodic

orbits that emerge (disappear) when the equilibrium loses (gains) stability, as c11 is increased.

As c11 is increased, the c11 value where the pre-I equilibrium loses stability represents the

transition from quiescent to oscillatory intrinsic dynamics for our baseline parameter set,

while the c11 value where the equilibrium regains stability corresponds to the transition from

oscillatory to tonic intrinsic dynamics. If any other parameter from the pre-I system is altered,

then this variation may change these transitional c11 values. Thus, for each transition, we can

use XPPAUT to obtain a curve of values in the two-dimensional (c11, gNaP,exc) parameter space

where this transition occurs; the curve corresponding to the oscillatory-to-tonic transition

appears in each panel of Fig 5.

In the description above, we set the inhibition level to the pre-I unit equal to 0. We can

also treat that inhibition level as a parameter of the pre-I model. Variation in the inhibition

level will alter the position of the V-nullcline and hence of the LK and FP. We also use

XPPAUT to compute how these features depend on the inhibition level, with results appear-

ing in Figs 6, 7, 12.
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