
RESEARCH ARTICLE

Stytra: An open-source, integrated system for

stimulation, tracking and closed-loop

behavioral experiments

Vilim ŠtihID
☯, Luigi PetruccoID

☯, Andreas M. KistID
¤, Ruben PortuguesID*

Research Group of Sensorimotor Control, Max Planck Institute of Neurobiology, Martinsried, Germany

☯ These authors contributed equally to this work.

¤ Current address: Department of Phoniatrics and Pediatric Audiology, University Hospital Erlangen, Medical

School, Friedrich-Alexander-University Erlangen-Nürnberg, Germany

* rportugues@neuro.mpg.de

Abstract

We present Stytra, a flexible, open-source software package, written in Python and

designed to cover all the general requirements involved in larval zebrafish behavioral experi-

ments. It provides timed stimulus presentation, interfacing with external devices and simul-

taneous real-time tracking of behavioral parameters such as position, orientation, tail and

eye motion in both freely-swimming and head-restrained preparations. Stytra logs all

recorded quantities, metadata, and code version in standardized formats to allow full prove-

nance tracking, from data acquisition through analysis to publication. The package is modu-

lar and expandable for different experimental protocols and setups. Current releases can be

found at https://github.com/portugueslab/stytra. We also provide complete documentation

with examples for extending the package to new stimuli and hardware, as well as a schema

and parts list for behavioral setups. We showcase Stytra by reproducing previously pub-

lished behavioral protocols in both head-restrained and freely-swimming larvae. We also

demonstrate the use of the software in the context of a calcium imaging experiment, where

it interfaces with other acquisition devices. Our aims are to enable more laboratories to eas-

ily implement behavioral experiments, as well as to provide a platform for sharing stimulus

protocols that permits easy reproduction of experiments and straightforward validation.

Finally, we demonstrate how Stytra can serve as a platform to design behavioral experi-

ments involving tracking or visual stimulation with other animals and provide an example

integration with the DeepLabCut neural network-based tracking method.

This is a PLOS Computational Biology Software paper.

Introduction

The central goal of systems neuroscience is to explain the neural underpinnings of behavior.

To investigate the link between sensory input, brain activity and animal behavior, relevant

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Štih V, Petrucco L, Kist AM, Portugues R

(2019) Stytra: An open-source, integrated system

for stimulation, tracking and closed-loop behavioral

experiments. PLoS Comput Biol 15(4): e1006699.

https://doi.org/10.1371/journal.pcbi.1006699

Editor: Francesco P. Battaglia, Radboud

Universiteit Nijmegen, NETHERLANDS

Received: November 29, 2018

Accepted: March 15, 2019

Published: April 8, 2019

Copyright: © 2019 Štih et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data can be found

at Zenodo: https://zenodo.org/record/1692080#.

XAAST9VKi6I doi 10.5281/zenodo.1692080.

Funding: RP was funded through the Human

Frontier Science Program (http://www.hfsp.org/)

grant RPG0027/2016 and through the Max Planck

Gesellschaft (http://www.mpg.de/) (PSY 825). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-5108-8204
http://orcid.org/0000-0003-4001-0564
http://orcid.org/0000-0003-3643-7776
http://orcid.org/0000-0002-1495-9314
https://github.com/portugueslab/stytra
https://doi.org/10.1371/journal.pcbi.1006699
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006699&domain=pdf&date_stamp=2019-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006699&domain=pdf&date_stamp=2019-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006699&domain=pdf&date_stamp=2019-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006699&domain=pdf&date_stamp=2019-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006699&domain=pdf&date_stamp=2019-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006699&domain=pdf&date_stamp=2019-04-18
https://doi.org/10.1371/journal.pcbi.1006699
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/record/1692080#.XAAST9VKi6I
https://zenodo.org/record/1692080#.XAAST9VKi6I
https://doi.org/10.5281/zenodo.1692080
http://www.hfsp.org/
http://www.mpg.de/

behavioral variables have to be recorded and quantified. Therefore, the same experimental par-

adigm has to be replicated in different experimental setups in order to combine it with differ-

ent recording or stimulation techniques, and it needs to be reproducible across different

laboratories. However, the setups generally rely on heterogeneous hardware and custom-made

software tailored to the specific requirements of one experimental apparatus. Often, the code

used is based on expensive software packages (such as LabView or Matlab), with open-source

options for hardware control generally limited to one particular type or brand of devices. As a

consequence, the same experimental protocol has to be implemented many times, thus wasting

time and increasing potential sources of error. This makes sharing the code for replicating a

scientific finding under the same experimental conditions very difficult.

To address these problems, we developed Stytra, a package that encompasses all the require-

ments of hardware control, stimulation and behavioral tracking that we encounter in our

everyday experimental work. Our system, completely written in Python, provides a framework

to assemble an experiment combining different input and output hardware and algorithms for

online behavioral tracking and closed-loop stimulation. It is highly modular and can be

extended to support new hardware devices or tracking algorithms. It facilitates reuse of differ-

ent components of the package, encourages building upon existing work and enforces consis-

tent data management. The definition of experimental protocols in high-level Python scripts

makes it very suitable for version control and code sharing across laboratories, facilitating

reproducibility and collaboration between scientists. Finally, it runs on all common desktop

operating systems (Windows, MacOS and Linux), therefore incurring no additional costs on

the software side. Similar approaches have already been made available for real-time tracking

of zebrafish larvae [1, 2]. Still, to our knowledge, none of these solutions implement tracking

functions for both head-restrained and freely-swimming larvae, they do not allow the use of

custom tracking algorithms, and they do not provide a generic framework to design open- and

closed-loop stimulation paradigms.

Stytra was developed primarily in the context of a laboratory working with larval zebrafish,

and it fulfills the common requirements of behavioral paradigms used with this animal [3]:

video tracking, visual stimulation and triggering of external devices. The tracking functions

(for freely swimming and head-restrained fish) include both efficient re-implementations of

published algorithms and newly-developed methods. Nevertheless, custom methods can easily

be added. Common visual stimuli and methods for combining them and presenting them in

different ways are provided. Our experimental setups are open-source as well [4]: hardware

designs provided along with the documentation describe the apparatus required for perform-

ing common behavioral experiments in zebrafish in detail. The library provides many ele-

ments useful for designing behavioral experiments in Python, potentially offering a unified

platform to build and share experiments in zebrafish neuroscience and behavioral research.

We welcome and will support community contributions to expand the capabilities of the pack-

age to other paradigms and animals, although our development efforts will remain focused on

zebrafish applications.

Design and implementation

Overview and library structure

We developed Stytra using the Python programming language. We endeavored to follow best

practices in software engineering: separation of user interface and data processing code, mod-

ularity and consistent programming interfaces. In Stytra, new experiments can be designed

using very simple Python syntax, allowing even beginners in programming to develop their

own stimulation paradigms. Once defined, the experiment is controlled through a graphical

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 2 / 19

https://doi.org/10.1371/journal.pcbi.1006699

user interface which can be used with no knowledge of Python. At the core of the Stytra pack-

age lies the Experiment object, which links all components that may be used in an experi-

ment: stimulus presentation, camera, animal tracking, metadata and logging (S1 Fig).

