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Abstract

S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery

and development of new antibiotics. Despite growing knowledge of S. aureus metabolic

capabilities, our understanding of its systems-level responses to different media types

remains incomplete. Here, we develop a manually reconstructed genome-scale model

(GEM-PRO) of metabolism with 3D protein structures for S. aureus USA300 str. JE2 con-

taining 854 genes, 1,440 reactions, 1,327 metabolites and 673 3-dimensional protein struc-

tures. Computations were in 85% agreement with gene essentiality data from random

barcode transposon site sequencing (RB-TnSeq) and 68% agreement with experimental

physiological data. Comparisons of computational predictions with experimental observa-

tions highlight: 1) cases of non-essential biomass precursors; 2) metabolic genes subject to

transcriptional regulation involved in Staphyloxanthin biosynthesis; 3) the essentiality of

purine and amino acid biosynthesis in synthetic physiological media; and 4) a switch to

aerobic fermentation upon exposure to extracellular glucose elucidated as a result of inte-

grating time-course of quantitative exo-metabolomics data. An up-to-date GEM-PRO thus

serves as a knowledge-based platform to elucidate S. aureus’ metabolic response to its

environment.

Author summary

Environmental perturbations (e.g., antibiotic stress, nutrient starvation, oxidative stress)

induce systems-level perturbations of bacterial cells that vary depending on the growth

environment. The generation of omics data is aimed at capturing a complete view of the

organism’s response under different conditions. Genome-scale models (GEMs) of metab-

olism represent a knowledge-based platform for the contextualization and integration of

multi-omic measurements and can serve to offer valuable insights of system-level

responses. This work provides the most up to date reconstruction effort integrating recent

advances in the knowledge of S. aureusmolecular biology with previous annotations
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resulting in the first quantitatively and qualitatively validated S. aureusGEM. GEM guided

predictions obtained from model analysis provided insights into the effects of medium

composition on metabolic flux distribution and gene essentiality. The model can also

serve as a platform to guide network reconstructions for other Staphylococci as well as

direct hypothesis generation following the integration of omics data sets, including tran-

scriptomics, proteomics, metabolomics, and multi-strain genomic data.

Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) USA300 strains have emerged as the pre-

dominant cause of community-associated infections in the United States, Canada, and Europe

[1]. Today in the United States more deaths are attributed to MRSA infections than to HIV/

AIDS [2,3]. USA300 was first isolated in September, 2000, and has been implicated in wide-

ranging and epidemiologically unassociated outbreaks of skin and soft tissue infections in

healthy individuals [4]. In 2006, the CDC reported that 64% of MRSA isolated from infected

patients were of the USA300 strain type, an increase of 11.3% since 2002 [5], indicating a rapid

spread throughout the country. Today, vancomycin resistance amongst S. aureus strains is on

the rise, further complicating antibiotic treatment [6]. USA300 is capable of producing rap-

idly-progressing, fatal conditions in humans that cause a wide variety of diseases, ranging

from superficial skin and soft tissue infections to life-threatening septicaemia, endocarditis,

and toxic shock syndrome. Many efforts are geared towards designing new antibiotic regimens

to combat MRSA. However, these endeavors are impaired by the lack of replicability in antibi-

otic potency and bioactivity across different media [7]. Little is known about the systems-level

effects of the nutritional environment on S. aureus growth and metabolism.

While multi-omics data-sets allow for the interrogation of complex interactions occurring

on a cellular level, the results can often be hard to interpret. Thus, there is a need for a common

knowledge base that enables the integration of disparate data types. Genome-scale models

(GEMs) of metabolism have been successfully utilized as a common platform for omics data

contextualization and integration [8,9]. GEMs represent mathematically structured knowledge

bases of metabolism that contain all of the molecular mechanisms known to occur in an organ-

ism. They are built through iterative curation efforts and are constantly updated to reflect the

current state of knowledge pertaining to the organism [10]. The S. aureusGEM has undergone

several such iterations over the past 15 years [11–14]. The more recent iterations relied more

heavily on semi-automated workflows whereby annotations were pooled from online data-

bases. Unfortunately, online databases rely on a combination of manual curation and sequence

homology gene function assignment which is often not organism specific. In general, the more

manual curation that goes into a GEM, the more reliable and organism-specific the GEM

derived predictions are [15]. The rise of antibiotic resistance amongst S. aureus strains has cre-

ated strong momentum in the field of molecular biology and many novel S. aureus-specific

mechanisms have been discovered over the past decade. However, many online databases as

well as the current S. aureus GEM [11] are still lagging behind and do not reflect newly uncov-

ered metabolic capabilities.

In this work, we developed an S. aureus str. JE2 (strain LAC cured of its plasmids) GEM

integrated with protein structures and used a combination of experimental data and computa-

tional methods to analyze systems-level metabolic characteristics under different growth con-

ditions [16]. We geared our efforts towards incorporating the newly discovered molecular

mechanisms and metabolic pathways of S. aureus into an updated GEM and brought the most
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recent S. aureus GEM through one reconstruction iteration [15]. This iteration is guided by lit-

erature findings, experimentally derived gene essentiality data, analysis of protein structures,

and microarray growth phenotypes. Such efforts are valuable in that the final S. aureusG‘EM

is up to date with online databases, constitutes a blend of the curation efforts of several groups,

and quantitatively and qualitatively recapitulates flux and growth phenotypes. We built condi-

tion-specific GEMs by integrating time-course quantitative exo-metabolomic datasets and

used flux sampling and predicted gene essentiality to compare the metabolic flux state across

growth conditions.

Results

Expanding the detail and scope of the reconstruction

We followed an established workflow for the reconstruction of genome-scale metabolic net-

works [15] to curate and update the most recent genome-scale model (GEM) of S. aureus [11]
with new content. The basic steps outlined in a reconstruction workflow include: Step 1: build-

ing a draft reconstruction from a genome annotation; Step 2: refining the reconstruction using

literature evidence; Step 3: converting the reconstruction into a computable format; and Step

4: evaluating and validating the network against experimentally observed phenotypes [15]. We

conducted detailed and extensive manual curation that brought about major modifications to

the S. aureusmetabolic network across 56 metabolic sub-modules (Table S1 in S2 Appendix).

Our efforts were guided by a combination of literature review and network evaluation and

proceeded in an iterative fashion. iYS854 contains 854 unique ORF assignments, 1,202 meta-

bolic processes (excluding biomass and exchange reactions), 1,084 metabolic species, and 681

3D protein structures (Fig 1A, S1 Data). We also designed an updated condition-specific bio-

mass objective function “BIOMASS_iYS_wild_type” and a general biomass objective function

“BIOMASS_iYS_reduced” (Fig 1B). We enriched the objects included in the reconstruction

(genes, proteins, reactions, and metabolites) with layers of metadata and cross-references

(Fig 1C).

