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Abstract

The presence of treatment-resistant cells is an important factor that limits the efficacy of can-

cer therapy, and the prospect of resistance is considered the major cause of the treatment

strategy. Several recent studies have employed mathematical models to elucidate the

dynamics of generating resistant cancer cells and attempted to predict the probability of

emerging resistant cells. The purpose of this paper is to present numerical approach to com-

pute the number of resistant cells and the emerging probability of resistance. Stochastic

model was designed and developed a method to approximately but efficiently compute the

number of resistant cells and the probability of resistance. To model the progression of can-

cer, a discrete-state, two-dimensional Markov process whose states are the total number of

cells and the number of resistant cells was employed. Then exact analysis and approximate

aggregation approaches were proposed to calculate the number of resistant cells and the

probability of resistance when the cell population reaches detection size. To confirm the

accuracy of computed results of approximation, relative errors between exact analysis and

approximation were computed. The numerical values of our approximation method were

very close to those of exact analysis calculated in the range of small detection size M = 500,

100, and 1500. Then computer simulation was performed to confirm the accuracy of com-

puted results of approximation when the detection size was M = 10000,30000,50000,

100000 and 1000000. All the numerical results of approximation fell between the upper level

and the lower level of 95% confidential intervals and our method took less time to compute

over a broad range of cell size. The effects of parameter change on emerging probabilities

of resistance were also investigated by computed values using approximation method. The

results showed that the number of divisions until the cell population reached the detection

size is important for emerging the probability of resistance. The next step of numerical

approach is to compute the emerging probabilities of resistance under drug administration

and with multiple mutation. Another effective approximation would be necessary for the

analysis of the latter case.
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Author summary

Drug therapies for cancer have dramatically succeeded since molecular-targeted drugs

have been introduced in medical practice; however, drug treatment often fails owing to

the emergence of drug-resistant cells. A variety of approaches, including mathematical

modeling, has been undertaken to clarify the mechanism of resistance and subsequently

avoid resistance to therapy. This paper proposes one of the mathematical approaches that

uses a stochastic model and provides the emerging probabilities of resistance at detection

size.

Introduction

Oncogenic pathways have been investigated using molecular biology techniques, which have

helped elucidate the molecular mechanism of cancer growth, invasion, and metastasis among

other aspects. The findings from these investigations have encouraged the development of

anti-cancer drugs that inhibit specific oncogenic pathway and have helped improve clinical

outcomes dramatically [1] [2]. But there exists some percentage of patients who have no

response to these kinds of drugs. One of the reasons for the lack of response is the point muta-

tion of a specific gene. Cancer cells mutate and acquire resistance to the anti-cancer drug, pos-

ing a significant obstacle for curing cancer [3] [4].

Several recent studies have attempted to understand the proliferation of cancer cells by

employing mathematical models for the process of biological evolution [4] [5]. The mutation

occurs randomly in the cell population and the number of resistant cells in the population

increases as the cancer cells grow. Because expanding process of resistant cells in cancer cell

population is like the dynamics of biological evolution, this process of expanding mutation

cells can be viewed as an evolutionary process within the body occurring within a short span

of time [5]. Mathematical models are often used to elucidate the dynamics of evolutionary pro-

cess and have been studied to understand the mechanism through which cancer cells develop

drug resistance [4] [6] [7] [8] [9] [10].

Iwasa et al. [11] analyzed the dynamics of resistant mutants in the exponential growth of

cancer cells. The authors used a continuous-time branching process to calculate the probability

of resistance, and the probability distribution of resistant cells when the population of cancer

cells attains a certain detection size in the absence of therapy. They observed that the probabil-

ity of resistance is an increasing function with the product of detection size and mutation rate.

They concluded that the probability of resistance and the average number of resistant cells

increase with the number of cell divisions over the course of the cancer.

Haeno et al. [12] extended Iwasa’s model to cancer cells carrying two mutations. They also

used a continuous-time branching process to calculate the probability of formation of at least

one cell carrying two mutations, and the probability distribution when the population reaches

a certain size. Their findings were similar to those from Iwasa’s study.