This organization enables composing different experimental paradigms with full code

reuse. Improvement of different modules (e.g. the user interface, plotting or tracking) is there-

fore reflected in all experimental setups, and support for a new piece of hardware or tracking

function can be added with minimal effort and interference with other parts of the project.

Online image processing is organized along a sequence of steps: first, images are acquired

from the camera, then the image is filtered and tracked, and the tracking results are saved.

Acquisition, tracking and data saving occur in separate processes (depicted in blue, purple,

and green in Fig 1). This approach improves the reliability and the performance of online

behavioral tracking, and exploits the advantages of multi-core processors. After processing,

streaming numerical data (such as tracking results and dynamic parameters of stimuli) is

passed into data accumulators in the main thread, and a user-selected subset can be plotted in

real time and saved in one of the several supported formats. Moreover, for every experimental

session all changeable properties impacting the execution of the experiment are recorded and

saved. Finally, as the software package is version-controlled, the version (commit hash) of the

software in use is saved as well, ensuring the complete reproducibility of every experiment.

Building and running an experiment in Stytra

The Experiment object binds all the different components required to run an experiment.

The most basic Experiment object performs the presentation of a succession of stimuli, sav-

ing the experiment metadata and the stimulation log. For experiments including video

Fig 1. Data flow in Stytra. Communication between different parts of a Stytra experiment. Each color represents a

separate process in which the module(s) are running. Data flow between modules within one process is depicted by

arrows, and between processes as double arrows. The classes belonging to the data flow elements are displayed in

monospace. A more comprehensive diagram of the classes is provided in S1 Fig. The user interface, the stimulus

update and related functions such as the screen calibration and data saving are performed in the main process, colored

in green. The stimulation can be triggered by a triggering process (in orange) that listens for an external triggering

signal. Frames can be acquired from a camera process (in blue), analyzed by a tracking function (in purple), and the

result can be streamed to the main process for data saving and used in closed-loop experiments via the estimator.

https://doi.org/10.1371/journal.pcbi.1006699.g001

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 3 / 19

https://doi.org/10.1371/journal.pcbi.1006699.g001
https://doi.org/10.1371/journal.pcbi.1006699

tracking, the TrackingExperiment object augments the basic Experiment with fea-

tures such as camera frame acquisitions and online image analysis. The image analysis pipeline

can be one of the zebrafish specific pipelines supplied with Stytra, or a custom tracking pipe-

line. The Experiment is linked to the user interface for controlling the running of stimula-

tion protocols, inserting metadata, controlling parameters, and calibrating the stimulus display

(Fig 2). In general, the users do not need to define new types of Experiment objects for

every new experimental paradigm. Instead, paradigms are implemented by defining a

Protocol object which contains the stimulus sequence (as described below) and a configu-

ration dictionary with information about the camera, tracking pipeline, and triggering. The

appropriate Experiment object can be automatically instantiated from the configuration

dictionary using the Stytra constructor. Alternatively, an Experiment can be instantiated

and run from the experiment script, as described in the documentation examples. Ideally, the

provided Experiment objects should cover most of the requirements of zebrafish behavioral

experiments, and redefining the Experiment is required only if one needs to modify the

graphical user interface (GUI), add more nodes in the data pipeline (screens or cameras) or

implement more specific customizations. A more detailed depiction of the connections and

versions of different objects is depicted in S1 Fig. For examples of how to create a Protocol
and run experiments in Stytra, see the Usage examples box and the more detailed examples

gallery in the documentation.

Stimulus design

Experimental protocols in Stytra are defined as sequences of timed stimuli presented to the

animal through a projector or external actuators. A sequence of stimuli, defined as a Python

Fig 2. Screen capture of the software in use. The various behavioral paradigms supported by Stytra provide the user

with a consistent interface to control experiments. The toolbar on top controls aspects of running the experiment, a

camera panel shows the tracking results superimposed on the camera image, a calibration panel enables quick

positioning and calibration of the stimulus display and a monitoring panel plots a user-selected subset of experimental

variables.

https://doi.org/10.1371/journal.pcbi.1006699.g002

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 4 / 19

https://doi.org/10.1371/journal.pcbi.1006699.g002
https://doi.org/10.1371/journal.pcbi.1006699

list of Stimulus objects, is defined in a Protocol object (see Usage examples box). This

structure enables straightforward design of new experimental protocols, requiring very little

knowledge of the general structure of the library and only basic Python syntax. A dedicated

class coordinates the timed execution of the protocol relying on a QTimer from the PyQt5

library, ensuring a temporal resolution in the order of 15-20 ms (around the response time of a

normal monitor, see S2 Fig). Drawing very complex stimuli consisting of many polygons or

requiring online computation of large arrays can decrease the stimulus display performance.

The stimulus display framerate can be monitored online from the user interface when the

protocol is running (see the lower left corner of the window in Fig 2). Milli- or microsecond

precision, which might be required for optogenetic experiments, for example, is currently

not supported. Each Stimulus has methods which are called at starting time or at every

subsequent time step while it is set. In this way one can generate dynamically changing stimuli,

or trigger external devices. New Stimulus types can be easily added to the library just by

subclassing Stimulus and re-defining the Stimulus.start() and Stimulus.
update() methods.

A large number of stimuli is included in the package. In particular, a library of visual stimuli

has been implemented as VisualStimulus objects using the QPainter object, a part of

the Qt GUI library, enabling efficient drawing with OpenGL. Relying on a set of high-level

drawing primitives makes the code very readable and maintainable. Stytra already includes

common stimuli used in visual neuroscience, such as moving bars, dots, whole-field transla-

tion or rotations of patterns on a screen, and additional features such as movie playback and

the presentation of images from a file (which can be generated by packages such as Imagen

[5]). The classes describing visual stimuli can be combined, and new stimuli where these pat-

terns are moved or masked can be quickly defined by combining the appropriate Stimulus
types. Finally, new stimuli can be easily created by redefining the paint() method in a

new VisualStimulus object. Multiple stimuli can be presented simultaneously using

StimulusCombiner. Presenting different stimuli depending on animal behavior or exter-

nal signals can be achieved using the ConditionalStimulus container, or with similarly

designed custom objects. Visual stimuli are usually displayed on a secondary screen, therefore

Stytra provides a convenient interface for positioning and calibrating the stimulation window

(visible in Fig 2 on the right-hand side). Although in our experiments we are using a single

stimulation monitor, displaying stimuli on multiple screens can be achieved with virtual

desktop technology or screen-splitting hardware boards. Importantly, all stimulus parameters

are specified in physical units and are therefore independent of the display hardware. Finally,

the timed execution of code inside Stimulus objects can be used to control hardware

via I/O boards or serial communication with micro-controllers such as Arduino or MicroPy-

thon PyBoard. For example, in this way one may deliver odors or temperature stimuli or

optogenetic stimulation. Examples for all these kinds of stimuli are provided in the main

repository.

