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Abstract

Pitch is a fundamental attribute of auditory perception. The interaction of concurrent pitches

gives rise to a sensation that can be characterized by its degree of consonance or disso-

nance. In this work, we propose that human auditory cortex (AC) processes pitch and con-

sonance through a common neural network mechanism operating at early cortical levels.

First, we developed a new model of neural ensembles incorporating realistic neuronal and

synaptic parameters to assess pitch processing mechanisms at early stages of AC. Next,

we designed a magnetoencephalography (MEG) experiment to measure the neuromagnetic

activity evoked by dyads with varying degrees of consonance or dissonance. MEG results

show that dissonant dyads evoke a pitch onset response (POR) with a latency up to 36 ms

longer than consonant dyads. Additionally, we used the model to predict the processing

time of concurrent pitches; here, consonant pitch combinations were decoded faster than

dissonant combinations, in line with the experimental observations. Specifically, we found a

striking match between the predicted and the observed latency of the POR as elicited by the

dyads. These novel results suggest that consonance processing starts early in human audi-

tory cortex and may share the network mechanisms that are responsible for (single) pitch

processing.

Author summary

In this work, we argue that human auditory cortex processes pitch and consonance by

means of a common neural network mechanism operating at early cortical stages. We

introduce a neural population model of cortical pitch processing that contains biophysi-

cally realistic synaptic and neural parameters. The model quantitatively explains, for the

first time, the neuromagnetic responses observed in human auditory cortex during pitch

perception. The model is subsequently used to elucidate the cortical processing of musical

dyads, in which concurrent pitches lead to the perception of consonance or dissonance.

Interestingly, the model predicts that sounds perceived as dissonant need more time for
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cortical processing than consonant sounds. This prediction is experimentally validated by

recording cortical neuromagnetic fields in response to consonant and dissonant dyads.

Taken together, our results suggest a novel mechanistic explanation for early cortical pro-

cessing of musical harmony, in the sense that the differential response to consonance and

dissonance starts early, simultaneously to (single) pitch processing, in auditory cortex.

Introduction

Pitch is the perceptual correlate of the periodicity in a sound’s waveform, and thus a funda-

mental attribute of auditory sensation. It forms the basis of both music and speech perception.

However, understanding pitch processing as elicited by concurrent sounds in human auditory

cortex is still a major challenge in auditory neuroscience [1–5].

A combination of two sounds that simultaneously elicits two different pitches is called a

dyad, and the pitch interactions within the dyad give rise to a sensation that can be character-

ized by its consonance or dissonance. Loudness, timbre, and the fundamental periodicities of

the two sounds can have subtle effects on whether a dyad is perceived as consonant or disso-

nant. However, the dominant factor in determining the degree of a dyad’s consonance is the

relationship between the fundamental periods of the sounds that make up the dyad: simple

periodicity ratios result in more consonant sensations. In contrast, the sensation becomes

more and more dissonant as the complexity of the periodicity ratio increases [6, 7]. It has been

previously proposed that dissonance correlates with the beating or roughness sensation that is

elicited by the interfering regularities of the dyad components [6, 7]. However, listeners who

showed impaired pitch perception but were sensitive to beating and roughness were unable to

differentiate between consonant and dissonant dyads [1, 8]. This suggests that pitch- rather

than roughness-related auditory processing is responsible for consonance perception.

Neurophysiological evidence for a close link between consonance and pitch has recently

been provided by Bidelman and colleagues [2]. Their study showed, using electroencephalog-

raphy (EEG), that the amplitude of the cortical pitch onset response (POR) is strongly modu-

lated by a dyad’s perceived consonance. The POR is a pitch-selective component of the

transient auditory evoked potential/field (AEP/AEF) that occurs within the time range of the

well-known N100 deflection, around 100 ms after pitch onset [9]. The morphology of the POR

is strongly correlated with the perceived pitch in single tones: its latency scales linearly with

the period of the sound and its amplitude increases with the strength of the pitch percept [9,

10]. The neural sources of the POR are located in the anterolateral section of Heschl’s gyrus

(alHG) in auditory cortex [2, 9], in agreement with the anatomical location of pitch-selective

neurons in non-human primates (e.g., [11–13]), and with pitch-selective regions that were

reported for human listeners [14–18].

Further experiments in human subjects demonstrated that the dyad-evoked frequency-fol-

lowing response in the brainstem is predictive for the perceived consonance of a dyad (for a

review, see [19]). However, functional magnetic resonance imaging (fMRI) studies showing

selective activation to consonance/dissonance contrasts in the superior temporal gyrus [20]

and in frontal cortex [21] led the auditory community to link neural representations of conso-

nance and dissonance with higher cognitive processes [22].

In this study, we used a combined experimental and theoretical approach to assess whether

consonance and pitch share similar processing mechanisms in human auditory cortex.

Towards this goal, we first developed an ensemble model of cortical pitch responses, specifi-

cally designed to understand the mesoscopic representation of pitch in alHG. The model can
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account, mechanistically, for the POR latency effects that have been reliably reported in

numerous experimental settings [9] but remained poorly understood. Second, we recorded the

AEF elicited by consonant and dissonant dyads using magnetoencephalography (MEG). Our

experimental results revealed a strong correlation between the POR latency and the degree of

consonance, extending previous EEG findings [2]. Finally, we aimed to replicate the results

from the MEG experiment using our model. If the hypothesis that consonance and pitch are

processed by similar mechanisms in cortex is correct, we would expect the model to explain

the dependence of POR latency on the degree of consonance without the inclusion of higher

processing stages within the auditory hierarchy [20, 21]. In line with this hypothesis, the model

provides a quantitative explanation for the relationship between the POR dynamics and conso-

nance, suggesting that consonance and dissonance perception might be linked to pitch pro-

cessing regions in auditory cortex, prior to higher-order processing.

Results

Neural mechanisms underlying pitch processing in auditory cortex

Model overview. We introduced a model of cortical pitch processing designed to under-

stand the morphology of the cortical response to pitch onset (see full description in Methods).

The model consists of three processing stages located at different levels of the auditory hierar-

chy. In the first stage, an array of idealized coincidence detector units extracts periodicities

from the auditory nerve activity in response to the target stimulus [23, 24]. The second and

third stages, putatively located at adjacent locations of alHG, transform the output of the peri-

odicity detectors into a stable representation of pitch.

Auditory nerve responses were generated by a recent biophysical model of the auditory

periphery [25, 26], followed by a standard periodicity detection process [23, 24, 27, 28]. At this

stage, the stimulus representation typically shows a well-known harmonic structure along the

periodicity axis [28], with prominent peaks of activation at the neurons which encode the

pitch of the stimulus and its lower harmonics (see Fig 1E).

The array of periodicity detectors provides excitatory input to a first cortical processing

stage, termed the decoder network in this study. The decoder network is putatively located in

alHG and effectively decodes the pitch value(s) from the subcortical input. The decoder net-

work connects to a second cortical ensemble network, termed sustainer network; this stage

integrates the output of the decoder network and top-down modulates it through cortico-

cortical efferents, in a mechanism that is reminiscent to recent models of perceptual decision

making [29].

Both decoder and sustainer comprise a network of cortical microcolumns, each of which is

tuned to a specific pitch along the human perceptual range (see Methods for details). In the

model, pitch is coded in the active pitch-selective populations of the processing network

(Fig 1B), in agreement with various neuroimaging experiments that indentified alHG as a can-

didate region for the processing of pitch information in auditory cortex [9, 12, 18, 30–35]).

Microcolumns in the cortical networks are modeled as blocks comprising an excitatory and

an inhibitory neural ensemble (Fig 1C), which communicate with each other through realistic

synapses. Connectivity weights between populations in the decoder network (Fig 1D) are spe-

cifically tuned to facilitate the inhibition of the periodicity detectors representing lower har-

monics (Fig 2, see also S1 Fig). Similar connectivity patterns have been reported in the

mammalian auditory cortex [36, 37]; moreover, neurons mapping harmonic templates to a

pitch-selective representation like those introduced in this model have been recently reported

in the primate auditory cortex [13].
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The model enables us to perform quantitative predictions of the cortical response elicited

by the pitch of a stimulus. Specifically, the equivalent dipole moment should be monotonically

related to the global excitatory response of the decoder network (see Methods for details),

while the characteristic period of the excitatory population with the largest activity decodes the

perceived pitch (see for instance Fig 1B). We hypothesize that the decoding mechanism is

responsible for the dynamics of the POR in human auditory cortex.

