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Abstract

We use stochastic neural field theory to analyze the stimulus-dependent tuning of neural

variability in ring attractor networks. We apply perturbation methods to show how the neural

field equations can be reduced to a pair of stochastic nonlinear phase equations describing

the stochastic wandering of spontaneously formed tuning curves or bump solutions. These

equations are analyzed using a modified version of the bivariate von Mises distribution,

which is well-known in the theory of circular statistics. We first consider a single ring network

and derive a simple mathematical expression that accounts for the experimentally observed

bimodal (or M-shaped) tuning of neural variability. We then explore the effects of inter-net-

work coupling on stimulus-dependent variability in a pair of ring networks. These could rep-

resent populations of cells in two different layers of a cortical hypercolumn linked via vertical

synaptic connections, or two different cortical hypercolumns linked by horizontal patchy con-

nections within the same layer. We find that neural variability can be suppressed or facili-

tated, depending on whether the inter-network coupling is excitatory or inhibitory, and on the

relative strengths and biases of the external stimuli to the two networks. These results are

consistent with the general observation that increasing the mean firing rate via external sti-

muli or modulating drives tends to reduce neural variability.

Author summary

A topic of considerable current interest concerns the neural mechanisms underlying the

suppression of cortical variability following the onset of a stimulus. Since trial-by-trial var-

iability and noise correlations are known to affect the information capacity of neurons,

such suppression could improve the accuracy of population codes. One of the main

candidate mechanisms is the suppression of noise-induced transitions between multiple

attractors, as exemplified by ring attractor networks. The latter have been used to model

experimentally measured stochastic tuning curves of directionally selective middle tempo-

ral (MT) neurons. In this paper we show how the stimulus-dependent tuning of neural

variability in ring attractor networks can be analyzed in terms of the stochastic wandering

of spontaneously formed tuning curves or bumps in a continuum neural field model. The

advantage of neural fields is that one can derive explicit mathematical expressions for the

second-order statistics of neural activity, and explore how this depends on important
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model parameters, such as the level of noise, the strength of recurrent connections, and

the input contrast.

Introduction

A growing number of experimental studies have investigated neural variability across a variety

of cortical areas, brain states and stimulus conditions [1–11]. Two common ways to measure

neural variability are the Fano factor, which is the ratio of the variance to the mean of the neu-

ral spike counts over trials, and the trial-to-trial covariance of activity between two simulta-

neously recorded neurons. It is typically found that the presentation of a stimulus reduces

neural variability [5, 9], as does attention and perceptual learning [6, 7, 12]. Another significant

feature of the stimulus-dependent suppression of neural variability is that it can be tuned to

different stimulus features. In particular, Ponce-Alvarez et al [10] examined the in vivo statisti-

cal responses of direction selective area-middle temporal (MT) neurons to moving gratings

and plaid patterns. They determined the baseline levels and the evoked directional and con-

trast tuning of the variance of individual neurons and the noise correlations between pairs of

neurons with similar direction preferences. The authors also computationally explored the

effect of an applied stimulus on variability and correlations in a stochastic ring network model

of direction selectivity. They found experimentally that both the trial-by-trial variability and

the noise correlations among MT neurons were suppressed by an external stimulus and exhib-

ited bimodal directional tuning. Moreover, these results could be reproduced in a stochastic

ring model, provided that the latter operated close to or beyond the bifurcation point for the

existence of spontaneous bump solutions.

From a theoretical perspective, a number of different dynamical mechanisms have been

proposed to explain aspects of stimulus-dependent variability: (i) stimulus-induced suppres-

sion of noise-induced transitions between multiple attractors as exemplified by the stochastic

ring model [10, 13–16]; (ii) stimulus-induced suppression of an otherwise chaotic state [17–

19]; (iii) fluctuations about a single, stimulus-driven attractor in a stochastic stabilized supra-

linear network [20]. The pros and cons of the different mechanisms have been explored in

some detail within the context of orientation selective cells in primary visual cortex (V1) [20].

We suspect that each of the three mechanisms may occur, depending on the particular operat-

ing conditions and the specific cortical area. However, we do not attempt to differentiate

between these distinct mechanisms in this paper. Instead, we focus on the attractor-based

mechanism considered by Ponce-Alvarez et al [10], in order to understand the stimulus-

dependent variability of population tuning curves. Our main goal is to show how the tuning

of neural variability can be analyzed in terms of the stochastic wandering of spontaneously

formed tuning curves or bumps in a continuum neural field model. (For complementary work

on the analysis of wandering bumps within the context of working memory see Refs. [21–23].)

The advantage of using neural field theory is that one can derive explicit mathematical expres-

sions for the second-order statistics of neural activity, and explore how this depends on impor-

tant model parameters, such as the level of noise, the strength of recurrent connections, and

the input contrast. In particular, our mathematical analysis provides a simple explanation for

the bimodal tuning of the variance observed by Ponce-Alvarez et al [10].

After accounting for the qualitative statistical behavior of a single ring network, we then

explore the effects of inter-network coupling on stimulus-dependent variability in a pair of

ring networks, which has not been addressed in previous studies. The latter could represent

populations of cells in two different layers of a cortical hypercolumn linked via vertical
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synaptic connections, or two different cortical hypercolumns linked by horizontal patchy con-

nections within the same layer. We will refer to these two distinct architectures as model A

and model B, respectively. (See also Fig 1) In this paper, we use model A to show how vertical

excitatory connections between two stochastic ring networks can reduce neural variability,

consistent with a previous analysis of spatial working memory [22]. We also show that the

degree of noise suppression can differ between layers, as previously found in an experimental

study of orientation selective cells in V1 [24]. An experimental “center-surround” study of

stimulus-dependent variability in V1 indicates that correlations in spontaneous activity at the

center can be suppressed by stimulating outside the classical receptive field of the recorded

neurons [25], that is, by evoking activity in the surround. In this paper, we show that the effect

of a surround stimulus depends on at least two factors: (i) whether or not the horizontal con-

nections effectively excite or inhibit the neurons in the center, and (ii) the relative directional

bias of the surround stimulus. In particular, we find that at high contrasts (inhibitory regime),

noise is facilitated in the center when the center and surround stimuli have the same direc-

tional bias, whereas it is suppressed when the center and surround stimuli have opposite

directional biases. The converse holds at low contrasts (excitatory regime). These results are

consistent with the general observation that increasing the mean firing rate via external stimuli

or modulating drives tends to reduce neural variability.

In the remainder of the Introduction we introduce our stochastic neural field model of

coupled ring networks and describe in more detail the structure of models A and B. In Mate-

rials and Methods we use perturbation theory to show how the neural field equations can be

reduced to a pair of stochastic phase equations describing the stochastic wandering of bump

solutions. These equations are analyzed in the Results, using a modified version of the bivar-

iate von Mises distribution, which is well-known in the theory of circular statistics. This then

allows us to determine the second-order statistics of a single ring network, providing a math-

ematical underpinning for the experimental and computational studies of Ponce-Alvarez

et al [10], and to explore the effects of inter-network coupling on neural variability in models

A and B.

One final point is in order. There are many different measures of neural variability in the

literature, both in terms of the type of statistical quantity (variance, Fano factor, auto and cross

correlations) and the relevant observables (single cell or population firing rates/binned spikes,

voltages for in vivo patch recordings, and individual spikes). In this paper, we mainly focus on

Fig 1. Coupled ring models. (a) Model A consists of two ring networks that are located in two vertically separated cortical layers and interact via interlaminar

connections. (b) Model B consists of two ring networks that are located in the same cortical layer and interact via intralaminar horizontal connections.

https://doi.org/10.1371/journal.pcbi.1006755.g001
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the mean and variance of population activity, which could be interpreted as the extracellular

voltage or current associated with a population of cells. Hence, our results speak most directly

to the experimental studies of Ref. [10]. The possible relationship to other measures of neural

variability are considered in the Discussion.

Coupled ring model

Consider a pair of mutually coupled ring networks labeled j = 1, 2. Let uj(θ, t) denote the activ-

ity at time t of a local population of cells with stimulus preference θ 2 [−π, π) in network j.
Here θ could represent the direction preference of neurons in area-middle temporal cortex

(MT) [10], the orientation preference of V1 neurons, after rescaling θ! θ/2 [26, 27], or a

coordinate in spatial working memory [22, 28, 29]. For concreteness, we will refer to θ as a

direction preference. The variables uj evolve according to the neural field equations [21, 22,

30, 31]

tdu1ðy; tÞ ¼
�

� u1ðy; tÞ þ
Z p

� p

J1ðy � y
0
Þf ðu1ðy

0
; tÞÞdy0

þ
ffiffi
�
p
Z p

� p

K1ðy � y
0
Þf ðu2ðy

0
; tÞÞdy0 þ

ffiffi
�
p

h1ðyÞ

�

dt þ
ffiffiffiffiffi
2�
p

dW1ðy; tÞ
ð1aÞ

tdu2ðy; tÞ ¼
�

� u2ðy; tÞ þ
Z p

� p

J2ðy � y
0
Þf ðu2ðy

0
; tÞÞdy0

þ
ffiffi
�
p
Z p

� p

K2ðy � y
0
Þf ðu1ðy

0
; tÞÞdy0 þ

ffiffi
�
p

h2ðyÞ

�

dt þ
ffiffiffiffiffi
2�
p

dW2ðy; tÞ
ð1bÞ

where
ffiffi
�
p

is a constant scale factor (see below), Jj(θ − θ0) is the distribution of intra-network

connections between cells with stimulus preferences θ0 and θ in network j, Kj(θ − θ0) is the cor-

responding distribution of inter-network connections to network j, and hj(θ) is an external

stimulus. The firing rate function is assumed to be a sigmoid

f ðuÞ ¼
f0

1þ e� gðu� ZÞ
; ð2Þ

with maximal firing rate f0, gain γ and threshold η. The final term on the right-hand side of

each equation represents external additive noise, with Wj(θ, t) a θ-dependent Wiener process.