Usage examples

Here we present the main parts of simple scripts that can be used to run a Stytra experiment.

The complete scripts can be found in the Stytra repository under stytra/examples. Stytra

is run in most cases by defining a stimulus sequence in a Protocol object. This custom pro-

tocol is passed to the Stytra constructor, which creates an appropriate Experiment
object. The subclass of Experiment is selected depending on the configuration passed

through either the Stytra constructor or the stytra_config attribute of the Protocol.

The online documentation contains an example of how to use a custom Experiment class.

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 5 / 19

https://doi.org/10.1371/journal.pcbi.1006699

Creating and running a protocol. To create an experiment, a Protocol class has to be

defined. The Protocol.get_stim_sequence() method returns the sequence of sti-

muli that will be presented in the experiment. A Protocol object is then passed as an argu-

ment to the instance of Stytra that will run it.

Example:

from stytra import Stytra, Protocol

from stytra.stimulation.stimuli import Pause, FullFieldVisualStimulus

class FlashProtocol(Protocol):

name = “flash protocol” # protocol name

def get_stim_sequence(self):

stimuli = [Pause(duration = 9), # black screen, 9 sec FullFieldVisualStimulus

(duration = 1, # flash, 1 sec color = (255, 255, 255))]

return stimuli

Stytra(protocol = FlashProtocol())

Creating a new stimulus. In an experiment it might be necessary to use a stimulus type

not available in the existing library. To design a new stimulus, a Stimulus subclass has to be

created and its Stimulus.start() and Stimulus.update() methods should be

overwritten. In the following piece of code, we create a closed-loop stimulus which turns the

screen red when the fish is swimming. To achieve this, we redefine the Stimulus.update
() to change the color attribute, and the Stimulus.paint() to paint the screen red. The

stytra_config attribute defines the video source (a Ximea camera), and the tracking

functions (tail tracking with vigor as a velocity estimator):

from stytra import Stytra, Protocol

from stytra.stimulation.stimuli import VisualStimulus

from PyQt5.QtCore import QRect

from PyQt5.QtGui import QBrush, QColor

class NewStimulus(VisualStimulus):

def _ _init_ _(self, �args, ��kwargs):

super()._ _init_ _(�args, ��kwargs)

self.color = (255, 255, 255)

def paint(self, painter, w, h):

painter, w and h come from the Qt library drawing functions.

painter: QPainter object;

w, h: width and height of the window

painter.setBrush(QBrush(QColor(�self.color))) # Use chosen color

painter.drawRect(QRect(0, 0, w, h)) # draw full field rectangle

def update(self):

fish_vel = self._experiment.estimator.get_velocity()

change color if speed of the fish is higher than threshold:

if fish_vel < -15:

self.color = (255, 0, 0)

else:

self.color = (255, 255, 255)

class CustomProtocol(Protocol):

name = “custom protocol” # protocol name

Here we define tracking method, vigor estimator, and add a camera:

stytra_config = dict(tracking = dict(method = “tail”, estimator = “vigor”),

camera = “ximea”)

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 6 / 19

https://doi.org/10.1371/journal.pcbi.1006699

def get_stim_sequence(self):

return [NewStimulus(duration = 10)]

Stytra(protocol = CustomProtocol())

Image acquisition and tracking

Image acquisition. A key feature of Stytra is the extraction of relevant behavioral features

in real time from video inputs. The Camera object provides an interface for grabbing frames

and setting parameters for a range of different camera types. Currently supported models

include those by XIMEA, AVT, PointGray/FLIR, and Mikrotron, as well as webcams sup-

ported by OpenCV [6]. Support for other cameras can be added as long as a Python or C API

exists. In addition, previously-recorded videos can also be processed, allowing for offline track-

ing. Frames are acquired from the original source in a process separated from the user inter-

face and stimulus display. This ensures that the acquisition and tracking frame rate are

independent of the stimulus display, which, depending on the complexity of the stimulus and

output resolution, can be between 30 and 60 Hz.

Tracking pipelines. The tracking process receives acquired frames and handles animal

tracking (represented in Fig 1). Image processing and tracking are defined in subclasses of

Pipeline objects and contain a tree of processing nodes, starting from input images and

ending with tracking nodes that take images as input and give tracking results as output. This

structure allows for multiple tracking functions to be applied on the same input image(s).

Currently implemented image processing nodes include image filtering (down-sampling,

inversion and low-pass filtering) and background subtraction. The outputs of the tracking

nodes are assembled together and streamed to the main process, where the data is saved and

visualized. The Pipeline object also allows specifying a custom camera overlay to display

the results of the tracking and an additional plotting widget for an alternative visualization of

data. This modular structure allows easy expansion of the library: new functions for pre-fil-

tering or tracking can be incorporated into the pipeline with minimal effort. Pipelines to

track tail and eye position in head-restrained fish, as well as fish position and orientation in

an open arena, are included in Stytra. Parts of the tracking functions use the OpenCV com-

puter vision library. Time-critical functions are compiled with the Numba library to increase

their performance.

Behavior tracking in head-restrained fish. Tail tracking. Zebrafish larvae swim in dis-

crete units called bouts, and different types of swim bouts, from startle responses to forward

swimming are caused by different tail motion patterns [7]. The tail of the larvae can be easily

skeletonized and described as a curve discretized into 7-10 segments [8] (Fig 3A). The tail

tracking functions work by finding the angle of a tail segment given the position and the orien-

tation of the previous one. The starting position of the tail, as well as a rough tail orientation

and length need to be specified beforehand using start and end points, movable over the cam-

era image displayed in the user interface (as can be seen in Fig 3A).

To find the tail segments, two different functions are implemented. The first one looks at

pixels along an arc to find their maximum (or minimum, if the image is inverted) where the

current segment would end (as already described in e.g. [8]). The second method, introduced

here, is based on centers of mass of sampling windows (Fig 3), and provides a more reliable

and smoother estimate over a wider range of resolutions and illumination methods. The image

contrast and tail segment numbers have to be adjusted for each setup, which can be easily

accomplished through the live view of the filtering and tracking results. In the documentation

we provide guidelines on choosing these parameters. To compare results across different

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 7 / 19

https://doi.org/10.1371/journal.pcbi.1006699

setups which might have different camera resolutions, the resulting tail shape can be interpo-

lated to a fixed number of segments regardless of the number of traced points.

Eye tracking. Zebrafish larvae move their eyes to stabilize their gaze in response to whole

field motion, perform re-positioning saccades, and converge their eyes to follow a potential

prey in hunting maneuvers [9]. Naso-temporal eye movements can be described by the eye ori-

entation with respect to the fish axis. Given the ellipsoidal shape of the eyes when seen from

above, to find their orientation it is sufficient to fit an ellipse to the eye pixels and determine

the angle of the major axis [9]. In Stytra, a movable and scalable rectangular region can be

used to select the area of the camera view containing the eyes. As eyes are usually much darker

than the background, with proper illumination conditions it is sufficient to binarize the image

with an adjustable threshold which selects the pixels belonging to the eyes. Then, functions

from the OpenCV library are used to find the two largest connected components of the binar-

ized region and fits an ellipse to them. The absolute angle of the major axis of the ellipse is

recorded as the eye angle (Fig 4). A live preview of the binarized image and the extracted ellip-

ses helps the user to adjust the parameters.

