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Abstract

Phototrophic organisms such as cyanobacteria utilize the sun’s energy to convert atmo-

spheric carbon dioxide into organic carbon, resulting in diurnal variations in the cell’s metab-

olism. Flux balance analysis is a widely accepted constraint-based optimization tool for

analyzing growth and metabolism, but it is generally used in a time-invariant manner with no

provisions for sequestering different biomass components at different time periods. Here we

present CycleSyn, a periodic model of Synechocystis sp. PCC 6803 metabolism that spans

a 12-hr light/12-hr dark cycle by segmenting it into 12 Time Point Models (TPMs) with a uni-

form duration of two hours. The developed framework allows for the flow of metabolites

across TPMs while inventorying metabolite levels and only allowing for the utilization of cur-

rently or previously produced compounds. The 12 TPMs allow for the incorporation of time-

dependent constraints that capture the cyclic nature of cellular processes. Imposing bounds

on reactions informed by temporally-segmented transcriptomic data enables simulation of

phototrophic growth as a single linear programming (LP) problem. The solution provides the

time varying reaction fluxes over a 24-hour cycle and the accumulation/consumption of

metabolites. The diurnal rhythm of metabolic gene expression driven by the circadian clock

and its metabolic consequences is explored. Predicted flux and metabolite pools are in line

with published studies regarding the temporal organization of phototrophic growth in Syne-

chocystis PCC 6803 paving the way for constructing time-resolved genome-scale models

(GSMs) for organisms with a circadian clock. In addition, the metabolic reorganization that

would be required to enable Synechocystis PCC 6803 to temporally separate photosynthe-

sis from oxygen-sensitive nitrogen fixation is also explored using the developed model

formalism.

Author summary

Phototrophic organisms such as cyanobacteria harvest the sun’s energy to convert atmo-

spheric CO2 into organic carbon, due to which their metabolism is heavily influenced by

light availability. The strongly diurnal nature of their metabolism is reflected in the
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presence of two distinct metabolic phases–a light-dependent anabolic phase tailored

around the synthesis of storage compounds and metabolic precursors and a light-absent

catabolic period that metabolizes the previously manufactured compounds to release

energy in the absence of an external energy source. Due to these considerations, the analy-

sis of phototrophic growth using constraint-based optimization methods is insufficient

and needs to be extended beyond time-invariant descriptions. Here, we introduce Cycle-

Syn which models the periodic nature of metabolism in Synechocystis sp. PCC 6803. Our

approach enables us to account for temporal metabolic shifts tailored around light avail-

ability while still allowing for the use of the pseudo steady-state assumption used in con-

ventional flux balance analysis. This is achieved by exploiting the large difference in time-

scales between metabolic reactions and cell growth. We first validate the biological fidelity

of CycleSyn predictions by comparing them to experimental observations for a diurnally

cultured Synechocystis sp. PCC 6803 and to identify the major temporal variations in its

metabolic processes. Next, we demonstrate the ability of CycleSyn to describe a tempo-

rally-varying metabolism by introducing diazotrophy in Synechocystis and evaluating the

genes that need to be upregulated/downregulated to enable nitrogen fixation in a photo-

synthetic organism. Our study lays the foundation for subsequent analysis of systems with

temporal variations in metabolism using a constraint-based optimization approach.

Introduction

Flux balance analysis (FBA) has become a popular tool to analyze the metabolic function of

organisms [1]. FBA assumes the cell is operating at a pseudo steady-state, wherein for each

internal metabolite the sum of production fluxes must equal the sum of consumption fluxes.

The steady-state assumption hinges upon the requirement that the time constants characteriz-

ing metabolic reactions are very rapid compared to the time constant of cell growth [2]. This

time flux invariance places tight constraints on the feasible solution space and underpins the

explanatory and predictive success of FBA [3–5]. However, for many organisms temporal and

periodic variations in metabolism are part of their lifestyle [6]. This is the case for phototrophic

organisms whose metabolism is tailored around light availability over a 24-hour cycle. Two

distinct phases can be identified here: a light phase that centers around synthesis of metabolic

precursors and storage compounds, and a dark phase that consumes those storage compounds

to ensure survival in the absence of an energy source [7]. The transition between these two

phases is driven by the circadian clock that choreographs the temporal expression of thousands

of genes [6]. Highly varying gene expression levels over the 24hr cycle implies that the corre-

sponding metabolic fluxes would also vary significantly and the biomass precursor production

be dynamically shaped as the cumulative contribution by metabolism over 24 hours. FBA

describes metabolic fluxes as the average over the 24hr period thus missing the opportunity to

describe the (i) temporally varying nature of metabolism, (ii) time dependent inventory and

remobilization of metabolites, and (iii) the time when different components of biomass are

produced. This implies that FBA needs to be augmented so that it can accommodate tempo-

rally varying gene transcription information while still permitting the use of the pseudo

steady-state assumption, by exploiting the difference in time-scales between metabolic reac-

tions and cell growth.

In their natural habitat, cyanobacteria are subject to a diurnal cycle of light and dark, lead-

ing to significant shifts and reorganization within their metabolic network. Although several

studies, both experimental and computational [8–10], have helped to illustrate this cyclic
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cyanobacterial lifestyle, metabolic studies have primarily focused on conditions of constant

illumination or heterotrophic growth on externally-supplied carbon sources. Kinetic models

of cyanobacterial metabolism can capture the temporal biochemical interactions in the system,

but are only available for select subsystems, such as the cyanobacterial circadian clock [11,12],

photosystem II [13], and the Calvin-Benson cycle [14,15]. These temporal transitions cannot

be described using conventional FBA, and these limitations have been recognized before.

Knoop et al. [16] augmented FBA by introducing a time varying biomass composition tailored

around light availability. For instance, the ratio for pigments in the biomass reaction was

increased two hours before sunrise and storage compound coefficients increased after noon. A

set amount of glycogen was supplied to the model for fueling dark respiration instead of trans-

ferring the storage compounds generated during light to dark [16]. Optimal temporal alloca-

tion of resources has also been employed as a tool to model diurnal lifestyles using an

approach called conditional FBA [17,18]. Conditional FBA limits the flux through a reaction

by accounting for the abundance of enzymes (or enzyme complexes) and their catalytic turn-

over numbers [17,18]. Nonlinear constraints are used to maintain periodicity which makes the

size of the model grow as the square of the number of time steps being simulated [17,18]. The

LP problems solved at each iteration may also become ill-conditioned due to the orders of

magnitude differences in fluxes. Finally, required inputs such as enzyme turnovers are often

hard to determine accurately.

CycleSyn alleviates these challenges by recasting diurnal growth as a single linear optimiza-

tion framework, with solve times of the same order as that of a standard FBA. A 12h light/12h

dark cycle is discretized into twelve intervals, each of which abides by the pseudo-steady state

hypothesis, to provide twelve snapshots of metabolism (see Table 1 for a comparison of Cycle-

Syn with other published models of dynamic metabolism). By connecting these snapshots by

metabolite transfer reactions, CycleSyn also provides insights into metabolite accumulation

and consumption which are in line with published literature [19,20]. The only model input

apart from model stoichiometry and biomass composition is transcriptomic data collected at

2-hour intervals, which is used to throttle back the upper bounds of corresponding reactions.

Apart from modeling phototrophic metabolism, CycleSyn can be applied to functions typically

Table 1. A comparison of CycleSyn with existing models of dynamic metabolism. In comparing the published models, standard metabolic inputs of biomass composi-

tion and nutrient uptakes were not counted. For Baroukh et al. [26] EFMs refer to elementary flux modes.