In particular,

E½dWjðy; tÞ� ¼ 0; E½dWiðy; tÞdWjðy
0
; sÞ� ¼ di;jCjðy � y

0
Þdðt � t0Þdt dt0; ð3Þ

where δ(t) is the Dirac delta function and δi,j is the Kronecker delta function. For concreteness,

we will take C(θ) = aδ(θ) + b cos(θ) for constants a, b. For b 6¼ 0, the noise is colored in θ
(which is necessary for the solution to be spatially continuous) and white in time. (One could

also take the noise to be colored in time by introducing an additional Ornstein-Uhlenbeck

process. For simplicity, we assume that the noise processes in the two networks are uncorre-

lated, which would be the case if the noise were predominantly intrinsic. Correlations would

arise if some of the noise arose from shared fluctuating inputs. For a discussion of the effects of

correlated noise in coupled ring networks see [22].) The external stimuli are taken to be weakly

biased inputs of the form
ffiffi
�
p

hj with

hj ¼
�hj cosðy � �y jÞ; ð4Þ

where �y j is the location of the peak of the input (stimulus bias) and �hj is the contrast. Finally,
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the time-scale is fixed by setting the time constant τ = 10 msec. The maximal firing rate f0 is

taken to be 100 spikes/sec.

The weight distributions are 2π-periodic and even functions of θ and thus have cosine series

expansions. Following [21], we take the intra-network recurrent connections to be

Jjðy � y
0
Þ ¼ �J j cosðy � y

0
Þ; ð5Þ

which means that cells with similar stimulus preferences excite each other, whereas those with

sufficiently different stimulus preferences inhibit each other. It remains to specify the nature of

the inter-network connections. As we have already mentioned, we consider two different net-

work configurations (see Fig 1): (A) a vertically connected two layer or laminar model and (B)

a horizontally connected single layer model. In model A, the inter-network weight distribution

is taken to have the form

Kjðy � y
0
Þ ¼ Ej þ

�Kj cosðy � y
0
Þ; ð6Þ

which represents vertical coupling between the layers. We also assume that both layers receive

the same stimulus bias, that is, �y1 ¼
�y2 ¼

�y in Eq (4). In model B, the inter-network weight

distribution represents patchy horizontal connections, which tend to link cells with similar

stimulus preferences [32–35]. This is implemented by taking

Kjðy � y
0
Þ ¼ �Kjdðy � y

0
Þ: ð7Þ

Now the two networks can be driven by stimuli with different biases so that �y1 6¼
�y2.

Note that in order to develop the analytical methods of this paper, we scale the internetwork

coupling, the noise terms and the external stimuli in Eq (1) by the constant factor
ffiffi
�
p

. Taking

0< �� 1 (weak noise, weak inputs and weak inter-network coupling) will allow us to use per-

turbation methods to derive explicit parameter-dependent expressions for neural variability.

We do not claim that cortical networks necessarily operate in these regimes, but use the weak-

ness assumption to obtain analytical insights and make predictions about the qualitative

behavior of neural variability. In the case of weak inter-network connections, the validity of

the assumption is likely to depend on the source of these connections. For example, in model

B, they arise from patchy horizontal connections within superficial or deep layers of cortex,

which are known to play a modulatory role [36]. On the other hand, vertical connections

between layers are likely to be stronger than assumed in our modeling analysis, at least in the

feedforward direction [37]. Finally, the weak stimulus assumption depends on a particular

view of how cortical neurons are tuned to stimuli, which is based on the theory of ring

attractor networks, see the Discussion.

Results

We present various analytical and numerical results concerning stimulus-dependent neural

variability, under the assumption that the neural field Eq (1) support stable stationary bump

solutions uj(θ, t) = Uj(θ) = Aj cos(θ), j = 1, 2, in the absence of noise, external stimuli, and

inter-network coupling (� = 0). The amplitudes Aj are determined self-consistently from the

equations (see Material and methods)

Aj ¼
�J j

Z p

� p

cosðyÞf ðAj cosðyÞÞdy≔ �J jgðAjÞ: ð8Þ

One of the important properties of the uncoupled homogeneous neural field equations is that

they are marginally stable with respect to uniform translations around the ring. That is, the
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location of the peak of the bump is arbitrary, which reflects the fact that the homogeneous neu-

ral field is symmetric with respect to uniform translations. Marginal stability has a number of

important consequences. First, the presence of a weakly biased external stimulus
ffiffi
�
p

hj can lock

the bump to the stimulus. The output activity is said to amplify the input bias and provides

a network-based encoding of the stimulus, which can be processed by upstream networks.

(Since the bump may persist if the stimulus is removed, marginally stable neural fields have

been proposed as one mechanism for implementing a form of spatial working memory [22,

28, 29, 38, 39]).

A second consequence of operating in a marginally stable regime is that the bump is not

robust to the effects of external noise, which can illicit a stochastic wandering of the bump

[20–22, 39–41]. One way to investigate the stochastic wandering of bumps in a neural field

model is to use perturbation theory. The latter was originally applied to the analysis of travel-

ing waves in one-dimensional neural fields [30, 31], and was subsequently extended to the case

of wandering bumps in single-layer and multi-layer neural fields [21, 22, 42]. The basic idea

is to to treat longitudinal and transverse fluctuations of a bump (or traveling wave) separately

in the presence of noise, in order to take proper account of marginal stability. This is imple-

mented by decomposing the stochastic neural field into a deterministic bump profile, whose

spatial location or phase has a slowly diffusing component, and a small error term. (There

is always a non-zero probability of large deviations from the bump solution, but these are

assumed to be negligible up to some exponentially long time.) Perturbation theory can then be

used to derive an explicit stochastic differential equation (SDE) for the diffusive-like wander-

ing of the bump in the weak noise regime. (A more rigorous mathematical treatment that pro-

vides bounds on the size of transverse fluctuations has also been developed [43, 44]).

Motivated by previous studies of wandering bumps in stochastic neural fields, we introduce

the amplitude phase decomposition [22, 30]

ujðy; tÞ ¼ Ujðyþ bjðtÞÞ þ
ffiffi
�
p

vjðy; tÞ; j ¼ 1; 2: ð9Þ

(As it stands, this decomposition is non-unique, unless an additional mathematical constraint

is imposed that can define βj and vj uniquely. Within the context of formal perturbation meth-

ods, this is achieved by imposing a solvability condition that ensures that the error term can

be identified with fast transverse fluctuations, which converge to zero exponentially in the

absence of noise, see Materials and methods.) Substituting Eq (9) into the full stochastic neural

field Eq (1) and using perturbation theory along the lines of [21, 22, 30, 42], one can derive the

following SDEs for the phases βj(t), see Materials and methods:

db1 ¼ �
ffiffi
�
p
L1 sinðb1 þ

�y1Þdt þ
ffiffi
�
p

K1ðb2 � b1Þdt þ
ffiffiffiffiffi
2�
p

dw1ðtÞ; ð10aÞ

db2 ¼ �
ffiffi
�
p
L2 sinðb2 þ

�y2Þdt þ
ffiffi
�
p

K2ðb1 � b2Þdt þ
ffiffiffiffiffi
2�
p

dw2ðtÞ; ð10bÞ

where Lj ¼
�hj=Aj, KjðbÞ are 2π-periodic functions that depend on the form of the inter-net-

work connections, and wj(t) are independent Wiener processes:

E½dwjðtÞ� ¼ 0; E½dwjðtÞdwkðt
0Þ� ¼ djkDjdðt � t0Þdt0dt; ð11Þ

The functions KjðbÞ and the diffusion coefficients D1, D2 are calculated in Materials and

Methods, see Eqs (73), (74) and (77).
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Wandering bumps in a single stochastic ring network

Let us begin by considering stimulus-dependent neural variability in a single ring network

evolving according to the stochastic neural field equation

duðy; tÞ ¼
�

� uðy; tÞ þ
Z p

� p

Jðy � y0Þf ðuðy0; tÞÞdy0 þ
ffiffi
�
p

hðyÞ
�

dt þ
ffiffiffiffiffi
2�
p

dWðy; tÞ; ð12Þ

where

E½dWðy; tÞ� ¼ 0; E½dWðy; tÞdWðy0; t0Þ� ¼ Cðy � y0Þdðt � t0Þdt dt0; ð13Þ

with

JðyÞ ¼ �J cos y; hðyÞ ¼ �h cos y; CðyÞ ¼ adðyÞ þ b cos y:

A clear demonstration of the suppressive effects of an external stimulus can be seen from direct

numerical simulations of Eq (12), see Fig 2. In the absence of an external stimulus, the center-

of-mass (phase) of the bump diffuses on the ring, whereas it exhibits localized fluctuations

when a weakly-biased stimulus is present. Clearly, the main source of neural variation is due

to the wandering of the bump, which motivates the amplitude phase decomposition given by

Eq (9).