Fig 1. Basic schematics of the model. Architecture (C, D) and responses (A, B, E) of the model to three stimuli with

different pitches. Stimulus used to produce the examples were iterated rippled noises with 16 iterations, bandpass

filtered between 0.8 and 3.2 kHz, with three fundamental periods T = 4, 8, and 12 ms, corresponding to the three

columns of the figure. (A) Excitatory population rate in the decoder (i.e., the time-average response for each of the

excitatory ensembles in the decoder). The rate was averaged between 250 and 300 ms after the sound onset. The main

peak of the population rate at the decoder represents stimulus pitch. (B) Excitatory population rate of the cortical input

(i.e., the time-average response for each periodicity detector). As in panel A, the rate was averaged between 250 and

300 ms after sound onset. The first peak in this representation corresponds to the fundamental period of the stimulus;

subsequent peaks correspond to its lower harmonics. (C) Model architecture. The model consists of two networks,

each with 250 columns (grey rectangles). Each column comprises an excitatory (triangle) and an inhibitory (circle)

ensemble, and represents a specific pitch value ranging from 1/(0.5 ms) = 2 kHz to 1/(30 ms) = 33.3 Hz. The bottom

network is termed the decoder, and the top network is called the sustainer (see text). Red arrows between ensembles

represent excitatory connections; blue lines ended in a circle denote inhibitory connections. (D) Connectivity weights

between excitatory and inhibitory ensembles in the decoder network. (E) Decoder’s network rate (i.e., the average

response across all the excitatory ensembles of the decoder network at each instant t), monotonically related to the

auditory evoked fields. The y-axis was inverted for consistency with the standard representation of the evoked fields.

The network rate peak latency correlates with the latency of the pitch onset response.

https://doi.org/10.1371/journal.pcbi.1006820.g001
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Dynamics of the decoder network. Fig 2 illustrates an example of the model dynamics in

response to a stimulus with a pitch corresponding to T = 5 ms (i.e., f = 200Hz, more details are

shown in S1 Video). In a first step, periodicity detectors, tuned to T’ 5 ms, become active

after t1 * 1.25 T [38] (see the top prominent horizontal line at T = 5 ms in Fig 2A); these pop-

ulations provide bottom-up excitatory input to the excitatory ensemble in the corresponding

decoder network column (see Fig 2B). Likewise, the harmonics of the stimulus pitch period

(i.e., 2 T, 3 T, etc) are subsequently represented in the periodicity detectors after t2 = 2t1, t3 =

3t1 etc., and provide the input to the corresponding excitatory populations in the decoder net-

work (see Fig 2B).

Excitatory ensembles characterized by the periods {T, 2 T, 3 T. . .} are connected to the

inhibitory population characterized by the fundamental period of such series, T (see Fig 1).

Synaptic efficacy is tuned such that the inhibitory drive is strong enough only when a sufficient

number of excitatory inputs are simultaneously active. The conductivity between excitatory

and inhibitory ensembles in the decoder is tuned within a realistic range such that three har-

monic inputs are necessary to activate each inhibitory ensemble change:l145a. For instance,

the inhibitory population characterized by T’ 5 ms in Fig 2C becomes active only when it

receives simultaneous synaptic input from excitatory ensembles characterized by the periods

T = 5 ms, 2T = 10 ms, and 3T = 15 ms.

Correspondingly, the inhibitory ensemble associated with the period T is connected to

excitatory populations encoding the lower harmonics {2 T, 3 T, 4 T, . . .} (see Fig 1). When suf-

ficiently active, it progressively silences excitatory populations that do not correspond to the

Fig 2. Illustration of the decoding process. The plots show the evolution of rate variables of the model during the

processing of an iterated rippled noise with a fundamental period of T = 5 ms (parameters were as in Fig 1). (A–E)

Evolution of the neural ensembles encoding characteristic periods between 0.5 ms and 20 ms. (A) Activity of

periodicity detectors within the first stage of the model. (B, C) Activity of excitatory and inhibitory ensembles in the

decoder network. (D, E) Activity of excitatory and inhibitory ensembles in the sustainer network. (F) Aggregated

excitatory activity in the decoder (y-axis was inverted like in Fig 1A). Detailed dynamics of the process are illustrated in

S1 Video.

https://doi.org/10.1371/journal.pcbi.1006820.g002
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fundamental period of the stimulus (see in Fig 2B an example of this shunting process in the

decoder excitatory network between t = 120 ms and t = 200 ms).

This process illustrates a possible mechanism underlying the dynamics of the cortical pitch

onset response: first, the accumulation of excitatory activity in the decoder results in the pro-

gressive increase of the simulated field magnitude observed between t = 75 ms and t = 130 ms

in Fig 2F. Second, the subsequent decay of the collective excitatory response between t = 120

ms and t = 200 ms in the figure is caused by the action of the most activated inhibitory ensem-

ble on all excitatory populations encoding the lower harmonics of the stimulus’ fundamental

period, T. We identify the maximum in the aggregated excitatory activity, corresponding to

the time point in which the model performs a decision about the pitch of the stimulus, with

the POR latency (further details regarding these dynamics are shown in S1 Video and in

S1 Fig).

Thus, in this model, the linear dependence of the POR latency with single-pitch IRN stimuli

is implemented by the decoding process. Since a periodicity detector takes around 1.25T to

detect a pitch of periodicity T, this same mechanism could be responsible for the minimum

stimulus duration required for robust pitch discrimination, which is around four times the

period of the stimulus [9].

Dynamics of the sustainer network. The dynamics of the decoder network suffice to

explain how pre-cortical representations (Fig 1E) are transformed into the cortical pitch

response (Fig 1A and 1B). However, after the transformation has taken place, the excitatory

ensembles corresponding to the lower harmonics of the stimulus pitch are no longer active,

and hence the inhibitory population silencing them loses its drive. Therefore, without top-

down control, the decoder network would rapidly reset and repeatedly attempt to decode the

pitch, eliciting a series of PORs. This, however, does not reflect the experimental observations

(Fig 3C). The role of the sustainer network is thus to regulate the dynamics of the decoder net-

work to effectively sustain the previously decoded value, until a significant change is produced

in the cortical input.

In the absence of external input, the sustainer network rests at equilibrium, with a steady

activation in the inhibitory populations and complete deactivation of the excitatory popula-

tions (Fig 2D–2E). Excitatory/inhibitory ensembles in the sustainer receive direct bottom-up

input from their respective excitatory/inhibitory counterparts in the decoder (Fig 1D). Thus, a

significantly active inhibitory population in the decoder effectively silences the analogous

inhibitory population in the sustainer. If this afferent drive coincides with a strong activation

of one of the excitatory populations in the decoder (for instance, the one characterized by a

period T = 5 ms in Fig 2B), the combined bottom-up input results in a strong activation of the

equivalent excitatory population in the sustainer (see Fig 2D).

Simultaneously, top-down efferents connect each excitatory population in the sustainer

with its inhibitory counterpart in the decoder network (Fig 1C), compensating for the loss of

excitatory drive in the silenced populations for as long as the subcortical input remains

unchanged. The behavior of the network during pitch changes is described in detail in S2 Fig.

Model responses to single IRNs. The POR is defined as the subcomponent of the N100

transient that responds selectively to pitch onset and pitch changes [9]. In order to isolate the

POR from other subcomponents of the N100 like the energy onset response, previous MEG

studies used iterated rippled noise (IRN) preceded by a noise burst of the same energy and

bandwidth [2, 9]. The POR is then measured as the transient elicited at the transition between

noise and IRN; i.e., at the onset of pitch. Thus, we used IRN stimuli with different pitch values

to tune and test the behaviour of our model (an isolated POR can only be elicited using

energy-balanced stimuli such as noise-matched IRN; but see also S4 Fig for subsequent predic-

tions drawn for pure tones [39]).

Modeling and MEG evidence of early consonance processing in auditory cortex
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Model latencies for the POR elicited by IRN stimuli are compared with experimental data

in Fig 3A and 3B. Results show that the model reproduces the relation between the POR

latency and the period of the stimuli as typically reported in the MEG literature [9]. Results for

other IRN stimuli using different parametrizations are shown in S3 Fig. This faithful represen-

tation of the pitch/latency relationship is a direct consequence of the model parameters tuning,

Fig 3. Model responses to single IRNs. (A, B) Latency predictions for iterated rippled noise compared with

experimental data reported by a previous study [9]. Simulations were performed using the same stimuli parameters as

in the original experiment (i.e., (A) 16 iterations, (B) 16 ms delay; both bandpass filtered between 0.8 kHz and 3.2

kHz). Latency predictions were averaged across N = 60 runs of the model, error bars are standard errors of the mean.