Model Inputs Model Limitations Model Outputs Reference

Temporal biomass compositions & RNA-seq

data under different growth conditions

Does not account for temporal metabolite

accumulation

Flux distributions under autotrophic,

heterotrophic, and mixotrophic conditions

Zuñiga et al. [22]

Time-course metabolomics data Computationally intensive MILP-based

relaxation algorithm, data intensive

Temporal flux distributions Bordbar et al. [23]

Parameterized using flux rate of change

constraints

Computationally expensive as NLP and

multiple LPs to be solved

Temporal flux distributions and metabolite

concentrations

Mahadevan et al. [24]

Time-varying biomass objective function Does not account for temporal metabolite

accumulation

Temporal flux distributions Knoop et al. [16]

Enzyme turnover numbers Nonlinear model constraints, numerical

instabilities

Temporal flux distributions and metabolite

accumulation

Rügen et al. [17],

Reimers et al. [18]

Tissue-specific biomass composition Does not account for temporal metabolite

accumulation

Temporal flux distributions Oliveira Dal’Molin

et al. [25]

Reaction kinetic parameters Network decomposition heuristics,

exponential increase in EFMs with network

size

Temporal flux distributions and metabolite

concentrations

Baroukh et al. [26]

Time-course transcriptomics data Data intensive Temporal flux distributions and metabolite

accumulation

CycleSyn

https://doi.org/10.1371/journal.pcbi.1006692.t001
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served by conventional FBA such as testing in silico knockout mutants or identifying essential

reactions/pathways under a varying light regime. In the absence of omics data from mutant

strains, algorithms such as RELATCH [21] can be used in conjunction with CycleSyn to pre-

dict the effect of gene knockouts. The primary assumption employed there is that perturbed

strains minimize relative metabolic changes and increase the capacity of previously active and

inactive pathways in order to adapt to perturbations. By employing flux and gene expression

data from wild-type strains, Kim et al. were able to successfully predict flux distributions in

genetically and/or environmentally perturbed E. coli, S. cerevisiae, and B. subtilis strains. The

current text demonstrates the ability of CycleSyn to guide the redesign of temporally-varying

metabolism by identifying the metabolic shifts required to incorporate diazotrophy in a photo-

troph such as Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis).
In this paper, we seek to capture the temporal changes in phototrophic metabolism over a

diurnal cycle by modelling a 24-hour day as twelve individual Time-Point Models (TPMs),

with each TPM spanning a two-hour period during 12 hours of light and 12 hours of dark.

The pseudo-steady state assumption of standard FBA is imposed at every TPM. Metabolite bal-

ances are imposed at every TPM though accumulation and/or net consumption of metabolites

is allowed. Any metabolite surplus in the cytosol or carboxysome is transferred to the next

TPM. Metabolite levels are not allowed to drop below zero implying that all metabolite con-

sumption within a TPM must not exceed the surplus provided by the previous TPM and the

amount produced in the current TPM. Reaction flux upper bounds are set in proportion to the

temporally varying transcriptomic data. The cascade of TPMs satisfies periodicity constraints

by matching the output from the 12th TPM with the input to the 1st one. Comparisons with

experimental observations for Synechocystis cultured under a 12h/12h light-dark cycle are used

to ascertain biological fidelity. We find that CycleSyn correctly predicted the accumulation of

metabolites such as glycogen, the primary storage compound in Synechocystis, and was able to

replicate the temporal variations in metabolic pathways as seen in a diurnally cultured Syne-
chocystis. We also found that upon constricting reaction fluxes using temporally segmented

transcriptomic data, the primary bottlenecks in wild-type Synechocystis biomass production

centered around pyruvate and 2-oxoglutarate metabolisms. Upregulating their production

and/or diverting pyruvate flux selectively into the TCA cycle would lead to increased growth,

as has been experimentally observed in Synechococcus elongatus PCC 7942 [27].

Subsequently, we used the 24hr model to address the metabolic flux rewiring needed to

enable nitrogen fixation in a temporally segregated manner from photosynthesis in Synecho-
cystis. We found that the added energy needed to fuel nitrogen fixation needs to be supplied by

an enhanced TCA cycle turnover together with an upregulation of photosynthesis and glycoly-

sis. The genes that need to be upregulated with respect to a non-diazotrophic wild-type Syne-
chocystis are associated with pathways of energy metabolism, so as to meet the higher energy

requirements posed by nitrogen fixation and amino-acid production.

Results/Discussion

Model structure

The 24-hour model was created starting from the published Synechocystis genome-scale model

(GSM) iSyn731 [28] as a reaction source, which was updated to include the latest Synechocystis
genome annotation from CyanoBase (http://genome.annotation.jp/cyanobase/Synechocystis).

Twelve separate GSMs (each called a Time Point Model or TPM) (Fig 1), each spanning a two-

hour period starting from the first light time point (L0-L2) to the last dark time point (D10-

D12) were linked. Initially, all TPMs are the same except that TPMs 1 through 6 are allowed to

take up light as photons and carbon as carbon dioxide whereas TPMs 7 through 12 are not.

Diurnal model of Synechocystis sp. PCC 6803 metabolism
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The maximum CO2 uptake rate was set to 1.1 mmol CO2 g-1 dry weight hr-1 for every light

TPM, as cyanobacteria are known to not uptake carbon during dark [29–32] and no fixation

occurs in the dark due to the lack of photons. This CO2 uptake flux corresponds 0 to 13 mg-1

dry weight hr-1 of carbon [33,34]. A basal ATP maintenance demand was also set for every

TPM at 10 mmol g-1 dry weight h-1 [28]. The TPMs are connected by the unidirectional for-

ward transfer of metabolites present in the cytosol and carboxysomes, thus only allowing for

the consumption of a metabolite in a specific TPM if the metabolite was previously produced

or is produced during the current TPM. Any metabolite surplus in the cytosol and carboxy-

some except photons and protons are transferred to the next TPM (see Materials and Meth-

ods). The cyclic topology of the TPMs implies that metabolic flux can go around a closed loop

forming a thermodynamically infeasible cycle [35]. To remedy this, the sum of flux through all

transfer reactions (between TPMs) is minimized using modified parsimonious flux balance

analysis (pFBA) [36] after constraining the biomass production flux to its theoretical

Fig 1. An overview of CycleSyn. There are 12 individual TPMs, with metabolites being transferred through them unidirectionally in the direction indicated. Photons

are only supplied to the first six TPMs, and biomass is sequestered in TPM12, i.e., the last dark TPM. Exchange reactions move nutrients and other metabolites in and

out of the cell, while transfer reactions shuttle metabolites from one TPM to the next.

https://doi.org/10.1371/journal.pcbi.1006692.g001
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maximum. This is implemented in CycleSyn as an additional model constraint. It should be

noted that even though the transfer of energy metabolites such as ATP, NAD(P), and NAD(P)

H is allowed, CycleSyn results retain their qualitative trends when their transfer fluxes were set

to zero. This is because transferring a single storage molecule such as glycogen to satisfy energy

demands during the dark phase is preferred by CycleSyn as it is more in line with the model

constraint of minimizing the sum of all transfer fluxes.

Photosynthesis in the model is coupled to chlorophyll availability by only allowing flux

through photosynthesis reactions in a TPM if chlorophyll is present in that TPM, as coupling

chlorophyll production to photosynthetic flux places additional demands on chlorophyll syn-

thesis outside of serving as a biomass precursor. This additional demand is corroborated by

matching predicted photosynthetic oxygen evolution flux to experimental values (1) (see Mate-

rials and Methods). A single biomass sink placed in the last dark TPM (i.e., TMP12) sequesters

all biomass components in the experimentally measured ratios to model growth, although

CycleSyn results were similar when the biomass drain was placed in TPM6. TPM6 was chosen

as a test case as it is known that very little biomass is produced in the dark [37]. It is important

to note that the production of different biomass components is apportioned in a non-uniform

manner over the twelve TPMs and only in the last TPM are their fluxes combined to form bio-

mass (Fig 1). The periodicity in metabolism is captured by using transcriptomic data collected

over two-hour intervals to constraint reaction fluxes [38]. Specifically, the upper flux bound of

a reaction was scaled as a function of its associated gene expression value normalized by the

maximum expression over all TPMs, thereby constricting the maximum allowable flux

through it. Each reaction’s unscaled flux bounds are determined using only stoichiometric and

thermodynamic constraints in order to determine the largest feasible flux range (see Materials

and Methods). This approach is often referred to as the valve approach of regulation [39]. The

predicted biomass production flux before adding transcriptomic constraints was 0.03 hr-1

which corresponds to an average doubling time of 22.8 hours [40]. This closely aligns with the

experimentally determined doubling time of wild-type Synechocystis under phototrophic con-

ditions, which is approximately 24 hours (~0.0288 hr-1) [28]. Following the scaling of reaction

fluxes using their corresponding transcriptomic ratios, the maximum biomass production flux

was reduced by a tenth of its original unconstrained value. This corresponds to a doubling

time of ~25 hours. Doubling times in the range of 20–40 hours have been seen for diurnally

cultured Synechocystis [41].