Applying the perturbation analysis of Materials and Methods yields a one-network version

of the phase Eq (10), which takes the form

dbðtÞ ¼ �
ffiffi
�
p
L sin bðtÞdt þ

ffiffiffiffiffiffiffiffi
2�D
p

dwðtÞ; ð14Þ

with L ¼ �h=A and D ¼ �C=2A2, where A is the amplitude of the bump for � = 0. Eq (14) is

known as a von Mises process, which can be regarded as a circular analog of the Ornstein-

Uhlenbeck process on a line, and generates distributions that frequently arise in circular or

directional statistics [45]. The von Mises process has been used to model the trajectories of

swimming organisms [46, 47], oscillators in physics [48], bioinformatics [49], and the data fit-

ting of neural population tuning curves [50]. (Nonlinear stochastic phase equations analogous

to (14) also arise in models of ring attractor networks with synaptic heterogeneities, which

have applications to spatial working memory [23, 51, 52]).

Introduce the probability density

pðb; tjb0; 0�db ¼ P½b < bðtÞ < bþ dbjbð0Þ ¼ b0�:

This satisfies the forward Fokker-Planck equation (dropping the explicit dependence on initial

conditions)

@pðb; tÞ
@t

¼
@

@b
½
ffiffi
�
p
L sinðbÞpðb; tÞ� þ �D

@
2pðb; tÞ
@b

2
ð15Þ

for β 2 [−π, π] with periodic boundary conditions p(−π, t) = p(π, t). It is straightforward to

show that the steady-state solution of Eq (15) is the von Mises distribution

pðbÞ ¼ Mðb; 0;kÞ; k ¼
�h
ffiffi
�
p

AD
; ð16Þ

with

Mðb; b
�
; kÞ≔

1

2pI0ðkÞ
exp k cos b � b�ð Þð Þ: ð17Þ
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Here I0(κ) is the modified Bessel function of the first kind and zeroth order (n = 0), where

InðkÞ ¼
1

2p

Z p

� p

expðk cos yÞ cosðnyÞdy:

Sample plots of the von Mises distribution are shown in Fig 3. One finds that M(β; β�, κ)! 1/

2π as κ! 0; since k � �h this implies that in the absence of an external stimulus one recovers

the uniform distribution of pure Brownian motion on the circle. On the other hand, the von

Mises distribution becomes sharply peaked as κ!1. More specifically, for large positive κ,

Mðb; b
�
; kÞ �

1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p e� ðb� b

�Þ2=2s2

; s2 ¼ k� 1: ð18Þ

Fig 2. Stimulus-dependent wandering of a bump in a single stochastic ring network. (a, b) Direction-time plots of a

wandering bump with brightness indicating the amplitude. Overlaid lines represent the trajectory of the center-of-

mass or phase of the bump, β(t). (a) In the absence of an external stimulus (�h ¼ 0), the center-of-mass of the bump

executes diffusive-like motion on the ring. (b) The presence of a weakly biased external stimulus (�h ¼ 2) significantly

suppresses fluctuations, localizing the bump to the stimulus direction �y ¼ 0. (c, d) Corresponding snapshots of bump

profiles at different times (t = 100, 300, 600, 900). (c) For no external stimulus the bumps are distributed at different

positions around the ring and vary in amplitude. (d) In the presence of a stimulus the bumps are localized around zero

and have similar amplitudes. Parameters are threshold η = 0.5, gain γ = 4, synaptic weight �J ¼ 1, correlation

parameters a = 3, b = 0.5 and � = 0.05.

https://doi.org/10.1371/journal.pcbi.1006755.g002
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We thus have an explicit example of the noise suppression of fluctuations by an external stimu-

lus, since s2 / 1=�h. (We are assuming that the time for the distribution of the stochastic phase

variable to reach steady-state is much shorter than the time for the amplitude-phase decompo-

sition (9) to break down. This can be proven rigorously using variational methods for suffi-

ciently small �, since the time for a large transverse fluctuation becomes exponentially large

[44]).

Moments of the von Mises distribution are usually calculated in terms of the circular

moments of the complex exponential x = eiβ = cos β + i sin β. The nth circular moment is

defined according to

mn ¼ hz
nik;b� ¼

Z p

� p

znMðb;b
�
; kÞdb ¼

InðkÞ
I0ðkÞ

einb
�

: ð19Þ

In particular,

hcosbik;b� ¼
I1ðkÞ

I0ðkÞ
cosb�; hsinbik;b� ¼

I1ðkÞ

I0ðkÞ
sin b�: ð20Þ

We can use these moments to explore stimulus-dependent variability in terms of the stochastic

wandering of the bump or tuning curve. That is, consider the leading order approximation

u(θ, t)� A cos(θ + β(t)), with β(t) evolving according to the von Mises SDE (14). Trial-to-trial

Fig 3. Sample plots of the von Mises distribution M(β, 0, κ) centered at zero for various values of κ. Inset: Plot of first circular

moment I1(κ)/I0(κ).

https://doi.org/10.1371/journal.pcbi.1006755.g003
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variability can be captured by averaging the solution with respect to the stationary von Mises

density (16). First,

hUiðyÞ ¼ A
Z p

� p

cosðyþ bÞMðb; 0; kÞdb

¼ A½hcosbik;0 cos y � hsinbik;0 sin y�

≔ AðkÞ cos y; AðkÞ ¼ A
I1ðkÞ

I0ðkÞ
:

ð21Þ

from Eq (20). Hence, the mean amplitude A(κ) is given by the first circular moment of the von

Mises distribution, see inset of Fig 3. When κ = 0 (zero external stimulus), the amplitude van-

ishes due to the fact that the random position of the bump is uniformly distributed around the

ring. As the stimulus contrast �h increases the wandering of the bump is more restricted and

A(κ) monotonically increases.

Second,

hU2iðyÞ ¼ A2

Z p

� p

cos2ðyþ bÞMðb; 0;kÞdb

¼
A2

2

Z p

� p

ð1þ cosð2½yþ b�ÞÞMðb; 0; kÞdb

¼
A2

2
1þ hcos 2bik;0cos 2y � hsin 2bik;0 sin 2y
h i

¼
A2

2
1þ

I2ðkÞ

I0ðkÞ
cos 2y

� �

:

It follows that the variance is

varðUÞ ¼
A2

2
1þ

I2ðkÞ

I0ðkÞ
cos 2y � 2

I1ðkÞ

I0ðkÞ
cos y

� �2
" #

¼
A2

2

(

1 �
I1ðkÞ

I0ðkÞ

� �2

�
I1ðkÞ

I0ðkÞ

� �2

�
I2ðkÞ

I0ðkÞ

" #

cos 2y

) ð22Þ

In Fig 4(a), we show example plots of the normalized variance var(U)/A2 as a function of the

parameter κ, which is a proxy for the input amplitude �h, since k / �h. It can be seen that our

theoretical analysis reproduces the various trends observed in [10]: (i) a global suppression of

neural variability that increases with the stimulus contrast; (ii) a directional tuning of the vari-

ability that is bimodal; (iii) a peak in the suppression of cells at the preferred directional selec-

tivity. One difference between our theoretical results and those of [10] is that, in the latter case,

the directional tuning of the variance is not purely sinusoidal. Part of this can be accounted for

by noting that we consider the variance of the activity variable u rather than the firing rate f(u).

Moreover, for analytical convenience, we take the synaptic weight functions etc. to be first-

order harmonics. In Fig 4(b) we show numerical plots of the variance in the firing rate, which

exhibits the type of bimodal behavior found in [10] when the ring network operates in the

marginal regime.

Effects of inter-laminar coupling (model A)

We now turn to a pair of coupled ring networks that represent vertically connected layers as

shown in Fig 1(a) (model A), with inter-network weight distribution (6). For analytical

Stochastic neural field model of stimulus-dependent variability in cortical neurons
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tractability, we impose the symmetry conditions A1 = A2 = A and �K 1 ¼
�K 2 ¼

�K . However, we

allow the contrasts of the external stimuli to differ, �h1 6¼
�h2. Also, without loss of generality, we

set �y1 ¼
�y2 ¼ 0. Eq (10) then reduce to the form, see Materials and methods

db1 ¼ �
ffiffi
�
p
L1 sinðb1Þdt �

ffiffi
�
p

�K sinðb1 � b2Þdt þ
ffiffiffiffiffi
2�
p

dw1ðtÞ; ð23aÞ

db2 ¼ �
ffiffi
�
p
L2 sinðb2Þdt �

ffiffi
�
p

�K sinðb2 � b1Þdt þ
ffiffiffiffiffi
2�
p

dw2ðtÞ; ð23bÞ

with

E½dwjðtÞ� ¼ 0; E½dwjðtÞdwkðt
0Þ� ¼ djkDjdðt � t0Þdt0dt: ð24Þ

Given our various simplifications, we can rewrite Eq (23) in the more compact form

dbj ¼ �
ffiffi
�
p @Fðb1; b2Þ

@bj
dt þ

ffiffiffiffiffi
2�
p

dwjðtÞ; j ¼ 1; 2 ð25Þ

where F is the potential function

Fðb1; b2Þ ¼ � L1 cosðb1Þ � L2 cosðb2Þ �
�Kcosðb1 � b2Þ: ð26Þ

Introduce the joint probability density

pðb1; b2; tjb1;0; b2;0; 0�db1db2

¼ P½bj < bjðtÞ < bj þ dbj; j ¼ 1; 2jbjð0Þ ¼ bj;0; j ¼ 1; 2�:

This satisfies the two-dimensional forward Fokker-Planck equation (dropping the explicit

dependence on initial conditions)

@pðb1; b2; tÞ
@t

¼
ffiffi
�
p X

j¼1;2

@

@bj

@Fðb1; b2Þ

@bj
pðb1; b2; tÞ

" #

þ �
X

j¼1;2

Dj
@

2pðb1; b2; tÞ
@b

2

j

ð27Þ

for βj 2 [−π, π] and periodic boundary conditions p(−π, β2, t) = p(π, β2, t), p(β1, −π, t) = p(β1, π, t).