Foo et al. [13] [14] modelled the cancer cell population during treatment with a continu-

ous-time birth and death process. They measured the effect of drugs in reducing the prolifera-

tion rate of drug-sensitive cells. They studied resistance dynamics during therapy under a

general time-varying treatment schedule. They coupled their stochastic framework with phar-

macokinetic models incorporating the processes of drug absorption and elimination within

the body. They calculated the probability of resistance arising during continuous and pulsed

administration strategies. They used their estimates of probability of resistance and population
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size of drug-resistant cells to determine an optimum drug administration schedule that would

minimize the risk of resistance.

The mathematical approach used in these models were analytical ones. The probability of

resistance was obtained by solving differential equations and confirmed by computer simula-

tions. To obtain the analytical solution, various ways to derive the solution of equations were

devised. For example, the authors in [11] [12] [13] [14] handle the cell size as continuous vari-

ables in their calculations, though it is considered appropriate for addressing the discrete state

space when the dynamics of cell size is discussed.

The purpose of this paper is to present numerical approach for computing the emerging prob-

ability of resistant cells. We model the process of cancer progression through a discrete state

space, continuous time Markov chain. Then, we transform it into an embedded Markov chain

to reduce the computational effort for computing the emerging probabilities of resistant cells.

This paper first explains our models for computing the number of resistant cells. Then the

two ways of computation are presented: Exact analysis and aggregation approximation. The

approximation method is introduced as efficient way to compute. Second, the computed val-

ues of exact analysis and those of approximate are compared. At the same time the computed

values of exact analysis also are compared with those of previous study. The relative errors are

used for evaluating the accuracy of these computed values. Third, values of computer simula-

tion are compared with those of approximation. This comparison is performed at detection

size over 10000. The 95% confident intervals are used to confirm and evaluate the accuracy of

computed values of approximation. The execution time of both methods are also compared.

Lastly, the parameter dependency on the computed values of emerging probabilities of resis-

tant cells. The parameter dependency of division rate, death rate and mutation rate are investi-

gated by computing the probabilities of resistance with changing these values of parameters.

Factors of effecting the emerging probabilities of resistance are discussed.

Materials and methods

Cancer progression model

Consider an expanding cancer cell population. There are two types of cancer cells: drug-sensi-

tive and drug-resistant. The sensitive cells divide and die at a rate of λ and μ, respectively. The

probability of mutation when a sensitive cell divides (i.e., the probability of formation of a

resistant cell) is γ, and the probability of formation of a sensitive cell is 1 − γ. The resistant cells

divide and die at a rate of α and β, respectively. Our objective is to obtain the distribution of

resistant cells when the total cell population reaches detection size, which is denoted by M. Let

us denote the total number of cells (both sensitive and resistant) and the number of resistant

cells by m and n, respectively. Then, the number of sensitive cells increases at the rate of λ(1 −
γ)(m − n) and decreases at the rate of μ(m − n). The number of resistant cells increases at the

rate of λγ(m − n) + αn and decreases at the rate of β n. Let us consider the two-dimensional

Markov chain with states (m, n), where m = 0, 1, 2, � � �, M; n = 0, 1, 2, � � �, m. Let us consider

the process starting at the state (m, n) = (1, 0). The process can end either at extinction (m = 0)

or when the cell population reaches detection size (m = M).

Let us denote the state of the process (m, n) after the t-th event (cell division or death) as

(mt, nt). The transition probabilities of this process are given as follows:

Prfðmtþ1; ntþ1Þ ¼ ðiþ 1; jÞjðmt; ntÞ ¼ ði; jÞg ¼ lð1 � gÞði � jÞ=Gi;j ð1Þ

Prfðmtþ1; ntþ1Þ ¼ ðiþ 1; jþ 1Þjðmt; ntÞ ¼ ði; jÞg ¼ flgði � jÞ þ jag=Gi;j ð2Þ
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Prfðmtþ1; ntþ1Þ ¼ ði � 1; jÞjðmt; ntÞ ¼ ði; jÞg ¼ mði � jÞ=Gi;j ð3Þ

Prfðmtþ1; ntþ1Þ ¼ ði � 1; j � 1Þjðmt; ntÞ ¼ ði; jÞg ¼ jb=Gi;j ð4Þ

Here Γi,j = (i − j)(λ + μ) + j(α + β) is the sum of the rates, normalizing the total probability to 1.