CycleSyn uses reaction bounds informed from transcriptomic data to distinguish among

the individual light and dark TPMs by relatively throttling reaction upper bounds based on

gene expression. Implicit to this is the assumption that RNA levels track protein levels. This

correlation between gene expression and protein levels has been shown both experimentally

and computationally before [42–45]. Notably Zelezniak et al. [46] found that the correlations

between gene expression and metabolite concentrations increases when considered against a

background of a metabolic network. We assessed the effect of introducing normally-distrib-

uted white noise (within one standard deviation of the mean of the gene expression normal-

ized over time) in the connection between gene expression and proteins. We found that

CycleSyn predictions were within 19.28% of their unperturbed flux values, when averaged

over all metabolites and all time points.

Temporal variations in metabolite levels

Different light-sensing proteins help mediate external light cues to coordinate inner metabolic

processes. Studies in cyanobacteria such as Cyanothece ATCC 51142 (hereafter referred to as

Cyanothece) have shown that the abundance of many proteins change over the diurnal period

Diurnal model of Synechocystis sp. PCC 6803 metabolism
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[47]. 40.3% of these proteins are associated with central metabolism and energy pathways and

18.5% were associated with photosynthesis and respiration [47]. A majority of Synechocystis
genes also show cycling, with the peak expression of cycling genes being during the transition

from day to night, regulating energy supply and carbon metabolism [48]. Here, we examine if

the diurnal nature of a cellular process was maintained from the gene to the metabolic level by

incorporating gene expression data using the E-Flux method [39] (see ‘Materials and Methods’

section). Using a modified parsimonious flux balance analysis (pFBA) [36] to minimize the

total sum of all fluxes through the metabolite transfers between each TPM, the transfer flux

between TPMs was predicted. The transfer flux for a metabolite from one TPM to the next can

be interpreted as the accumulation/consumption of that metabolite in that particular TPM.

This allows us to compare the model-predicted metabolite accumulation to the experimentally

measured metabolite levels in a diurnally cultured Synechocystis. As the LP has multiple alter-

native optima, flux variability analysis [49] was used to determine the maximum and mini-

mum possible transfer flux between TPMs and used to construct Fig 2. This involves

Fig 2. Temporal variations in transfer fluxes of all metabolites over a 24-hour diurnal cycle. Metabolite transfer fluxes were found using flux variability

analysis [49], which alternatively minimizes (green) and maximizes (red) flux through the transfer reaction of interest while subject to minimal total flux flow to

find the range of feasible reaction fluxes. Individual transfer fluxes were then summed to obtain the total maximum and minimum transfer flux for a category.

Category classifications were taken from the KEGG pathway classification database [55].

https://doi.org/10.1371/journal.pcbi.1006692.g002
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minimizing and maximizing the flux through the metabolite transfer reactions while ensuring

that the model continues to produce biomass at the maximum value possible and the sum of

all transfer fluxes does not exceed the value obtained using the aforementioned modified

pFBA. The maximum and minimum transfer flux was taken for every transferring metabolite

and summed over to assess the distribution across categories (see supplementary S6 Table for

a list of metabolites and their classifications). For metabolite classes such as amino acids, pig-

ments, organic acids, and energy metabolites, there is very little variability between the maxi-

mum and minimum transfer flux across TPMs. This is due to the limitations placed on the

maximum allowable flux through a reaction using transcriptomics data and the modified

pFBA model constraint that further minimizes the sum of all transfer reactions, thus reducing

variability. Metabolites are only allowed to accumulate so as to satisfy the demands placed on

the system, such as biomass production and ATP maintenance.

The amino acid flux profile, governed mainly by glucogenic amino acids such as proline

and alanine, is found to be at its maximum during early light with a sharp decline at the transi-

tion between light and dark, i.e. between TPM6 and TPM7. This points towards the role of

proline as a carbon and nitrogen reservoir, as is known to occur in Cyanobacteria [50,51].

CycleSyn predicts that proline flux feeds into glutamate biosynthesis during the light TPMs by

the action of glutamate dehydrogenase. This is corroborated in literature, where glutamate

concentrations are known to increase during light in a diurnally cultured Synechocystis [41]

and the NADP-specific glutamate dehydrogenase functions only during light in the photo-

troph C. sorokiniana [52]. The decrease in amino acid transfer flux during the transition from

light to dark can be explained by the concurrent increase in accumulation of energy metabo-

lites such as ATP, GTP and CTP. Glucogenic amino acids are degraded towards TCA cycle

intermediates such as oxaloactetate, thereby producing energy equivalents in the form of ATP.

Glucogenic amino acids levels are known to decrease right after the transition from light to

dark incubation in wild-type Synechocystis [20], alongside a substantial upregulation in genes

involved in ATP synthesis [53]. This transition from light to dark is also accompanied by an

increase in flux through the oxidative part of the pentose phosphate pathway (OPPP). OPPP is

the major pathway of glucose catabolism in heterotrophic and mixotrophic cultures of Syne-
chocystis [54] and is known to be used in conjunction with the Calvin cycle to regulate carbon

fixation in autotrophic conditions [54].

The initiation of photosynthesis after the transition from light to dark uses energy com-

pounds such as NADPH, ATP, and Calvin cycle intermediates. As these intermediates are

shared with glycolysis, it is expected that respiration during dark time periods be closely linked

to the initiation of photosynthesis in diurnally-growing Synechocystis [56]. Glycogen is the pri-

mary respiratory substrate in Synechocystis and its degradation is initiated by glycogen phos-

phorylase transferring orthophosphate to the non-reducing end of the glucose residue in

glycogen and releasing glucose-1-phosphate, which feeds into glycolysis. Experiments with

Synechocystsis mutants deficient in glycogen phosphorylase (ΔGlgP) found that the amount of

dark respiration was 25% lower than that in the wild-type, following which the photosynthetic

oxygen evolution rate reached its steady-state value at a later time [56], delineating a temporal

dependence between glycolysis during the dark and photosynthesis during light. Our simula-

tions also show accumulation of circulating Calvin cycle intermediates during the dark TPMs.

Metabolites such as 3-phosphoglycerate, which is used to regenerate D-ribulose-1,5-bispho-

sphate (RuBP) during photosynthesis [57], and other glycolytic metabolites such as 2-phos-

phoglycerate and fructose-6-phosphate exhibit this phenomena. These metabolites are fed into

glycolysis during the dark and enter the Calvin cycle during the transition from dark to light,

suggesting that glycolytic intermediates produced during respiration in the dark are used for

regenerating RuBP via the Calvin cycle during the induction of photosynthesis. Interestingly,

Diurnal model of Synechocystis sp. PCC 6803 metabolism
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the total accumulation of RuBP was higher in light than in the dark, implying preferential pro-

duction and degradation of metabolites guided by the organism’s circadian clock. This is in

alignment with cyanobacteria upregulating the oxidative pentose phosphate pathway in the

absence of light [58].

Metabolite classes such as fatty acids, porphyrins, nucleotides, and proteins were selectively

produced in the light as opposed to the dark TPMs, in agreement with literature. Fatty acid

biosynthesis is known to increase with increasing light intensity in Synechocystis [59] and the

responsible enzymes involved show increased synthesis during the light in Cyanothece as well

[60]. Furthermore, photo-oxidative stress during photosynthesis gives rise to reactive oxygen

species and initiates redox signaling. Ansong et al. [61] showed that several proteins involved

in fatty acid biosynthesis are redox controlled in Synechococcus elongatus 7002, including ace-

tyl CoA-carboxylase, which catalyzes the first step of fatty acid biosynthesis. Nucleotide and

protein metabolism enzymes were shown to have the highest representation among all redox

sensitive proteins, both of which show higher metabolite accumulation in light as opposed to

dark in CycleSyn (Fig 2). Increased protein accumulation during light is also supported by an

upregulation in the corresponding genes involved in protein synthesis in Synechocystis [38].