Fig 4. (a) Plot of normalized variance var(U)/A2 for U = A cos(θ) as a function of θ for a single ring network and various κ. In the

spontaneous case (κ = 0) the variance is uniformly distributed around the ring (ignoring transients). The presence of a stimulus (κ> 0)

suppresses the overall level of noise and the variance exhibits a bimodal tuning curve. (b) Plot of variance in firing rates var(f(U) (in units

of f 2
0

) as a function of θ for a single ring network and various κ. f is given by the sigmoid function (2) with γ = 4 and η = 0.5. The

corresponding amplitude A� 1.85.

https://doi.org/10.1371/journal.pcbi.1006755.g004
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The existence of a potential function means that we can solve the time-independent FP

equation. Setting time derivatives to zero, we have

X

j¼1;2

@Jj
@bj
¼ 0; Jj ¼

ffiffi
�
p @F

@bj
pþ �Dj

@p
@bj

;

where Jj is a probability current. In the stationary state the probability currents are constant,

but generally non-zero. However, in the special case D1 = D2 = D, then there exists a steady-

state solution in which the currents vanish. This can be seen by rewriting the vanishing current

conditions as

Jj ¼
ffiffi
�
p

p
@

@bj
Fþ

ffiffi
�
p

D ln p
� �

¼ 0:

This yields the steady-state probability density, which is a generalization of the von Mises dis-

tribution,

pðb1; b2Þ ¼ N � 1e� Fðb1 ;b2Þ=
ffiffiffiffi
�D
p

¼ N � 1 exp ðk1 cosðb1Þ þ k2 cosðb2Þ þ w cosðb1 � b2ÞÞ

≔M2ðb1; b2; k1; k2; wÞ;

ð28Þ

where

kj ¼
�hj
ffiffi
�
p

AjD
� 0; w ¼

�K
ffiffi
�
p

D
;

and N is the normalization factor

N ðk1; k2; wÞ ¼

Z p

� p

Z p

� p

exp ðk1 cosðb1Þ þ k2 cosðb2Þ þ w cosðb1 � b2ÞÞdb1db2: ð29Þ

The distribution M2(β1, β2;κ1, κ2, χ) is an example of a bivariate von Mises distribution known

as the cosine model [49]. The normalization factor can be calculated explicitly to give

N ðk1; k2; wÞ ¼ ð2pÞ
2

�

I0ðk1ÞI0ðk2ÞI0ðwÞ þ 2
X1

s¼1

ð� 1Þ
sIsðk1ÞIsðk2ÞIsðwÞ

�

: ð30Þ

The corresponding marginal distribution for β1 is

pðb1Þ ¼

Z p

� p

pðb1; b2Þdb2 ¼ N ðk1; k2; wÞ
� 1

2pI0ðk13ðb1ÞÞ exp ðk2 cosðb1ÞÞ; ð31Þ

where

k13ðbÞ
2
¼ k2

1
þ w2 þ 2k1w cosb:

An analogous result holds for the marginal density p(β2).

We now summarize a few important properties of the cosine bivariate von Mises distribu-

tion [49]:

1. The density M2(β1, β2; κ1, κ2, χ) is unimodal if

� w <
k1k2

k1 þ k2

;
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and is bimodal if

� w >
k1k2

k1 þ k2

; k1; k2 > � w:

2. When κ1 and κ2 are large, the random variables (β1, β2) are approximately bivariate normal

distributed, that is, (β1, β2)� N2(0, S) with

S� 1 ¼
k1 þ w � w

� w k2 þ w

 !

: ð32Þ

We will assume that the vertical connections are maximal between neurons with the same

stimulus preference so that �K � 0 and χ� 0. It then follows that p(β1, β2) is unimodal. More-

over, from Eq (32) we have

S ¼
1

k1k2 þ wðk1 þ k2Þ

k2 þ w w

w k1 þ w

 !

: ð33Þ

For zero inter-network coupling (χ = 0), we obtain the diagonal matrix S ¼ diagðk� 1
1
; k� 1

2
Þ

and we recover the variance of the single ring networks, that is, varðbjÞ ¼ k
� 1
j ; there are no

interlaminar correlations. On the other hand, for χ> 0 we find two major effects of the inter-

laminar connections. First, the vertical coupling reduces fluctuations in the phase variables

within a layer. This is most easily seen by considering the symmetric case κ1 = κ2 = κ for which

S ¼
1

kðkþ 2wÞ

kþ w w

w kþ w

 !

: ð34Þ

Clearly,

varðbjÞ ¼
1

k

kþ w

kþ 2w
< k� 1: ð35Þ

(This result is consistent with a previous study of the effects of inter-network connections on

neural variability, which focused on the case of zero stimuli and treated the bump positions

as effectively evolving on the real line rather than a circle [22]. In this case, inter-network con-

nections can reduce the variance in bump position, which evolves linearly with respect to the

time t.) The second consequence of interlaminar connections is that they induce correlations

between the phase β1(t) and β2(t).
Having characterized the fluctuations in the phases β1(t) and β2(t), analogous statistical

trends will apply to the trial-to-trial variability in the tuning curves. This follows from making

the leading-order approximation uj(x, t)� A cos(θ + βj(t)), and then averaging the βj with

respect to the bivariate von Mises density M2(β1, β2; κ1, κ2, χ). In the large κj regime, this could

be further simplified by averaging with respect to the bivariate normal distribution under the

approximations cos(β)� 1 − β2/2 and sin β� β. Both the mean and variance of the tuning

curves are similar to the single ring network, see Eqs (21) and (22):

hU1iðyÞ ¼ Ahcosb1i cos y; ð36Þ
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and

varðU1Þ ¼
A2

2
1 � hcosb1i

2
� ½hcosb1i

2
� hcos2b1i�cos 2y

� �
ð37Þ

Their dependence on the coupling strength χ and input parameter κ1 = κ2 = κ is illustrated in

Fig 5. Finally,

hU1ðyÞU2ðy
0
Þi ¼ A2

Z p

� p

Z p

� p

cosðyþ b1Þ cosðy
0
þ b2ÞM2ðb1; b2; k;k; wÞdb1db2

¼ A2

Z p

� p

Z p

� p

ðcos y cosb1 � sin y sinb1Þ

� ðcos y0cosb2 � sin y0 sinb2ÞM2ðb1; b2; k; k; wÞdb1db2

¼ A2ðcos y cos y0hcosb1 cosb2i þ sin y sin y0hsinb1 sin b2iÞ

¼ A2ðcos y cos y0hcosb1 cosb2i þ sin y sin y0hsinb1 sin b2iÞ:

Fig 5. Coupled ring network (model A). (a) Amplitude of normalized mean tuning curve (36) as a function of the input parameter κ = κ1 = κ2 for various

coupling strengths: χ = 0, 1, 5. (b) Corresponding maximum (θ = π/2) and minimum (θ = 0) normalized variances (37) as a function of the input parameter κ
for coupling strengths χ = 0, 5. (c) Plot of correlation tuning curve (39) between cells with the same direction preference but located in different layers. Here

κ = κ1 = κ2 and χ = 5.

https://doi.org/10.1371/journal.pcbi.1006755.g005
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so that inter-network covariance take the form

hU1ðyÞU2ðy
0
Þi � hU1ðyÞihU2ðy

0
Þi

¼ A2 cos y cos y0½hcosb1 cosb2i � hcosb1ihcosb2i�

þ A2 sin y sin y0hsinb1 sinb2i:

In particular, for θ = θ0 we have

hU1ðyÞU2ðyÞi � hU1ðyÞihU2ðyÞi

¼
A2

2
½hsinb1 sinb2i þ hcosb1 cosb2i � hcosb1ihcosb2i�

�
A2

2
½hsinb1 sinb2i � hðcosb1 cosb2i � hcosb1ihcosb2iÞ� cosð2yÞ:

ð38Þ

The resulting correlation tuning curve behaves in a similar fashion to the variance, see Fig

5(c), where

corrðU1;U2Þ ¼
hU1ðyÞU2ðyÞi � hU1ðyÞihU2ðyÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðU1ÞvarðU2Þ
p : ð39Þ

(Note that our definition of the cross-correlation function differs from that used, for example,

by Churchland et al [9]. These authors consider the covariance matrix of simultaneous record-

ings of spike counts obtained using a 96-electrode array. The matrix is then decomposed into a

network covariance matrix and a diagonal matrix of private single neuron noise. Our defini-

tion involves pairwise correlations between the activity of two distinct populations. Neverthe-

less, consistent with the findings of Churchland et al. [9], we find that the cross-correlations

decrease in the presence of a stimulus).

The above qualitative analysis can be confirmed by numerical simulations of the full neural

field Eq (1), as illustrated in Fig 6(a)–6(d) for a pair of identical ring networks. In Fig 6(e)–

6(h), we show corresponding results for the case where network 2 receives a weaker stimulus

than network 1 (�h1 ¼ 2 and �h2 ¼ 0:5). In the absence of interlaminar connections, the phase

of network 2 fluctuates much more than the phase of network 1. When interlaminar connec-

tions are included, fluctuations are reduced, but network 2 still exhibits greater variability than

network 1. This latter result is consistent with an experimental study of neural variability in V1

[24], which found that neural correlations were more prominent in superficial and deep layers

of cortex, but close to zero in input layer 4. One suggested explanation for these differences is

that layer 4 receives direct feedforward input from the LGN. Thus we could interpret network

1 in model A as being located in layer 4, whereas network 2 is located in a superficial layer, say.