Freely-swimming fish tracking. To support different kinds of paradigms where fish are

not head-restrained, we provide functions for freely-swimming fish tracking. The range of

behavioral paradigms include investigating movement evoked by different kinds of stimuli,

characterizing motion kinematics and assessing consequences of pharmacological or genetic

interventions. To track the fish in an open arena, the first required step is background subtrac-

tion. The background is modelled with a mean image taken from multiple frames averaged in

time, and slowly updated with an adjustable time constant. The subsequently processed image

is the negative difference between the current frame and the threshold (pixels that are darker

than the background are active). This image is first thresholded and regions within the right

area range are found. Both eyes and the swim bladder are found as darker parts inside of these

regions, and the center of mass of the three objects (two eyes and swim bladder) is taken as the

center of the fish head. The direction of the tail is found by searching for the point with the

largest difference from the background on a circle of half-tail radius. This direction is

Fig 3. Head-restrained tail tracking in Stytra. A) The image is first pre-processed by inverting, down-scaling,

blurring and clipping, resulting in the image on the right, where the fish is the only object brighter than the

background. Then, tail tracing starts from a user-defined point, and in the direction determined by another user-

defined point at the end of the tail at rest. For each segment, a square (outlined in white) in the direction of the

previous segment (yellow) is sampled, and the direction for the next segment is chosen as the vector (red) connecting

the previous segment end and the center of mass of the sampled square (blue). B) A heatmap showing the angles of the

tail segments from the start to the end of the tail during a bout, and a trace representing the cumulative curvature sum

from a behaving animal. The total curvature is just the difference in angle between the first and last tail segment

(adding up angle differences between all segments, only these two terms remain).

https://doi.org/10.1371/journal.pcbi.1006699.g003

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 8 / 19

https://doi.org/10.1371/journal.pcbi.1006699.g003
https://doi.org/10.1371/journal.pcbi.1006699

subsequently refined in the course of tail tracking, as described in the tail tracking section. The

kinematic parameters are smoothed by Kalman filtering. An example resulting from tracking

multiple fish simultaneously is shown in Fig 5. Fish identities are maintained constant while

they are in the field of view and not overlapping, by keeping track of the previous positions

and orientations. The number of fish does not significantly impact performance, however the

resolution of the camera does, so we recommend a well-configured modern computer (7th

generation and above Intel Core i7 processors or AMD Ryzen) for tracking multiple fish in a 90

mm dish. In our experiments not more than 3 fish are usually present, and a tracking frame-

rate of 300 Hz can be reached reliably. We have also tracked individual fish in a 24-well plate,

which presented no performance issues at 100 Hz with a mid-range CPU. Simpler tracking sce-

narios for screening, where the exact position, orientation and tail curvature of individuals are

not of interest, can work with even higher numbers of animals.

For closed-loop experiments, the camera view and the projected area need to be aligned to

lock the stimulus to the fish position. To this end, a calibration module inside of Stytra finds

the mapping between the area covered by the camera and the area illuminated by the screen.

During calibration, three points are projected on the screen and detected as local maxima on

Fig 4. Eye tracking in Stytra. A) Eyes are detected by fitting an ellipse to the connected components of the image of

the fish head after thresholding. B) Example trace of eye motion in response to a full-field rotating background.

https://doi.org/10.1371/journal.pcbi.1006699.g004

Fig 5. Example bouts tracked from freely-swimming fish. From left to right: trajectories of bouts in different

directions, the velocity magnitude and the total angle change during the course of the bouts. In the left-most panel, all

trajectories were realigned such that the initial position and orientation of the fish were the same. The data was

sampled at 300 Hz.

https://doi.org/10.1371/journal.pcbi.1006699.g005

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 9 / 19

https://doi.org/10.1371/journal.pcbi.1006699.g004
https://doi.org/10.1371/journal.pcbi.1006699.g005
https://doi.org/10.1371/journal.pcbi.1006699

the camera image. Then, a transformation matrix is computed to align the projected and

recorded points. If the setup elements are kept firmly in place, the calibration has to be done

only once, although regular checking of the calibration on a regular basis is encouraged.

Custom tracking functions. Stytra is designed in an extensible fashion and video tracking

algorithms for other animals can be easily added. To demonstrate this, we provide a small

example of DeepLabCut-based tracking, which can be integrated with very few lines of code

and immediately used with closed-loop stimuli. DeepLabCut is a convolutional neural net-

work-based pose estimation toolbox [10] built on top of the DeeperCut architecture [11]. We

incorporated an open-field recording example with the video and parameters provided in the

original repository (see Fig 6). The code for this example is in a separate GitHub repository,

listed at the end of the manuscript. The tracking performance of DeepLabCut mainly depends

on video resolution and CPU and GPU performance. We managed to obtain a tracking speed of

20 Hz (resulting in a tracking latency of 50 ms) for a 640x480 px video on a computer equipped

with a nVidia GeForce GTX Titan X GPU and Intel Xeon E5-2687W v3 CPU. For a detailed inves-

tigation of DeepLabCut performance see [12].

Closed-loop stimuli design

Stimuli whose state depends on the behavior of the fish (position and orientation for freely

swimming fish, and tail or eye motion for head-restrained fish) are controlled by linking

the behavioral state logs to the stimulus display via Estimator objects (see Fig 1). An

Estimator receives a data stream from a tracking function (such as tail angles), and uses it

together with calibration parameters to estimate some quantity online. For example, a good

proxy for fish velocity is the standard deviation of the tail curvature over a window of 50 ms

[13], which we refer to as vigor. Fig 7 shows an example of how vigor can be used in a closed-

loop optomotor assay. When presented with a global motion of the visual field in the caudal-

rostral direction, the fish tend to swim in the direction of perceived motion to minimize the

visual flow, a reflex known as the optomotor response [3, 14]. The visual feedback during the

Fig 6. Screenshot of DeepLabCut-based rat tracking in Stytra. On the left, the 4 detected keypoints (snout, two ears

and tail base) in red are superimposed on the video. On the right, traces tracking the coordinates of the animal are

displayed, along with a parameter of of a closed-loop stimulus (a circle that would be tracking a rat). The video

displayed was provided with the DeepLabCut repository [10].

https://doi.org/10.1371/journal.pcbi.1006699.g006

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 10 / 19

https://doi.org/10.1371/journal.pcbi.1006699.g006
https://doi.org/10.1371/journal.pcbi.1006699

swimming bout is a crucial cue that the larvae use to control their movements. In this closed-

loop experiment, we use the vigor-based estimation of fish forward velocity, together with a

gain factor, to dynamically adjust the velocity of the gratings to match the visual flow expected

by a forward swimming fish. The gain parameter can be changed to experimentally manipulate

the speed of the visual feedback received by the larvae [13] (see below).