An updated core S. aureus model recapitulates realistic flux states. We used the GEM

published by Bosi et. all as the starting draft model. However, instead of taking the full recon-

struction through one iterative reconstruction step, we initially constrained our efforts to path-

ways of central metabolism. We built a core S. aureusmetabolic network (iYS103) by selecting

metabolic processes across the pentose phosphate pathway (PPP), glycolysis and gluconeogen-

esis, respiration, the Krebs cycle, glutamine biosynthesis, and transport and exchanges (S2

Data). A core model is useful for applications such as kinetic modeling (where a smaller num-

ber of variables may be a useful attribute for computational simulations), educational purposes

and analyzing the applicability of new constraint-based algorithms. We observed that S.

aureus’ core metabolism is distinguished by: 1) the presence of a malate:quinone oxidoreduc-

tase, lactate:quinone oxidoreductase, and NADH:quinone oxidoreductase; 2) the ability to uti-

lize both oxygen and nitric oxide as electron donors; and 3) the absence of a glyoxylate shunt

[17], ubiquinone biosynthesis, and vitamin K biosynthesis, which we removed from the start-

ing model [18]. Surprisingly, some elements of the S. aureus respiratory pathways remain

unknown today or have had their underlying molecular mechanisms uncovered only recently

[19–22]. For example, it was recently shown that S. aureus synthesizes a type 2 non-electro-

genic NADH:quinone oxidoreductase [20] that could be coupled indirectly with a three pro-

tein complex (mpsABC). The latter complex was shown to function for both the generation of

membrane potential (Δψ) and sodium transport [21]. Manual curation efforts led to the

removal of redundant content which had initially allowed for the existence of erroneous

energy generating cycles (EGCs). An EGC consists of a set of reactions that together allows for
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thermodynamically impossible fluxes. When they occur, the model can simulate the free pro-

duction of energetic cofactors such as ATP and NADP. Such cycles are common when a

model has not undergone sufficient curation and validation [23]. While the starting model was

capable of producing 13 energy carriers with no nutrient exchange, the final (updated) model

could generate none (see Methods).

A module-by-module reconstruction highlights areas of metabolism that have been

recently characterized. Once the core metabolic model was curated, we proceeded to add

and curate metabolic modules one at a time to yield the full metabolic network (iYS854). For

each module, confidence scores, references, and subsystem annotations were assigned when

content was added or modified (see Methods). We examined more than 50 metabolic sub-

modules and added a total of 204 confidence scores and 323 references. The cofactor and pros-

thetic group metabolic subsystem was expanded the most due to several discoveries spanning

S. aureus-specific metal chelators and metal acquisition systems [24–30] (e.g., Staphylopine

[31], Staphyloferrin A [32], and Staphyloferrin B [33]; Fig 2A and 2B). These are relevant

because S. aureus virulence, respiration, and antibiotic resistance have been documented to be

dependent on metals [34,35]. A total of 57, 24, and 8 new reactions were added across cell wall

metabolism [36–38], amino acid metabolism [39–41], and redox metabolism, respectively

[42–44] (S1 Table in S2 Appendix). Only 67% of the reactions in the starting reconstruction

were assigned to 31 subsystems. We assigned a subsystem (following the Clusters of Ortholo-

gous Groups (COGs) classification schema) to all reactions and metabolic module names to

87% of the metabolic reactions. As a result of our reconstruction efforts, we added 214 new

Fig 1. Summary of the reconstruction efforts for iYS854. (A) Evolution of S. aureus genome scale metabolic reconstructions and their biomass objective function

from 2005 to 2018. (B) Graphical representation of the four central objects in the S. aureusGEM; genes, reactions, metabolites, and structures. A representative mapping

between all four objects along with relevant metadata are added during the reconstruction process. (C) Percentage of metabolic genes mapped to protein crystal

structures and protein homology models, and distribution of metabolic subsystems per category (more details are shown in Table S4 in S2 Appendix).

https://doi.org/10.1371/journal.pcbi.1006644.g001
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ORF assignments, 569 new metabolic processes and, 207 new metabolites and removed 41

ORF assignments, 634 metabolic processes, and 253 metabolites (Table 1, see Methods). A

Fig 2. Break down of the novel content in iYS854 by metabolic sub-module and COG category. (A) We compared the gene content in iYS854 to that of the four

previous GEMs of S. aureus and categorized them by their metabolic sub-modules. For purposes of clarity we only show a subset of the sub-modules across three COG

categories: cofactor and prosthetic group metabolism, transport, and cell wall metabolism. The color scale represents the percentage of novel genes in iYS864 with

respect to previous GEMs (columns) by each metabolic sub-module (rows). We highlight the date for the most recent reference that was added in iYS854 for each

metabolic sub-module (see S3 Table in S2 Appendix for more details). Genes may have different annotations in previous reconstructions (for example the staphylopine

biosynthesis pathway was only uncovered in 2016). Note that “h” represents a metabolic sub-module that was added based on gene homology. (B) We compared the

most recently published GEM with iYS854 and highlighted the new additions in reaction content per COG module.

https://doi.org/10.1371/journal.pcbi.1006644.g002

Table 1. Summary of the modifications made to the starting model. A single instance is counted towards a metabolite even when it appears in two different

subsystems.

Metabolic processes Unique ORF assignments Unique metabolites

Changed instance(s) 110 283 0

Final reconstruction 1440 854 1094

New instances 566 214 209

Removed instance(s) 637 41 253

Starting reconstruction 1511 691 1138

Unchanged instance(s) 764 367 0

https://doi.org/10.1371/journal.pcbi.1006644.t001
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total of 64 orphan reactions (i.e., reactions with no ORF assignment) were either removed or

updated with a gene protein reaction rule.

The added 3D protein structures span the majority of the reactome. Genome-scale

metabolic models have recently gained an additional dimension: 3-dimensional protein struc-

tures, in which known metabolic transformations are linked to the 3D structure of the corre-

sponding catalyzing enzyme. In addition to aiding the reconstruction process by enriching the

protein object with details on its molecular mechanism as well as its 3 dimensional geometry,

structural systems biology has implications in drug development and personalized medicine

[45], and enables the analysis of structural features at the network level [46,47]. We used a

standardized workflow [48] to search the protein data bank (PDB) [49] for matching content

and conduct homology modelling (see Methods). Overall, 401 genes of the USA300 str. JE2

genome were found to have a close match, of which 183 were mapped to a total of 501 meta-

bolic processes (Fig 1C). A total of 30% of the protein structures were mapped to lipid metabo-

lism and 15% were mapped to nucleotide metabolism. We used the cross-referenced

publications for each of the modelled protein structures to validate and further guide our

reconstruction efforts. The remaining 686 modelled genes that were not mapped to an experi-

mentally crystallized protein structure required homology modelling, of which we have mod-

eled 65.4% (449 non-transport related proteins). In total, 79% of the genes included in this

reconstruction were mapped to a protein structure.

An updated biomass function. Once the networks were built and curated, we proceeded

to step 3 of the reconstruction workflow and designed an updated biomass objective function.

Such a function represents bacterial growth through the drain of biomass precursors, and

directly influences the computed activity level across metabolic submodules [10,50]. The

choice of such precursors and their respective rate of drain (or biomass coefficient) varies

between conditions and is specific to the organism of interest. The advent of higher resolution

metabolomics and other omics datasets (e.g. genomics, transcriptomics) represents a major

advance for the design of the biomass objective function [51].

The biomass objective function for the starting model was adapted from a combination of

the biomass function designed for Bacillus subtilis (iYO844), E. coli, and S. aureus specific lipi-

domic data. With the purpose of excluding non S. aureus specific content, we adapted the

ratios for the macromolecular composition of S. aureus reported in Heinemann et. al [12]. A

combination of S. aureus omics data measurements was then used to adjust the choice of bio-

mass precursors and their rate of drain (including genomic, transcriptomic, and intracellular

quantitative metabolomic data; Fig 1A, see Methods). The content and coefficients for the

pool of solutes were obtained from intracellular quantitative metabolomics measurements for

S. aureus cultures in a chemically defined medium (CDMG) [52]. However, bacterial cells pro-

duce metabolic intermediates that can vary dramatically between growth conditions rendering

the measured pool of solutes the most dynamic category of precursors in the biomass objective

function. Therefore, it should be left out of simulations when growth on other media types is

modelled. We thus designed a second biomass objective function (termed “BIOMASS_iYS_re-

duced”) which can be used when the culture medium is not CDMG. Finally, trace metals were

added as a result of inspecting the metal cofactors annotated as essential for the activity of pro-

teins in the GEM-PRO model.