Effects of intra-laminar coupling (model B)

Our final example concerns a pair of coupled ring networks that represent horizontally con-

nected hypercolumns within the same superficial layer, say, as shown in Fig 1(b) (model B),

with inter-network weight distribution (7). Again, for analytical tractability, we impose the

symmetry conditions A1 = A2 = A and �K 1 ¼
�K 2 ¼

�K . However, unlike model A, we take the

contrasts to be the same, �h1 ¼
�h2 ¼

�h, but allow the biases of the two inputs to differ, �y1 6¼
�y2.

Eq (10) become, see Materials and methods

db1 ¼ �
ffiffi
�
p
L sinðb1 þ

�y1Þdt þ
ffiffi
�
p

Kðb1 � b2Þdt þ
ffiffiffiffiffi
2�
p

dw1ðtÞ; ð40aÞ

db2 ¼ �
ffiffi
�
p
L sinðb2 þ

�y2Þdt þ
ffiffi
�
p

Kðb2 � b1Þdt þ
ffiffiffiffiffi
2�
p

dw2ðtÞ; ð40bÞ
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with wj(t) given by Eq (24) and

KðbÞ ¼
2�K
G

Z p

� p

f 0ðA cosðy � bÞÞ sinðy � bÞf ðA cosðyÞÞdy: ð41Þ

We can rewrite KðbÞ in the form

KðbÞ ¼ �
2�K
AjGj

@�

@b
; �ðbÞ ¼ f ðA cosðy � bÞÞf ðA cosðyÞÞ: ð42Þ

Note that ϕ(−β) = ϕ(β) and thus ϕ0(−β) = −ϕ0(β). A sample plot of the potential ϕ(β) is shown

in Fig 7(a), together with an approximate curve fitting based on a von Mises distribution. For

the given firing rate parameters η = 0.5 and γ = 4, the unperturbed bump amplitude is A�
1.85.

As in the case of model A, we can rewrite Eq (40) in the more compact form

dbj ¼ �
ffiffi
�
p @Cðb1; b2Þ

@bj
dt þ

ffiffiffiffiffi
2�
p

dwjðtÞ; j ¼ 1; 2 ð43Þ

whereC is the potential function

Cðb1; b2Þ ¼ � L cosðb1 þ
�y1Þ � L cosðb2 þ

�y2Þ �
�K�ðb1 � b2Þ; ð44Þ

and we have absorbed the factor 2/(A|Γ|) into the constant �K . The corresponding two-

Fig 6. Effects of interlaminar connections on a pair of wandering bumps (model A). Overlaid lines represent the trajectories of the center-of-mass or

phase of the bumps, β1(t) and β2(t). (a, b) Plots of wandering bump in network 1 for zero ( �K ¼ 0) and nonzero ( �K ¼ 2) interlaminar connections,

respectively. (c, d) Analogous plots for network 2. The two networks are taken to be identical with the same parameters as Fig 2 except �h ¼ 0:2. (e-h)

Same as Fig. 6 except that �h1 ¼ 2:0, �h2 ¼ 0:25 and �K ¼ 0:1 in (b, d).

https://doi.org/10.1371/journal.pcbi.1006755.g006
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dimensional forward Fokker-Planck equation is

@pðb1; b2; tÞ
@t

¼
ffiffi
�
p X

j¼1;2

@

@bj

@Cðb1; b2Þ

@bj
pðb1; b2; tÞ

" #

þ �
X

j¼1;2

Dj
@

2pðb1; b2; tÞ
@b

2

j

ð45Þ

for βj 2 [−π, π] and periodic boundary conditions p(−π, β2, t) = p(π, β2, t), p(β1, −π, t) = p(β1,

π, t). Following the analysis of model A, if D1 = D2 = D then the stationary density takes the

form

pðb1; b2Þ ¼M� 1e� Cðb1 ;b2Þ=
ffiffiffiffi
�D
p

¼M� 1 exp ðk cosðb1 þ
�y1Þ þ k cosðb2 þ

�y2Þ þ w�ðb1 � b2ÞÞ;
ð46Þ

Fig 7. Coupled ring network (model B) with inhibitory intralaminar connections. (a) Plot of the potential function ϕ(β) for threshold η = 0.5 and gain

η = 4. The solid curve is an approximation based on a fitted von Mises distribution ϕ(β)� 12M(β; 0, 0.6) − 0.9. (b) Plot of normalized mean hUi/A of

ring network 1 (center mean) as a function of the directional bias �y of the input to network 2 (surround bias) for various coupling parameters χ. (c)

Corresponding plots of normalized variance var(U1)/A2 of ring network 1 (center variance) as a function of the surround bias for various coupling

parameters χ. Stimuli to networks 1 and 2 are �h cos y and �h cosðy � �yÞ, respectively, and we take κ = 1.

https://doi.org/10.1371/journal.pcbi.1006755.g007
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where

k ¼
�h
ffiffi
�
p

AD
� 0; w ¼

�K
ffiffi
�
p

D
;

and M is a normalization factor.

Long-range horizontal connections within superficial layers of cortex are mediated by the

axons of excitatory pyramidal neurons. However, they innervate both pyramidal neurons and

feedforward interneurons so that they can have a net excitatory or inhibitory effect, depending

on stimulus conditions [36, 53, 54], More specifically, they tend to be excitatory at low con-

trasts and inhibitory at high contrasts. Suppose that ring network 1 represents a hypercolumn

driven by a stimulus �h cos y and network 2 represents a hypercolumn driven by a stimulus

�h cosðy � �yÞ, see Fig 1(b). In Fig 7(b) and 7(c) we plot how the normalized maximal mean and

variance of network 1 (at θ = ±π/2) varies with the directional bias �y of the input to network 2.

We also show the baseline mean and variance in the absence of horizontal connections (χ = 0).

It can be seen that the mean and variance covary in opposite directions. In particular, for

inhibitory horizontal connections (χ< 0) the variance is facilitated relative to baseline when

the two stimuli have similar biases (�y � 0) and is suppressed when they are sufficiently differ-

ent (�y � �p). The converse holds for excitatory horizontal connections (χ> 0). In the Discus-

sion, these results will be explored within the context of surround modulation.

Discussion

In this paper we used stochastic neural field theory to analyze stimulus-dependent neural vari-

ability in ring attractor networks. In addition to providing a mathematical underpinning of

previous experimental observations regarding the bimodal tuning of variability in directionally

specific MT neurons, we also made a number of predictions regarding the effects of inter-net-

work connections on noise suppression:

1. Excitatory vertical connections between cortical layers can suppress neural variability; dif-

ferent cortical layers can exhibit different degrees of variability according to the strength of

afferents into the layers.

2. At low stimulus contrasts, surround stimuli tend to suppress (facilitate) neural variability in

the center when the center and surround stimuli have similar (different) biases.

3. At high stimulus contrasts, surround stimuli tend to facilitate (suppress) neural variability

in the center when the center and surround stimuli have similar (different) biases.

It is important to emphasize that previous related studies of variability in marginally sta-

ble ring networks have been based on computer simulations of spatially discrete models [10,

20]. That is, integrals with respect to the orientation or direction variable θ are replaced by

discrete sums, so that the model dynamics is described by stochastic differential equations

rather than stochastic neural fields. As we have demonstrated in this paper, the advantage of

neural field theory is that it provides an analytical framework for studying neural variability

in marginally stable ring attractor networks, see also [21]. In Ref. [20], the behavior of a mar-

ginally stable ring network is compared to a stabilized supralinear ring network. The latter

operates in a completely different dynamical regime, consisting of a single stimulus-tuned

attractor. This means that there does not exist a bump solution in the absence of a stimulus.

One of the consequences of this is that weak (spontaneous) inputs increase variability, which

is subsequently quenched by stronger inputs. The basic mechanism involves stimulus-depen-

dent changes in the balance of two opposing effects [20]: feedforward interactions and
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recurrent excitation, which amplify variability and dominate for weak stimuli, and stabilizing

inhibitory feedback, which suppresses variability and dominates in the case of stronger

inputs. The authors also show that the orientation tuning of neural variability tends to be U-

shaped, rather than M-shaped as found in [10], with a minimum at the preferred stimulus

orientation. The stabilized supralinear ring network model was found to be more consistent

with single neuron recordings from the V1 of awake primates, when compared to the mar-

ginally stable ring model.

However, certain caution should be taken when interpreting the results of Ref. [20]. First,

the precise mechanism underlying the role of feedforward and recurrent inputs in generating

orientation tuning in V1 is still controversial, see below. Second, the marginally stable ring

model can also produce U-shaped tuning of neural variability using an appropriate Fourier

decomposition of the weights—the M-shape was a direct consequence of using the first har-

monic cosθ. Third, it is far from clear that the same operating regime holds for all V1 neurons,

and may also vary according to the specific stimulus feature, cortical layer and cortical area.

(The latter might account for differences between MT direction selective cells and V1 neu-

rons.) Finally, there could be differences between the trial-averaged statistics of single neuron

recordings and the statistics of local neural populations, as represented by neural field vari-

ables. As a further comparison of the two model paradigms, it would be interesting to explore

the effects of intralaminar and interlaminar coupling on noise variability in stabilized supra-

linear ring networks.