Closed-loop stimuli may be important for freely swimming fish as well, for example to dis-

play patterns or motion which always maintain the same spatial relationship to the swimming

fish by matching the stimulus location and orientation to that of the fish.

Synchronization with external devices

Stytra is designed to support the presentation of stimuli that need to be synchronized with a

separate acquisition program, e.g. for calcium imaging or electrophysiology. To this end, the

Trigger object enables communication with external devices and different computers to

synchronize the beginning of the experiment. The Trigger object runs in a separate process,

ensuring that the interface is not blocked while waiting for trigger signals, and it can be used to

either trigger the beginning of the experiment, or to trigger arbitrary parts of the protocol

using the existing TriggerStimulus object or similar custom stimuli. Two ways of receiv-

ing the triggering signal are already supported in the library: TTL pulse triggering via a LabJack

board, and communication over a local network employing the ZeroMQ library. Messages

exchanged through ZeroMQ can also contain data, such as the microscope configuration, that

will be saved together with the rest of the experiment metadata. The triggering module is

designed to be easily expandable, and we provide instructions for writing custom trigger

objects. In our lab the two-photon microscope is controlled by custom LabView software,

which we extended to include ZeroMQ communication with Stytra. An example LabView pro-

gram that can be used to trigger Stytra is illustrated in the triggering section of the documenta-

tion. In Results, we describe an example experiment using this triggering configuration to link

Fig 7. Closed-loop optomotor assay. Dynamic update of the stimulus in a closed-loop assay for the optomotor

response. From top: open-loop velocity of the gratings moving caudo-rostrally below the fish; cumulative tail angle (see

the tail tracking section and Fig 3 for details); bout vigor, estimated by calculating the instantaneous standard deviation

of the angle sum in a 50 ms window; final closed-loop velocity of the gratings, with backward movements induced by

the fish swimming.

https://doi.org/10.1371/journal.pcbi.1006699.g007

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 11 / 19

https://doi.org/10.1371/journal.pcbi.1006699.g007
https://doi.org/10.1371/journal.pcbi.1006699

behavioral and stimulus quantities and the recorded calcium responses. Proprietary scanning

programs where this cannot be achieved can still trigger Stytra using TTL pulses.

Data collection

The design of Stytra encourages automatic data management. A dedicated DataCollector
object is used to log the metadata about the experiment. Parameters from the entire program

are appended to a single hierarchical parameter tree, which is saved at the end of the experi-

ment. Quantities in the tree can come from different sources. Firstly, parameters can be added

at any point in the code. For example, at every run the current version number of Stytra and

git commit are detected and saved, together with the versions of the dependencies. Secondly,

many of the key objects of Stytra (tracking nodes, display and camera controllers. . .) are

parametrized though a custom parameters package (lightparam). When constructing them,

one needs to pass the parameter tree that collects the data. This ensures that all quantities

needed to replicate the experiment are collected within the metadata file. Finally, dedicated

parametrized objects can be used to manually input metadata concerning the animal (age,

genotype, etc.) or the experiment (setup, session, etc.). These classes can be customized to

automatically include lab-specific metadata options, such as setup identifiers or animal lines

(examples for this customization are provided in the documentation). Various logs accompa-

nying the experiment run (state of the stimuli, the raw tracking variables and the estimated

state of the fish) are saved as tabular data. The supported data formats are CSV, HDF5 and

Feather, but others could be added as long as they provide an interface to the Pandas library.

To demonstrate the convenience of the data and metadata saving methods of Stytra, we made

example data available together with Jupyter notebooks for the analyses that can reproduce the

figures in this paper. Finally, a central experiment database can be connected to keep track of

all the experiments in a lab or institute. The documentation provides an example of a Mon-

goDB database connection.

Setup hardware

In our effort to make experiments as open and reproducible as possible, we documented exam-

ple setups that can be used together with the Stytra software for performing behavioral experi-

ments in head-restrained and freely swimming fish (Fig 8). In general, the minimal setup for

tracking the fish larvae requires a high-speed camera (a minimum of 100 Hz is required to cap-

ture the most common tail beats which have a frequency up to 50 Hz, but we recommend at

least 300 Hz to describe the details of the tail kinematics). The camera must be equipped with a

suitable objective: a macro lens for the head-restrained tail tracking or a normal lens for the

freely swimming recordings, where a smaller magnification and a larger field of view are

required. More detailed camera and lens guidelines can be found in the documentation. Infra-

red illumination is then used to provide contrast without interfering with the animal’s visual

perception. Since fish strongly rely on vision and many of their reflexes can be triggered by

visual stimulation, the setup is usually equipped with a projector or screen to present the visual

stimulus to the fish. Although in our setups stimuli are projected below the fish, a lateral pro-

jector would be fully compatible with Stytra. Most of our rig frames consist of optomechanical

parts commonly used for building microscopes. These parts are convenient but not strictly

necessary to build a well-functioning rig. Replacing them with simple hardware-store and

laser-cut components can significantly reduce the costs. Therefore, we also provide instruc-

tions for a head-restrained setup built inside a cardboard box, where the most expensive item

is the high-speed camera, bringing the price of the whole setup without the computer below

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 12 / 19

https://doi.org/10.1371/journal.pcbi.1006699

700 euros. We built and documented such a setup, where we were able to elicit and record reli-

able optomotor responses in larval zebrafish (Fig 8).

A complete description of all the above-mentioned versions of the setup along with an item-

ized list of parts is included within the Stytra hardware documentation.

Comparison with existing software packages

Many general-purpose systems have been proposed over the years to present visual and other

kinds of stimuli and control behavioral experiments, each with its own strengths and limita-

tions. Below we sum up some of the systems which are currently maintained, and we present

how they compare to Stytra.

Bonsai. Bonsai [15] is a visual programming language built on top of the language C#

with a reactive, dataflow-based paradigm. In Bonsai, users with little experience in program-

ming can implement their own tracking pipelines and basic stimuli. By default Bonsai offers

visualization of any data processing node, and custom visualizers. In principle, due to the gen-

erality of Bonsai, all functions of Stytra could be implemented within it. Still, implementing

many features would require using a programming language uncommon in science (C#).

Also, the use of several Python libraries, such as DeepLabCut, is in many cases not possible, as

only a subset of Python is supported in C# through the IronPython interpreter.

Psychophysics toolbox. Psychophysics Toolbox [16] offers a large toolbox to build visual

stimuli and stimulation protocols. The toolbox has been developed with human psychophysics

in mind, in particular visual and auditory psychophysics. It provides large control over display

Fig 8. Hardware for zebrafish behavior experiments. A) Above: sample image of a behavioral setup that can be used

to track head-restrained zebrafish tail end eyes (the opaque enclosure has been removed for visualization purposes).