(C) Comparison of the collective response of the excitatory ensembles in the decoder (computed as an average across

populations) with the equivalent dipole moment elicited at the POR generator. The stimulus was an iterated rippled

noise with 16 iterations and a delay of 8 ms, bandpass filtered between 0.8 kHz and 3.2 kHz. Shaded contours are

standard errors. (D–H) Averaged responses at different stages of the model: (D) periodicity detectors, (E/F) excitatory/

inhibitory ensembles in the decoder, (G/H) excitatory/inhibitory ensembles in the sustainer.

https://doi.org/10.1371/journal.pcbi.1006820.g003
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that makes the model to require three input harmonics to perform a perceptual decision on

the IRN pitch (see previous section and Methods). However, the co-dependency of the collec-

tive decoder response and the AEF is not an obvious result of model tuning.

We observed a systematic discrepancy in the latest section of the predicted and observed

AEF magnitude for some of the tested stimuli (see an example in Fig 3C). Two factors could

explain these difference: first, we assumed that the model collective activation and its derived

equivalent dipole are linearly related [40], but the actual dependence between neural activity

and the evoked fields depends on the relative orientation of the cortical columns, which is

unknown. Thus, we cannot draw exact predictions on the absolute magnitude of the AEFs

evoked by the model ensembles. Second, although the AEF depicted in Fig 3C corresponds to

a fit of the POR response, dipole fittings were performed within a 30 ms window centered at

the POR peak. Thus, it is possible that the final portion of the AEF time series might be con-

taminated by later components such as the P200. Similar disagreements between the AEFs and

the collective activity of the decoder will be observed in the model predictions for the dyads.

To test whether the pitch of the IRN stimuli is correctly encoded in the model, we plotted

the average activation in the different ensembles (Fig 3D–3H). Neither periodicity detectors

nor excitatory ensembles of the decoder network show salient pitch selectivity; however, the

decoded pitch is observed clearly both in the inhibitory populations of the decoder network

and in the sustainer network. Fig 3, S3 and S5–S7 Figs indicate that the model can eventually

decode the pitch of the stimulus when at least two harmonics are present at the cortical input

(since we only consider periodicity detectors tuned to periods below Tmax = 30 ms, the highest

period robustly extracted by the model is Tmax/2 = 15 ms; a larger pitch range could be easily

achieved by increasing Tmax). Robust decoding for IRN stimuli with different parametriza-

tions, pure tones, harmonic complex tones (including virtual pitch [41]), and click trains [42]

is shown in S3 and S5–S7 Figs.

Neuromagnetic correlates of consonance and dissonance in auditory cortex

Next, we recorded neuromagnetic fields evoked by six different dyads from 37 normal hearing

subjects. Data were preprocessed using standard MEG procedures and equivalent current

dipoles were fitted for the POR, independently in each subject and hemisphere, and pooled

over conditions (see Methods). Dipole locations in Talairach space are plotted in Fig 4B.

Dyads consisted of two IRN sounds. The lower note pitch was 160 Hz; the pitch of the

upper note was adjusted accordingly to form either a consonant dyad (unison, P1; perfect

fifth, P5; major third, M3) or a dissonant dyad (tritone, TT; minor seventh, m7; minor second,

m2). To dissociate the energy onset response in planum temporale from the POR in alHG, the

dyads were preceded by an energy-balanced noise segment, cross-faded with the dyad to avoid

discontinuous waveforms (like for the single IRN sounds analyzed in the previous section; see

Methods).

Fig 4A presents the MEG grand-mean source waveforms, for both hemispheres, in response

to the six stimulus conditions. The noise onset from silence (depicted in grey below the source

waveforms) was followed by a transient P1m-N1m-P2m AEF complex. Since the first stimulus

segment did not vary between conditions, we did not expect to find any significant differences

in the corresponding neuromagnetic activity at this point.

In contrast, the transition to the second stimulus segment (IRN dyads, black signal below

the source waveforms) elicited prominent POR waves and the morphology of the POR varied

considerably between conditions. Fig 4C shows close-up views of the POR. Consonant dyads

(pooled conditions [P1+P5+M3]) elicited a much earlier (p<.0001) and larger (p<.0001)

POR than dissonant dyads (pooled conditions [m7+TT+m2]). Fig 4D depicts 99% bootstrap

Modeling and MEG evidence of early consonance processing in auditory cortex
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confidence intervals for the POR amplitudes and latencies pooled over hemispheres in

response to the experimental conditions; the activity pattern observed here also points to a

close relationship between the degree of a dyad’s consonance and the morphology of the

respective POR.

When pooling across conditions, we found a difference between the left and the right hemi-

sphere in the POR amplitude (p = .01), but not in the POR latency (p = .36); also, the difference

between the neuromagnetic responses to consonant or dissonant dyads did not significantly

vary between hemispheres (latency: p = .58, amplitude: p = .48).

Neural mechanisms underlying the responses of auditory cortex to

consonance and dissonance

The POR latency difference in response to consonant and dissonant dyads in alHG suggests

that consonance and dissonance are computed at relatively early stages of the cortical auditory

hierarchy. We used our model of cortical pitch processing, designed to reproduce the neuro-

magnetic responses elicited by iterated rippled noises, to test this interpretation. If the

Fig 4. Auditory fields evoked at dyad onset. (A) MEG grand-mean source waveforms in response to the pooled

stimulus conditions. The course of the stimuli is shown in grey (noise) and black (IRN) below the source waveforms;

note the prominent negative POR deflection (N1m) at the transition from the first to the second stimulus segment.

BL = baseline. (B) Projection of the dipole locations (means and 99% bootstrap confidence intervals) onto the axial

view of auditory cortex as suggested by Leonard et al. [43]. (C) Morphology of the POR in response to the dyad onset

in the single experimental conditions (second stimulus segment), pooled over hemispheres. (D) 99% Bootstrap

confidence intervals for the POR amplitudes and latencies in the single experimental conditions. In subplots (B, D)

confidence intervals are bias-corrected and accelerated to compensate for bias and skewness in the distribution of the

bootstrap estimates, as recommended by Efron and Tibshirani [44].

https://doi.org/10.1371/journal.pcbi.1006820.g004
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differential responses to consonance and dissonance in alHG were intrinsic to pitch process-

ing, we would expect our model to be able to reproduce this behavior.

First, we verified that the model was able to provide a joint representation of the two pitches

comprised in the dyads; the results are shown in Fig 5A–5C. As in Fig 3, the plots show the

Fig 5. Model responses to the IRN dyads. (A–C) Neural representation of the dyads at different stages of the model:

(A) periodicity detectors, (B/C) excitatory/inhibitory ensembles in the decoder network; each row shows the activity

elicited by each dyad. Excitatory and inhibitory ensembles in the sustainer are precisely correlated with the decoder-

inhibitory heatmap. (D–I) Examples of the collective excitatory activity in the decoder network (monotonically related

to the equivalent dipole moment elicited by the network) in comparison with the elicited dipole moment measured

during the experimentation in the neural generator of the POR. The scale of the field derived for the unison dyad was

adjusted to account for the comparatively smaller effect on the network of the unison input, which effectively activates

half of the populations than the other dyads. (J) Latency predictions for IRN dyads compared with the experimental

results reported in the previous section. (K) Latency predictions for all dyads in the chromatic scale. Consonant dyads

are represented with a green triangle, whilst strongly dissonant dyads are represented with a red triangle; dissonance

was assessed according to Helmholtz [6] (see table in Fig 61 of the original text). Model predictions were averaged

across N = 60 runs, error bars and shaded contours are standard errors. Blue shaded contours correspond to the

experimental observations; grey shaded contours correspond to the model simulations.

https://doi.org/10.1371/journal.pcbi.1006820.g005
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average activation of the different ensembles (x-axis) for the 13 dyads in the chromatic scale

(y-axis). The vertical line in Fig 5C indicates the first note common to all dyads; the diagonal

the neural representations of the second notes. It should be emphasized that even phenomeno-

logical (biologically inspired but with low realism) models of pitch perception are generally

unable to decode sounds with concurrent pitches (e.g., [45, 46]; see [47] for a review).

Fig 5J shows the latency predictions of the model and the experimental data for the respec-

tive dyads (see also Fig 5D–5I). Note that this is a genuine out-of-sample test, since model

parameters previously fitted (see Methods) were held fixed to account for this new data.

Although the model predicted a slightly shorter POR latency for the semitone (m2) dyad

than observed (see Discussion), latency predictions match the experimental trend; moreover,

the differential response to consonant (P1, M3, P5) and dissonant (m2, TT, m7) dyads found

in the MEG data was accurately replicated by the model (latency of P1 and P5< latency of dis-

sonant dyads: p< 10−7, W> 5050; latency of M3< latency of m2: p = .00002, W = 4414;

latency of M3< latency of TT: p = .38, W = 3688; latency of M3< latency of m7: p = .096,

W = 3878; one-tailed Wilcoxon rank-sum tests performed over the results of N = 60 runs of

the model). The full temporal dynamics of the dipole moment predicted by the model is

shown in Fig 5D–5I.