Experimental validation of the model

We proceeded to validate the GEM against experimental observations (step 4). In this step of

the reconstruction, analyzing the discrepancies between model predictions and experimental

outcomes can highlight model errors and areas of knowledge gaps. Ultimately, the systems-

Metabolic response of Staphylococcus aureus to its environment
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level view can give a deeper understanding of the organism’s metabolism and guide the gener-

ation of testable hypotheses.

iYS854 suggests metal cofactor promiscuity in S. aureus. We set out to verify that the

GEM can successfully recapitulate some of the known growth phenotypes of S. aureus. We

simulated growth in silico on seven chemically defined media types; five of which can support

growth of S. aureus strains: 1) synthetic nasal extract (SNM3) [53]; 2) Chemically Defined

Media (CDM): CDM [39]; 3) CDMG (CDM+glucose) [39,54]; 4) CDMgal (CDM+galactose)

[55]; and 5) CDMG2 (CDM.v2+glucose) [56], and two of which cannot: 1) glucose+M9 mini-

mal medium and 2) RPMI. RPMI and SNM3 are synthetic physiological media for plasma and

the nose, respectively. We found that growth could be successfully simulated in silico on CDM,

CDMG, and CDMgal, but that iron supplementation was required for growth on SNM3 and

supplementation with zinc and molybdate was required for CDMG2. Trace metals are known

to play an important role in protein function and stability as well as in redox maintenance in S.

aureus [57–60]. Whether S. aureus can survive without one of these trace metals remains to be

determined. Growth on RPMI or M9+glucose minimal medium was unsuccessful in silico.

The model predicted that supplementation with manganese, zinc, and molybdate was required

for RPMI, while supplementation with niacin and thiamin was required for glucose+M9 mini-

mal medium. Interestingly, S. aureus strains have been shown to exhibit both niacin and thia-

min auxotrophies [61] as a result of the absence of tyrosine lyase and nicotinate-nucleotide

diphosphorylase. S. aureus can grow under both aerobic and anaerobic conditions and utilize

nitrate as an alternate electron acceptor. When anaerobic conditions were simulated, the

model predicted a 52% decrease in biomass yield with respect to aerobic conditions. The addi-

tion of nitrate to the simulated anaerobic minimal medium yielded a 70% increase in biomass

yield (see Table 2, see Methods). Similar simulations run on the starting model showed no dif-

ference in predicted growth rate between aerobic, anaerobic and anaerobic + nitrate condi-

tions. Additionally, supplementation with both purine and L-leucine was required across

several media types.

iYS854 has an expanded range of catabolic capabilities. To estimate the accuracy of the

model’s carbon catabolism capability, we experimentally tested for the ability of strain

USA300-TCH1516 to catabolize 69 carbon sources using a high-throughput BIOLOG pheno-

typic array (Table S7 in S2 Appendix). A total of 53 carbon sources supported in vitro growth

and we obtained a 68.3% agreement with in silico predictions (see Methods). The comparison

exposed eleven false positives and ten false negatives.

Table 2. Results of growth simulations for iYS864 on seven defined media.

Simulated

medium

Observed

Growth in
vivo

Simulated

Growth in vitro
(1/hr)

Proposed

supplementations

Growth upon

supplementation

Anaerobic Growth upon

supplementation

Anaerobic Growth upon

supplementation in the

presence of nitrate

CDM 1 1.92475 None 1.92475 0.115168 0.858722

CDMgal 1 2.92622 None 2.92622 1.24279 1.90119

CDMG 1 3.02115 None 3.02115 1.2914 1.96277

CDMG2 1 0 Zinc AND Molybdate 3.58009 1.59875 3.03455

Glucose+M9

minimal

medium

0 0 Thiamin AND

Nicotinamide

1.3081 0.621565 1.21695

RPMI 0 0 Mn2+ AND Zinc AND

Fe2+ AND Molybdate

3.74914 1.59E-15 -3.54E-14

SNM3 1 0 Fe2+ 3.10515 1.3839 2.62512

https://doi.org/10.1371/journal.pcbi.1006644.t002
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False positives occur when the model predicts successful growth when none is observed

experimentally. They may result from additional constraints which are not accounted for in

the model such as regulatory and kinetic constraints [62]. For example, L-arginine and L-pro-

line fell under the category of false positives and the genes involved in the biosynthesis of L-

glutamate from both metabolites are subject to carbon catabolite repression and CcpA [39].

False positives also included adenosine, D-alanine, fumarate, L-aspartyl-glycine, L-alanyl-gly-

cine, L-malate, L-threonine, N-acetylneuraminate, and uridine.

False negatives occur when the model predicts no growth on a medium condition when

growth is observed experimentally. The carbon sources that fell in this category included

2-oxobutanoate, acetamide, acetate, butyryl-ACP, formate, glycolate, hypoxanthine, L-lysine,

L-methionine, and myo-inositol. Interestingly, S. aureus cannot utilize C2 compounds (such

as acetate, glycolate, and formate) as a sole carbon source in silico because it lacks the essential

reactions present in the reconstruction of other organisms (such as the glyoxylate shunt and

pyruvate synthase). However, the model can simulate the assimilation of C2 compounds when

L-glutamate uptake is allowed. While the starting model contains exchanges for 77 carbon

sources (and predicts 36.4% of growth profiles correctly), only 31 were linked to the rest of the

network, for which 64.5% of growth predictions agreed with experimental observations (see

Table S7 in S2 Appendix).

iYS854 gene essentiality predictions agree with experimental outcomes. The robustness

of the network against genetic perturbation can be assessed and validated against in vitro gene

essentiality. Fey et. al recently generated a sequence defined transposon mutant library for 1,952

strains of S. aureusUSA300 str. JE2 [16]. With this method, they identified 579 essential genes for

growth on Tryptic Soy Broth (TSB). We simulated the effect of 854 single gene knock-outs on

biomass production in rich medium in silico and found 121 essential genes (see Methods), which

amounts to 85.7% agreement with experimental observations (Fig 3A, S1 Table in S2 Appendix).

The same simulations run with the starting model (which contained a lower number of ORF

assignments) yielded only 75.6% agreement in essentiality observations for only 656 genes (Fig

S1 in S1 Appendix). Analysis of the discrepancies between predictions and observations revealed

gaps of knowledge in L-methionine biosynthesis (S1 Appendix) and highlighted cases of non-

essential protein complex subunits for complexes involved in respiration, glycerol degradation,

molybdate uptake, and tryptophan biosynthesis (S1 Appendix). We also distinguished true from

false isozymes by using a combination of sequence homology and structure homology (obtained

from the GEM-PRO) coupled with gene essentiality observations (S1 Appendix).

S. aureus can exhibit altered phenotypes. False negatives highlighted cases of non-essen-

tial biomass components in S. aureus. A total of 23 modelled gene knockouts were falsely pre-

dicted to be lethal upon disruption, including genes that were ‘essential’ for their role in cell

wall biosynthesis, menaquinone biosynthesis, molybdate transport folate metabolism, haem

biosynthesis, and amino acid biosynthesis (Fig 3B). Of the 23 false negatives, eight genes were

involved in cell wall metabolism: tarBS—wall teichoic acid biosynthesis, ltaA, ugtP,mprF, and

pgpB—lipoteichoic acid biosynthesis and charging, bacA—undecaprenyl phosphate biosynthe-

sis, and gtaBUDP-galactose biosynthesis (Fig S2 in S1 Appendix). Both wall teichoic acids

and lipoteichoic acids are conditionally dispensable for viability of S. aureus strains [63,64].

Since we initially included these two components in the biomass objective function, their com-

plete biosynthesis was rendered essential for successful growth in silico. Thus, in addition to

the measured intracellular pool of solutes, we also propose that the inclusion of WTA and LTA

in the biomass objective function is conditional. As such, we adjusted the generalized biomass

objective function (‘BIOMASS_iYS_reduced’) to exclude these two precursors.