Below: sample traces for tail angle and grating velocity obtained from this setup with the closed-loop experiment

described in Fig 7. B) A low-cost version of the setup presented in A) that can be used to investigate behavior in the

head-restrained fish, and sample traces from this setup. A detailed description of the setup together with a complete list

of parts can be found at www.portugueslab.com/stytra/hardware_list.

https://doi.org/10.1371/journal.pcbi.1006699.g008

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 13 / 19

http://www.portugueslab.com/stytra/hardware_list
https://doi.org/10.1371/journal.pcbi.1006699.g008
https://doi.org/10.1371/journal.pcbi.1006699

and sound hardware, and many tools for acquiring responses from the subject through the

mouse and keyboard. Still, its application is restricted to the stimulus design, as it does not

offer any camera integration or animal tracking modules. This makes the toolbox ill-suited for

developing closed-loop stimuli where behavior and responses of the animal need to be fed

back to the stimulus control software. Moreover, it relies on the proprietary software package

Matlab.

Psychopy. Psychopy [17] is a library similar to the Psychophysics Toolbox, written in

Python. It provides precise control over displaying visual and auditory stimuli (not currently

implemented in Stytra), and a set of tools for recording responses through standard computer

inputs (mouse and keyboard). Due to its wide use in human psychophysics experiments, it has

a larger library of stimuli than Stytra. However, it is also purely a stimulation library without

video or other data acquisition support. Moreover, it does not provide a system for easy online

control of stimulus parameters, an essential feature for closed-loop experiments.

MWorks. MWorks is a C/C++ library to control neurophysiological experiments, devel-

oped mostly for (visual) neurophysiology in primates and rodents. It provides support for

building complex tasks involving trials with different possible outcomes, and contains a dedi-

cated library for handling visual stimuli. Due to being implemented in a compiled language,

higher and more consistent performance can be obtained than with our package, which is

Python based. However, it is not designed for online video analysis of behavior, which is essen-

tial for behaviorally-controlled closed-loop experiments. Furthermore, while scripting and

expanding Stytra requires pure Python syntax, experiments in MWorks are coded in custom

high-level scripting language based on C++. Most importantly, it runs only on MacOS, which

depends on Apple hardware, available only in a minority of laboratories.

ZebEyeTrack. The software solution described in [2] covers a small subset of Stytra func-

tionality—eye tracking and eye-motion related stimulus presentation. It is implemented in

LabView and Matlab, which adds two expensive proprietary software dependencies. Running

an experiment requires launching separate programs and many manual steps as described in

the publication. The tracking frame rate is limited to 30 Hz in real-time while Stytra can per-

form online eye tracking at 500 Hz, and Stytra’s performance is mainly limited by the camera

frame rate.

Results

Triggering Stytra from a scanning two-photon microscope

We demonstrate the communication with a custom-built two-photon microscope. We per-

formed two-photon calcium imaging in a seven days post fertilization (dpf), head-restrained

fish larva pan-neuronally expressing the calcium indicator GCaMP6f (Tg(elavl3:GCaMP6f),

[18]). For a complete description of the calcium imaging protocol see [19]. These and follow-

ing experiments were performed in accordance with approved protocols set by the Max Planck

Society and the Regierung von Oberbayern.

We designed a simple protocol in Stytra consisting of either open- or closed-loop forward-

moving gratings, similar to the optomotor assay described in the closed-loop section, with the

gain set to either 0 or 1. At the beginning of the experiment, the microscope sends a ZeroMQ

message to Stytra, as described in the previous section. This triggers the beginning of the visual

stimulation protocol, as well as the online tracking of the fish tail, with a 10-20 ms delay. To

match behavioral quantities and stimulus features with their evoked neuronal correlates, we

used the data saved by Stytra to build regressors for grating speed and tail motion (for a

description of regressor-based analysis of calcium signals, see [8]). Then, we computed pixel-

wise correlation coefficients of calcium activity and the two regressors. Fig 9 reports the results

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 14 / 19

https://doi.org/10.1371/journal.pcbi.1006699

obtained by imaging a large area of the fish brain, covering all regions from the rhombenceph-

alon to the optic tectum. As expected, calcium signals in the region of the optic tectum are

highly correlated with motion in the visual field, while events in more caudal regions of the

reticular formation are highly correlated with swimming bouts. The Stytra script used for this

experiment is available at stytra/example/imaging_exp.py.

Experiment replication

One of the main strengths of Stytra is the possibility of sharing the experimental paradigms

described in a publication as scripts that can be run on different platforms and experimental

hardware. To prove the validity of this approach, we decided to showcase the software repro-

ducing the results from two publications that investigated different behaviors of the larval zeb-

rafish. This allowed us to verify the performance of our package in producing and monitoring

reliable behavioral responses, and showed how the Stytra platform can be used to share the

code underlying an experimental paradigm. The scripts used for designing these experiments

are available in our repository, together with a full list of parts and description of the hardware.

In this way, everyone can independently replicate the experiments simply by installing and

running Stytra on a suitable behavioral setup.

Closed-loop motor adaptation. To demonstrate the effectiveness of the closed-loop stim-

ulation software for head-restrained larvae, we re-implemented in Stytra one of the paradigms

described in [13]. This paper addresses the importance of instantaneous visual feedback in the

control of the optomotor response in seven dpf zebrafish larvae.

In [13], a closed-loop paradigm was used to have real-time control over the visual feedback

that the animal receives upon swimming. After triggering motor activity with forward-moving

black and white gratings (10 mm/s, 0.1 cycles/mm), online tail tracking was used to estimate

Fig 9. Closed-loop protocol and simultaneous whole-brain calcium imaging. A) A protocol consisting of either

open- or closed-loop forward-moving gratings was presented to a seven day old Tg(elavl3:GCaMP6f) zebrafish larvae

during two-photon imaging. The arrowhead points to the timepoint of receiving the trigger signal from the

microscope. Colored stripes indicate periods when the gratings were moving: dark gray represents open loop trials

(gain 0) and light gray represents closed-loop trials (gain 1). B) Left: Pixel-wise correlation coefficients with the grating

velocity regressor. The square on the regressor map reports the position of the area that was used to compute the

calcium trace displayed on the right. Right: z-scored fluorescence trace from the selected area, imposed over the

regressor trace. C) Same as B, for the vigor regressor.

https://doi.org/10.1371/journal.pcbi.1006699.g009

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 15 / 19

https://doi.org/10.1371/journal.pcbi.1006699.g009
https://doi.org/10.1371/journal.pcbi.1006699

the expected velocity of the fish based on freely-moving observations, and a backward velocity

proportional to the expected forward velocity was imposed over the forward grating speed. In

one crucial experiment (Fig 3 of [13]) the authors demonstrated that reducing or increasing

the magnitude of this velocity by a factor of 1.5 (high gain) or 0.5 (low gain) resulted in modifi-

cations of the bout parameters such as bout length and inter-bout interval (time between two

consecutive bouts). Fig 10A shows the inter-bout interval along the protocol, where the three

gain conditions were presented in a sequence that tested all possible gain transitions. When

the gain increased the fish was consistently swimming less (higher inter-bout interval), while

the opposite was observed when the gain decreased. Therefore, as expected, fish adapted the

swimming parameters to compensate for changes in visual feedback.