Weak stimulus assumption

In order to utilize perturbation methods, we assumed that the ring networks were driven by

weakly biased stimuli. This assumption depends on a particular view of how cortical neurons

are tuned to stimuli. Consider the most studied example, which involves orientation tuning of

cells in V1. The degree to which recurrent processes contribute to the receptive field properties

of V1 neurons has been quite controversial over the years [55–58]. The classical model of

Hubel and Wiesel [59] proposed that the orientation preference and selectivity of a cortical

neuron in input layer 4 arises primarily from the geometric alignment of the receptive fields of

thalamic neurons in the lateral geniculate nucleus (LGN) projecting to it. (Orientation selectiv-

ity is then carried to other cortical layers through vertical projections). This has been con-

firmed by a number of experiments [60–64]. However, there is also significant experimental

evidence suggesting the importance of recurrent cortical interactions in orientation tuning

[65–71]. One issue that is not disputed is that some form of inhibition is required to explain

features such as contrast-invariant tuning curves and cross-orientation suppression [58]. The

uncertainty in the degree to which intracortical connections contribute to orientation tuning

of V1 neurons is also reflected in the variety of models. In ring attractor models [26, 27, 72,

73], the width of orientation tuning of V1 cells is determined by the lateral extent of intracorti-

cal connections. Recurrent excitatory connections amplify weakly biased feedforward inputs

in a way that is sculpted by lateral inhibitory connections. Hence, the tuning width and other

aspects of cortical responses are primarily determined by intracortical rather than thalamocor-

tical interconnections. On the other hand, in push-pull models, cross-orientation inhibition

arises from feedforward inhibition from interneurons [62, 74]. Finally, in normalization mod-

els, a large pool of orientation-selective cortical interneurons generates shunting inhibition

proportional in strength to the stimulus contrast at all orientations [75]. In the end, it is quite

possible that are multiple circuit mechanisms for generating tuned cortical responses to sti-

muli, which could depend on the particular stimulus feature, location within a feature prefer-

ence map, and cortical layer [58].
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Surround modulation of neural variability

Surround modulation (SM) refers to the phenomenon in which stimuli in the surround of a

neuron’s receptive field (RF) modulate the neuron’s response to stimuli simultaneously pre-

sented inside the RF. SM is a fundamental property of sensory neurons in many species and

sensory modalities, and is thought to play an important role in contextual image processing.

As with mechanisms of orientation tuning, there is considerable debate over whether feedfor-

ward or intracortical circuits generate SM, and whether this results from increased inhibition

or reduced excitation [19, 36, 53, 54, 76–82]. SM has been characterized in many species, com-

monly using circular grating patches of increasing radius or grating patches confined to the RF

surrounded by annular gratings, and varying systematically the grating parameters. Modula-

tory effects are typically quantified in terms of changes in the mean firing rates of single neu-

rons recorded from the center. Some of the main features of SM in V1 are as follows (see [36]

and references therein): (i) SM is spatially extensive. For example, in primates, modulatory

effects from the surround (both facilitatory and suppressive) can be evoked at least 12.5

degrees away from a neuron’s RF center. (ii) SM is tuned to specific stimulus parameters. The

strongest suppression is induced by stimuli in the RF and surround of the same orientation,

spatial frequency, drift direction, and speed, and weaker suppression or facilitation is induced

by stimuli of orthogonal parameters (e.g., orthogonally oriented stimuli or stimuli drifting in

opposite directions). (iii) SM is contrast dependent. Surround stimulation evokes suppression

when the center and surround stimuli are of high contrast, but can be facilitatory when they

are of low contrast.

One way to interpret the results of model B is to treat networks 1 and 2 as hypercolumns

driven by center and surround stimuli, respectively. SM is then mediated by the horizontal

connections that can have a net excitatory or inhibitory effect, depending on stimulus condi-

tions. Here, for simplicity, we impose the sign of the horizontal connections by hand. How-

ever, one could develop a more detailed model that implements the switch between excitation

and inhibition using, for example, high threshold interneurons [54]. The major prediction of

our analysis is that whenever the surround modulation suppresses (facilitates) the center firing

rate, the corresponding variance is facilitated (suppressed).

Extensions of the neural field model

One of the main simplifications of our neural field model is that we do not explicitly distin-

guish between excitatory and inhibitory populations. This is a common approach to the analy-

sis of neural fields, in which the combined effects of excitation and inhibition are incorporated

using, for example, Mexican hat functions [83–85]. In the case of the ring network, the sponta-

neous formation of population orientation tuning curves or bumps is implemented using a

cosine function, which represents short-range excitation and longer-range inhibition around

the ring. We note, however, that the methods and results presented in this paper could be

extended to the case of separate excitatory and inhibitory populations, as well as different clas-

ses of interneuron, as has been demonstrated elsewhere for deterministic neural fields [27, 54].

One major difference between scalar and E-I neural fields is that the latter can also exhibit

time-periodic solutions, which would add an additional phase variable associated with shifts

around the resulting limit cycle. The effects of noise on limit cycle oscillators can be analyzed

in an analogous fashion to wandering bumps [86, 87]. We also note that neural variability in a

two-population (E-I) stabilized supralinear network has been analyzed extensively using linear

algebra [20].

Another possible extension of our work would be to consider higher-dimensional neural

fields. For example, one could replace the ring attractor on S1 by a spherical attractor on S2. In
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the latter case, marginally stable modes would correspond to rotations of the sphere. (Mathe-

matically speaking, this corresponds to the action of the Lie group SO(3) rather than SO(2) for

the circle.) One could generalize the Fourier analysis of the ring network by using spherical

harmonics, as previously shown for deterministic neural field models of orientation and spatial

frequency tuning in V1 [88, 89]. One could also consider a planar neural field with Euclidean-

symmetric weights, for which marginally stable modes would be generated by the Euclidean

group of rigid body transformations of the plane (translations, rotations and reflections.)

However, this example is more difficult since the marginally stable manifold is non-compact,

and one cannot carry out a low-dimensional harmonic reduction. In order to obtain analytical

results, one has to use Heaviside rate functions [30, 90].

A third possible extension would be to develop a more detailed model of the laminar struc-

ture of cortex. Roughly speaking, cortical layers can be grouped into input layer 4, superficial

layers 2/3 and deep layers 5/6 [37, 91–93]. They can be distinguished by the source of afferents

into the layer and the targets of efferents leaving the layer, the nature and extent of intralami-

nar connections, the identity of interneurons within and between layers, and the degree of

stimulus specificity of pyramidal cells. In previous work, we explored the role of cortical layers

in the propagation of waves of orientation selectivity across V1 [94], under the assumption

that deep layers are less tuned to orientation. This suggests considering coupled ring networks

that differ in their tuning properties. Another modification would be to consider asymmetric

coupling between layers, both in terms of the range of coupling and its strength. Interestingly,

the properties of SM also differ across cortical layers, suggesting different circuits and mecha-

nisms generating SM in different layers. More specifically, surround fields in input layer 4 are

smaller than in other layers, and SM is weaker and untuned for orientation. Moreover, SM is

stronger and more sharply orientation-tuned in superficial layers compared to deep layers

[36]. Therefore, it would be interesting to consider coupled ring networks that combine mod-

els A and B.

Spiking versus rate-based models

One final comment is in order. Neural variability in experiments is typically specified in terms

of the statistics of spike counts over some fixed time interval, and compared to an underlying

inhomogeneous Poisson process. Often Fano factors greater than one are observed. In this

paper, we worked with stochastic firing rate models rather than spiking models, so that there is

some implicit population averaging involved. In particular, we focused on the statistics of the

variables uj(x, t), which represent the activity of local populations of cells rather than of individ-

ual neurons, with f(uj) the corresponding population firing rate [30]. This allowed us to develop

an analytically tractable framework for investigating how neural variability depends on stimu-

lus conditions within the attractor model paradigm. In order to fit a neural field model to

single-neuron data, one could generate spike statistics by taking f(uj) to be the rate of an inho-

mogeneous Poisson process. Since f(uj) is itself stochastic, this would result in a doubly stochas-

tic Poisson process, which is known to produce Fano factors greater than unity [95]. Moreover,

the various phenomena identified in this paper regarding stimulus-dependent variability

would carry over to a spiking model, at least qualitatively. However, one should not expect a

mean-field reduction to capture everything in a spiking model. For example, multivariate dou-

bly stochastic Poisson processes can have correlations between their spike times in addition to

the correlations induced by shared rate fluctuations. Spiking network models typically do pro-

duce these spike timing correlations that are not captured by most mean-field reductions, even

those that account for correlated firing rate fluctuations [13, 15, 96–98]. These correlations

could, in turn, affect auto-correlation and firing rates in the network.
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Materials and methods

We present the details of the derivation of the stochastic phase Eq (10).

Stationary bumps in a single uncoupled ring

First, suppose that there are no external inputs, no inter-network coupling (J12 = J21 = 0), and

no noise (� = 0). Each network can then be described by a homogeneous ring model of the

form

@uðy; tÞ
@t

¼ � uðy; tÞ þ
Z p

� p

Jðy � y0Þf ðuðy0; tÞÞdy0: ð47Þ

Let JðyÞ ¼ �Jcos y and consider the trial solution u(θ, t) = U(θ) with U(θ) an even, unimodal

function of θ centered about θ = 0. This could represent a direction tuning curve in MT ((in

the marginal regime) or a stationary bump encoding a spatial working memory. It follows that

U(θ) satisfies the integral equation

UðyÞ ¼ �J
Z p

� p

cosðy � y0Þf ðUðy0ÞÞdy0: ð48Þ

Substituting the cosine series expansion

cosðy � y0Þ ¼ cosðyÞ cosðy0Þ þ sinðyÞ sinðy0Þ ð49Þ

into the integral equation yields the even solution U(θ) = A cos θ with the amplitude A satisfy-

ing the self-consistency condition

A ¼ �J
Z p

� p

cosðyÞf ðUðyÞÞdy ¼ �JgðAÞ: ð50Þ

The amplitude Eq (50) can be solved explicitly in the large gain limit γ!1, for which f(u)!