Last, we extended the POR latency predictions to all 13 dyads comprising the entire chro-

matic scale (see Fig 5K), and tested if the differential responses to consonance and dissonance

were generalizable to additional dyads. Following Helmholtz [6], we considered an extended

set of consonant dyads, including the octave (P8) and the perfect fourth (P4); and an extended

set of dissonant dyads, including the major seventh (M7) and the major second (M2). Once

again, consonant dyads produced shorter latencies than dissonant dyads (latencies of P1, P4,

P5 and P8 < latencies of the extended set of dissonant dyads: p<.0003, W> 4445; latency of

M3< latency of M2: p = .00002, W = 4420; latency of M3< latency of M7: p = .75, W = 3501;

one-tailed Wilcoxon rank-sum tests, N = 60). These results, fully in line with our previous

findings, suggest that the differential response of our model to consonance and dissonance is a

consequence of the harmonic relationships between the periodicities of the two dyad compo-

nents. These analyses are extended to further families of dyads in S9 Fig, yielding similar

results.

The model can also be used to explain how interactions between the components of the

dyads influence processing time: consonant dyads consist of tones that share a larger number

of lower harmonics than the ones in dissonant dyads. For instance, in the just intonation, the

perfect fifth of a given fundamental shares one in every two harmonics with that fundamental,

whilst only one in 16 harmonics are shared by a minor second and its fundamental. The pro-

posed mechanism is based on the idea that cortical pitch processing is triggered by the joint

activation of, at least, three periodicity detectors characterizing a specific harmonic series.

Consonant dyads elicit a dramatically larger signal-to-noise ratio in the periodicity detectors

tuned to their common harmonics, resulting in a collaborative effort towards pitch extraction

that effectively speeds up processing dynamics (see video S2 Video for an animation depicting

the full process).

Discussion

This work combines new theoretical and experimental findings to elucidate how human audi-

tory cortex processes pitch and consonance/dissonance through similar network mechanisms.

First, we introduced a novel ensemble model designed to reproduce the neuromagnetic

fields elicited in alHG during pitch processing. The model was used to understand the POR

morphology and the dependence of its peak latency on the perceived pitch, a phenomenon
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that although robustly observed for over two decades [9], has remained poorly understood.

Second, we designed an MEG protocol to investigate whether the POR properties are influ-

enced by the degree of consonance or dissonance, as elicited by different dyads common in

Western music. Our results revealed a strong correlation between the POR peak latency and

the degree of consonance elicited by each dyad, extending previous EEG results that also

reported a modulation of the POR amplitude by consonance and dissonance [2].

Third, we showed that our model (originally designed to explain pitch processing in IRN

stimuli with a single pitch) quantitatively replicates the correlation between POR latency and

the degree of consonance and dissonance. We provide a mechanistic explanation for the

shorter POR latencies in response to consonant dyads as an effect of the harmonic facilitation

during pitch processing. Combined, our results indicate that the neural mechanisms account-

ing for pitch processing show differential responses to consonant and dissonant dyads, show-

ing that the sensation of consonance may be initially elicited as a result of pitch coding in

alHG before subsequent cognitive processing.

The POR latency reflects pitch processing time

A new systematic interpretation of the POR latency can be deduced from the dynamics of the

decoder network: the POR might reflect the amount of time that is necessary for the network

to robustly stabilize in a state representing a unequivocal pitch (see Fig 2). Although an associ-

ation between POR latency and processing time has been previously hypothesized in experi-

ments (such as in [9]) and in a phenomenological model [45], a detailed understanding of this

mechanism was still lacking. In our model, the latency of the POR coincides with the instant in

which the net inhibition at the decoder network overtakes the excitatory activity from the peri-

odicity detectors. From a dynamic systems perspective, this is equivalent to the instant in

which the trajectory in the phase-space is unequivocally directed towards the attractor state

dominated by the neural ensemble that is characterized by the perceived pitch (see the phase

space portrait in S1 Video).

The model only performs a robust perceptual decision concerning stimulus pitch after the

cortical system identifies three peaks from the harmonic series of the stimulus period in the

representation of the periodicity detectors. This accounts for the relation between the POR

latency and the stimulus period [9]. In addition, this also explains why pitch identification is

only robust when the stimulus duration exceeds four times the pitch periodicity [9]. Although

previous studies had postulated that cortical pitch processing mechanisms must integrate

along several period cycles in order to make a perceptual decision [9], a specific mechanism

for such an integration has not been proposed to the date.

Moreover, since phase-locked activity is not robustly present above 50–200 Hz in the cortex

[15], integration along several repetition cycles is only possible in subcortical areas. The

decoder network in our model takes advantage of the input harmonic representations pro-

vided by an autocorrelation model that does not require phase-locking to transmit informa-

tion concerning several repetition cycles [28], and thus provides a parsimonious solution to

this problem.

Effect of consonance and dissonance on cortical processing time

Combined, our results suggest that cortical processing of dissonant dyads is slower than the

processing of consonant dyads; i.e., it requires a longer processing time. The model constitutes

a physical rationale for this phenomenon: cortical extraction of consonance is based on the

accumulation of activity in the columns with preferred periods characterizing the lower har-

monics of the target sound; thus, concurrent pitch frequencies sharing common lower
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harmonics contribute to the build-up of each other’s representation, thereby speeding up the

stabilization of the network. Since consonant dyads are characterized by simpler frequency

ratios, their components share a larger number of lower harmonics than the components of

dissonant dyads, and hence this stabilization is promoted.

Early phenomenological models based on Helmholtz’s roughness theory described disso-

nance as the beating sensation produced by tones with fundamental periodicities that were not

harmonically related [6, 7]. More recent explanations of consonance, based on pitch process-

ing, have linked the regularity of the autocorrelation harmonic patterns elicited by dyads to

their evoked consonance and dissonance percepts [1, 4, 19]. Thus, previous phenomenological

consonance models have consistently described the degree of consonance as the perceptual

correlate of the degree of overlap between the dyad components’ lower harmonics. Our model

introduces a potential explanation for the biophysical rationale underlying this description.

Although our modeling results generally show a good fit with the data from the MEG

experiment, the model prediction falls around 5 ms short when explaining the POR latency

evoked by the minor second dyad. This underestimation might result from the limited number

of harmonics considered during the integration step in the decoder network: dissonant dyads,

whose components do not share any common harmonic within the first three peaks of their

harmonic series, present comparable processing times. More accurate results would occur if

an adaptive mechanism adjusted the number of harmonics required to trigger the decoding

process according to the degree of peak overlap in the input. This adaptive mechanism would

be necessary to explain how humans can differentiate dyads that differ in a quarter of a

semitone.

Our study did not assess whether the general (yet not universal [3, 5]) association between

consonance and pleasantness might be a consequence of the differential responses of the

decoder network to consonant and dissonant dyads. Future work should investigate whether

this link could be better explained by processes at higher levels of the auditory hierarchy that

might be more sensitive to cultural and background modulations.

Comparison with previous experimental results

Our neuromagnetic findings concerning the POR morphology in response to consonant and

dissonant dyads resemble and extend recent EEG data reported by Bidelman and Grall [2],

and by Proverbio et al. [48]. Specifically, Bidelman and Grall [2] applied EEG in a smaller sam-

ple (N = 9) of musically trained listeners and revealed a close relation between their subject’s

consonance/dissonance ratings and the morphology of the POR that was elicited by the respec-

tive dyads in alHG. In their study, the POR latency difference between consonant and disso-

nant dyads (cf. their Fig 4b) appears to have a non-significant (p = .22) effect size, smaller than

the results that were obtained in our study by means of MEG.

One reason for this might be that Bidelman and Grall [2] applied shorter IRN stimuli with a

higher number of iterations, resulting in an increased saliency of the pitch percept; moreover,

they employed a dichotic stimulation paradigm in which each ear was presented with only one

dyad component, whereas in our experiment sounds were delivered diotically to the listeners.

Since our model does not predict an effect of the number of iterations of the IRNs on latency

(predictions for dyads of 32 iterations IRNs are shown in S9D Fig), we speculate that the diotic

presentation of the dyads is responsible for the stronger effect shown in our data. This hypoth-

esis cannot be explored by our current model because it does not consider binaural integra-

tion. The modeling of this process could be informed by the divergence between Bidelman

and Grall’s and the present results in future work.
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In line with results from previous experiments (e.g., [9, 11, 30, 32, 49]), our findings are

consistent with the notion that lateral HG acts as a cortical pitch center. Many of these earlier

studies employed IRN stimuli; however, a number of fMRI experiments (e.g., [50, 51]) have

argued that the activity observed in HG might be confounded by slow fluctuations in the IRN

spectrum. Indeed, pitch-sensitive cell ensembles seem to overlap, within HG, with other neural

populations that are more sensitive to other (e.g., spectral) sound features [52, 53]. However,

this does not speak against the existence of a pitch-specialized subregion in HG since overlap-

ping neuron ensembles are difficult to disentangle by means of fMRI [54]. Thus, based on the

relatively homogeneous pattern of results in the current study and in experiments using differ-

ent stimuli and neuroimaging methods [2, 18, 31, 35], the existence of a pitch center in HG

might be viewed as highly probable.