False negatives also highlight the capability of S. aureus to exhibit the small colony variant

phenotype and included several genes involved in: 1) menaquinone biosynthesis; aroB, aroC,

Metabolic response of Staphylococcus aureus to its environment
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aroD and aroF, 2) the shikimate pathway,menF andmenD, 3) the mevalonate pathway, and; 4)

the isoprenoid pathway—ispA and hepT. Incidentally,menDmutants exhibit the clinical small

colony variant phenotype (SCV), which is characterized by slow growth, intracellular persis-

tence, nutrient auxotrophies and altered metabolism [65–67].MenDmutants are auxotrophic

for hemin, menadione, and thymidine [68]. Hemin and thymidine but not menadione trans-

port and utilization are included in the reconstruction because there are no known metabolic

routes linking menadione to menaquinone-7 in S. aureus. However, menadione can serve as a

precursor for menaquinone-7 in S. aureus auxotrophs [69]. When we added a temporary

menaquinone-7 transport reaction (in addition to allowing for the uptake of hemin and thymi-

dine), we found thatmenDmutant growth was rescued in silico. In both S. aureus and E. coli,
the shikimate pathway is the sole metabolic route known to yield chorismate—which is an

essential precursor for the biosynthesis of menaquinone-7, folate intermediates, thiamin, and

aromatic amino acids. AroB E. colimutants were also found to grow successfully in Luria-Ber-

tani (LB) broth (a rich medium) but not in any of the carbon source + M9 minimal medium

Fig 3. Comparison of in vivo vs. in silico gene essentiality. (A) Contingency matrix for the comparison of in silico gene essentiality predictions of iYS854 on rich

medium with in vitro observations of tn-seq mutants on TSB. The accuracy is 85.7%, which represents an increase of 10.1% with respect to the most recent model

[11]. (B) The genes that fell into the category of false negatives were grouped by the biomass precursor in whose biosynthesis they participate. (C) Predictions of

gene knockout on growth phenotype across defined media types. Here, we show a subset of four media types and the subset of conditionally essential genes that are

not essential in at least one media type. The full data is available in S3 Table and the full cluster map is available in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1006644.g003
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combinations [70]. We hypothesize that all of the necessary nutrients essential for growth of

the E. coli and S. aureus aroBmutants are present in LB and TSB, respectively.

iYS854 recapitulates mutant phenotypes and uncovers genes subject to regulation

involved in Staphyloxanthin production. In addition to identifying essential genes, Fey et.

al screened their mutants for pigmentation and mannitol fermentation. They identified seven

mutants with reduced mannitol fermentation capability, six of which had transposon inser-

tions within unique ORFs. iYS854 correctly predicted that the six genes are essential for man-

nitol fermentation (see Methods). Fey et, al also found a total of 39 mutants to be affected in

their pigmentation capability. Of the 39 ORFs containing a transposon insertion, 15 are

accounted for their metabolic activity in the reconstruction. Staphyloxanthin is an orange-red

carotenoid and its biosynthetic pathway is included in iYS854. We proceeded to assess the

effect of gene knock-outs on the production of Staphyloxanthin. iYS854 predicted that 35

genes completely abrogated Staphyloxanthin production when knocked out in silico, while 14

single gene knock-outs almost halved it (including qoxA, qoxB, qoxC, qoxD, cydA, cydB, narT,

narX, narW, narH, narG, nasD, nasE, and ctaM; see Methods, S9 Table in S2 Appendix). Of

those 35 genes, seven were observed to affect S. aureus’ pigmentation capability by Fey et. al

(including crtO, crtP, crtQ, crtM, crtN and ispA). On the other hand, six of the 15 single gene

knock-outs simulated an unchanged pigment yield. The cognate genes are involved in glycoly-

sis (pdhE1 and fbp) and purine biosynthesis (purA, purB, gapA, and yjbK). This discrepancy

could be due to context-specific transcriptional regulation. Indeed, in another study, purA S.

aureusmutants showed enhanced pigmentation potentially mediated by the enhanced expres-

sion of sigB [71].

Amino acid and purine biosynthesis are essential in synthetic physiological media. We

proceeded to assess conditional gene essentiality for each of the simulated media types (includ-

ing SNM3, CDM, CDMG, CDMgal, CDMG2, M9+glucose, and RPMI). We found that 92

genes were predicted to be essential for growth on all seven media types but not TSB, with 28

genes predicted to be essential in at least one but not all media types (Fig 3C, Fig S3 in S1

Appendix). Of the 92 genes, 23 were wrongly predicted to be essential for growth in TSB. The

remaining 67 genes were categorized as conditionally essential genes, meaning that the corre-

sponding mutants can grow in the medium of interest when supplemented with the right com-

bination of nutrients. Of the conditionally essential genes, 33.3% and 20.6% were involved in

nucleotide metabolism and amino acid metabolism, respectively. Interestingly, purA, purB,

purC, purD, purF, purH, purL, purM, purN and purQ were found to be essential in RPMI (a

synthetic medium for plasma) and SNM3 (a synthetic nasal medium). Indeed, Connolly et. al

showed that purA and purB are essential for growth of JE2 in human and rabbit blood, and

pathogenesis in a zebrafish embryo infection model [72]. They further demonstrated that

growth of JE2-purB was rescued by the addition of adenine and guanine while that of JE2-

purA was rescued by the addition of adenine. There was a total of eleven conditionally essential

genes in SNM3 that were involved in amino acid metabolism (Fig 3C). In silico growth could

be rescued for these mutants with the addition of a combination of L-methionine, L-isoleu-

cine, L-aspartate, and L-asparagine.

We previously found that zinc and molybdate supplementation was needed to support in
silico growth on CDMG2 and that genes involved in molybdate transport were non-essential

in complex medium (likely containing a large range of nutrient types). Here, we identified the

conditionally essential genes for growth in CDMG2 and mapped them to their protein struc-

tures. Exploiting the cofactor annotation that accompanies experimentally derived protein

structures, we found that zinc is a cofactor for ten conditionally essential proteins. Zinc-bind-

ing domains were close to the active site or within the substrate binding site for five of the con-

ditionally essential protein structures including accA and accD [73], thrS [74], pyrC [75], and
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macro [76]. The activity level of protein structures may be affected by the metal bound at their

active site (e.g., pyrC [77]). This evidence tentatively suggests that either zinc is present in trace

amounts in CDMG2, or that zinc is not essential for growth.

Effect of D-glucose on cellular growth and flux distribution

Here, we demonstrate a case of integrating an omics dataset with iYS854 to analyze the effect

of the addition of D-glucose to the extracellular medium on the intracellular metabolic flux

state. Once a model is reconstructed and validated, a condition-specific GEM can be built by

constraining the model further using values obtained from experimental measurements. A

condition-specific GEM differs from the baseline GEM in that it has a reduced solution space

and simulates a flux state that is more representative of the cell’s metabolic state under the

tested culture conditions.

Condition-specific GEMs agree qualitatively and quantitatively with experimental mea-

surements. We queried published quantitative exo-metabolomics measurements at four

time points for cultures of S. aureus str. JE2 on CDM and CDMG [39]. Both media contain 18

of the 20 amino acids (excluding L-asparagine and L-glutamine), seven vitamins and trace

metals but differ in D-glucose content (which is absent in CDM but present in CDMG). We

first calculated uptake and secretion rates in both conditions and used them to set additional

constraints to the baseline GEM (Fig S4 in S1 Appendix, Methods, S10 Table in S2 Appen-

dix). The uptake rates for L-proline, glycine, and L-threonine were highest in CDM while

those for D-glucose, L-threonine, and L-aspartate were highest in CDMG. Both acetate and

ammonium were secreted at higher rates in CDMG than in CDM. We observed that the two

condition-specific GEMs simulated a larger maximal growth rate than experimental observa-

tion (Fig 4A). Such discrepancies can be attributed to: 1) non-metabolic ATP requirement for

cell division, replication and macromolecular polymerization (which are not accounted for in

iYS854) [15] and; 2) carbon dioxide excretion (for which we have no experimental measure-

ments). To account for these discrepancies, we calculated a growth associated maintenance of

39.92 mmol/gDW/h and non-growth associated maintenance of 3.63 mmol/gDW/h (Meth-

ods, Fig S5 in S1 Appendix). However, a larger number of data points would yield more accu-

rate values of GAM and NGAM. Next, we calculated the ratio of oxygen consumption and

intracellular ATP concentration across the two GEMs and found that the ratios agree with

experimental measurements (Methods, Fig 4B) [39].