Note that the Markov chain (m, n) is homogeneous.

Transition probability matrix

Let us define the set of states in which the total number of cells is i, {(i, 0),(i, 1) � � � (i, i)} as level

i. Let us denote the transition probability sub-matrix from level i to level i + 1, and from level i
to level i − 1 as Pi and Qi, respectively. The element of Pi in the k-th row and i-th column is the

transition probability from (i, k) to (i + 1, k). The corresponding element of Qi is the transition

probability from (i, k) to (i − 1, k).

Pi and Qi are expressed as follows:

Pi ¼

ilð1 � gÞ
Gi0

ilg
Gi0

0 � � � � � � � � � � � � 0

0
ði � 1Þlð1 � gÞ

Gi1

ði � 1Þlgþ a

Gi1
0 � � � � � � � � � 0

0 0
ði � 2Þlð1 � gÞ

Gi2

ði � 2Þlgþ 2a

Gi2
� � � � � � � � � 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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lð1 � gÞ

Gii� 1

lgþ ði � 1Þa

Gii� 1

0
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Qi ¼

im
Gi0

0 0 � � � � � � 0
b

Gi1

ði� 1Þm

Gi1
0 � � � � � � 0

0 2b

Gi2

ði� 2Þm

Gi2
� � � � � � 0
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0 0 0 � � �
ði� 1Þb

Gii� 1

m

Gii� 1

0 0 � � � � � � 0 ib
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where Pi is the (i + 1) × (i + 2) matrix, and Qi is the (i + 1) × i matrix. We can now express the

transition probability matrix of the process (m, n) by using Pi and Qi as follows:

S ¼

1 0 0 0 0 � � � � � � � � � 0

Q1 0 P1 0 0 � � � � � � � � � 0

0 Q2 0 P2 0 � � � � � � � � � 0

0 0 Q3 0 P3 � � � � � � � � � 0

� � � � � � � � � � � � � � � � � � � � � � � �

0 � � � � � � � � � � � � � � � QM� 1 0 PM� 1

0 � � � � � � � � � � � � � � � � � � 0 IM

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

Note that the states in levels 0 and M are absorbing states.
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Exact analysis

We take the submatrix T from S as follows:

T ¼

0 P1 0 0 � � � � � � � � � 0

Q2 0 P2 0 � � � � � � � � � 0

0 Q3 0 P3 � � � � � � � � � 0

� � � � � � � � � � � � � � � � � �

0 � � � � � � � � � � � � � � � QM� 1 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

The submatrix corresponds to the transition probability matrix from transient states to

transient states.

Then, mt denotes the total number of cancer cells and nt denotes the number of resistant

cells after the t-th event (cell division or death). Here, we define (mt, nt) as the state of the num-

ber of total cells and resistant cells after the t-th event. In addition, the probability being at the

state is expressed as pt
ði;jÞ ¼ Prfðmt; ntÞ ¼ ði; jÞg.

Now, we define the probability distribution vector:

πt
i ¼ ðp

t
ði;0Þ; p

t
ði;1Þ; p

t
ði;2Þ; � � � ; p

t
ði;i� 1Þ; p

t
ði;iÞÞ

Here, we consider the process starting at one sensitive cell and no resistant cell, so the initial

state of the process is (m0, n0) = (1, 0) i.e.,

(
π0

i ¼ ð1; 0Þ ði ¼ 1Þ

π0
i ¼ 0 ði 6¼ 1Þ

Our objective is to obtain the probability distribution and the emerging probabilities

of resistant cells when the total number of cells reaches M. As level 0 and level M are

absorbing states, the emerging probability of resistant cells is expressed by lim
t!1

pt
ðM;jÞ

1� pt
ð0;0Þ

(j = 0, 1,

2, 3, � � �, M).