Relation to pitch perception models

Numerous phenomenological models have been designed to predict pitch for a wide range of

complex sounds (e.g., [24, 27, 28, 45, 46, 55], see [47] for a review). These models can account

for a variety of perceptual phenomena [24]. The weaker pitch of frequency-transposed har-

monic complex sounds [56], for example, was explained using nonlinear filters to simulate the

compression taking place in the basilar membrane [24]. Although the present work constitutes

a first effort towards a mechanistic model of early pitch and consonance processing, future

efforts should focus on broadening the model scope to pitch phenomena not addressed in the

current model implementation.

The correlation between pitch and cortical AEFs has been qualitatively studied in the Audi-

tory Image Model’s buffer [46] and its derivative [57], and quantitatively in the derivative of

the model output in [45] and [10]. However, these models did not provide a mechanistic

explanation of the processes underlying the generation of the POR or its latency dependence

with pitch.

Other models, designed to explain the biophysical mechanisms of pitch perception, focused

primarily on subcortical processing. Two of these models describe how neurons, mainly in

subcortical nuclei, might process periodicities from the auditory nerve activity: Meddis and

O’Mard’s model [23] proposes a biophysical implementation of the summary autocorrelation

function [27, 28], based on the joint action of chopper neurons in the cochlear nucleus and

coincidence detectors in the inferior colliculus. More recently, Huang and Rinzel [58]

described a neural implementation of an array of coincidence detectors able to detect periodic-

ities by comparing neural activity across different cochlear channels. Despite their mechanistic

differences, both models present an output comparable to that of the autocorrelation function

[58]. The model presented here is downstream with respect to Meddis’ and Huang’s models

because it focuses on explaining how pitch decisions based on the later subcortical representa-

tion are made in alHG.

Biological plausibility

In our model, pitch processing is mediated by a connectivity pattern among interacting col-

umns specialized in characteristic periods. Similar connectivity patterns were found in mice

AC, stemming from L4 and targeting L6 neurons [36], and in the cat AC in earlier studies

[37]. Neurons that respond selectively to harmonically related input have been recently identi-

fied in the core region of the marmoset’s auditory cortex [13].

Inhibitory and facilitatory interactions between neurons encoding harmonically related fre-

quencies are often reported in the mammal auditory cortex (see [59] for a review). Specifically,

intracranial recordings in marmoset AC revealed that activation elicited by a given tone
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resulted in the facilitation of neurons encoding higher harmonics, and in the suppression of

neurons encoding lower harmonics [60], in line with the decoder network mechanisms of our

model. Harmonic co-activation has also been shown in human AC [61].

In a more speculative vein, we suggest that this connectivity pattern might result from

spike-timing-dependent plasticity (STDP) operating over cortical neurons receiving the

upstream outputs of periodicity detectors. To illustrate this, let us consider the processing of a

sound of fundamental period T. After tone onset, the first periodicity detector responding to

the sound provides input to the upstream excitatory ensemble encoding T, which subsequently

activates its inhibitory counterpart. Assuming an initial all-to-all connectivity, this inhibitory

drive propagates in the network and provides concurrent input to neurons receiving excitatory

drive from periodicity detectors 2T, 3T, and so forth. Input synchrony would result in a stron-

ger connectivity change though STDP in these harmonically related ensembles, whilst the

uncorrelated asynchronous inputs to the remaining ensembles would result in a net decreased

connectivity weight. A similar STDP mechanism for spectral pitch integration was proposed

earlier in [62].

The decoding strategy or our model is based on the well-known winner-takes-it-all architec-

ture [29, 63, 64]: excitatory populations in the decoding network compete with each other,

while the inhibitory ensemble arbitrating this competition is the one in the column that is sen-

sitive to the fundamental period (Fig 1). In this way, multiple fundamentals can be simulta-

neously decoded (Fig 5). Moreover, akin to recent models of sensory integration [29], once a

fundamental period is represented in the decoder network, the activity of the winner column

is reinforced by the sustainer network (rather than the pitch being repeatedly decoded). This

ensures stability until a significant change in the subcortical input triggers a new decoding pro-

cess (see S2 Fig).

This sustaining strategy is also related to predictive coding-related strategies [45, 65, 66],

where top-down efferent convey expectations about the input, whereas bottom-up afferents

convey prediction errors [65]. Additional top-down expectations could coexist at higher cog-

nitive levels based on, for example, prior knowledge, experience, or focused attention. Such

biases could modulate the sustainer network by increasing the baseline activity of the inhibi-

tory ensembles that characterize the target pitch values, thereby facilitating pitch processing in

the decoder network.

To summarize, in this study we proposed a model specifically designed to understand the

neural mechanisms of cortical pitch processing at a mesoscopic scale. We introduce a possible

mechanistic link between the latency of the POR component in the N100 deflection and the

processing time required for the system to achieve convergence, explaining the classical result

that tones with a lower pitch elicit PORs with longer latencies. More intriguingly, our model-

ing and experimental results indicate that processing time varies with the degree of conso-

nance in dyads, suggesting that the sensation of consonance and dissonance might start early

in auditory cortex, prior to higher-order processing.

Methods

Experimentation

Participants. Thirty-seven normal-hearing adults (22 female, 2 left-handed; mean age:

29.1 ± 8.3 years) participated in the experiment. The size of the study sample was chosen in an

effort to reliably segregate the neuromagnetic responses to highly consonant and highly disso-

nant dyads, thereby exceeding the sample sizes reported in previous studies [21, 48]. None of

the subjects reported any history of central or peripheral hearing impairments or any neuro-

logical or psychiatric disorders. The study and the experimental procedures were approved by
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the ethics committee of the Medical Faculty of the University of Heidelberg, and were con-

ducted with written informed consent of each listener.

Stimuli. All stimuli were generated on-line using MATLAB 7.1 (The MathWorks, Inc.,

USA) and a sampling rate of 48000 Hz. The basic stimulus was a 750 ms long IRN segment,

bandpass filtered at 125–2000 Hz, with eight iterations and gain for the delay-and-add filter

gf = 1:

sðtÞ ¼
X#its� 1

n¼0

gn
f ðs0ðt � nT0Þ þ s0ðt � nT1ÞÞ; ð1Þ

where s0(t) is the sound waveform of a continuous white noise. The delays of the IRNs T0 and

T1 were varied between experimental conditions in order to build three consonant and three

dissonant musical intervals, as classified by Western music theory. The delay of the lower

note was always T0 = 6.25 ms, corresponding to a pitch of 160 Hz; the delay of the upper note

T1 = 2−(f ratio) T0 was adjusted accordingly to form either a consonant dyad (unison, P1; perfect

fifth, P5; major third, M3) or a dissonant dyad (tritone, TT; minor seventh, m7; minor second,

m2). Table 1 presents an overview of the six experimental conditions.

In order to separate the dyad-specific neuromagnetic responses from the cortical activity

associated with the onset of sound energy [67], each IRN dyad was preceded by a 750 ms long,

energy-balanced noise segment (bandpass filtered from 125 Hz to 2000 Hz). There were 10 ms

Hanning windows at stimulus onset and offset. Moreover, between the first (noise) and the

second (IRN) segment of a stimulus, signals were cross-faded for a duration of 10 ms to avoid

discontinuous waveforms. The overall stimulation level was set to 80 dB SPL.

Data acquisition and processing. Gradients of the magnetic field were acquired with a

Neuromag-122 whole-head MEG system (Elekta Neuromag Oy, Helsinki, Finland) inside a

magnetically shielded room (IMEDCO, Hägendorf, Switzerland). Raw data were low-pass fil-

tered at 330 Hz and acquired at a sampling rate of 1000 Hz. Prior to the recordings, the nasion,

two pre-auricular points and 32 surface points were measured as anatomical landmarks, indi-

vidually for each participant, using a Polhemus 3D-Space Isotrack2 systems. In order to keep

vigilance stable, participants watched a silent movie of their own choice during data acquisi-

tion, and they were asked to direct their attention to the movie and ignore the sounds in the

earphones. IRN dyads were delivered to the subjects via Etymotic Research (ER-3) earphones

with 97 cm plastic tubes and foam earpieces. Sounds were presented using a 24-bit sound card

(RME ADI 8DS AD/DA interface), an attenuator (Tucker-Davis Technologies PA-5), and a

headphone buffer (Tucker-Davis Technologies HB-7). 250 sweeps per stimulus condition

were played during the MEG recording, diotically and in pseudo-randomized order. The

inter-stimulus interval was 1000 ms. The total duration of the measurement was 62 minutes.