Conditional gene essentiality highlights pathways under transcriptional regulation in S.

aureus. We validated gene essentiality predictions against the growth phenotype for 29 trans-

poson mutants cultured on CDM [39]. Of these, seven were essential, eleven were non-essen-

tial, and eleven were found to have an intermediate effect on growth. Predictions were made

correctly for all of the non-essential genes and all of the essential genes except for gudB, which

encodes for the oxidative deamination of acetyl-ketoglutarate to glutamate and ackA, which

encodes for an acetate kinase. L-glutamate biosynthesis can be achieved via two metabolic

routes; the first involves gudB, and the second emcompasses D-alanine transaminase (dat—
which converts D-alanine to D-glutamate), and glutamate racemase (which catalyzes the

isomerization of D-glutamate to L-glutamate). Similarly, acetyl-CoA can be generated via sev-

eral routes including pta/ackA, pdhA/pdhB/pdhC/pdhD, and acsA (Fig 4C). The inability of a

mutant to grow when it has alternative metabolic routes may be due to reaction kinetic proper-

ties. Results for the eleven mutants that exhibited an alternative phenotype revealed cases of

isozymes having evolved to function in specific metabolic modules (S1 Appendix).

Glucose causes significant changes in the flux solution space. When comparing the two

condition-specific GEMs, we found that 148 reactions differed significantly in their flux
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distribution (p< 0.01, KS test, Methods) across both conditions (Fig 5). These reactions were

predominantly associated with amino acid metabolism (52 out of 148) and energy production

and conversion (41 out of 148). Reaction essentiality also varied with 26 and 35 reactions

uniquely essential in CDMG and CDM, respectively, while 366 reactions were essential in

both conditions (Fig 4D). Interestingly, 88% (23 out of 26) of the reactions that were uniquely

essential in CDMG were part of amino acid biosynthesis pathways such as branched chain

amino acid biosynthesis and aspartate biosynthesis, and were predicted to carry larger median

fluxes (S2 Appendix). In a transcriptomic analysis of JE2 strains cultured in CDM+galactose,

the authors similarly noted a significant upregulation of genes involved in branched amino

acid biosynthetic genes. This observation supports our predictions since genes tend to have a

higher mean mRNA expression level when they are essential [78]. Conversely, 37% (13 out of

35) of the reactions that were only essential in CDM but not in CDMG were involved in energy

production and conversion. Thus, as a result of constraining the uptake and secretion rates

alone, flux balance analysis indicates that upon addition of glucose to the medium, isolates uti-

lized amino acids from the medium in conjunction with synthesizing amino acids de novo.

However, when glucose was subtracted from the medium, a lower growth rate was observed,

and the cells were predicted to utilize the available amino acids in the medium towards energy

production (via gluconeogenesis) and protein biosynthesis (for biomass production). Addi-

tionally, the cells relied on nine more metabolic processes to achieve growth (Fig 4D).

Fig 4. Condition-specific GEM validation and evaluation. (A) Quantitative exo-metabolomics measurements (for both CDM and CDMG) were used to build two

condition specific GEMs. Growth was simulated using flux balance analysis and cross-checked against experimentally observed growth rates. See S1 Appendix for

comparison of predicted and measured relative growth rate across the two media types. (B) We compared the measured and simulated relative oxygen consumption

as well as the relative intracellular ATP concentration between the two condition-specific GEMs (Methods). (C) Growth phenotype predictions for 28 CDM-

specific mutant GEMs were compared against experimentally observed transposon mutant growth phenotypes. Two genes (ackA and gudB) were classified as false

positives due to the presence of alternative pathways. (D) We simulated single reaction knockouts and compared essential reactions across conditions. The Venn

diagram highlights the differences in reaction essentiality between the CDM-specific GEM and the CDMG-specific GEM.

https://doi.org/10.1371/journal.pcbi.1006644.g004
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The CDM-specific model carried larger median fluxes across reactions of the TCA cycle

and gluconeogenesis than the CDMG-specific GEM. Indeed, the published NMR peak inten-

sity spectrum of JE2 cultured in CDM supplemented with 13C-labeled amino acids indicated

that gluconeogenic intermediates including D-glucose-6-phosphate, D-glucose-1-phosphate,

3-phospho-D-glycerate, and acetate are produced from a variety of extracellular amino acids

including L-glutamate, L-proline, and L-arginine. Thus, in CDM cultures, gluconeogenic

intermediates are produced from various extracellular amino acids (Fig 5A). In contrast, the

CDMG-specific GEM carried larger median fluxes in amino acid biosynthetic pathways, the

Fig 5. Comparison of flux distribution across two condition-specific GEMs. (A) The reactions that were shown to significantly differ in their flux

distribution (determined by the Kolmogorov-Smirnoff test) between the CDMG- and CDM-specific GEM are shown. The width of the arrows qualitatively

represents the median flux value across 10,000 sampled fluxes. The blue arrows represent the flux simulation results for the CDM-specific GEM and the red

arrows represent the flux simulations of the CDMG-specific GEM. The13C labelled intracellular metabolites detected by NMR in both conditions are

highlighted in red (metabolic intermediates derived from extracellular glucose in CDMG) and in blue (metabolic intermediates derived from nine extracellular

amino acids in CDM) [79]. Metabolites highlighted in grey are present in the extracellular medium (note that D-glucose is only present in CDMG). (B)

Differential cycling of ammonium (as well as several cofactors) between the two GEMs highlights the relative contribution to the production and consumption

of ammonium for all reactions utilizing or synthesizing ammonium in CDM (blue) and CDMG (red). Several metabolic processes contribute to the ammonium

pool in CDM (including the glycine cleavage system) while serine dehydrogenase is the main source of ammonium in CDMG.

https://doi.org/10.1371/journal.pcbi.1006644.g005

Metabolic response of Staphylococcus aureus to its environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006644 January 9, 2019 13 / 27

https://doi.org/10.1371/journal.pcbi.1006644.g005
https://doi.org/10.1371/journal.pcbi.1006644


PPP, and upper and lower glycolysis. Again, the NMR peak intensity spectrum for CDM sup-

plemented with 13C-labeled D-glucose revealed that several amino acids including L-alanine,

L-glutamate, L-arginine, L-aspartate, L-asparagine, L-proline, and L-glutamine as well as ace-

tate (a glycolytic end product) were being synthesized from extracellular glucose [39].

Condition-specific GEMs reveal that the sole addition of glucose causes a reorganization

of cofactor cycling. We next analyzed the predicted cycling of ammonium and major cofac-

tors including NADP and ATP. For each metabolite, we compared the relative contributions of

all producing and consuming reactions between the two conditions. We found that ammonium

cycling was drastically different across both models with the main source of ammonium being

serine dehydrogenase (carrying 75% of the biosynthetic flux producing ammonium) in CDMG

while multiple reactions contributed to the pool of ammonium in CDM. The glycine cleavage

system produced 17% of the ammonium in CDM and carried a significantly higher median flux

(1.063 mmol/gDW/hr as opposed to 0.436 mmol/gDW/hr; Fig 5B).