In general, to calculate the distribution of probability in the absorbing states, we should

obtain the fundamental matrix as shown below:

I þ T þ T2 þ T3 þ � � � ¼ ðI � TÞ� 1 ð5Þ

The matrix T is large, and the calculation of the fundamental matrix involves high computa-

tional complexity as the matrix becomes large. Therefore, we propose another algorithm to

reduce complexity.

Let πi = (π(i,0), π(i,1), π(i,2), � � �, π(i,i−1), π(i,i)) be the probability distribution of the process at

first arrival to level i, where
Xi

k¼0

pði;kÞ¼1. The discrete-time chain {πi} is said to be embedded in

{πt
i}, so it is referred to as embedded Markov chain. Then the probability distribution when the

total number of cells reaches M is equivalent to πM. Let us now denote the probability matrix

that the state at first arrival to level i + 1 is (i + 1, �) under the condition that the state at first

arrival to level i is (i, �) by Fi. There are two paths of transition for the state in level i to reach

level i+1. In one, the cells transition directly from level i to level i + 1 in a single step. In the

other, the cells first transition from level i to level i − 1 and then reach level i + 1 through level

i. Using the transition probability matrices Pi and Qi, we obtain the recurrence formula as
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follows:

Fi ¼ Pi þ QiFi� 1Fi ði ¼ 2; 3; � � � ;MÞ ð6Þ

Thus, we have

Fi ¼ ðIiþ1 � QiFi� 1Þ
� 1Pi ð7Þ

where F1 = P1, and Ii+1 is the (i + 1) × (i + 1) identity matrix. When the total number of cells

reaches M, the probability distribution πM is calculated by the following formula:

�
π2 ¼ ð1; 0ÞF1

πiþ1 ¼ πiFi ði ¼ 3; 4; � � � ;M � 1Þ

Here, Fi is an i × (i + 1) matrix. Thus, the complexity of calculation is much lower in this case

than in the case of the fundamental matrix.

Approximate aggregation

The algorithm proposed in the previous section still includes the inverse of the (M − 1) ×M
matrix. We propose an approximate aggregation to further reduce the complexity of the

calculation.

If the level of states is greater than m, we aggregate the states in which the number of resis-

tant cells is greater than m to a single state (Fig 1). The level m + k is the set of states as follows:

fðmþ k; 0Þ; ðmþ k; 1Þ; . . . ; ðmþ k;m � 1Þ; ðmþ k;mÞ; . . . ; ðmþ k;mþ kÞg

From among these, we aggregate the states (m + k, m), (m + k, m + 1), . . ., (m + k, m + k) to

one state and denote the aggregated state by (m + k, m�). Then, state (m + k, m�) can transit to

(m + k + 1, m�), (m + k − 1, m�), or (m + k − 1, m − 1).

Let us denote the rate of transition from state (m + k, m�) to each of state (m + k + 1, m�),
(m + k − 1, m�), and (m + k − 1, m − 1) by Rk

A, Rk
B, and Rk

C, respectively. These rates can now be

expressed as follows:

Rk
A ¼

Xk

x¼0

fðk � xÞlð1 � gÞ þ ðk � xÞlg þ ðmþ xÞag �
ptðmþ k;mþ xÞ

Pk
v¼0
ptðmþ k;mþ vÞ

¼
1

2
kðkþ 1Þlþ ðkþ 1Þmþ

1

2
kðkþ 1Þ

� �

a

� �

�
ptðmþ k;mþ xÞ

Pk
v¼0
ptðmþ k;mþ vÞ

ð8Þ

Rk
B ¼

Xk

y¼0

ðk � yÞm �
ptðmþ k;mþ xÞ

Pk
v¼0
ptðmþ k;mþ vÞ

(

þ
Xk

y¼1

ðmþ yÞb�
ptðmþ k;mþ xÞ

Pk
v¼0
ptðmþ k;mþ vÞ

(

¼
1

2
kðkþ 1Þmþ ðkmþ

1

2
kðkþ 1Þ

� �

b

� �

�
ptðmþ k;mþ xÞ

Pk
v¼0
ptðmþ k;mþ vÞ

ð9Þ

Rk
C ¼ mb�

ptðmþ k;mþ xÞ
Xk

v¼0
ptðmþ k;mþ vÞ

ð10Þ
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Here, we assume that the following probabilities are the same:

ptðmþ k;mÞ ¼ ptðmþ k;mþ 1Þ ¼ � � � ¼ ptðmþ k;mþ kÞ ¼
1

kþ 1
ð11Þ

Now we have

Rk
A ¼

Xk

x¼0

fðk � xÞlð1 � gÞ þ ðk � xÞlgþ ðmþ xÞag �
1

kþ 1

¼
1

2
kðkþ 1Þlþ ðkþ 1Þmþ

1

2
kðkþ 1Þ

� �

a

� �

�
1

kþ 1

ð12Þ

Rk
B ¼

Xk

y¼0

fðk � yÞm�
1

kþ 1
þ
Xk

y¼1

fðmþ yÞb �
1

kþ 1

¼
1

2
k kþ 1ð Þmþ

(

kmþ
1

2
k kþ 1ð Þ

� �"

b

#

�
1

kþ 1

ð13Þ

Fig 1. Aggregation. The states that the number of resistant cell is greater than the aggregation size, the states are

aggregated to one. In the Fig 1, the states surrounded by dotted line are agrregated to one state.

https://doi.org/10.1371/journal.pcbi.1006770.g001
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Rk
C ¼ mb�

1

kþ 1
ð14Þ

Using the sum of the rates Γ(k), which is described as

GðkÞ ¼ Rk
A þ Rk

B þ Rk
C¼

1

2
k kþ 1ð Þ lþ mð Þ þ

(

kþ 1ð Þmþ
1

2
k kþ 1ð Þ

" )

aþ bð Þ

#

; ð15Þ

we can obtain the probabilities of transition from state (m + k, m�) to each of (m + k + 1, m�),
(m + k − 1, m�), and (m + k − 1, m − 1) through the following equations:

Rk
A

GðkÞ
¼

klþ ð2mþ kÞa
kðlþ mÞ þ ð2mþ kÞðaþ bÞ

ð16Þ

Rk
B

GðkÞ
¼

kðkþ 1Þmþ f2kmþ kðkþ 1Þgb

ðkþ 1Þðlþ mÞ þ f2mðkþ 1Þ þ kðkþ 1Þðaþ bÞg
ð17Þ

Rk
C

GðkÞ
¼

2mb
ðkþ 1Þðlþ mÞ þ f2mðkþ 1Þ þ kðkþ 1Þðaþ bÞg ð18Þ

After the aggregation, the transition probability submatrix from level m + k to level m + k
+ 1, and from level m + k to level m + k − 1, which are denoted by ~Pmþk and ~Qmþk, respectively,

become:

~Pmþk ¼

ilð1 � gÞ
Gi0

ilg
Gi0

0 � � � � � � � � � 0

0
ði � 1Þlð1 � gÞ

Gi1

ði � 1Þlgþ a

Gi1
0 � � � � � � 0

0 0
ði � 2Þlð1 � gÞ

Gi2

ði � 2Þlgþ 2a

Gi2
� � � � � � 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 0 0 � � � � � �
lð1 � gÞ

Gii� 1

lgþ ði � 1Þa

Gii� 1

0 0 � � � � � � � � � � � � � � � 0
Rk
A

GðkÞ
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where ~Pmþk and ~Qmþk are (m + k) × (m + k) matrices. Then we can approximately calculate Fi
(i = m, m + 1, m + 2, � � �) using

Fi ¼ ðIiþ1 �
~QiFi� 1Þ

� 1 ~Pi ð19Þ
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The largest size of the matrix Fi is (m + 1) × (m + 1), so we can obtain the probability more eas-

ily than through exact analysis.