Table 1. Overview of the experimental conditions. Dyads are listed in descending consonance order, and are catego-

rized as perfect consonant (PC), imperfect consonant (IC) or dissonant (D) according to Western music theory and

empirical results [68].

musical interval f ratio f (rounded, Hz) cons. percept

unison (P1) 1:1 160 / 160 PC

perfect fifth (P5) 3:2 240 / 160 PC

major third (M3) 5:4 200 / 160 IC

tritone (TT) 45:32 225 / 160 D

minor seventh (m7) 16:9 284 / 160 D

minor second (m2) 16:15 171 / 160 D

https://doi.org/10.1371/journal.pcbi.1006820.t001
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Data analysis. Data were analyzed off-line using the BESA 5.2 software package (BESA

GmbH, Germany) with a spherical head model and a homogeneous volume conductor. After

visual inspection of the raw data, noisy channels and sweeps with amplitudes greater than

8000 fT/cm or gradients exceeding 800 fT/cm ms were excluded from further analyses. About

235 sweeps per subject and condition remained after artifact rejection; they were averaged,

trigger-synchronously, in the epoch from 500 ms before to 3000 ms after stimulus onset. The

baseline was defined as the average level in the interval of -100 ms to 0 ms, relative to stimulus

onset.

After pre-processing, we applied spatio-temporal source models [69] in BESA, to study the

POR component in response to the second stimulus segment; i.e., at the transition from noise

to IRN dyads. In this source localization approach, the intracortical sources of the activity

observed at the scalp are modeled as equivalent current dipoles, and their spatial position and

orientation is varied iteratively until a maximum amount of variance is explained in the scalp

data. The source model includes both, the spatial information for each dipole and its physio-

logical activity across time (source waveform). We calculated source models with one dipole

per hemisphere for the POR component in the second stimulus segment. Dipole fits were

based on pooled conditions [P1+P5+M3+TT+m7+m2]. The fitting interval covered about 30

ms around its peak, and MEG data were zero-phase filtered 1–20 Hz.

Individual fits at the AEF components were successful for 36 subjects. In ten participants

we included a symmetry constraint in the model to stabilize the individual dipole fits. One par-

ticipant failed to show stable fits in the dipole model and was excluded from subsequent analy-

ses. Aside from symmetry, no further constraints were made concerning the orientation and

location of the dipoles. The average maximum of explained variance within the fitting window

was 64.1% (SD: 18.9) for the POR dipole model. After fitting, this dipole model was used as

spatio-temporal filter; i.e., the source waveforms corresponding to the model were extracted

separately for each condition and each subject. Finally, the source waveforms were exported

from BESA to MATLAB for statistical analysis.

The statistical evaluation of the MEG source waveforms was conducted using the bootstrap

method. Here, the distribution of a test statistic is approximated by repeated random drawing,

with replacement, from the original dataset; based on the resulting bootstrap distribution, con-

fidence intervals can then be derived for that test statistic. Contrary to most standard tech-

niques, the bootstrap method is well-suited for neurophysiological data where peaks cannot be

clearly identified for each participant in every condition. Prior to statistical analyses, each

source waveform of the POR model was adjusted to the baseline calculated as the average of

the last 100 ms before the transition.

Processed MEG data are publicly available in the Open Science Framework repository:

http://osf.io/chqvf.

Modeling

Peripheral model and periodicity detectors. Neural activity in the auditory nerve was

simulated using a recent biophysically realistic model of the auditory periphery [26]. Periph-

eral model parameters were chosen as in [23], considering 40 cochlear channels with center

frequencies between 125 Hz and 10 kHz.

Periodicity detectors were modeled according to the summarized autocorrelation function

(SACF) of the auditory nerve activity [23, 24, 28]. This idealized model yields a harmonic neu-

ral representation of pitch-related information (see Fig 1E). The SACF was chosen for its low

computational cost, but more detailed biophysical models produce similar representations

(e.g., [23, 58]).
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The SACF used here follows the same formulation as the first stage in the cascade autocor-

relation model [24]:

tSACFn
_AnðtÞ ¼ � AnðtÞ þ

X

m

pðtÞm pðt � dtmÞ; ð2Þ

where p(t)m is the instantaneous spiking probability of the cochlear channel m, and tSACF
n are

the SACF integration time-constants [24, 38]. The nth component An(t) of the SACF as

described in Eq (2) represents a measure of regularity in the auditory nerve activity with

respect to a fixed period δtn. The model considers N = 250 of such periods uniformly spaced

between δt1 = 0.5 ms, a conservative estimation of the phase-locking limit of the auditory

nerve [70], up to the lower limit of melodic pitch, δtN = 30 ms [71].

The output is further regularized through a procedure AnðtÞ ! ÂnðtÞ that reduces the

dependence of the SACF with stimulus intensity level and minimizes signal-to-noise variations

in sounds with the same pitch but different timbre. The regularization procedure is based on

neuronal normalization principles [72] (see S3 Text).

Ensemble dynamics. Neural ensembles follow mean-field dynamics adapted from [64],

characterized by their instantaneous firing rates He
nðtÞ (excitatory) and Hi

nðtÞ (inhibitory) at

each cortical column n:

tpop _He;i
n ðtÞ ¼ � H

e;i
n ðtÞ þ �

e;i
ðIe;in ðtÞÞ: ð3Þ

where τpop is the population time constant (see Eq (5)) and �
e;i
ðIe;in ðtÞÞ are the transfer func-

tions [64]:

�
e;i
ðIÞ ¼

ae;iI � be;i

1 � e� de;iðae;iI� be;iÞ
: ð4Þ

Realistic parameters of excitatory and inhibitory transfer functions (ae, be and de for the

excitatory; ai, bi and di for the inhibitory) were taken from the literature [64, 73]. The total syn-

aptic inputs IenðtÞ and IinðtÞ are defined below. Numerical simulations were performed using

the Euler’s method with a time step Δt = 1 ms.

The dynamics of excitatory and inhibitory ensembles of the decoder and sustainer networks

follow the same formulation. In order to differentiate between the two networks, we use He;i
n ðtÞ

and Ie;in ðtÞ to characterize populations and synaptic inputs of the decoder layer and Ĥ e;i
n ðtÞ and

Î e;in ðtÞ for the populations and synaptic inputs of the sustainer layer. Population effective time

constants τpop are adaptive and depend on the activity of the population [74]:

tpopðHðtÞÞ ¼ tpop0 DT
�
0
ðIðtÞÞ
HðtÞ

; ð5Þ

where ΔT = 1mV is the sharpness of the action potential initiation [74] and

�
0
ðIÞ ¼ @x�ðxÞjx¼I ¼ a�ðIÞ

1

aI � b
þ

d
1 � e� dðaI� bÞ

� �

:

Synaptic dynamics. Ensemble connectivity is mediated through realistic AMPA, NMDA

and GABAA synapses [63, 64, 73]. Synaptic dynamics were modelled according to Brunel’s
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formulation [73]:

_SfAMPA; GABAg
n ðtÞ ¼ �

SfAMPA; GABAg
n ðtÞ
tfAMPA; GABAg

þ Hfe;ign ðtÞ þ x

_SNMDA
n ðtÞ ¼ �

SNMDA
n ðtÞ
tNMDA

þ g 1 � SNMDAðtÞð ÞHe
nðtÞ þ x:

The NMDA time constant was set to τNMDA = 30 ms; GABA and AMPA time constants

τGABA = 2 ms and τAMPA = 5 ms, and the coupling parameter γ = 0.641, were all taken from the

literature [64, 73]. The last terms in the equations ξ = σνn(t) introduce noise in the synaptic gat-

ing variables through Wiener processes νn(t) with mean zero and variance σ = 0.0007 nA [64]

that are independently sampled for each variable and time instant. Gating variables of the sus-

tainer and decoder layers ŜNMDA; AMPA; GABA
n ðtÞ, Ĥe;i

n ðtÞ follow similar dynamics.

Synaptic inputs. The total synaptic inputs to populations Ii;en ðtÞ and Î i;en ðtÞ in Eq (3) consist

of three different contributions: internal input Iint, accounting for inputs from populations

within the same network, external input Iext, exerted by sources from other networks, and a

constant input drive I0: Ii;en ðtÞ ¼ Ii;en;intðtÞ þ Ii;en;ext
ðtÞ þ Ii;en;0ðtÞ and

Î i;en ðtÞ ¼ Î i;en;intðtÞ þ Î i;en;ext
ðtÞ þ Î i;en;0ðtÞ.