Similarly, we found that overflow pathways contributed a larger percentage to the pool of

ATP in CDMG (with 54%, 29%, and 16% being produced by ATP synthase, phosphoglycerate

kinase, and acetate kinase, respectively) than in CDM (82% and 18% of the ATP was produced

by ATP synthase and succinyl-coa synthase, respectively). These differences are a direct result

of the larger acetate secretion constraint in CDMG which forced the metabolic flux to be redi-

rected away from the TCA cycle to acetate synthesis. The NADPH pool, which is partially recy-

cled (28%) by the TCA cycle (as by-product of decarboxylating isocitrate to oxalosuccinate) in

CDM, is predominantly recycled (94%) via the PPP in CDMG. NADPH is an important cofac-

tor for the biosynthesis of fatty acids, nucleic acids, and amino acids and the CDMG-specific

GEM predicted a larger total flux through NADPH. This prediction is consistent with pub-

lished experimental measurements of the NADP+/NADPH ratio [55]. Taken together, these

findings suggest that in the presence of high concentrations of glucose, S. aureus relies more

heavily on glycolysis for its energy generation and utilizes D-glucose as a main source for the

synthesis of a large range of biomass precursors.

Discussion

This study presents the most recent and up-to-date genome-scale metabolic reconstruction for

the gram-positive pathogen S. aureus. We validated iYS854 both quantitatively and qualita-

tively against a variety of data sets and observed a significant improvement with respect to the

starting model in both carbon catabolic capabilities as well as gene essentiality prediction. We

then integrated time course quantitative exo metabolomics with iYS854 to analyze the effects

of exogenous glucose on the intracellular flux distribution.

Inconsistencies of model-driven predictions with in vitro observations highlighted gaps in

knowledge as well as non-essential biomass components (including cell wall components,

haem, and menaquinone). Interestingly, cell wall deficient strains are involved in persistence

in vivo [80], whilemenDmutants exhibit the small colony variant (SCV) phenotype, a pheno-

type known to be associated with increased persistence and resistance to antibiotics in vivo.

Taken together, these results hint towards an altered biomass composition as a result of expo-

sure to environmental stresses such as antimicrobials.

Gene essentiality predictions on synthetic physiological media and chemically defined

media revealed the essentiality of purine, pyrimidine, and amino acid biosynthesis for growth

under nutrient limited conditions. Nucleotide biosynthesis, which was predicted to be essen-

tial in RPMI and SNM3, has been shown to be essential for growth in blood for a variety of

bacteria including S. aureus, E. coli, Salmonella, and B. anthracis [72,81]. Additionally, iYS854

predicts amino acid biosynthesis to be essential in SNM3 (a synthetic nasal medium), and our
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results were confirmed experimentally by Krismer et. al [53].Together, these findings point

towards putative antibiotic targets for the treatment of bloodstream and nasal infections.

Elevated concentrations of blood glucose is common across diabetic patients and S. aureus
is the most frequently isolated and virulent pathogen from diabetic foot infections [82]. Condi-

tion-specific models revealed drastic systems-level differences in flux distributions across

strains when they were exposed to D-glucose. For example, despite the availability of amino

acids in the medium, S. aureus was predicted to utilize both extracellular glucose and amino

acids towards protein production in order to satisfy its biomass requirements. This finding is

supported by the observation that genes involved in amino acid biosynthesis are highly

expressed when D-glucose is added to the medium [55] and hints towards a kinetic constraint

favoring the uptake and utilization of extracellular glucose over that of extracellular amino

acids towards amino acid biosynthesis. Indeed, S. aureus strains express four glucose trans-

porters suggesting that together, they can induce high levels of glycolytic flux [83].

The addition of glucose to the medium induced significant metabolic rewiring, with produc-

tion of ATP switching from the Krebs cycle to overflow pathways as evidenced by the large ace-

tate secretion rate. Significantly higher glycolytic fluxes were predicted in the presence of

glucose. Aerobic fermentation also occurs in E. coli when the glucose consumption rate is large,

and the cell cannot reoxidize reduced equivalents at a sufficient rate [84]. Importantly, glycolytic

activity exhibited by S. aureus strains has been shown to induce hypoxia inducible factor 1α sig-

nalling and promote the proinflammatory response to infection [85]. The absolute consump-

tion of oxygen was predicted and experimentally shown to be higher in the presence of glucose

(as confirmed by experimental evidence [39]). We also predicted an elevated flux through the

PPP in the presence of glucose, which was confirmed by an experimentally observed higher

NADP/NADPH ratio [55]. In agreement with our predictions, the inactivation of the TCA

cycle was found to cause an increase in the carbon flow across the PPP in S. aureus [86]. Here

we show that the generation of NADPH is mediated by both the PPP and the TCA cycle and

that the increased flux through the PPP compensates for the decreased flux in the TCA cycle.

Our results demonstrate that the updated S. aureusGEM, iYS854, accurately captures

experimentally measured differences in central metabolism in the presence and absence of glu-

cose and that the importance of metabolic modules changes drastically under different in silico
physiological growth media. This study is a first step towards understanding the systems-level

metabolic response of S. aureus to differing media compositions from a constraint-based

modeling perspective.

Materials and methods

Modifications to the metabolic network

A draft core S. aureus GEM was built by taking the common reactions between the E. coli core

GEM [87] and the starting S. aureusGEM [11] and adopting the E.coli core biomass objective

function (BIOMASS_Ecoli_core_w_GAM) [88]. We curated the network after reviewing liter-

ature using the COBRApy toolbox (Tables S1, S2 and S3 in S2 Appendix) [89]. Modifications

included reaction, gene and metabolites addition/removal, and annotations of reactions and

genes with confidence scores, references and metadata. We assigned confidence scores as per

the standards set by Thiele et. al [90] and novel instance IDs as per BiGG standards [91]. We

downloaded the genomic sequence for S. aureus str. JE2 from NCBI (accession number

CP020619.1). Genes were updated with names as assigned in the literature (when available) or

as generated during automatic genome annotation. We added the E.C. numbers obtained

from the genome annotation as metadata to the modelled genes. We then downloaded the S.

aureus Swiss-prot knowledge base (which contains manually reviewed proteins and protein
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metadata specific to S. aureus) and cross-referenced the modelled genes with Swiss-prot IDs

using bi-directional best BLAST (PID > 80%, e-value< 10−3) [92,93].

Flux simulations and network evaluation

One of the crucial steps involved in a reconstruction is the evaluation of the network flux car-

rying capability. In addition to ensuring the successful production of biomass precursors, we

examined some general properties of the flux distribution. The starting model could not simu-

late flux through the full TCA cycle and erroneously simulated the dissipation of 13 energy car-

riers when all exchanges were closed including ATP, CTP, GTP, UTP, ITP, NADH, NADPH,

FADH2, FMNH2, MQH7, acetyl-coa, L-glutamate and intracellular proton. Such an aberra-

tion is commonly found to be caused by a set of reactions constituting together erroneous stoi-

chiometrically balanced energy generating cycles (ECGs) [23]. To search for energy generating

cycles we followed the workflow established by Fritzemeier et. al [94]. Briefly, we blocked all

extracellular exchanges by constraining the upper and lower bounds to 0 and iteratively added

14 energy dissipation reactions (S4 Table in S2 Appendix). An energy dissipation reaction is a

reaction that consumes high energy metabolites. We simulated maximal flux through one dis-

sipation reaction at a time using flux balance analysis (FBA) [95]. Energy generating cycles

existed when the maximal flux through any energy dissipation reaction was larger than 0. We

found that EGCs were caused by: 1) sets of reactions carrying out the same function but with

inverted reversibility, 2) the inclusion of reactions that are not known to occur in S. aureus nor

have any genetic basis for their inclusion (such as 2-oxoglutarate synthase and fumarate reduc-

tase allowing reductive TCA), and 3) reversible reactions that could generate energy carrying

moieties when the flux was running in the reverse direction. As a result of removing and

adjusting the network accordingly, iYS103 successfully simulated flux through the TCA cycle

and could not freely charge any of the 13 high energy carriers (Fig S1 in S1 Appendix). The

final core network contains 103 unique ORF assignments, 70 metabolic processes and 58 met-

abolic species and can successfully simulate the utilization of the Krebs cycle.