Results

In this section, we present the numerical results. First, we computed the emerging probabilities

of resistance by exact analysis and approximate aggregation. Then we computed relative errors

between these numerical results to evaluate the accuracy of approximation. Numerical results

computed by the formula in previous study [11] were also compared with the approximation.

Second, we computed the emerging probabilities by our approximation method when the detec-

tion size was over 10000. Computer simulation was performed to compare the results with

approximation. The averages and the 95% confidential intervals of simulation results were com-

puted. Last, we examined the effect of parameter change on emerging probabilities of resistance.

Exact analysis v.s. aggregate approximation

Fig 2 shows the results of emerging probabilities of resistance using the exact analysis method

and the aggregation approximation method. We set the detection size M at 500, 1000, and

1500 because the exact analysis took a considerable time when M was greater than 1500. We

computed each relative error at variable aggregation size; m = 10 � � � 100. Computations using

the aggregate approximation and the formula in previous study. [11] were executed and com-

puted the relative errors. The relative errors of approximation method were no lower than

10−6 order regardless of aggregation size. For comparison, the relative error of the previous

study. [11] was no less than the order of 10−4. The relative error became smaller as the detec-

tion size becomes larger because they regarded the number of cells as continuous valuables

Fig 2. Exact analysis and aggregate approximation. Fig 2 shows the relationship between aggregation size and relative error of emerging probabilities of

resistance. The total cell sizes were M = 500, 1000 and 1500. The parameter value of α and λ were A: α = 2.0, λ = 2.0, B: α = 4.0, λ = 4.0, C: α = 2.0, λ = 3.0, D:

α = 3.0, λ = 5.0. The parameter value of β and μ were fixed 1.0 and 10−5.

https://doi.org/10.1371/journal.pcbi.1006770.g002
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when they calculated the probability of resistance. These results are shown in Figs 2 and 3 and

Supporting information S1 Table.

Selection of aggregation size. To select the aggregation size, we considered following

three points. The first one is to reduce computational complexity of large dimension. The exe-

cution time becomes longer as the computational complexity of dimension becomes larger.

The second, to select the certain small size of cells that the extinction of resistant cells happens

rarely enough to have a good approximation of probability of resistance. The third, the accu-

racy of numerical results.

In order to obtain the probability of extinction of the resistant cells, we neglected the muta-

tion of sensitive cells, which generated resistant cells, and simply considered the birth and

death process of resistant cells. This simplified process of resistant cells were regarded as a

one-dimensional random walk with absorption walls at sizes 0 and M, where M was the detec-

tion size. If the process started from the aggregation size m, the probability of extinction of the

resistant cells, Pextinc, was as follows:

Pextinc ¼

b

a

� �M

�
b

a

� �m

b

a

� �M

� 1

When M was much larger than m, the probability of extinction of the resistant cell was

approximated to Pextinc ¼
b

a
Þ
m�

. We set α = 1.1, β = 1.0 according to the previous study, and

obtained the following:

~Pextinc ¼

3:85543� 10� 1 ðm ¼ 10Þ

8:51855� 10� 4 ðm ¼ 50Þ

7:25657� 10� 5 ðm ¼ 100Þ

8
><

>:

These observations demonstrated that m = 100 is appropriate to neglect the probability of

extinction of resistant cells, which resulted in a good approximation of the probability of resis-

tance. This was also shown by the numerical results in Fig 2 and Supporting information

S1 Table.

Computer simulation v.s. aggregate approximation. Next, we computed the emerging

probability of resistance for large detection size; M = 10000, 30000, 50000, 100000, 1000000.