H(u − κ), where H is the Heaviside function [21]. That is, A ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ k
p

�
ffiffiffiffiffiffiffiffiffiffiffi
1 � k
p

, correspond-

ing to a marginally stable large amplitude wide bump and an unstable small amplitude narrow

bump, consistent with the original analysis of Amari [90]. On the other hand, at intermediate

gains, there exists a single stable bump rather than an unstable/stable pair of bumps, see Fig 8.

Linear stability of the stationary solution can be determined by considering weakly per-

turbed solutions of the form u(θ, t) = U(θ) + ψ(θ)eλt for |ψ(θ)|� 1. Substituting this expression

into Eq (47), Taylor expanding to first order in ψ, and imposing the stationary condition (48)

yields the infinite-dimensional eigenvalue problem [27]

ðlþ 1ÞcðyÞ ¼

Z p

� p

Jðy � y0Þf 0ðUðy0ÞÞcðy0Þdy0: ð51Þ

This can be reduced to a finite-dimensional eigenvalue problem by applying the expansion

(49):

ðlþ 1ÞcðyÞ ¼ A cosðyÞ þ B sinðyÞ; ð52Þ

where

A ¼ �J
Z p

� p

cosðyÞf 0ðUðyÞÞcðyÞdy; B ¼ �J
Z p

� p

sinðyÞf 0ðUðyÞÞcðyÞdy: ð53Þ
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Substituting Eqs (52) into (53) then gives the matrix equation [21]

ðlþ 1Þ
A

B

 !

¼ �J
I ½cos2 y� I ½cos y sin y�

I ½cos y sin y� I ½sin2 y�

 !
A

B

 !

; ð54Þ

where for any periodic function v(θ)

I ½vðyÞ� ¼
Z p

� p

vðyÞf 0ðUðyÞÞdy: ð55Þ

Integrating Eq (50) by parts shows that for A 6¼ 0

I ½sin2 y� ¼

Z p

� p

sin2 yf 0ðUðyÞÞdy ¼ 1=�J :

Hence, exploiting the fact that I is a linear functional of v,

I ½cos2 y� ¼ I ½1 � sin2 y� ¼ I ½1� � I ½sin2 y� ¼ I ½1� � 1=�J :

Finally, integration by parts establishes that

I ½cos y sin y� ¼
Z p

� p

cos y sin yf 0ðUðyÞÞdy ¼ �
Z p

� p

sin yf ðUðyÞÞdy ¼ 0;

since U(θ) is even. Eq (54) now reduces to

ðlþ 1Þ
A

B

 !

¼ �J
I ½1� � 1=�J 0

0 1

 !
A

B

 !

; ð56Þ

which yields the pair of solutions

l0 ¼ 0; le ¼ 2

�

�J
Z p

0

f 0ðUðyÞÞdy � 1

�

: ð57Þ

The zero eigenvalue is a consequence of the fact that the bump solution is marginally stable with

Fig 8. Graphical solution of the bump amplitude Eq (50) for �J ¼ 1 and η = 0.5. At intermediate gains (γ = 4) the

zero solution is unstable and there exists a single stable bump. In the high gain limit (γ = 20) the zero solution is stable,

and coexists with a small amplitude unstable bump and a large amplitude stable bump.

https://doi.org/10.1371/journal.pcbi.1006755.g008
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respect to uniform shifts around the ring; the generator of such shifts is the odd function sinθ.

The other eigenvalue λe is associated with the generator, cosθ, of expanding or contracting pertur-

bations of the bump. Thus linear stability of the bump reduces to the condition λe< 0. This can

be used to determine the stability of the pair of bump solutions in the high-gain limit [21]. (Note

that there also exist infinitely many eigenvalues that are equal to −1, which form the essential

spectrum. However, since they lie in the left-half complex λ-plane, they do not affect stability).

A variety of previous studies have shown how breaking the underlying translation invari-

ance of a homogeneous neural field by introducing a nonzero external input stabilizes wave

and bump solutions to translating perturbations [21, 99–102]. For the sake of illustration,

suppose that hðyÞ ¼ �h cosðyÞ in the deterministic version of Eq (1). This represents a weak θ-

dependent input with a peak at θ = 0. Extending the previous analysis, one finds a stationary

bump solution UðyÞ ¼ Acos yþ
ffiffi
�
p �h cos y, with A satisfying the implicit equation

A ¼ �J
Z p

� p

cos yf ðA cos yþ
ffiffi
�
p

�h cos yÞdy:

Again, this can be used to determine both the width and amplitude of the bump in the high-

gain limit. Furthermore, the above analysis can be extended to establish that, for weak inputs,

the bump is stable (rather than marginally stable) with respect to translational shifts [21].

Perturbation analysis

The amplitude phase decompositions (βj, vj) defined by Eq (9) are not unique, so additional

mathematical constraints are needed, and this requires specifying the allowed class of func-

tions of vj (the appropriate Hilbert space). We will take take vj 2 L2(S1), that is, vj(θ) is a peri-

odic function with k vj k
2 ¼ hvj; vji ¼

Z p

� p

vjðyÞ
2dy <1. Substituting the decomposition into

the stochastic neural field Eq (1) and using Ito’s lemma gives [103]

U 0
1
ðyþ b1Þdb1 þ

1

2
U 00

1
ðyþ b1Þdb

2

1
þ

ffiffi
�
p

dv1ðy; tÞ

¼

�

� U1ðyþ b1Þ �
ffiffi
�
p

v1ðy; tÞ þ
Z p

� p

J1ðy � y
0
Þf ðU1ðy

0
þ b1Þ þ

ffiffi
�
p

v1ðy
0
; tÞÞdy0

�

dt

þ

� Z p

� p

ffiffi
�
p

K1ðy � y
0
Þf ðU2ðy

0
þ b2Þ þ

ffiffi
�
p

v2ðy
0
; tÞÞdy0 þ

ffiffi
�
p

h1ðyÞ

�

dt þ
ffiffiffiffiffi
2�
p

dW1ðy; tÞ:

and

U 0
2
ðyþ b2Þdb2ðtÞ þ

1

2
U 00

2
ðyþ b2Þdb

2

2
þ

ffiffi
�
p

dv2ðy; tÞ

¼

�

� U2ðyþ b2Þ �
ffiffi
�
p

v2ðy; tÞ þ
Z p

� p

J2ðy � y
0
Þf ðU2ðy

0
þ b2Þ þ

ffiffi
�
p

v2ðy
0
; tÞÞdy0

�

dt

þ

� Z p

� p

ffiffi
�
p

K2ðy � y
0
Þf ðU1ðy

0
þ b1Þ þ

ffiffi
�
p

v1ðy
0
; tÞÞdy0 þ

ffiffi
�
p

h2ðyÞ

�

dt þ
ffiffiffiffiffi
2�
p

dW2ðy; tÞ:

Introduce the series expansions vj ¼ vj;0 þ
ffiffi
�
p

vj;1 þ Oð�Þ, Taylor expanding the nonlinear

function F, imposing the stationary solution (48), and dropping all O(�) terms. This gives

[21, 30], after dropping the zero index on vj,0,

ffiffi
�
p

dv1ðy; tÞ ¼
ffiffi
�
p
L1

b1
v1ðy; tÞdt þ

ffiffi
�
p

K̂ 1ðyþ b2Þdt þ
ffiffi
�
p

h1ðyÞdt þ
ffiffiffiffiffi
2�
p

dW1ðy; tÞ;

� U 0
1
ðyþ b1Þdb1

ð58aÞ
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ffiffi
�
p

dv2ðy; tÞ ¼
ffiffi
�
p
L2

b2
v2ðy; tÞdt þ

ffiffi
�
p

K̂ 2ðyþ b1Þ þ
ffiffi
�
p

h2ðyÞdt þ
ffiffiffiffiffi
2�
p

dW2ðy; tÞ

� U 0
2
ðyþ b2Þdb2;

ð58bÞ

where Lj
b are the following linear operators

Lj
bvðy; tÞ ¼ � vðy; tÞ þ

Z p

� p

Jjðy � y
0
Þf 0ðUjðy

0
þ bÞÞvðy0; tÞdy0; ð59Þ

and

K̂ 1ðyþ bÞ ¼

Z p

� p

K1ðy � y
0
Þf ðU2ðy

0
þ bÞÞdy0; K̂ 2ðyþ bÞ ¼

Z p

� p

K2ðy � y
0
Þf ðU1ðy

0
þ bÞÞdy0: ð60Þ

It can be shown that the operator Lj
0

has a 1D null space spanned by U 0jðyÞ. The fact that

U 0j ðyÞ belongs to the null space follows immediately from differentiating Eq (48) with respect

to θ. Moreover, U 0jðyÞ is the generator of uniform translations around the ring, so that the 1D

null space reflects the marginal stability of the bump solution. (Marginal stability of the bump

means that the linear operator Lj
0

has a simple zero eigenvalue while the remainder of the dis-

crete spectrum lies in the left-half complex plane. The spectrum is discrete since S1 is a com-

pact domain.) This then implies a pair of solvability conditions for the existence of bounded

solutions of Eq (58a), namely, that dvj is orthogonal to all elements of the null space of the

adjoint operator Ljy
bj

. The corresponding adjoint operator is

Ljy
b vðy; tÞ ¼ � vðy; tÞ þ f 0ðUjðyþ bÞÞ

Z p

� p

Jjðy � y
0
Þvðy0; tÞdy0: ð61Þ

Let VjðyÞ span the 1D adjoint null space of Ly
0
. Now taking the inner product of both sides of