Addition of gene and reaction metadata

Reactions were annotated with COG subsystems following the same classification scheme as

previous GEM reconstructions [70,91]. The subsystems consisted of: 1) amino acid metabo-

lism, 2) carbohydrate metabolism, 3) cell wall and membrane metabolism, 4) cofactor and

prosthetic group metabolism, 5) energy production and conversion, 6) transport, 7) nucleotide

metabolism, 8) lipid metabolism and 9) inorganic ion transport and metabolism. We also

added as a note to each metabolic reaction the metabolic sub-module that it is described to

participate in throughout the literature. We annotated metabolic reactions with 65 metabolic

sub-modules. To visualize the amount of novel content added to each metabolic subsystem, we

compared the updated metabolic gene content with the metabolic gene content across the 4

previous metabolic reconstructions. Genes were then classified in sub-modules according to

the metabolic reactions they participate in. For each sub-module, a fraction representing the

ratio of novel genes to the total number of genes it contains was computed. A gene was consid-

ered “novel” when it was not accounted for in the previous reconstruction (Fig 2A).

Addition of structures and structure-guided reconstruction

The structural systems biology (ssbio) pipeline was run to map crystallized 3-dimensional

structures of proteins deposited in the Protein Data Bank (PDB) to the genes included in the

genome scale reconstruction [48,49]. A blast cutoff was chosen at 70%. Genes that could not

be mapped through this method to a crystal structure were mapped to their nearest homolog
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with an existing structure (S4 Table in S2 Appendix). Homology models were built from this

template and subsequently modified to match the amino acid sequence of the USA300 query

protein (S5 Table in S2 Appendix).

Biomass objective function

We adapted the weight fractions for the 5 polymer categories and the pool of solutes from

Heinemann et. al [12]. The authors computed a biomass composition by averaging experimen-

tally derived weight fractions across several S. aureus strains grown in different media condi-

tions. We proceeded to compute the relative ratios of the DNA precursors using the S. aureus
genomic sequence and the RNA and protein weight fractions using transcriptomics data

derived for S. aureus str. plasmid cured LAC (JE2) grown on a chemically defined medium

with galactose as the main gluconeogenic nutrient source [96]. Computations were performed

via BOFdat, a python package for biomass objective function derivation [51]. We included

amino acids in their tRNA bound form because two of the twenty amino acids are only synthe-

sized while complexed with tRNA [97]. The relative quantities for the cell wall precursors and

lipids were adapted again from Heinemann et. al. However, the updated metabolic network

includes the biosynthesis of downstream precursors for some of the cell wall precursors. For

example, we replaced the peptidoglycan monomer with a wall teichoic acid bound peptidogly-

can dimer, and lipoteichoic teichoic acids with charged lipoteichoic acids. We adjusted the rel-

ative coefficients according to the replaced precursor’s molecular weight. The pool of solutes

was adapted from [52] and updated with metals and trace molecules (chosen based on litera-

ture evidence [98] and protein cofactor utilization obtained from the metadata associated with

the 3-D protein structures; S7 Table in S2 Appendix).

Growth carrying capability of multiple media types and prediction of

necessary supplementations

We modelled growth on a defined medium by setting the lower bound to the reactions

exchanging metabolites that are present in the medium to -10 mmol/gDW/hr. A negative

value signifies exchange from the medium to the cell. The lower bound to all other exchanges

was set to 0 mmol/gDW/hr. The simulated media types are available in S8 Table in S2 Appen-

dix. When growth could not be achieved, we searched for minimal medium supplementations

needed to support growth. For that purpose, we changed the objective of the optimization

problem to the minimization of the number of additional open exchange reactions and con-

strained flux through the biomass objective function to a minimal value of 1 hr−1 (S9 Table in

S2 Appendix). We set the lower bound to all exchange reactions to -10, and the solver configu-

ration tolerance feasibility to 10−9 using COBRApy.

min
X

j

yj 8j 2 Subset of exchange reactions ð1Þ

X

8i2Metabolites

Sij:vj ¼ 0 8j 2 Reactions ð2Þ

yj:LBj � vj; 8j 2 Subset of exchange reactions ð3Þ

vbiomass ¼ 1 hr� 1; ð4Þ

yj 2 ð0; 1Þ
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Aerobic environments were simulated by setting the lower bound for oxygen exchange to

-20 mmol/gDW/hr. Oxygen exchange was blocked to simulate an anaerobic growth environ-

ment. The utilization of nitrate as an alternative electron acceptor was simulated by setting the

lower bound for nitrate exchange to -20 and the lower bound for oxygen exchange to 0.

High throughput BIOLOG phenotypic array

Model benchmarking on carbon sources was performed using Biolog plates PM1 and PM2

(BIOLOG Inc. Hayward, CA). The recommended protocol was followed as described by

(Zuniga et al., 2016), with the following modifications. S. aureusUSA300 was grown to mid-

log phase in modified TSB media, pelleted via centrifugation at 4,000 x g for five minutes,

washed and resuspended in fresh media to a final OD = 0.1. Aliquots of 100 uL were inoculated

into Biolog plates and examined in the plate reader at time zero, then each hour from 1–12 h,

and finally at 24 h. Plates were housed in a plate reader under sterile conditions. The plates for

both the PM1 and PM2 plate (carbon sources) were run at 490 nm to examine dye absorbance

alterations and 750 nm to assess optical density. M9 minimal medium supplemented with nia-

cin and thiamin was used as the minimal medium to simulate for the utilization capability of

68 carbon sources. The simulation results were then compared against experimental observa-

tions (S10 Table in S2 Appendix).

Gene essentiality prediction

The predicted mutant growth phenotypes were obtained by simulating a gene knockout using

the cobra.flux_analysis.single_gene_deletion command. The mutants were cultured on tryptic

soy broth (TSB, a rich and complex medium for which the composition is unknown) and the

observed gene essentiality for this condition was reported. To mimic TSB, we simulated

growth by allowing inward flux of all the extracellular nutrients included in the reconstruction.

We set the objective function to BIOMASS_iYS_reduced (which excludes the pool of mea-

sured intracellular solutes detected by NMR for growth of S. aureus on CDM+glucose). A gene

was deemed to be essential when its knockout resulted in a maximal growth of less than 0.0001

hr^-1 or when the solution status was not optimal (S11 Table in S2 Appendix).

To interrogate the capability of iYS854 to recapitulate the mannitol fermentation capability

across mutants, we first confirmed that the model could simulate growth on mannitol in an

oxygen depleted environment by allowing uptake of mannitol, M9 minimal medium compo-

nents, thiamin and niacin. Extracellular oxygen exchange was blocked to mimic the anaerobic

environment. We subsequently assessed gene essentiality by using the cobra.flux_analysis.sin-

gle_gene_deletion command and compared the results against experimental observation. In

order to assess the GEM’s capability to predict pigment formation, we set the production of

staphyloxanthin as the objective of the maximization problem. Growth on rich medium was

then simulated by allowing inward flux across all exchanges. Again, we determined gene essen-

tiality to assess the effect of gene knockouts on the production of staphyloxanthin (S12

Table in S2 Appendix). Gene essentiality on all other media types was determined by setting

the lower bound to exchange reactions to -10 when they imported a metabolite that was pres-

ent in the medium (S13 Table in S2 Appendix).