Internal input. Connectivity weights between any two ensembles in the decoder network

are provided by the matrices Cee, Cei, Cie, Cii. Cei and Cie present a harmonic structure inspired

in connectivity patterns reported in the mammal auditory cortex (see Discussion); these matri-

ces are plotted in Fig 1D. Cee is the identity matrix, and Cii has a similar diagonal structure:

Cii
ab
¼ ð1 � cie

0
Þdab þ cie

0
, where cie

0
is the baseline inhibitory weight cie

0
¼ 0:1 and δαβ is the Kro-

necker delta. The internal inputs to the decoder Iint(t) are defined as follows:

Ian;intðtÞ ¼
X

k

Cea
nkðJ

ea
NMDA S

NMDA
k ðtÞ þ JeaAMPA S

AMPA
k ðtÞÞ

�
X

k

Cia
nkJ

ia
GABA S

GABA
k ðtÞ; a ¼ e; i

ð6Þ

Ensembles in the sustainer network only communicate internally with populations within

the same block:

Î en;intðtÞ ¼ Ĵ eeNMDA Ŝ
NMDA
n ðtÞ þ Ĵ eeAMPA Ŝ

AMPA
n ðtÞ ð7Þ

� Ĵ ieGABA Ŝ
GABA
n ðtÞ ð8Þ

Î in;intðtÞ ¼ Ĵ eiAMPA Ŝ
AMPA
n ðtÞ ð9Þ

Conductivities JNMDA,AMPA,GABA and ĴNMDA;AMPA;GABA (see Table 2) were initialized to typi-

cal values in the literature J’ 0.15 nA [64], and fine-tuned within a range of realistic values to

ensure the convergence of the ensembles activity for single-pitch iterated rippled noises. The

excitatory-to-inhibitory conductivity Jei
AMPA

was further adjusted such that three harmonics

were necessary to perform a perceptual decision. This enables the model to replicate the

dependence of the POR with pitch in two reference IRNs with periods T = 2 ms and T = 8 ms.

Model’s final parameters are listed in Table 2, and are held fixed for the rest of the stimuli ana-

lysed in this study.
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External input. Excitatory ensembles in the decoder network receive bottom-up input ÂnðtÞ
via AMPA-driven synapses, in line with previous studies on perceptual integration [64]:

Ien;extðtÞ ¼ JthAMPA S
th;AMPA
n ðtÞ:

The conductivity Jth
AMPA

was adjusted to ensure a smooth and robust propagation of the

activity in the periodicity detectors to the decoder’s excitatory populations. The corresponding

gating variables Sth;AMPA
n ðtÞ follow AMPA-like dynamics:

_Sth;AMPA
n ðtÞ ¼ �

Sth;AMPA
n ðtÞ
tAMPA

þ AnðtÞ: ð10Þ

Table 2. Values for the parameters used in the cortical model. The last column specifies the source of the parameter value; entries without a reference were tuned within

the range of realistic values. Time constants for synaptic dynamics were taken from the original formulation of the models referenced in this work. All values were

grounded in empirical data; e.g., t
decay
GABAA

’ 2 � 8 ms [75], t
decay
AMPA ¼ ð2� 0:8Þms [76], τpop = (11.9±6.5) ms in fast spiking cortical neurons [77]. Similarly, in synapses tar-

geting inhibitory neurons, t
decay
NMDA 2 ½11:6; 27:1� ms [78].

par value description source

Jth
AMPA

2.7 nA conductivity of the subcortical input -

Je
NMDA

0.45 nA top-down (sustainer to decoder) conductivity -

Ĵ a
GABA

0.45 nA bottom-up (dec to sust) inh conductivity -

Ĵ a
AMPA

0.35 nA bottom-up (dec to sust) exc conductivity -

Jee
NMDA

0.14 nA decoder’s exc-exc NMDA conductivity -

Jee
AMPA

0.00099 nA decoder’s exc-exc AMPA conductivity [64]

Jei
NMDA

0.17 nA decoder’s exc-inh NMDA conductivity -

Jei
AMPA

0.000065 nA decoder’s exc-inh AMPA conductivity [64]

Jie
GABA

0.53 nA decoder’s inh-exc conductivity -

Jii
GABA

0.11 nA decoder’s inh-inh conductivity -

Ĵ ee
NMDA

0.25 nA sustainer’s exc-exc NMDA conductivity -

Ĵ ee
AMPA

0.00099 nA sustainer’s exc-exc AMPA conductivity [64]

Ĵ ei
AMPA

0.00099 nA sustainer’s exc-inh AMPA conductivity [64]

Ĵ ie
GABA

0.80 nA sustainer’s inh-exc conductivity -

cie
0

0.1 ratio between global and specific inhibition -

γ 0.641 coupling parameter of NMDA synaptic gating [73]

ae 310 (VnC)−1 transfer function parameter for exc ensembles [64]

be 125 Hz transfer function parameter for exc ensembles [64]

de 0.16 s transfer function parameter for exc ensembles [64]

ai 615 (VnC)−1 transfer function parameter for inh ensembles [64]

bi 177 Hz transfer function parameter for inh ensembles [64]

di 0.087 s transfer function parameter for inh ensembles [64]

Ie
0

0.315 nA decoder’s baseline excitatoy input current -

Ii
0

0.15 nA decoder’s baseline inhibitory input current -

Î e
0

0.26 nA sustainer’s baseline excitatoy input current -

Î i
0

0.18 nA sustainer’s baseline inhibitory input current -

τAMPA 2 ms time constant of the AMPA decay [73]

τGABA 5 ms time constant of the GABA decay [73]

τNMDA 30 ms time constant of the NMDA decay -

τpop 10 ms membrane time constant [74]

ΔT 1 mV sharpmness fo the action potential initiation [74]

σ 0.0007 nA variance of the synaptic noise [64]

https://doi.org/10.1371/journal.pcbi.1006820.t002
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Inhibitory ensembles in the decoder receive efferent external input from the sustainer net-

work. Top-down excitatory processes in cortex are typically dominated by NMDA dynamics

[65]; thus, efferent AMPA synapses were not considered:

Iin;extðtÞ ¼ JeNMDA Ŝ
th;NMDA
n ðtÞ:

The efferent conductivity Je
NMDA

(Table 2) was tuned to facilitate the timely top-down

enhancement of inhibitory ensembles at the decoder (see details Dynamics of the decoder net-
work in Results).

Sustainer’s external inputs originate from the decoder network, driven by inhibitory

GABAergic Î in;ext
ðtÞ ¼ Ĵ a

GABA
SGABA
n ðtÞ and excitatory AMPAergic Î en;ext

ðtÞ ¼ Ĵ a
AMPA

SAMPA
n ðtÞ

synapses [64, 65]. Afferent conductivities Ĵ a
AMPA; GABA

(Table 2) were set to make the sustainer

both sensitive to decoded decisions, yet robust to spurious activations.

Constant input drive. Constant inputs to the decoder Ien;0ðtÞ ¼ Ie
0

and Iin;0ðtÞ ¼ Ii
0

(Table 2)

were selected to enable the system to be reactive to external input, yet silent in absence of a sig-

nificant input. An additional constant drive Isus
0
¼ 0:24 nA was applied to the populations at

the sustainer (see Dynamics of the sustainer network in Results).

Derivation of the evoked fields. Assuming that all microcolumns within each of the two

cortical networks present similar orientations, the total dipolar moment representing the neu-

romagnetic field elicited by each network is monotonically related to the collective excitatory

activity in the network [40]: mðtÞ ¼
P

nH
e
nðt þ DtsubcortÞ.

The subcortical processing time Δt accounts for the time elapsed from tone onset until the

signal first arrives to the decoder network in cortex. This delay reflects propagation time and

subcortical processes such as the regularization of the output of the periodicity detectors. The

subcortical delay was fixed to Δt = 50 ms such that the model predicts the POR latency for a

reference IRN of a 1/8 Hz pitch. We used a larger Δtdyads = 75 ms in dyads to compensate for a

systematic 25 ms delay observed between the model predictions and experimental observa-

tions for dyads. We speculate that this difference is due to the different rescaling factors used

for the regularized SACF in single tones and dyads (see details in S3 Text).

The implementation of the model used to produce all the results and a script reproducing

the figures are publicly available in a Github repository: http://github.com/qtabs/moch.