We reproduced exactly the same protocol within Stytra, and we used Stytra modules for

closed-loop control of a visual stimulus to compare whether it could replicate the findings

from [13]. The cumulative angle of the extracted tail segments was used with a gain factor to

estimate the fish velocity and the gain factor was changed in a sequence matching the protocol

in [13]. The replication with Stytra yielded the same result (Fig 10B), that inter-bout interval

decreased in low gain conditions and increased in high gain conditions.

Closed-loop phototaxis assay. To test the freely swimming closed-loop performance, we

replicated a protocol from [20]. The fish is induced to perform phototaxis by keeping half of its

visual field (the left or the right side) bright while the other is dark. The fish is more likely to

turn to the bright side. The stimulus is constantly updated so that the light-dark boundary is

always along the mid-line of the fish. We replicated the qualitative trends observed in [20],

however the ratios of forward swims to turns are notably different (Fig 11). The variability of

fish responses and differences in the stimulus presentation setup (e.g. projector brightness)

could account for these differences. Also, to reduce duration of the experiments, we included a

radially-inward moving stimulus that brings the fish back into the field of view.

Discussion

We have developed Stytra, a Python-based software package that can perform online behav-

ioral analysis and stimulation and can be interfaced with existing solutions to combine these

Fig 10. Visual feedback changes inter-bout interval in a head-restrained optomotor assay. Replication within Stytra

of results published in [13]. A) Changing the gain that is used to convert the fish’s swimming vigor to relative velocity

with respect to the grating affects the inter-bout interval. The line represents the average normalized inter-bout time,

and bars represent standard error of the mean from n = 28 larvae (adapted from [13]). B) Replication in Stytra of the

same experimental protocol (n = 24 larvae). Individual fish traces are shown in gray.

https://doi.org/10.1371/journal.pcbi.1006699.g010

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 16 / 19

https://doi.org/10.1371/journal.pcbi.1006699.g010
https://doi.org/10.1371/journal.pcbi.1006699

with physiological experiments. This demonstrates its suitability as a framework for coding

and running experiments in systems neuroscience. In addition to the open-source software,

we are contributing to the nascent open hardware movement [4] and are providing a complete

description of the hardware used for conducting behavioral experiments. Finally, we provide a

set of example analysis scripts for the experiments described in this manuscript, which can be

easily modified for other experimental questions. We believe that the simplicity of the imple-

mentation of an experiment within Stytra facilitates the collaboration between laboratories,

since complex experimental paradigms can be run and shared with Python scripts whose

reproducibility can be ensured using version control.

The current version of the software supports all experimental paradigms currently running

in our lab. Support for different hardware would require some extensions in the architecture.

Simultaneous use of multiple cameras is currently not supported either, but this requires a

minor rewriting of the frame dispatching module. We will both continue to extend Stytra’s

capabilities and support any contributions that expand the library to cover a wider range of

experimental conditions. Finally, it is important to note that the choice of Python as a language

would make it difficult to obtain millisecond-level or higher temporal precision (e.g. for

closed-loop electrophysiology). To this aim, existing solutions based on compiled languages

should be employed, such as [21] (a system for closed-loop electrophysiology in C++).

Another possibility would be to combine Open Ephys and Bonsai, as in [22].

The modular and open-source nature of the package (licensed under the GNU GPL v3.0

licence) facilitates contributions from the community to support an increasing number of

hardware devices and experimental conditions. Although the current implementation deals

with typical zebrafish experiments, the package contains many modules that can be used in

other contexts, for example: Qt-based design and timed execution of stimuli, support for dif-

ferent cameras models and accumulators to save data streamed from different processes that

can be used for closed-loop stimuli. Although the adaptation to very different experimental

conditions requires familiarity with Stytra internals, scientists interested in developing behav-

ioral paradigms using pure Python could use many modules of Stytra as a starting point. We

will make use of the community features of Github to provide assistance to any interested

developers, and to support adopting the package in other labs. In conclusion, we hope that Sty-

tra can be a resource for the neuroscience community, providing a common framework to cre-

ate shareable and reproducible behavioral experiments.

Fig 11. Comparison of turning angle distribution in a closed-loop freely-swimming phototaxis experiment. Left: a

histogram of the angle turned per bout, redrawn from [20]. Right: the equivalent panel, with n = 10 fish and the

protocol run with Stytra. The dark shading on the plot represents the dark side of the visual field.

https://doi.org/10.1371/journal.pcbi.1006699.g011

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 17 / 19

https://doi.org/10.1371/journal.pcbi.1006699.g011
https://doi.org/10.1371/journal.pcbi.1006699

Online resources

• Stytra repository: https://github.com/portugueslab/stytra DOI:10.5281/zenodo.2548534

• Stytra documentation: http://www.portugueslab.com/stytra/

• data analysis notebooks: https://github.com/portugueslab/example_stytra_analysis

• example data from Stytra: https://zenodo.org/record/1692080

• example extension of Stytra to rat experiments: https://github.com/portugueslab/Stytra-

with-DeepLabCut

Supporting information

S1 Fig. Software architecture of Stytra. A partial diagram of classes and the links between

them.

(TIF)

S2 Fig. Temporal jitter of a flickering stimulus. The distribution of time differences between

bright-dark transitions of a stimulus set to flip between full luminosity on the red channel and

darkness on every stimulus. Pure red was flashed in order to avoid artifacts of LED DLP projector

color multiplexing. The brightness of a small area of the display was recorded with a Ximea

camera with a OnSemi PYTHON 1300 sensor at 2000 Hz.

(TIF)

Acknowledgments

We thank Marco Albanesi for testing the software and the first pull requests, and Virginia

Palieri, Elena I. Dragomir, Ot Prat and Daniil Markov for being the first users of Stytra in the

lab. We thank the Python open-source community on whose work this package is based on,

especially Luke Campagnola for developing the invaluable PyQtGraph package.

Author Contributions

Conceptualization: Vilim Štih, Luigi Petrucco, Ruben Portugues.

Data curation: Vilim Štih, Luigi Petrucco.

Formal analysis: Vilim Štih, Luigi Petrucco.

Funding acquisition: Ruben Portugues.

Investigation: Vilim Štih, Luigi Petrucco.

Methodology: Vilim Štih, Luigi Petrucco, Andreas M. Kist.

Project administration: Ruben Portugues.

Software: Vilim Štih, Luigi Petrucco, Andreas M. Kist.

Supervision: Ruben Portugues.

Validation: Vilim Štih, Luigi Petrucco.

Visualization: Vilim Štih, Luigi Petrucco.

Writing – original draft: Vilim Štih, Luigi Petrucco, Ruben Portugues.

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 18 / 19

https://github.com/portugueslab/stytra
https://doi.org/10.5281/zenodo.2548534
http://www.portugueslab.com/stytra/
https://github.com/portugueslab/example_stytra_analysis
https://zenodo.org/record/1692080
https://github.com/portugueslab/Stytra-with-DeepLabCut
https://github.com/portugueslab/Stytra-with-DeepLabCut
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006699.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006699.s002
https://doi.org/10.1371/journal.pcbi.1006699

Writing – review & editing: Andreas M. Kist.