The increase in porphyrins such as heme during the light TPMs is the consequence of the

increase in pigment production. Heme and chlorophyll are both tetrapyrrole pigments and

hence share a common biosynthetic pathway [62]. Both chlorophyll and heme production is

known to be upregulated during light in cyanobacteria [38,60], due to their central role in pho-

tosynthesis [63].

Interestingly, terpenes such as lycopene and gamma-carotene are synthesized in the latter

half of the day in CycleSyn, rising just before the transition to dark and maintaining these lev-

els throughout the dark TPMs. We sought to investigate the source of this production using

Metabolite-metabolite correlation analysis (MMCA) [64–67] (see Fig 3), which assesses metab-

olite concentration interdependencies using similarity metrics. These dependencies have been

used before to explore the temporal organization of metabolic networks [68,69]. The analysis

herein calculates pair-wise correlation coefficients between time-resolved transfer flux profiles

for all metabolites using the non-parametric Spearman Test, employing a two-tailed test for

hypothesis testing with a p-value cut-off of 0.05. The transfer flux for every metabolite was nor-

malized with respect to the maximum value recorded across all TPMs and used as a proxy for

metabolite concentrations. MMCA is usually employed on experimental datasets of metabolite

concentrations, but CycleSyn’s ability to predict metabolite accumulation levels under a FBA

paradigm enables us to use MMCA to study possible correlations between metabolite transfer

fluxes. MMCA showed that metabolites of the pentose phosphate pathway such as Ribulose-

1,5-bisphosphate (RuBP) and dihydroxyacetone phosphate (DHAP) are negatively correlated

with terpenes such as gamma-carotene, beta-carotene, and lycopene, the three terpenes show-

ing maximum production during late light (Fig 3), thus indicating that a rise in the levels of

terpenes is associated with a fall in the levels of RuBP and DHAP. A similar phenomenon has

been observed earlier by Ershov et al. [70] for a phototrophically growing Synechocystis, where

terpenoid biosynthesis was stimulated by the addition of DHAP and other compounds of the

pentose phosphate pathway, such as glyceraldehyde-3-phosphate (G3P) and D-ribulose

5-phosphate. Isoprenoid synthesis in Synechocystis occurs via the 2-C-methyl-D-erythritol

pathway (MEP pathway), which starts with the condensation of glyceraldehyde 3- phosphate

(GA3P) and pyruvate [71]. Thus, the substrates for terpenoid production are obtained from

the metabolite products of photosynthesis such as DHAP and G3P. This also explains the tem-

poral order of terpenoid production, wherein products of photosynthesis need to accumulate

in order for the MEP pathway to be active, thus leading to terpene production in the late light,

as replicated in CycleSyn. Furthermore, genes associated with the MEP pathway were seen to
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be upregulated in the dark in a diurnally cultured Synechocystis, such as those corresponding

to phytoene dehydrogenase, phytofluene dehydrogenase, and the reaction CTP:2-C-Methyl-

D-erythritol 4-phosphate cytidylyltransferase [38], which catalyzes the conversion of MEP into

Fig 3. Metabolite-metabolite correlation analysis of the terpenes lycopene, beta-carotene and gamma-carotene. The maximum transfer

flux for each metabolite obtained from FVA [49] was normalized with respect to the largest value recorded across all TPMs. Then, the non-

parametric Spearman test with a p-value cut-off of 0.05 was used to find pairwise correlations of metabolites in the class terpenes with all

other metabolites. Metabolite correlations with p-values of more than 0.05 have not been included and hence are left blank (depicted using

white) in the figure.

https://doi.org/10.1371/journal.pcbi.1006692.g003
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4-(cytidine 5’-diphospho)-2-C-methyl-D-erythritol and constitutes the second step of the

MEP pathway.

The metabolite class made up of RNA was found to be largely insensitive to the diurnal

changes in metabolism, transfer fluxes ranging between 4.345 and 4.328 mmol gDW-1 hr-1.

The time invariant nature of RNA production is consistent with a study that determined the

total amount of tRNAs is relatively constant over a diurnal cycle in Synechocystsis, with the

major RNA variability originating from long transcripts such as 16S rRNA and 23S rRNA [72]

which are not captured in the present metabolic reconstruction.

Glycogen accumulation

Carbon fixation in Synechocystis during light exceeds needs (luxury uptake [73,74]) so as to

catabolize those reserves in the dark to support growth and cellular maintenance. Glycogen is

employed as such a reserve in Synechocystis [75,76], providing maintenance energy for cellular

functions during dark periods [77]. As seen in Fig 4 and S1 Table, glycogen accumulates dur-

ing the day and is gradually consumed during the night in CycleSyn. The highest glycogen

transfer flux was recorded at the transition between light and dark in our simulations. Fig 4

contrasts the experimentally observed glycogen concentrations with the simulated glycogen

accumulation levels. This comparison enables us to approximate the amount of a metabolite

shuttled across TPMs after all its production/consumption reactions have taken place, so as to

examine its overall temporal dynamics and contrast it with experimental values. Model-

Fig 4. A comparison of experimentally observed increase in glycogen levels with CycleSyn predicted glycogen levels

in a diurnally cultured Synechocystis across a 12h light/12h dark cycle. Normalized glycogen accumulation in a

diurnally-growing Synechocystis. CycleSyn predictions (solid line, peach) are compared against experimentally

measured glycogen content from Angermayr et al. [41] (solid blue circles) and Hanai et al. [20] (solid black squares).

The glycogen levels for both the model predictions and the data have been normalized with respect to the highest value

recorded throughout the light/dark cycle for uniformity and easier comparison.

https://doi.org/10.1371/journal.pcbi.1006692.g004

Diurnal model of Synechocystis sp. PCC 6803 metabolism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006692 January 24, 2019 11 / 29

https://doi.org/10.1371/journal.pcbi.1006692.g004
https://doi.org/10.1371/journal.pcbi.1006692


predicted glycogen dynamics is in accordance with experimental data, with the total glycogen

content increasing gradually during light and reaching its peak level just before the onset of

dark. The dark TPMs see a progressive decrease in glycogen as it is utilized as a respiratory

substrate [77]. In particular, CycleSyn glycogen accumulation during light matches with the

experimental levels seen by Angermayr et al. [41], but unlike Angermayr et al. we do not see a

biphasic decline during late dark, which is also consistent with earlier studies [20,38,78].

Angermayr et al. [41] attribute the rapid decline in glycogen during the last two hours of dark

to increased acetate accumulation and an upregulation of genes encoding the bidirectional

NiFe-hydrogenase that is thought to help maintain the redox balance by reducing H+ [79].

CycleSyn did not predict a higher flux through NiFe-hydrogenase during the dark. In order to

further ascertain the veracity of the model-predicted glycogen levels, we also compared the gly-

cogen accumulation in the dark TPMs to data from Hanai et al. [20] (Fig 4). In this study Syne-
chocystis was cultured under a 12hour light/12hour dark cycle and the glycogen concentration

(as nmol per gm fresh weight (FW)) was measured at 0, 2, 6, and 12 hours after the transition

to dark (Fig 4). As seen in Fig 4, CycleSyn predicted glycogen dynamics during the dark

matches that seen by Hanai et al. [20].

Although CycleSyn predicts glycogen accumulation during light and degradation during

the dark, the minimum possible transfer flux for glycogen is zero, indicating that other

metabolites can serve as additional storage reserves. Isocitrate is found to be such a possible

storage metabolite that is accumulated during light and degraded in the dark TPMs. Its

catabolism occurs via isocitrate dehydrogenase, encoded by the icd (slr1289) gene which has

been found to be upregulated in the dark as compared to light in a diurnally cultured Syne-
chocystis by Saha et al. [38]. Experiments with Synechocystis sp. PCC 6803 impaired in gly-

cogen synthesis have displayed overflow of pyruvate and 2-oxoglutarate [80,81], suggesting

that carbon excess is directed preferentially into these compounds in the absence of glyco-

gen. Isocitrate dehydrogenase catabolizes isocitrate to produce 2-oxoglutarate, whose cen-

tral role in Synechocystis metabolism is discussed below and elucidated through metabolic

control analysis.