Eq (58a) with respect to Vjðyþ bjÞ and using translational invariance then yields the following

SDEs to leading order:

db1 ¼
ffiffi
�
p

H1ðb1Þdt �
ffiffi
�
p

K1ðb1 � b2Þdt þ
ffiffiffiffiffi
2�
p

dw1ðtÞ; ð62aÞ

db2 ¼
ffiffi
�
p

H2ðb1Þdt �
ffiffi
�
p

K2ðb2 � b1Þdt þ
ffiffiffiffiffi
2�
p

dw2ðtÞ; ð62bÞ

where

HjðbÞ ¼ G� 1

j

Z p

� p

VjðyÞhjðy � bÞdy; ð63Þ

for Hj(β + 2π) = Hj(β),

KjðbÞ ¼ G� 1

j

Z p

� p

V jðyÞK̂ jðyþ bÞdy; ð64Þ

and

Gj ¼

Z p

� p

VjðyÞU
0

j ðyÞdy; ð65Þ

Here wj(t) are scalar independent Wiener processes,

E½dwjðtÞ� ¼ 0; E½dwjðtÞdwkðt
0Þ� ¼ dj;kDjdðt � t0Þdt0dt;
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with

Dj ¼
1

G2

j

Z p

� p

Z p

� p

V jðyÞV jðy
0
ÞCjðy � y

0
Þdy0dy: ð66Þ

Note that stochastic phase equations similar to (62) were previously derived in [21, 22],

except that the functions Hj(β) and KjðbÞ were linearized, resulting in a system of coupled

Ornstein-Uhlenbeck (OU) processes:

db1 ¼
ffiffi
�
p
n1b1dt �

ffiffi
�
p

r1ðb1 � b2Þdt þ
ffiffiffiffiffi
2�
p

dw1ðtÞ; ð67aÞ

db2 ¼
ffiffi
�
p
n2b2dt �

ffiffi
�
p

r2ðb2 � b1Þdt þ
ffiffiffiffiffi
2�
p

dw2ðtÞ; ð67bÞ

for constant coefficients ν1, ν2, r1, r2. Properties of one-dimensional OU processes were then

used to explore how the variance in the position of bump solutions depended on inter-network

connections and statistical noise correlations. However, it should be noted that the variables

βj(t) are phases on a circle (rather than positions on the real line), so that the right-hand side of

Eq (67) should involve 2π-period functions. Therefore, the linear approximation only remains

accurate on sufficiently short times scales for which the probability of either of the phases

winding around the circle is negligible. In order to illustrate this point, consider an uncoupled

OU process evolving according to

dbj ¼
ffiffi
�
p
njbjdt þ

ffiffiffiffiffi
2�
p

dwjðtÞ:

A standard analysis shows that [103]

hbjðtÞi ¼ b0e� nj t;

hbjðtÞ
2
i � hbjðtÞi

2
¼
�Dj

nj
1 � e� 2nj t½ �:

In particular, the variance approaches a constant �D/2νj in the large t limit. The corresponding

density is given by the Gaussian

rðb; tjb0; 0Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�Dj½1 � e� 2nj t�=nj

q exp �
ðb � b0e� ktÞ

2

2�Dj½1 � e� 2nj t�=nj

 !

:

Although the linear approximation is sufficient if one is interested in estimating the diffusivity

Dj, which was the focus of [21, 22], it does not yield the correct steady-state distribution on the

ring in the limit t!1. Indeed, for vj! 0, the density of the OU process converges point-

wise to zero, whereas ρ(β, t)! 1/2π on the ring. In our paper, we are interested in the full

steady-state densities rather than just the diffusivities Dj.

Evaluation of functions Hj and Kj

In order to determine the functions Hj and Kj we need to obtain explicit expressions for the

null vectors Vj. We will take hjðyÞ ¼
�hj cosðy � �y jÞ. Applying the expansion (49) to the adjoint

equation Ljy
0
V j ¼ 0 with Ljy

0
defined by Eq (61), we can write [21]

VjðyÞ ¼ f 0ðUjðyÞÞ½Cj cos yþ Sj sin y�;
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with

Cj ¼
�J j

Z p

� p

cos yVjðyÞdy; Sj ¼
�J j

Z p

� p

sin yVjðyÞdy:

Substituting the expression for VjðyÞ into the expressions for Cj and Sj then leads to a matrix

equation of the form (56) with λ = 0. Since I ½1� 6¼ 1, it follows that Cj = 0 so that, up to scalar

multiplications,

VjðyÞ ¼ f 0ðUjðyÞÞ sin y; UðyÞ ¼ Aj cos y: ð68Þ

Now substituting VðyÞ into Eq (63), we have

HjðbÞ ¼ G� 1

j

Z p

� p

V jðyÞhjðy � bÞdy

¼
�hj

G

Z p

� p

f 0ðUjðyÞÞ sin y cosðy � �y j � bÞdy

¼
�hj

G

Z p

� p

f 0ðUjðyÞÞ sin y½cos y cosðbþ �y jÞ þ sin y sinðbþ �y jÞ�dy

¼ � Lj sinðbþ �y jÞ;

ð69Þ

with

Lj ¼ �
�hj

Gj

Z p

� p

f 0ðUjðyÞÞ sin
2 ydy: ð70Þ

We have used the fact that f@(Uj(θ)) is an even function of θ, so that the coefficient for

cosðbþ �y jÞ is zero. The constant Γj can be calculated from Eq (65):

Gj ¼

Z p

� p

VjðyÞU
0

j ðyÞdy ¼ � Aj

Z p

� p

f 0ðUjðyÞÞ sin
2 ydy < 0: ð71Þ

It follows that

Lj ¼
�hj

Aj
> 0: ð72Þ

The calculation of KjðbÞ depends on whether we consider model A or model B, see Fig 1.

From Eqs (6), (60) and (64), we have for model A

K1ðbÞ ¼ G� 1

1

Z p

� p

V1ðyÞ

� Z p

� p

K1ðy � y
0
Þf ðU2ðy

0
þ bÞÞdy0

�

dy;

¼ G� 1

1

Z p

� p

f 0ðU1ðyÞÞ sin y
� Z p

� p

½E1 þ
�K 1 cosðy � y

0
Þ�f ðU2ðy

0
þ bÞÞdy0

�

dy

¼ G� 1

1

� Z p

� p

f 0ðU1ðyÞÞ sin
2 ydy

�� Z p

� p

�K 1 sin y
0f ðU2ðy

0
þ bÞÞdy0

�

¼ �
1

A1

Z p

� p

�K 1 sinðy
0
� bÞf ðU2ðy

0
ÞÞdy0

� �

¼
�K 1

A1

sinb
Z p

� p

cos y0f ðA2 cosðy
0
ÞÞdy0

� �

�
�K 1A2

A1

sinb;

ð73aÞ
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where we have used the stationary condition (8), and

K2ðbÞ ¼
�K 2

A2

sin b
Z p

� p

cos y0f ðA1 cosðy
0
ÞÞdy0

� �

�
�K 2A1

A2

sinb: ð73bÞ

Similarly, from Eqs (7), (60) and (64), we have for model B

K1ðbÞ ¼ G� 1

1

Z p

� p

f 0ðU1ðyÞÞ sin y
� Z p

� p

�K 1dðy � y
0
Þf ðU2ðy

0
þ bÞÞdy0

�

dy

¼
2�K 1

G1

Z p

� p

f 0ðU1ðyÞÞ sin yf ðU2ðyþ bÞÞdy

¼
2�K 1

G1

Z p

� p

f 0ðU1ðy � bÞÞ sinðy � bÞf ðU2ðyÞÞdy:

ð74aÞ

Similarly,

K2ðbÞ ¼
2�K 2

G2

Z p

� p

f 0ðU2ðy � bÞÞ sinðy � bÞf ðU1ðyÞÞdy: ð74bÞ

Evaluation of diffusion coefficients

Finally, from Eq (66), the diffusion coefficients Dj become

Dj ¼
1

G2

j

Z p

� p

Z p

� p

Cjðy � y
0
Þf 0ðUjðyÞÞf

0ðUjðy
0
ÞÞ sin y sin y0dy0dy: ð75Þ

One finds that the diffusivities decreases as the spatial correlation lengths increase. For exam-

ple, in the case of spatially homogeneous noise (Cjðy � y
0
Þ ¼ �Cj), Dj = 0 since f 0(Uj(θ)) is even.

On the other hand, for spatially uncorrelated noise (Cjðy � y
0
Þ ¼ �Cjdðy � y

0
Þ), we have

Dj ¼
�Cj

G2

j

Z p

� p

sin2 y½f 0ðUjðyÞ�
2dy > 0: ð76Þ

In Results we take Cjðy � y
0
Þ ¼ �Cj cosðy � y

0
Þ so that

Dj ¼
1

G2

j

Z p

� p

Z p

� p

�Cj cosðy � y
0
Þf 0ðAj cosðyÞÞf

0ðAj cosðy
0
ÞÞ sin y sin y0dy0dy

¼
�Cj

G2

j

½

Z p

� p

f 0ðAj cosðyÞÞ sin
2 ydy�2 ¼

�Cj

2A2
j

:

ð77Þ

Numerical methods

All numerical simulations were performed in Matlab. One dimensional numerical simulations

were performed using a forward Euler method scheme in time and a trapezoidal rule for inte-

gration in θ. Time steps were taken to be Δt = 0.001, and orientation steps Δθ = 0.01π.
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