References
1. Haesemeyer M. haesemeyer/ZebraTrack: Initial release; 2019. Available from: https://doi.org/10.5281/

zenodo.2539837.

2. Dehmelt FA, von Daranyi A, Leyden C, Arrenberg AB. Evoking and tracking zebrafish eye movement in

multiple larvae with ZebEyeTrack. Nature protocols. 2018; p. 1.

3. Portugues R, Engert F. The neural basis of visual behaviors in the larval zebrafish. Current opinion in

neurobiology. 2009; 19(6):644–647. https://doi.org/10.1016/j.conb.2009.10.007 PMID: 19896836

4. Chagas AM. Haves and have nots must find a better way: The case for open scientific hardware. PLoS

biology. 2018; 16(9):e3000014. https://doi.org/10.1371/journal.pbio.3000014

5. Imagen;. https://imagen.pyviz.org.

6. Bradski G. The OpenCV Library. Dr Dobb’s Journal of Software Tools. 2000.

7. Budick SA, O’Malley DM. Locomotor repertoire of the larval zebrafish: swimming, turning and prey cap-

ture. Journal of Experimental Biology. 2000; 203(17):2565–2579. PMID: 10934000

8. Portugues R, Feierstein CE, Engert F, Orger MB. Whole-brain activity maps reveal stereotyped, distrib-

uted networks for visuomotor behavior. Neuron. 2014; 81(6):1328–1343. https://doi.org/10.1016/j.

neuron.2014.01.019 PMID: 24656252

9. Beck JC, Gilland E, Tank DW, Baker R. Quantifying the ontogeny of optokinetic and vestibuloocular

behaviors in zebrafish, medaka, and goldfish. Journal of neurophysiology. 2004; 92(6):3546–3561.

https://doi.org/10.1152/jn.00311.2004 PMID: 15269231

10. Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, et al. DeepLabCut: markerless pose

estimation of user-defined body parts with deep learning. Nature Neuroscience. 2018. https://doi.org/

10.1038/s41593-018-0209-y PMID: 30127430

11. Insafutdinov E, Pishchulin L, Andres B, Andriluka M, Schiele B. DeeperCut: A Deeper, Stronger, and

Faster Multi-Person Pose Estimation Model.

12. Mathis A, Warren RA. On the inference speed and video-compression robustness of DeepLabCut.

bioRxiv. 2018. https://doi.org/10.1101/457242

13. Portugues R, Engert F. Adaptive locomotor behavior in larval zebrafish. Frontiers in systems neurosci-

ence. 2011; 5:72. https://doi.org/10.3389/fnsys.2011.00072 PMID: 21909325

14. Orger MB, Kampff AR, Severi KE, Bollmann JH, Engert F. Control of visually guided behavior by distinct

populations of spinal projection neurons. Nature neuroscience. 2008; 11(3):327. https://doi.org/10.

1038/nn2048 PMID: 18264094

15. Lopes G, Bonacchi N, Frazão J, Neto JP, Atallah BV, Soares S, et al. Bonsai: an event-based frame-

work for processing and controlling data streams. Frontiers in neuroinformatics. 2015; 9:7. https://doi.

org/10.3389/fninf.2015.00007 PMID: 25904861

16. Brainard DH, Vision S. The psychophysics toolbox. Spatial vision. 1997; 10:433–436. https://doi.org/10.

1163/156856897X00357 PMID: 9176952

17. Peirce JW. PsychoPy—psychophysics software in Python. Journal of neuroscience methods. 2007;

162(1-2):8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017 PMID: 17254636

18. Wolf S, Dubreuil AM, Bertoni T, Böhm UL, Bormuth V, Candelier R, et al. Sensorimotor computation

underlying phototaxis in zebrafish. Nature Communications. 2017; 8(1):651. https://doi.org/10.1038/

s41467-017-00310-3 PMID: 28935857

19. Kist AM, Knogler LD, Markov DA, Yildizoglu T, Portugues R. Whole-Brain Imaging Using Genetically

Encoded Activity Sensors in Vertebrates. In: Decoding Neural Circuit Structure and Function. Springer;

2017. p. 321–341.

20. Huang KH, Ahrens MB, Dunn TW, Engert F. Spinal projection neurons control turning behaviors in zeb-

rafish. Current Biology. 2013; 23(16):1566–1573. https://doi.org/10.1016/j.cub.2013.06.044 PMID:

23910662

21. Ciliberti D, Kloosterman F. Falcon: a highly flexible open-source software for closed-loop neuroscience.

Journal of neural engineering. 2017; 14(4):045004. https://doi.org/10.1088/1741-2552/aa7526 PMID:

28548044

22. Buccino AP, Lepperod ME, Dragly SA, Hafliger PD, Fyhn M, Hafting T. Open source modules for track-

ing animal behavior and closed-loop stimulation based on Open Ephys and Bonsai. bioRxiv. 2018; p.

340141.

Stytra: An open-source package for stimulation, tracking and behavioral experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006699 April 8, 2019 19 / 19

https://doi.org/10.5281/zenodo.2539837
https://doi.org/10.5281/zenodo.2539837
https://doi.org/10.1016/j.conb.2009.10.007
http://www.ncbi.nlm.nih.gov/pubmed/19896836
https://doi.org/10.1371/journal.pbio.3000014
https://imagen.pyviz.org
http://www.ncbi.nlm.nih.gov/pubmed/10934000
https://doi.org/10.1016/j.neuron.2014.01.019
https://doi.org/10.1016/j.neuron.2014.01.019
http://www.ncbi.nlm.nih.gov/pubmed/24656252
https://doi.org/10.1152/jn.00311.2004
http://www.ncbi.nlm.nih.gov/pubmed/15269231
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
http://www.ncbi.nlm.nih.gov/pubmed/30127430
https://doi.org/10.1101/457242
https://doi.org/10.3389/fnsys.2011.00072
http://www.ncbi.nlm.nih.gov/pubmed/21909325
https://doi.org/10.1038/nn2048
https://doi.org/10.1038/nn2048
http://www.ncbi.nlm.nih.gov/pubmed/18264094
https://doi.org/10.3389/fninf.2015.00007
https://doi.org/10.3389/fninf.2015.00007
http://www.ncbi.nlm.nih.gov/pubmed/25904861
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1163/156856897X00357
http://www.ncbi.nlm.nih.gov/pubmed/9176952
https://doi.org/10.1016/j.jneumeth.2006.11.017
http://www.ncbi.nlm.nih.gov/pubmed/17254636
https://doi.org/10.1038/s41467-017-00310-3
https://doi.org/10.1038/s41467-017-00310-3
http://www.ncbi.nlm.nih.gov/pubmed/28935857
https://doi.org/10.1016/j.cub.2013.06.044
http://www.ncbi.nlm.nih.gov/pubmed/23910662
https://doi.org/10.1088/1741-2552/aa7526
http://www.ncbi.nlm.nih.gov/pubmed/28548044
https://doi.org/10.1371/journal.pcbi.1006699