Supporting information

S1 Video. Model dynamics during the processing of iterated rippled noise. a) Instantaneous

firing rate of the periodicity detectors (yellow) and the ensembles in the decoder (excitatory

blue, inhibitory red). b) Instantaneous firing rate of the ensembles in the sustainer (excitatory

blue, inhibitory red). c) Two-dimensional projection of the state variables of the decoder dur-

ing pitch processing; projection axes were chosen as the two first principal components (PCA)

of the decoder’s variables (i.e. the firing rates of the neural ensembles). Each dot represents the

state of the system at a given instant t with a step size of Δt = 1 ms. Colors were used to charac-

terize the different stages of the model dynamics: open blue circles represent the absence of

input (points are too close to each other to be distinguished); red dots represent states within

the time window spanning from the stimulus onset to the convergence of the model to a spe-

cific pitch value (at about 175 ms after sound onset); yellow dots represent states within tempo-

ral windows spanning from the convergence of the system to the tone offset; purple dots show

states in the time window corresponding to the the relaxation dynamics, spanning form the

offset of the tone up to 350 ms after sound offset. d) Excitatory and inhibitory firing rate of the

column characterizing the extracted pitch in the sustainer network. Note that the relaxation
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dynamics of the sustainer, corresponding to the trajectory of the system after offset (purple

points), is much slower than the relaxation dynamics of the decoder (resembling the character-

istic of the sustained field offset delay [67]). e) Aggregated excitatory activity in the decoder

(blue) and the sustainer (red), monotonically related to the equivalent dipole moment of the

elicited fields in each of the two networks. Stimulus parameters were chosen according to

Krumbholz et al. [9]; i.e., same as in Fig 2 in the main text. Stimulus pitch was set to f = 200 Hz

(T = 5 ms).

(MP4)

S2 Video. Model dynamics during the processing of dyads. a)–b) Instantaneous firing rate

of the periodicity detectors (yellow), the ensembles in the decoder (excitatory blue, inhibitory

red), and the excitatory ensemble in the sustainer (purple) for two IRN dyads: a minor second

(a) and a perfect fifth (b). c)–d) Two-dimensional projection of the state variables of the

decoder during pitch processing of a minor second (c) and a perfect fifth (d) dyad; see caption

of S1 Video for more details. e) Aggregated excitatory activity in the decoder, monotonically

related to the predicted elicited field in the generator of the POR, for each of the two dyads: the

minor second (blue) and the perfect fifth (red). Note that the system converges earlier for the

consonant dyad (the minor fifth), eliciting an earlier POR. Stimulus parameters were chosen

as in Figs 4 and 5 in the main text.

(MP4)

S1 Fig. Attractor dynamics underlying pitch processing. a) Two-dimensional projection of

the state variables~x during pitch processing using principal components analysis (PCA; see cap-

tion in S1 Video for details). The trajectory in the reduced space reveals key aspects of the onset

and relaxation dynamics; the transition from~x0 to~x1 characterizes the POR. b) View of the two

dimensions of the subsystem characterizing the decoded pitch n in the sustainer network (see

section S1.2). Note that the relaxation dynamics of the sustainer network, corresponding to the

transition from ~̂xn
1

to ~̂xn
0
, are much slower than the relaxation dynamics of the decoder network;

resembling the sustained field offset delay [67]. See also the caption in S1 Video.

(TIF)

S2 Fig. System’s reaction to pitch changes. a) Response to pitch changes (see caption in Fig 2

in the Main Text for details). b)–c) Representation of the attractor dynamics of the model under

pitch changes. Two colours were added to represent the new states in the system’s evolution:

purple now represents the dynamics from the second stimulus onset to the new state of conver-

gence, defined here as the state achieved 135 ms after the onset; green represents states between

convergence and the second stimulus offset; and light blue represent the states during the relax-

ation dynamics after offset. The remaining colours are kept as in S1 Fig and S1 Video. Note that

the transition from~x1 to~x2 elicits a new, second POR corresponding to the second stimulus.

Stimuli were IRNs with the same specifications as in [9]; first tone had a fundamental frequency

f0 = 200 Hz, second tone was two semitones higher than the first note, with f0 = 225 Hz. The

pitch transition occurs 350 ms after the onset of the first tone (see arrow in the figure).

(TIF)

S3 Fig. Predicted latencies for additional families of IRNs. Except for the number of itera-

tions of the IRNs and the number of runs used to obtain the results (in this case, N = 10) simu-

lation parameters were the same as in Fig 3a; error bars are standard deviations. Although

experimental data is not available for these stimuli, results faithfully replicate the trends

reported in Fig 3a.

(TIF)
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S4 Fig. Predicted latencies for pure tones. a) Simulated N100 latency values (black error

bars) and N100 latency observations (blue error bars); the two experimental curves correspond

to latency values observed in the right and left hemispheres. Predictions were averaged along

N = 10 runs of the model; error bars are standard errors. Experimental data was taken from

Roberts et al. [39], Fig 2.

(TIF)

S5 Fig. Model representation of pitch for pure tones. Averaged model responses to pure

tones at different stages of the model: (a) periodicity detectors, (b/c) excitatory/inhibitory

ensembles in the decoder, (d/e) excitatory/inhibitory ensembles in the sustainer. The decay of

the responses under f* 125Hz (or T* 8 ms) is due to the lower-frequency limit of the

peripheral model [25]. The Figure was produced using the same methodology as in Fig 3d–3h

(see Main Text for details).

(TIF)

S6 Fig. Model representation of pitch for click trains. Click trains (generated as a train of

Dirac deltas) elicit the same pitch sensation as a sine wave with period T equal to the interclick

interval [42]. Colormaps show the averaged responses click trains at different stages of the

model: (a) periodicity detectors, (b/c) excitatory/inhibitory ensembles in the decoder, (d/e)

excitatory/inhibitory ensembles in the sustainer. Results are fully consistent with experimental

observations [42].

(TIF)

S7 Fig. Model representation of pitch for harmonic complex tones. HCTs elicit the same

pitch percept as a sine wave with the frequency of the fundamental of the complex, even if the

fundamental itself is not comprised in the complex (known as the virtual pitch [41]). The fig-

ure shows the responses of the model for: a) HCTs formed by the fundamental and the first 5

higher harmonics; b) HCTs with a missing fundamental (comprising only by the first four

higher harmonics); c) HCTs with a missing fundamental comprising harmonics that are not

independently resolved in the cochlea (tones were generated as harmonic complexes with har-

monics 1 to 50, bandpass filtered between 3.2 kHz and 5 kHz). Note that, since the model uses

several peaks of the harmonic series to extract the pitch value from the representation in the

periodicity detectors, the perceptual range of the model is limited to periods T< 15 ms. Aver-

aged responses in the sustainer populations are precisely correlated with the responses in the

inhibitory ensembles in the decoder (omitted here for simplicity).

(TIF)

S8 Fig. Model representation of pitch for other classes of iterated rippled noises. The figure

shows the perceptual responses for additional classes of iterated rippled noises (IRN) with dif-

ferent parametrisations (see also Fig 3 in the Main Text): a) IRN with 32 iterations and no fil-

tering; b) IRN with 4 iterations and no filtering; c) IRN with 8 iterations, bandpass filtered

between 125 Hz and 2 kHz (this last parametrisation was chosen according to the IRN specifi-

cations of the dyads used in the experiments in the Main Text). Notice again the lack of

responses out of the perceptual range of the model (i.e., for T> 15 ms).

(TIF)

S9 Fig. Predicted latencies for other families of dyads. As in Fig 5k, strongly consonant

dyads are represented with a green triangle, whilst strongly dissonant dyads are represented

with a red triangle [6]. Dyad and experimental parameters were the same as in Fig 5k, with the

following changes: a) lower-pitched dyads, with f0 = 100 Hz instead of 160 Hz; b) higher-

pitched dyads: f0 = 200 Hz; c) equal temperament [6] was used instead of the just intonation to
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calculate the chromatic scale; d) dyads were generated using IRNs with 32 rather than 8 itera-

tions. These additional results faithfully reproduce the effect of consonance on latency

reported in Fig 5. Moreover, panels a) and b) show that the latency differences due to pitch

change are smaller than the latency differences induced by dissonance. As in Fig 5, results

were averaged across N = 60 runs of the model; error bars are standard errors.

(TIF)

S1 Text. Attractor dynamics and pitch transitions. In this supplementary text we analyze the

decoding process from a Dynamic System’s perspective and show how pitch transitions are

represented in the phase map spanned by the dynamical variables of the model.

(PDF)

S2 Text. Model predictions for other stimuli. In this supplementary text we consider the

response of the model to stimuli that trigger both, an energy onset response and a pitch onset

response.

(PDF)

S3 Text. Supplementary methods. In this supplementary text we explain in more detail how

the regularization of the model’s input, based on the summary autocorrelation function, is

computed in our simulations.

(PDF)
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Writing – original draft: Alejandro Tabas, Martin Andermann, Emili Balaguer-Ballester,
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