CycleSyn biomass production

The biomass equation approximates the composition of dry biomass and is used to drain bio-

mass precursors in their physiologically relevant ratios. Fig 5 describes the sum of the maxi-

mum and minimum transfer fluxes for classes of biomass precursors over a 24-hour diurnal

cycle (see S1 Table for the list of transfer fluxes of all biomass precursors). As seen in Fig 5 and

S1 Table, biomass precursors such as carbohydrates and nucleotides are primarily produced

during the day and sequestered in the night during the last TPM. Chlorophyll is synthesized

during light as is known to occur in cyanobacteria [41], with these levels remaining constant

during the dark TPMs.

By constraining reaction flux using transcriptomic data, we identified 110 reactions (see S2

Table) with active bounds, i.e. reactions whose flux constraints limit metabolism when the bio-

mass objective function is maximized. This also resulted in a decrease in the biomass flux,

which dropped by 10% (compared to the unconstrained flux case) corresponding to a dou-

bling time of ~25 hours. As transcriptomic constraints induced a decrease in the biomass pro-

duction flux, alleviating some or all of these bounds might allow for an increase in the

maximal biomass produced.

The 110 reactions with active bounds tend to maintain active bounds in multiple TPMs.

After adjusting for this reoccurence, 33 unique reactions were identified—one exclusively in

dark TPMs and the rest during light TPMs. The reactions with active upper bounds belong
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mainly to central carbon and amino-acid metabolism, alongside peripheral metabolic path-

ways such as purine, pyrimidine, aminosugars, and lipid metabolism, and can be broadly

linked to pyruvate and 2-oxoglutarate metabolism. Reactions involved in central carbon

metabolism such as glycolysis and the pentose phosphate pathway also have active constraints,

such as the conversion of 3-phosphoglycerate to 1,3-bisphospho-D-glycerate and the reaction

between ribose-5-phosphate and D-xylulose5-phosphate to produce glyceraldehyde-3-phos-

phate and sedoheptulose-7-phosphate. Furthermore, reactions belonging to glucogenic amino

acid metabolism are also found to have active reaction bounds. Glucogenic amino acids such

as lysine and aspartate yield through catabolism pyruvate or TCA cycle metabolites. As the

TCA cycle is the primary source of ATP in cyanobacteria, upregulating these reactions during

early light would allow for a greater TCA cycle turnover, leading to more biomass production

and hence enhanced growth. The need to increase 2-oxoglutarate production and thus TCA

cycle turnover is further evidenced by the constriction of reactions such as L-Phenylalani-

ne:2-oxoglutarate aminotransferase, L-Aspartate:2-oxoglutarate aminotransferase, L-Vali-

ne:2-oxoglutarate aminotransferase, and L-Leucine:2-oxoglutarate aminotransferase in the

direction of 2-oxoglutarate production. Enhanced pyruvate production has led to greater bio-

mass production in cyanobacteria in an earlier study [27]. Modifying glycolytic pathways and

the Calvin Benson cycle in Synechococcus elongatus PCC 7942 to redirect flux towards carbon

Fig 5. Category-wise temporal flux variations for biomass precursors over a 24-hour diurnal cycle. Maximum (red) and minimum (green) transfer fluxes for all

metabolites that feed into the biomass equation (see supplementary S1 Table for the list of all biomass precursors and their transfer flux values) across all TPMs.

The flux values are reported in units of mmol gDW-1 hr-1. Flux variability analysis (FVA) [49] was used to estimate individual reaction fluxes, by alternatively

maximizing and minimizing flux through every reaction. The total flux for a category of transferring metabolites was determined by summing over the individual

metabolite contributions. Metabolite annotations were taken from KEGG and provided in supplementary S6 Table.

https://doi.org/10.1371/journal.pcbi.1006692.g005
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fixation increased the intracellular pool of pyruvate, which led to about a three-fold increase in

growth under both light and dark conditions [27].

In order to further investigate the central roles played by pyruvate and 2-oxoglutarate, we

used metabolic control analysis [82] to identify reactions that most affect the biomass produc-

tion upon a perturbation in their corresponding enzyme levels. A 1% enzyme perturbation

was considered and the flux control coefficient (FCC) calculated for every reaction using tran-

script levels as proxies for the enzyme levels [83] (see Materials and Methods). FCCs provide a

quantitative measure of the degree of control a particular enzyme exerts on the reaction flux of

interest. Interestingly, of all the reactions considered, only two affected the final biomass pro-

duction flux and only during light TPMs. These included reactions L-Tyrosine:2-oxoglutarate

aminotransferase and L-Phenylalanine:2-oxoglutarate aminotransferase with FCCs of 0.016

and 0.04, respectively. Both these reactions are controlled by the same set of isozymes in Syne-
chocystis which are not shared by any other reaction and both bidirectional reactions operate

selectively in the direction of 2-oxoglutarate synthesis, alluding to the importance of 2-oxoglu-

tarate in Synechocystis growth. The intracellular concentration of 2-oxoglutarate in Synechocys-
tis has been implicated in the regulation of the coordination of carbon and nitrogen

metabolism [84]. As Synechocystis lacks the traditional 2-oxoglutarate dehydrogenase complex,

2-oxoglutarate acts as the final carbon skeleton for nitrogen. It is used to sense changes in the

cell’s nitrogen status [85] and provides the carbon backbones needed for synthesizing amino

acids such as glutamate, glutamine, proline, and arginine biosynthesis via the GS-GOGAT

cycle [86].

Addition of nitrogen fixation

Nitrogen Fixation was introduced to the model by including the relevant reactions from

iCyt773, the GSM model for Cyanothece [28], and constraints to ensure that anoxic conditions

are maintained during nitrogen fixation (see Materials and Methods), as the nitrogen-fixing

enzyme nitrogenase is irreversibly inhibited by oxygen. Transcriptomic data from wild-type

Synechocystis [38] was used to restrict reaction flux bounds, so as to identify the reactions that

need to be regulated differently in order to fix nitrogen while maintaining growth. S3 Table

lists the 672 reactions with flux ranges that change compared to the earlier-described diurnally

growing wild-type Synechocystis (i.e. the feasible flux range associated with these reactions do

not overlap with the flux range associated with the wild-type strain). 236 reactions (107 unique

reactions after adjusting for TPM multiple participation) were upregulated and 436 reactions

(225 unique) were downregulated upon the introduction of nitrogen fixation. A total of 166

reactions (128 unique) were found to be essential under diazotrophic conditions, i.e. had

strictly positive or strictly negative flux profiles, out of which 44 reactions were non-essential

under wild-type conditions. These reactions are indicators of the metabolic alterations

required as a result of the introduction of diazotrophy in Synechocystis (see Fig 6 and S3

Table).