Cell weight measurements

Single colonies of S. aureus str. LAC were inoculated into 5 mL Roswell Memorial Park Insti-

tute (RPMI) 1640 supplemented with 10%LB (RPMI+10%LB) and incubated overnight at

37oC with rolling. Overnight cultures were diluted into tubes containing 18 mL fresh media to

a starting OD600 0.01 and incubated at 37oC with stirring until cultures OD600 0.4. Precultures
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were diluted back into 6 new tubes, containing 20 mL fresh media to OD600 0.01 and growth

was monitored until cultures reached OD600 0.5. The 6 tubes were mixed in baffled flask and

OD600 was taken. Preweighed 0.2 μm filter was placed into a clean glass filter holder above. 40

mL culture was passed through filter and unit was washed with 15 mL ddH2O. A final OD600

reading was taken from remaining culture. Filter disc was transferred to a clean petri dish

placed in incubator at 80oC ON. The next day, filter discs were acclimated to room tempera-

ture for 45 min and reweighed. Dry cell weights were taken as the average of three weight mea-

surements. We obtained an average dry cell weight of 9.6 mg at an OD600 of 0.58 (S14

Table in S2 Appendix).

Condition-specific GEMs were built using time course quantitative exo

metabolomics

Hasley et. al reported absolute concentration measurements for extracellular ammonium, ace-

tate, glucose and all 18 amino acids and complemented these measurements with correspond-

ing time-course OD readings. We calculated the growth rate and uptake rates in both

conditions as specified below:

SUR ¼ m�m; ð5Þ

m ¼ slopeðloggDW; tÞ for t 2 ð0; 2; 4; 6; 8Þ ð6Þ

m ¼ slopeð½X�; gDWÞ ð7Þ

Where [X] is the set of concentration measurements across t in mmol/L, gdW is the gram

dry weight in g/L, t is the time in hours, μ is the growth rate, SUR is the substrate uptake rate

inmmol/t/gDW.

For each condition, we verified that the uptake and secretion rates were mass balanced and

that the overall flux of elements going towards biomass production (i.e. the total influx minus

the total outflux) is larger than the total flux of elements needed to support biomass production

at the experimentally measured growth rate.
X

e;i

Ne;i � SURi �
X

e;j

Ne;j � SURj >
X

e;k

Pe;k � bk � m > 0 ð8Þ

8e 2 fC;H; P;O;N; Sg;

8i 2 exchanges allowing nutrients influx;

8j 2 exchanges allowing nutrients outflux

8k 2 biomass precursors

Where Ne,i is the base ratio for element e in the metabolic structure for nutrient i, SURi is

the substrate uptake rate for nutrient i, bk is the relative coefficient for the biomass precursor k,

Pe,k is the base ratio of element e in the metabolic structure of the biomass precursor k.

We proceeded to build two condition-specific GEMs by constraining the reactions

exchanging the extracellular nutrients to +/- 10% of the measured corresponding calculated

uptake and secretion rates (S15-S17 Tables in S2 Appendix). We subsequently ran flux bal-

ance analysis (FBA) to simulate maximal biomass production.
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Growth associated maintenance calculation

We calculated a theoretical growth associated maintenance by changing the objective for both

condition-specific GEMs to ATP production (i.e., the objective coefficient for the ATP mainte-

nance reaction was set to 1). The maximal flux through the ATP maintenance reaction

obtained was 1.93mmol/gDW/h for the CDM-constrained GEM and was 12.64mmol/gDW
for the CDMG-constrained GEM. As a result, we obtained a growth associated maintenance of

9.59mmol/gDW/h (which is the slope of the line obtained from plotting maximal flux through

ATPM against growth rate) and a non-growth associated maintenance of −5.87mmol/gDW.

Since non-growth associated maintenance should be positive, we hypothesize that data-sets

{vATPM,μ} covering a larger range of conditions (e.g. anaerobic conditions as well as alternate

carbon/nitrogen sources) coupled with measurements of CO2 secretion rates is needed to lead

to more accurate values. We instead used the GAM and NGAM values experimentally

obtained for E. coli and iteratively computed maximal growth for decreasing percentages of

the initial value. For each condition, the GAM and NGAM value is chosen when the simulated

maximal growth corresponds to the observed experimental growth rate (S1 Appendix).

Calculation of a proxy for relative intracellular ATP concentration and

relative oxygen level

We sampled the steady state flux space a total of 10,000 times using the cobra.flux_analysis.

sample() command from the cobrapy package. To obtain a proxy for the predicted relative

intracellular ATP concentration we calculated the ratio of the sum of all metabolic fluxes pro-

ducing ATP across both condition:

rATP CDM
CDMþglucose

¼
medianð

Pn
i¼1
aATP � viÞs1

medianð
Pm

j¼1
aATP � vjÞs2

8i 2 R1; 8j 2 R2; 8s1 2 S1; 8s2 2 S2 ð9Þ

where R1 are the set of reactions yielding ATP and S1 is the set of 10,000 sampled fluxes in the

CDM-specific GEM, R2 is the set of reactions yielding ATP and S2 is the set of 10,000 sampled

fluxes in the CDMG-specific GEM, aATP is the stoichiometric coefficient for ATP in reaction i,
and vi is the calculated flux inmmol/gDW/hr through reaction i, and the median is taken

across 10,000 samples.

Similarly, we computed a proxy for the relative oxygen level by computing the relative flux

for the oxygen exchange:

rO2 CDM
CDMþglucose

¼
medianðvO2Þs1
medianðvO2Þs2

8s1 2 S1; 8s2 2 S2 ð10Þ

Where vO2,i is the flux through EX_o2_e inmmol/gDW/hr and the median is taken across

10,000 sampled fluxes.

Assessment of significant differences in flux distribution

Flux balance analysis was run in both conditions and the fluxes were sampled 10,000 times. All

reaction fluxes were normalized by dividing by the growth rate to account for growth differences

across the two media types. The flux distribution for each metabolic process was compared across

both conditions using the Kolmogorov-Smirnov test, a non-parametric test which compares two

continuous probability distributions. For this purpose we used the command scipy.stats.ks_2samp

from the scipy package. The distribution across two reactions was deemed to be significantly dif-

ferent when the Kolmogorov-Smirnoff statistic was larger than 0.99 with an adjusted p-

value< 0.01. We proceeded to plot the reactions highlighted in this process in Fig 5.
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57. Neubauer H, Pantel I, Lindgren PE, Götz F. Characterization of the molybdate transport system Mod-

ABC of Staphylococcus carnosus. Arch Microbiol. 1999; 172: 109–115. PMID: 10415172

58. Zheng W, Cai X, Xie M, Liang Y, Wang T, Li Z. Structure-Based Identification of a Potent Inhibitor Tar-

geting Stp1-Mediated Virulence Regulation in Staphylococcus aureus. Cell Chem Biol. 2016; 23: 1002–

1013. https://doi.org/10.1016/j.chembiol.2016.06.014 PMID: 27499528

59. Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S, Zimmerman E, et al. Structural insights into

species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc Natl Acad

Sci U S A. 2015; 112: E5805–14. https://doi.org/10.1073/pnas.1517952112 PMID: 26464510

60. Hammer ND, Skaar EP. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev

Microbiol. 2011; 65: 129–147. https://doi.org/10.1146/annurev-micro-090110-102851 PMID: 21639791

61. Knight BC. The nutrition of Staphylococcus aureus; nicotinic acid and vitamin B(1). Biochem J. 1937;

31: 731–737. PMID: 16746392

62. Monk J, Palsson BO. Genetics. Predicting microbial growth. Science. 2014; 344: 1448–1449. https://

doi.org/10.1126/science.1253388 PMID: 24970063

63. Bæk KT, Bowman L, Millership C, Dupont Søgaard M, Kaever V, Siljamäki P, et al. The Cell Wall Poly-
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