The aggregation size was fixed m = 100. We executed computer simulation to confirm the

numerical results of approximation. The average and the 95% confidential interval of each

computer simulation result showed that the numerical results of approximation fell between

the upper level and the lower level of 95% confidential intervals. The execution time of simula-

tion was much longer than those of the approximation. The execution times went a linear

increase as larger detection size, and the slope of numerical results of simulation was over 10

times than that of approximations. These results are shown in Fig 4, S2 and S3 Tables.

Effects of parameter change

Division rate and death rate. We examined the effects of parameter change on emerging

probabilities of resistance. Table 1 showed the emerging probabilities of resistance at various

rates of λ/μ and α/β. The detection size and mutation rate were fixed at 10000 and 10−5,

respectively.

As λ/μ decreased, the probability of resistance increased. This was because as λ/μ decreased,

a considerable number of divisions was required for the number of cells to reach detection
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size. As the number of divisions increased, the opportunity to generate resistant cells from sen-

sitive cells increased, thereby increasing the probability of resistance.

When α/β increased at constant λ/μ, the probability of resistance increased. This was in line

with the increase in the probability of survival of resistant cells that were generated.

Our observations from our numerical results showed that the probability of resistance was

highly dependent on the number of divisions until the cell population reached the detection

size.

Mutation rate. We computed the probabilities of resistance when the mutation rates

changed γ = 10−4, 10−5, and 10−6. The numerical results are shown in Table 2. The emerging

probabilities of resistance were decreased as the mutation rate smaller.

Fig 3. Previous study [11] and aggregate approximation. Fig 3 shows the relationship between the computed values of previous study and relative error when the

emerging probabilities of resistance were computed. The total cell size were M = 500, 1000 and 1500. The parameter value of α and λ were A: α = 2.0, λ = 2.0, B:

α = 4.0, λ = 4.0, C: α = 2.0, λ = 3.0, D: α = 3.0, λ = 5.0. The parameter value of β and μ were fixed 1.0 and 10−5.

https://doi.org/10.1371/journal.pcbi.1006770.g003
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Discussion

In this study, we modeled the cell progression process by a two-dimensional Markov process

that was characterized by the total number of cells and the number of resistant cells. We calcu-

lated the emerging probability of resistance when the total number of cells reached detection

size M, starting from one drug sensitive cell. This probability was equivalent to the probability

of being absorbed in the absorbing state wherein the total number of cells was M. To calculate

Fig 4. Execution time of simulation and aggregate approximation. Fig 4 shows the execution time for computing approximation values

and performing simulation runs. α = 2.0, λ = 2.0(a) α = 4.0, λ = 4.0(a), α = 2.0, λ = 3.0(a), α = 3.0, λ = 5.0(a) are execution time of

approximation when the detection sizes are M = 10000, 100000, 1000000 and α = 2.0, λ = 2.0(s), α = 4.0, λ = 4.0(s), α = 2.0, λ = 3.0(s), α = 3.0,

λ = 5.0(s) are execution time of simulation runs when the detection sizes are M = 10000, 100000, 1000000. The data are plotted on the double

logaristhmic coordinates graph.

https://doi.org/10.1371/journal.pcbi.1006770.g004
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this probability, we needed to inverse matrix of size (M + 2)(M − 1)/2 × (M + 2)(M − 1)/2 and

the complexity of calculation was O(M6).

We employed the embedded Markov analysis approach and observed only the timepoint

at which the total number of cells change. We also derived the recurrence formula for state

transition probabilities of the first visit to the set of states wherein the total number of cells was

n + 1 from the set of states wherein the total number of cells was n. Using this approach and

the formula, we proposed an efficient calculation method for emerging probabilities of resis-

tant cells that required M times calculation of the (M + 1) × (M + 1) inverse matrix only. Then,

we calculated the emerging probabilities of resistance when the number of cells reached

M = 1000. However, it took significant execution time for realistic detection sizes such as

M = 10000 or 100000; thus, we designed a more practical method for calculation.