Reactions with a perturbed flux profile mainly belong to pathways of carbon and amino-

acid metabolism, and target the two important modifications required for nitrogenase to func-

tion–increased ATP availability and an anaerobic environment. Upregulation of reactions

such as L-Aspartic acid:oxygen oxidoreductase help maintain the latter, while the former is

addressed by reactions belonging to glycolysis, TCA cycle, and photosynthesis in the light

TPMs, i.e. TPMs 1 to 6, glycogen synthesis, and oxidative pentose phosphate pathway in the

dark TPMs, i.e. TPMs 7 to 12 (Fig 7 and S3 Table). As nitrogen fixation is an energy-intensive

process, requiring 16 ATP molecules and eight reducing equivalents for every molecule of

dinitrogen fixed, this energy is being provided by the coordinated actions of these pathways,
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while the required reducing equivalents are being supplied by the upregulation of Ferredoxin:

NADP+ oxidoreductase reaction, which converts NADP to NADPH while oxidizing ferre-

doxin. A similar phenomenon is seen in a diurnally cultured Cyanothece, where transcrip-

tomic analysis shows simultaneous upregulation of entire pathways involved in respiration

and energy metabolism, such as pentose phosphate pathway, TCA cycle, glycolysis, and

amino-acid metabolism in the dark [87]. Cyanothece emerges as a natural comparison for the

Fig 6. A quantitative summary of changes when diazotrophy was introduced in wild-type Synechocystis sp. PCC 6803. (A) The figure represents the percent of

reactions with non-overlapping flux ranges across all light (yellow bars) and all dark (black bars) TPMs respectively. Pathway annotations from iSyn731 and KEGG

were used. (B) The graph summarizes the metabolic changes detected upon introducing diazotrophy in Synechocystis, in terms of the number of reactions

downregulated (red), upregulated (blue), essential, only under diazotrophy, and reversible reactions whose directions were switched in a diazotrophic Synechocystis as

compared to the wild-type.

https://doi.org/10.1371/journal.pcbi.1006692.g006

Fig 7. The effect of introducing diazotrophy in wild-type Synechocystis sp. PCC 6803. Visualized networks display the non-overlapping reactions that were

upregulated (blue) and downregulated (red) under diazotrophic conditions in four TPMs representative of early light, late light, early dark, and late dark. The arrow

widths are proportional to the amount of non-overlap between the reactions in the two conditions simulated. The web-tool Escher was used to construct the flux

metabolic networks [89].

https://doi.org/10.1371/journal.pcbi.1006692.g007

Diurnal model of Synechocystis sp. PCC 6803 metabolism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006692 January 24, 2019 15 / 29

https://doi.org/10.1371/journal.pcbi.1006692.g006
https://doi.org/10.1371/journal.pcbi.1006692.g007
https://doi.org/10.1371/journal.pcbi.1006692


hypothesized diazotrophic Synechocystis as in order to accommodate both nitrogen fixation

and photosynthesis, Cyanothece temporally separates the two incompatible processes [88].

A number of reactions with highly changed flux ranges are similar to the temporal distribu-

tion of flux seen in the nitrogen-fixing Cyanothece. For instance, there is an increase in flux in

the reactions responsible for glycogen degradation during late dark, which is fed into glycolysis

via glucose-1-phosphate, so as to fuel the higher energy demands associated with nitrogen fixa-

tion. Similar to the diazotrophic Cyanothece, glycogen degradation in CycleSyn proceeds via

glycolysis, the oxidative pentose phosphate pathway, and the TCA cycle so as to provide the

cell with ATP, cellular precursors, and pyrimidine nucleotides. Increased respiration of carbo-

hydrate reserves in the dark produces NADPH and succinate, which transfers electrons via

NADPH dehydrogenase and succinate dehydrogenase into the plastoquinone pool [90],

towards the terminal electron acceptor. This electron transport due to respiration sets up a

proton gradient and drives ATP production. The increased flux towards succinate is evinced

by the upregulation of (S)-Malate hydrolyase in the dark TPMs which reversibly converts

malate into fumarate [47]. A similar upregulation is seen in Cyanothece BG 043511 as well,

where an increase in nitrogen fixation at night coincided with a rise in respiratory electron

transport [91]. Furthermore, as fixed nitrogen is incorporated via arginine and aspartate meta-

bolic pathways, a number of reactions belonging to these pathways also show upregulation in

the dark in a diazotrophic Synechocystis as opposed to the wild-type.

Conclusion

Modelling phototrophic growth using constraint-based optimization techniques necessitates

modeling contributions beyond conventional flux balance analysis. Since cyanobacteria show

strong diurnal rhythms in its lifestyle, translating that phenotype into a metabolic model

requires new approaches that enable us to incorporate and replicate those temporal metabolic

reorganizations. Diurnal oscillations in Cyanobacteria have been the focus of many studies

[6,17,53] but those have mainly been concentrated on the associated transcriptomic changes

or a subset of its entire metabolism. In this work, we bridge that gap by developing a diurnal

model of Synechocystis metabolism. We accommodated the cyanobacterial circadian clock and

its influence on the underlying metabolic machinery by employing temporally-resolved tran-

scriptomic data. The developed formalism was able to replicate the changes in metabolism

observed in Synechocystis over a diel light-dark cycle. It should be noted here that CycleSyn

does not assume that metabolite concentrations, enzyme activities, or reaction rates are gov-

erned solely by mRNA expression levels. It is well known that the true flux through a reaction

depends on the enzyme kinetics and expression, alongside metabolite concentrations (Michae-

lis-Menten kinetics). The biological rationale behind CycleSyn is that expression data provides

measurements of the level of mRNA available for each gene. If there was a limited accumula-

tion of an enzyme in a particular TPM with respect to the others, the (relative) level of mRNA

can be used as an approximate upper bound for the maximum protein available. This can then

be used to constrict the maximum permissible flux through a reaction, effectively reshaping

the metabolic flux cone. This enables a systematic extension of flux balance analysis by making

use of temporal changes in expression levels to predict the metabolic capacity of Synechocystis
over a 24-hour period. The correspondence between transcript levels, reaction fluxes and

metabolite levels has been elucidated before [92] where accuracy in predicting the direction of

change (increase/decrease) in metabolite levels increased by 90% when constraints derived

from transcriptomic data were included in the metabolic model of a maize leaf.

The 24hr model provides a time-course for all reaction fluxes and metabolite levels. The

model predictions are aligned well with several known phenomena in a diurnally-controlled
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cyanobacterial phototrophic metabolism. We predicted that glycogen was accumulated during

light and degraded steadily during dark, as is seen in Synechocystis [38,41]. Different pathways

were upregulated during the light and dark phases, highlighting the variations in metabolism

occurring due to light availability. Glycolysis intermediates produced during respiration in the

dark were being used for regenerating RuBP via the Calvin cycle during the induction of pho-

tosynthesis. Levels of amino acids produced from glycolytic precursors such as pyruvate and

alpha-ketoglutarate decreased at the transition from light to dark incubation in wild-type Syne-
chocystis alongside a substantial upregulation in genes involved in ATP synthesis, as is seen

experimentally [20], [53]. CycleSyn also predicted pyruvate metabolism as a bottleneck in bio-

mass synthesis. Redirecting flux towards pyruvate synthesis can increase carbon fixation and

hence biomass formation, as is seen in Synechococcus elongatus PCC 7942 [27].

We also treated Synechocystis as an example cyanobacterium to predict the various meta-

bolic pathways that would need to be regulated in a photosynthetic organism so as to incorpo-

rate the two inherently incompatible processes of photosynthesis and nitrogen fixation. The

introduction of nitrogen fixation drew parallels from the non-heterocystous cyanobacteria

Cyanothece ATCC 51142, which temporally separates the two antagonistic processes. In doing

so it fixes glycogen during the day and uses it as a respiratory product in the dark, thus also

achieving the anoxic conditions required for nitrogenase activity. This necessitates a reorgani-

zation of the cellular metabolic processes, with dominant flux-carrying pathways differing dur-

ing the light and dark periods. The model predicted changes in pathways of carbon fixation

and amino acid synthesis upon introduction of diazotrophy in Synechocystis. The dark phase

in Cyanothece is known to have a high protein turnover, with upregulation of amino-acid bio-

synthesis pathways due to the increased nitrogen sequestration. Pathways such as arginine and

aspartate metabolism were consequently upregulated in the dark, due to the need to sequester

the fixed nitrogen. CycleSyn predicted the high-energy demands associated with nitrogen fixa-

tion to be met by increased flux through TCA cycle and the pentose phosphate pathway, main-

tained by higher glycogen synthesis and remobilization. Furthermore, oxygen scavenging

reactions such as L-Aspartic acid:oxygen oxidoreductase were upregulated across dark TPMs,

due to their oxygen-scavenging role which is required to maintain the anaerobic conditions

required for nitrogenase to function.

The developed framework enables analyzing a time-variant GSM model while preserving

the fundamental time-invariant assumption of conventional flux balance analysis. It improves

upon existing techniques of diurnal simulations of metabolism while maintaining a linear pro-

gramming problem resulting in low computational costs. The formulation can readily be cus-

tomized to accommodate quantitative measurements of reaction fluxes over a 24-hour cycle.

This will also constrain the feasible solution space and thereby improve the precision and accu-

racy of model predictions [93]. We expect this and similar methods to become instrumental in

understanding, analyzing, and predicting temporal metabolic flux variations.

Methods

CycleSyn construction

We constructed CycleSyn using the iSyn731 genome-scale metabolic (GSM) model for Syne-
chocystis sp. 6803 [28] as a scaffold. iSyn731 was updated to reflect the latest annotations made

to the Synechocystis genome as present in CyanoBase (see supplementary S5 Table). Additions

include the Entner-Doudoroff pathway, the phosphoketolase pathway, and the light-indepen-

dent serine biosynthesis pathway [94–98], among others. Metabolite and reaction IDs were

borrowed from ModelSEED [99] wherever possible. From 1,156 reactions and 1,003 metabo-

lites, the model increased to 1,165 reactions and 1,008 metabolites. Flux variability analysis
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was performed on this model to ensure that it is free of any thermodynamically infeasible

loops which can carry unbounded flux.

The 24-hour model consists of 12 individual Time Point Models (TPMs), each approximat-

ing reaction fluxes over a 2-hour period. The first TPM covers the first two hours of the light

period (L0-L2), the second TPM covering the next two hours of light (L2-L4), with the pattern

continuing until TPM12 which contains the last two hours in the dark period (D10-L0). Each

time-point model was made by duplicating reactions (by appending ‘_tpmX’ to reaction name,

where X is the TPM number ranging from 1 to 12) and metabolites (denoted by appending

‘[tpmX]’ to the metabolite name) in the base model.

A single biomass reaction occurs in TPM12 to account for organism growth. All metabo-

lites except photons and protons that are present in the cytosol and carboxysome are trans-

ferred unidirectionally from the n to the n+1 TPM using transfer reactions. A transfer reaction

j for a metabolite i in a TPM k always operates in the forward direction from TPM k to TPM k
+1 such that

metabolitei;k� !
transf erj;kmetabolitei;kþ1

Photosynthesis is only allowed to occur in a TPM k if it contains the necessary chlorophyll.

The chlorophyll balance on a TPM equates the difference between total chlorophyll synthesis

and degradation fluxes to the difference between the chlorophyll transfer fluxes that exit and

enter the TPM. This is mathematically represented as:

X
vchlorophyll synthesis;k �

X
vchlorophyll degradation;k ¼ vpigment transfer; k to kþ1 � vPigment Transfer; k� 1 to k

Where vPigment Transfer, k to k+1 refers to the flux through the chlorophyll transfer reaction from

TPM k to TPM k+1.

The chlorophyll transfer flux from a TPM k to TPM k+1 represents the cumulative chloro-

phyll accumulation (i.e., from TPM 1 to TPM k). We approximate this as a linearly increasing

function with respect to time for a single TPM. Hence, the average amount of chlorophyll

made in a TPM k can now be calculated as

< vchlorophyll;k >¼
1

2
ðvPigment Transfer; k to kþ1 � vpigment transfer; k� 1 to kÞ

The constraint levied on the model that couples photosynthesis to chlorophyll availability is

expressed as:

vPhotosynthesis; k �
1

2
ðvPigment Transfer; k to kþ1 � vpigment transfer; k� 1 to kÞMC ð1Þ

where MC is a constant large enough not to constrain flux through photosynthesis reactions

and k the Time Point Model. vPigment Transfer, k to k+1 refers to the flux through the chlorophyll

transfer reaction from TPM k to TPM k+1. This implies that amount of chlorophyll available

to carry out photosynthesis is equal to the difference between the amount transferred in to

time point k and the amount transported out to point k+1, divided by two. A value of 1000 for

MC predicts photosynthetic oxygen evolution (estimated by the output flux through the oxy-

gen exchange reaction during the light TPMs) ranging between 173 to 169 mmol O2 (gm
chlorophyll)−1 which is in the same order as that of wild-type Synechocystis. A wide range of

values have been reported experimentally ranging from 225 mmol O2 (gm chlorophyll)−1 (hr)−1

[100] to 380 mmol O2 (gm chlorophyll)−1 (hr)−1 [101], precluding the matching of a single

value. The set of photosynthetic reactions included in this constraint are cytochrome b6/f

complex, cytochrome c oxidase cytochrome oxidase bd, Mehler reaction, photosystem I
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(plastocyanin), photosystem I (ferrocytochrome), photosystem II, and succinate dehydroge-

nase (periplasm) (see S4 Table for model reaction identifiers and reaction descriptions for

reactions belonging to this constrained set).

The optimization formulation used to determine maximum biomass production flux is

maximize vbiomass; TPM12 ð2Þ

subject to

X

j2J

Sijkvjk ¼ 0; 8i 2 I; k 2 K ð3Þ

vCO2 uptake;k � 1:1; k ¼ 1; . . . ; 6 ð4Þ

vPhoton uptake;k � 60; k ¼ 1; . . . ; 6 ð5Þ

vATP maintenance;k � 10; 8k 2 K ð6Þ

vLBjk � vjk � vUBjk ; 8j 2 J; k 2 K ð7Þ

0 � vj;k � 10; 000; 8j 2 JTransfer; k 2 K ð8Þ

vPhotosynthesis;k �
1

2
ðvPigment Transfer; k to kþ1 � vpigment transfer; k� 1 to kÞMC; 8k 2 K ð9Þ

where Sijk is the stoichiometric coefficient for metabolite i in reaction j and TPM k, vLBjk and vUBjk

are the upper and lower flux bounds for reaction j in TPM k.I,J, and K denote the sets of total

metabolites, reactions, and Time Point Models (TPMs), respectively, and JTransfer the set of all

transfer reactions. Constraints (4) and (5) refer to carbon (as CO2) and photons being supplied

to only the light TPMs. The maximum amount of photons supplied to a TPM are such that it

is not growth-limiting but at the same time not in excess so as to not trigger light-sensitive

reactions. vCO2 uptake;k and vPhonton uptake,k represent the carbon and photon uptake reactions,

and vATP maintenance,k is the ATP maintenance requirement for a TPM k. Every transfer reaction

j in TPM k is constrained to have a non-negative flux by Eq (8).

As all the individual metabolites are transferred (only forward) throughout all TPMs, they

may give rise to cycles that can carry unbounded flux. Hence, to prevent this cycling, the sum

of transfer fluxes was set to a scalar f that was identified by solving a modified pFBA formula-

tion.

Minimize f ¼
P

k2K

P
j2JTransfer vjk ð10Þ
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subject to

X

j2J

Sijkvjk ¼ 0; 8i 2 I; k 2 K

vCO2 uptake;k � 1:1; k ¼ 1; . . . ; 6

vPhoton uptake;k � 60; k ¼ 1; . . . ; 6

vATP maintenance;k � 10; 8k 2 K

vLBjk � vjk � vUBjk ; 8j 2 J; k 2 K

0 � vj;k � 10; 000; 8j 2 JTransfer; k 2 K

vPhotosynthesis;k �
1

2
ðvPigment Transfer; k to kþ1 � vpigment transfer; k� 1 to kÞMC; 8k 2 K

vBiomass;TPM12 ¼ vmax
Biomass;TPM12

ð11Þ

where JTransfer is the set of all transfer reactions and vmax
Biomass;TPM12

the maximum biomass produc-

tion flux as determined by (2).