The approximation approaches inverting a matrix of large dimension have been intensively

studied, and this approach may be useful to reduce the execution time for emerging probabili-

ties of resistance. However, as shown above, once the number of resistant cells reached 100,

the probability of extinction of resistant cells is under 10−5, the information of probability dis-

tribution of over 100 resistant cells was not very valuable from the viewpoint of treatment

strategy. Hence, we aggregated the states (m + k, m), (m + k, m + 1), . . . ., (m + k, m + k) to a

single state for each k(k = 1, 2, . . ., M −m). This approximation method required computing

M times calculation of (m + 1) × (m + 1) inverse matrix to obtain the approximate solutions

for the emerging probabilities of resistant cells. We set m = 100 in the numerical analysis,

because the calculation was completed in a practical execution time for a realistic detection

size such as100000.

The numerical analysis showed that approximation errors of emerging probability are neg-

ligibly small when M = 500 and M = 1000 and that our approximation method demonstrated

the same level of accuracy when M = 1000 or the higher level of accuracy when M = 500 com-

pared to the result of a previous study. We also performed a stochastic computer simulation to

confirm the results of the approximation method. The simulation performed 1000000 × 10

Table 1. Probabilities of resistance depending on the division rate and death rate.

λ/μ = 1.5

λ = 1.5, μ = 1.0

λ/μ = 2.0

λ = 2.0, μ = 1.0

λ/μ = 3.0

λ = 3.0, μ = 1.0

α/β = 1.5

α = 1.5,β = 1.0

1.519021 × 10−1 1.2152862 × 10−1 1.062601 × 10−1

α/β = 2.0

α = 2.0, β = 1.0

1.705002 × 10−1 1.294396 × 10−1 1.094218 × 10−1

α/β = 3.0

α = 3.0, β = 1.0

1.946913 × 10−1 1.410605 × 10−1 1.145291 × 10−1

M = 10000, γ = 10−5

https://doi.org/10.1371/journal.pcbi.1006770.t001

Table 2. Probabilities of resistance depending on mutation rate.

size parameter γ = 10−4 γ = 10−5 γ = 10−6

10000 λ = 2.0, α = 2.0 7.499780 × 10−1 1.294396 × 10−1 0.137662 × 10−1

λ = 4.0, α = 4.0 6.836007 × 10−1 1.086970 × 10−1 0.114411 × 10−1

λ = 2.0, α = 3.0 7.814099 × 10−1 1.410605 × 10−1 0.150907 × 10−1

λ = 3.0, α = 5.0 7.250626 × 10−1 1.211299 × 10−1 0.128288 × 10−1

M = 10000, μ = 1.0, β = 1.0

https://doi.org/10.1371/journal.pcbi.1006770.t002
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runs to obtain a 95% confidence interval of the emerging probability of resistance. The results

of emerging probability of resistance by the approximation method fell within the 95% confi-

dence interval, and the execution time of our approximation method was considerably shorter

than that obtained for our simulation.

The numerical results demonstrated that the probability of resistance was chiefly dependent

on the number of cell divisions until the cell population reached the detection size. It is reason-

able as drug-resistant cells are generated by mutation in the process of cell division. A large

population of cancer cells would have a greater likelihood of generating resistant cells via

mutation. As only a few resistant cells exist in the early stage of cancer, if any, the possibility of

extinction of resistant cells owing to natural causes cannot be disregarded.

The proposed method in this paper was able to track the transition of cell size. By applying

this method, we would be able to follow the transition of the number of cells under drug

administration. The next step in our study is to design the treatment strategy based on the

analysis under drug administration.

In many cases, multiple different mutations can confer resistance and the mutagenic pro-

cesses leading to such mutations may be different. Then, clones may have different growth and

death rates in accordance depending on the types of mutations. It is of interest to compute the

number of resistant cells of multiple types when the cell population reaches the detection size.

However, it would be more difficult to extend the framework in this paper to the case of multi-

ple resistance mutations. For example, it is necessary to analyze a three-dimensional Markov

process in the case of two types of mutations. Thus, another effective approximation would be

necessary for the analysis.
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