In photosynthetic organisms such as Synechocystis, a proton gradient is generated during

photosynthesis across the thylakoid membrane that drives ATP formation. Transferring this

gradient across time points would result in an untenable way for storing energy outside of stor-

age compounds. To this end, protons and photons were not transferred across TPMs. The fol-

lowing optimization model formulation is used to carry out flux variability analysis (FVA):

Maximize=Minimize vjk ð12Þ

subject to

X

j2J

Sijkvjk ¼ 0; 8i 2 I; k 2 K

vCO2 uptake;k � 1:1; k ¼ 1; ::; 6

vPhoton uptake;k � 60; k ¼ 1; ::; 6

vATP maintenance;k � 10; 8k 2 K

vLBjk � vjk � vUBjk ; 8j 2 J; k 2 K

vPhotosynthesis;k �
1

2
ðvPigment Transfer; k to kþ1 � vpigment transfer; k� 1 to kÞMC; 8k 2 K

0 � vj;k � 10; 000; 8j 2 JTransfer; k 2 K
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vBiomass;TPM12 ¼ vmax
Biomass;TPM12

X

k2K

X

j2JTransfer

vjk � f ð13Þ

CPLEX solver (version 12.1, IBM ILOG) was used in the GAMS (version 23.3.3, GAMS Devel-

opment Corporation) environment for solving all optimization models. All computations

were carried out on dual 10-core and 12-core Intel Xeon E5-2680 and Intel Xeon E7-4830

quad 10-core processors that are the part of the ACI cluster of High Performance Computing

Group of The Pennsylvania State University. Numerical scaling issues were not observed when

solving CycleSyn.

Incorporating nitrogen fixation into Synechocystis. Nitrogen fixation was included in

the model with the addition of the nitrogen fixation reaction from iCyt773 [28] (i.e. reduced

ferredoxin:dinitrogen oxidoreductase (ATP-hydrolyzing)) along with the diffusion transport

reactions (i.e., nitrogen exchange with the environment, nitrogen transport between the extra-

cellular compartment and the periplasm, and between the periplasm and the cytosol) required

for nitrogen to enter and leave the cell.

As oxygen irreversibly inhibits nitrogenase, an anaerobic environment is required for suc-

cessful nitrogen fixation. Cyanothece achieves this by utilizing glycogen in the early dark

period as a carbon source, thereby also consuming oxygen [102]. The following equations rep-

resent this inhibition—if the oxygen transporter is carrying flux out of a TPM (i.e. if oxygen is

still present within the cell and has not been consumed during the 2-hour period), then nitro-

gen fixation cannot occur.

LBN2fixation;k
yN2 fixation;k

� vN2 fixation;k
� UBN2 fixation;k

yN2 fixation;k
ð14Þ

LBO2 export;k to kþ1yO2 export;k to kþ1 � vO2 export;k to kþ1 � UBO2 export;k to kþ1yO2 export;k to kþ1 ð15Þ

yN2 fixation;k
þ yO2 export;k to kþ1 � 1 ð16Þ

Where y is a binary variable that is 1 when the corresponding reaction is active and 0

otherwise.

Given the handful of binaries employed, solve time for a single FBA simulation with the

above constraints incorporated is ~3 seconds, which is almost equal to the solve time of the

LP.

Transcriptional constraints. Transcriptomic data [38] was used to further constrain reac-

tion fluxes using the E-flux approach [39], as gene expression data can provide insights into

the temporal variations in Synechocystis metabolism over a light-dark cycle. Gene-Protein-

Reaction (GPR) relationships are evaluated for each reaction and the upper and lower bounds

determined by flux variability analysis of the corresponding reactions are reduced by a factor

corresponding to the expression ratio [39]. Flux bounds from the original iSyn731 model (i.e.,
not segmented into TPMs) were used, so that the metabolic capacity of every TPM is equiva-

lent before introducing omics-derived flux constraints. Expression ratios of normalized gene

intensities were determined for every time point as the expression level at a time point divided

by the maximum expression of the gene across all time points, and not scaled using a non-lin-

ear transform such as the sigmoid scale. For reactions controlled by isozymes, the largest ratio

among all contributing isozymes was used, as when multiple enzymes have the same enzymatic

activity the one with the largest amount governs flux through the reaction. In the case of
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protein subunits the smallest ratio was used, as flux through the reaction is limited by the

amount of the subunit component present in the lowest concentration. This is incorporated

into the optimization framework presented earlier by modifying Eq (7) as

vLBjk � vjk � vUBjk ajk; 8j 2 J; k 2 K

Where ajk is the expression ratio corresponding to reaction j in TPM k.

Out of the 449 reactions for whom transcriptomic constraints were applied, 55 reactions

were controlled by isozymes/protein subunits. Although the E-flux method reduces the feasi-

ble solution space by restricting the upper bound of reactions, the presence of transfer reac-

tions from one TPM to the next permits the same reaction to occur in another TPM if

restricted in the current. Therefore, CycleSyn is not likely to yield an infeasible LP.

Transcriptional constraints were added for both the diazotrophic and non-diazotrophic

models to glean information about the pathways and specific reactions that would need added

regulation for Synechocystis to produce maximal biomass while fixing nitrogen.

Calculation of flux control coefficients. In our model, we determined the impact on the

final biomass production flux brought about by a perturbation in the individual enzyme levels

taken one at a time, taking mRNA expression to be a proxy for enzyme levels. Transcriptomic

bounds constraining reactions in CycleSyn were perturbed by 1% (= Δxase) and the corre-

sponding change in biomass flux recorded (= Δvbiomass) and reported using flux control coeffi-

cients defined as:

Cvbiomass
xase

¼
Dvbiomass

Dxase
:

xase

vbiomass

Metabolite-metabolite correlation analysis (MMCA). MMCA determines the interde-

pendence between metabolite concentrations by calculating pair-wise correlation coefficients

between metabolite pairs. Here we used the non-parametric Spearman test [103] to calculate

correlation coefficients between the transfer flux profiles of metabolites as predicted by Cycle-

Syn. A two-sided test with a p-value cut-off value of 0.05 was used for hypothesis testing. The

scientific python module (scipy) in Python 2.7 was used to perform all calculations. If there are

n pairs of observations in two continuous distributions, and ui is the rank of the ith observation

in the first sample and vi is the rank of the ith observation in the second sample, Spearman’s

rank correlation coefficient (= rs) is given as

rs ¼
n
Pn

i¼1
uivi � ð

Pn
i¼1

uiÞð
Pn

i¼1
viÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½n
Pn

i¼1
u2
i � ð

Pn
i¼1

uiÞ
2
�½n
Pn

i¼1
v2
i � ð

Pn
i¼1

viÞ
2
�

q
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42. Genomics B, Gry M, Rimini R, Strömberg S, Asplund A, Pontén F, et al. Correlations between RNA

and protein expression profiles in 23 human cell lines. https://doi.org/10.1186/1471-2164-10-365

PMID: 19660143

43. Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNA

expression levels on a genomic scale. Genome Biol. 2003; 4: 117. https://doi.org/10.1186/gb-2003-4-

9-117 PMID: 12952525

44. Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in

yeast. Mol Cell Biol. American Society for Microbiology; 1999; 19: 1720–30. https://doi.org/10.1128/

MCB.19.3.1720 PMID: 10022859

45. Greenbaum D, Jansen R, Gerstein M. Analysis of mRNA expression and protein abundance data: an

approach for the comparison of the enrichment of features in the cellular population of proteins and

transcripts. Bioinformatics. 2002; 18: 585–96. Available: http://www.ncbi.nlm.nih.gov/pubmed/

12016056 PMID: 12016056

46. Zelezniak A, Sheridan S, Patil KR. Contribution of Network Connectivity in Determining the Relation-

ship between Gene Expression and Metabolite Concentration Changes. Hatzimanikatis V, editor.

PLoS Comput Biol. Public Library of Science; 2014; 10: e1003572. https://doi.org/10.1371/journal.

pcbi.1003572 PMID: 24762675
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87. Stöckel J, Welsh EA, Liberton M, Kunnvakkam R, Aurora R, Pakrasi HB. Global transcriptomic analy-

sis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proc Natl

Acad Sci U S A. National Academy of Sciences; 2008; 105: 6156–61. https://doi.org/10.1073/pnas.

0711068105 PMID: 18427117

88. Kim HW, Vannela R, Zhou C, Rittmann BE. Nutrient acquisition and limitation for the photoautotrophic

growth of Synechocystis sp. PCC6803 as a renewable biomass source. Biotechnol Bioeng. 2011;

108: 277–285. https://doi.org/10.1002/bit.22928 PMID: 20824682
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